
01.11.22, 13:04 🎈 nb06-ad-nonlin.jl — Pluto.jl

localhost:1235/edit?id=b4429d9e-59c2-11ed-2841-bfda76523d60 1/8

Advanced Topics from Scienti�c Computing 
TU Berlin Winter 2022/23 
Notebook 06 

 Jürgen Fuhrmann 

Nonlinear systems of equations
Automatic di�ferentiation

Dual numbers
Dual numbers in Julia
ForwardDi�f.jl

Solving nonlinear systems of equations
Fixpoint iteration scheme:

De�nition of M(u)
Newton iteration scheme

Linear and quadratic convergence
newton1: Newton method with AD
dnewton: Damped Newton scheme
Parameter embedding

NLsolve.jl
Summary

Nonlinear systems of equations

Automatic di�erentiation

Dual numbers

We all know the �eld of complex numbers : they extend the real numbers  based on the
introduction of  with .

Dual numbers  are de�ned by extending the real numbers by formally introducing a number 
with :

Dual numbers form a ring, not a �eld.

Evaluating polynomials on dual numbers: Let . Then

This can be generalized to any analytical function.  automatic evaluation of function and
derivative at once

 forward mode automatic di�ferentiation
Multivariate dual numbers: generalization for partial derivatives

Dual numbers in Julia

Nathan Krislock provided a simple dual number arithmetic example in Julia.

De�ne a struct parametrized with type T. This is akin a template class in C++
The type shall work with all methods working with Number
In order to construct a Dual number from arguments of di�ferent types, allow promotion aka
"parameter type homogenization"

De�ne a way to convert a Real  to DualNumber

Constructing a dual number:

begin
    struct DualNumber{T} <: Number where {T <: Real}
   value::T
      deriv::T  
    end
    DualNumber(v,d) = DualNumber(promote(v,d)...)
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅

Base.promote_rule(::Type{DualNumber{T}}, ::Type{<:Real}) where T<:Real = DualNumber{T}⋅

Base.convert(::Type{DualNumber{T}}, x::Real) where T<:Real = DualNumber(x,zero(T))
 

⋅
⋅

Contents

http://creativecommons.org/licenses/by-sa/4.0/
https://julialang.zulipchat.com/#narrow/stream/225542-helpdesk/topic/Comparing.20julia.20and.20numpy/near/209143302
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d DualNumber(5, 4) = 

Accessing its components:

(5, 4)

Simple arithmetic for dual numbers:

All these de�nitions add methods to the functions +, /, *, -, inv  which allow them to work for
DualNumber

De�ne a function for comparison with known derivative:

testdual (generic function with 1 method)

Polynomial expressions:

p (generic function with 1 method)

dp (generic function with 1 method)

((f = 34, f_dual = 34), (df = 29, df_dual = 29), (error = 0))

Standard functions:

((f = 0.420167, f_dual = 0.420167), (df = 0.907447, df_dual = 0.907447), (error = 0.0))

((f = 2.56495, f_dual = 2.56495), (df = 0.0769231, df_dual = 0.0769231), (error = 0.0))

Function composition:

((f = -0.506366, f_dual = -0.506366), (df = 17.2464, df_dual = 17.2464), (error = 0.0))

If we apply dual numbers in the right way, we can do calculations with derivatives of
complicated nonlinear expressions without the need to write code to calculate derivatives.

ForwardDi�.jl

The ForwardDi�f.jl package provides a full implementation of these facilities.

testdual1 (generic function with 1 method)

(f = 0.14112, df = -0.989992, df_dual = -0.989992, error = 0.0)

Let us plot some complicated function:

g (generic function with 1 method)

dg (generic function with 1 method)

d=DualNumber(5,4)⋅

d.value,d.deriv⋅

begin
    import Base: +, /, *, -, inv
    +(x::DualNumber, y::DualNumber) = DualNumber(x.value + y.value, x.deriv + y.deriv)
 
    -(y::DualNumber) = DualNumber(-y.value, -y.deriv)
 
    -(x::DualNumber, y::DualNumber) = x + -y
 
    *(x::DualNumber, y::DualNumber) = DualNumber(x.value*y.value, x.value*y.deriv + 
x.deriv*y.value)
 
    inv(y::DualNumber{T}) where T<:Union{Integer, Rational} = DualNumber(1//y.value, 
(-y.deriv)//y.value^2)
 
    inv(y::DualNumber{T}) where T<:Union{AbstractFloat,AbstractIrrational} = 
DualNumber(1/y.value, (-y.deriv)/y.value^2)
 
    /(x::DualNumber, y::DualNumber) = x*inv(y)
end;
 

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅

⋅
⋅

⋅
⋅
⋅
⋅

Base.sin(x::DualNumber{T}) where T= DualNumber(sin(x.value),cos(x.value)*x.deriv);⋅

Base.log(x::DualNumber{T}) where T = DualNumber(log(x.value),x.deriv/x.value)⋅

function testdual(x,f,df)
 xdual=DualNumber(x,1)
    fdual=f(xdual)
 _f=f(x)
 _df=df(x)
 err=_df-fdual.deriv
 (f=_f,f_dual=fdual.value),(df=_df,df_dual=fdual.deriv), (error=err,)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

p(x)=x^3+2x+1⋅

dp(x)=3x^2+2⋅

testdual(3,p,dp)⋅

testdual(13,sin,cos)⋅

testdual(13,log, x->1/x)⋅

testdual(10,x->sin(x^2),x->2x*cos(x^2))⋅

function testdual1(x,f,df)
 _df=df(x)
 _df_dual=ForwardDiff.derivative(f,x)
 (f=f(x),df=_df,df_dual=_df_dual, error=abs(_df-_df_dual))
end

⋅
⋅
⋅
⋅
⋅

testdual1(3,sin,cos)⋅

g(x)=sin(exp(0.2*x)+cos(3x))⋅

dg(x)=ForwardDiff.derivative(g,x)⋅

https://github.com/JuliaDiff/ForwardDiff.jl
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X -5.0:0.01:5.0 = 

Solving nonlinear systems of equations

Let  be functions depending on  unknowns . Solve the system of nonlinear
equations:

 can be seen as a nonlinar operator  where  is its domain of de�nition.

There is no analogon to Gaussian elimination, so we need to solve iteratively.

Fixpoint iteration scheme:
Assume  where for each ,  is a linear operator.

Then we can de�ne the iteration scheme: choose an initial value  and at each iteration step, solve

Terminate if

or

Large domain of convergence
Convergence may be slow
Smooth coe��cients not necessary

fixpoint! (generic function with 1 method)

De�nition of M(u)

M (generic function with 1 method)

F [1, 3] = 

(
[1.28822, 1.61348]

[3.16228, 26.9072, 1.45019, 1.87735, 0.614397, 0.471544, 0.229973, 0.1472, 0.08075
)

1:

2:

contraction (generic function with 1 method)

X=(-5:0.01:5)⋅

function fixpoint!(u,M,f; imax=100, tol=1.0e-10)
 history=Float64[]
 for i=1:imax
  res=norm(M(u)*u-f)
  push!(history,res)
  if res<tol 
   return u,history
  end
  u=M(u)\f
 end
 error("No convergence after $imax iterations")
end
 

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function M(u)
 [ 1+1.2*(u[1]^2+u[2]^2)  -(u[1]^2+u[2]^2);
  -(u[1]^2+u[2]^2)  1+1*(u[1]^2+u[2]^2)]
end

⋅
⋅
⋅
⋅

F=[1,3]⋅

fixpt_result,fixpt_history=fixpoint!([0,0],M,F,imax=1000,tol=1.0e-10)⋅

contraction(h)=h[2:end]./h[1:end-1]⋅

function plothistory(history::Vector{<:Number})
 clf()
 semilogy(history)
 xlabel("steps")
 ylabel("residual")
 grid()
 gcf()
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
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[8.50882, 0.0538958, 1.29456, 0.327268, 0.76749, 0.487702, 0.640077, 0.548586, 0.60068, 0.

[1.85807e-11, -8.93863e-11]

Newton iteration scheme
The �xed point iteration scheme assumes a particular structure of the nonlinear system. In addition,
one would need to investigate convergence conditions for each particular operator. Can we do better ?

Let  be the Jacobi matrix  of �rst partial derivatives of  at point :

'with

Then, one calculates in the -th iteration step:

One can split this a follows:

Calculate residual: 
Solve linear system for update: 
Update solution: 

General properties are:

Potenially small domain of convergence - one needs a good initial value
Possibly slow initial convergence
Quadratic convergence close to the solution

Linear and quadratic convergence
Let .

Linear convergence: observed for e.g. linear systems: Asymptotically constant error contraction
rate

Quadratic convergence:  such that , 
As  decreases, the contraction rate decreases:

In practice, we can watch  or 

newton�: Newton method with AD

This is the situation where we could apply automatic di�ferentiation for vector functions of vectors.

A1 (generic function with 1 method)

contraction(fixpt_history)⋅

plothistory(fixpt_history)⋅

M(fixpt_result)*fixpt_result-F⋅

A1(u)=M(u)*u⋅
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newton1 (generic function with 1 method)

([1.28822, 1.61348], [3.02185, 0.846373, 0.432681, 0.102853, 0.0030576, 3.19945e-6, 3.3511

Calculate function and derivative at once ?

Let us take a more complicated example with an operator dependent on a parameter λ which allows
to adjust the "severity" of the nonlinearity. For λ=0, it is linear, for λ=1 it is strongly nonlinear.

A2λ (generic function with 1 method)

A2 (generic function with 1 method)

F2 [0.1, 0.1, 0.1] = 

U02 [1.0, 1.0, 1.0] = 

([-0.188484, 0.198519, 0.488388], [0.39077, 0.345694, 0.389908, 0.977557, 0.300465, 0.1952

[-2.77556e-17, -2.77556e-17, 0.0]

Newton steps: 86

Here, we observe that we have to use lots of iteration steps and see a rather erratic behaviour of the
residual. A�ter  80 steps we arrive in the quadratic convergence region where convergence is fast.

function newton1(A,b,u0; tol=1.0e-12, maxit=100)
 history=Float64[]
    u=copy(u0)
    it=0
 converged=false
    while !converged && it<maxit 
  res=A(u)-b
        jac=ForwardDiff.jacobian((v)->A(v)-b ,u)
        h=jac\res
        u-=h
        nm=norm(h)
  push!(history,nm)
        it=it+1
        if nm<tol
   converged=true
        end
    end
 if converged
  return u,history
 else
       throw("convergence failed")
 end
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

newton_result1,newton_history1=newton1(A1,F,[0,0.1],tol=1.e-13)⋅

plothistory(newton_history1)⋅

A2λ(x,λ)= [x[1]+10λ*x[1]^5+3λ*x[2]*x[3], 
    0.1*x[2]+10λ*x[2]^5-3λ*x[1]-x[3], 
     10λ*x[3]^5+10λ*x[1]*x[2]*x[3]+x[3]/100]

⋅
⋅
⋅

A2(x)=A2λ(x,1)⋅

F2=[0.1,0.1,0.1]⋅

U02=[1,1.0,1.0]⋅

res2,hist2=newton1(A2,F2,U02)⋅

A2(res2)-F2⋅

plothistory(hist2)⋅
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dnewton: Damped Newton scheme
There are may ways to improve the convergence behaviour and/or to increase the convergence radius
in such a case. The simplest ones are:

�nd a good estimate of the initial value
damping: do not use the full update, but damp it by some factor which we increase during the
iteration process until it reaches 1

dnewton (generic function with 1 method)

In this implementation, we also try to save work by evaluating result and Jacobian once.

([-0.188484, 0.198519, 0.488388], [0.39077, 0.38541, 0.375394, 0.358292, 0.340649, 1.79877

Newton steps: 16

[-2.77556e-17, -2.77556e-17, 0.0]

The example shows: damping indeed helps to improve the convergece behaviour. If we would keep
the damping parameter less than 1, we loose the quadratic convergence behavior.

A more sophisticated strategy would be line search: automatic detection of a damping factor which
prevents the residual from increasing.

Parameter embedding

Another option is the use of parameter embedding for parameter dependent problems.

Problem: solve  for .
Assume  can be easily solved.
Choose step size 

�. Solve 
�. Set 
�. Solve  with initial value 
�. Set 
�. If  repeat with 3.

If  is small enough, we can ensure that  is a good initial value for .
Possibility to adapt  depending on Newton convergence

function dnewton(A,b,u0; tol=1.0e-12,maxit=100,damp=1,damp_growth=1)
    result=DiffResults.JacobianResult(u0)
 history=Float64[]
    u=copy(u0)
    it=1
    while it<maxit
        ForwardDiff.jacobian!(result,(v)->A(v)-b ,u)
        res=DiffResults.value(result)
        jac=DiffResults.jacobian(result)
        h=jac\res
        u.-=damp*h
        nm=norm(h)
  push!(history,nm)
        if nm<tol
            return u,history
        end
  
        it=it+1
  damp=min(damp*damp_growth,1.0)
    end
    throw("convergence failed")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

res3,hist3=dnewton(A2,F2,U02,damp=0.1,damp_growth=2,maxit=1000)⋅

plothistory(hist3)⋅

A2(res3)-F2⋅
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embed_newton (generic function with 1 method)

(
[-0.188484, 0.198519, 0.488388]

[[100.408, 1.41554e-14], [28.0258, 16.6762, 13.3379, 10.6677, 8.53262, more ,3.
)

1:

2:

[0.0, 8.32667e-17, -5.55112e-17]

Newton steps: 50

plothistory (generic function with 2 methods)

NLsolve.jl

  WARNING: method definition for TwiceDifferentiable at /home/fuhrmann/.julia/WARNING: method definition for TwiceDifferentiable at /home/fuhrmann/.julia/
packages/NLSolversBase/cfJrN/src/objective_types/incomplete.jl:96 declares typepackages/NLSolversBase/cfJrN/src/objective_types/incomplete.jl:96 declares type  
variable TH but does not use it.variable TH but does not use it.  

nlres1 Results of Nonlinear Solver Algorithm 
 * Algorithm: Trust-region with dogleg and autoscaling 
 * Starting Point: [1.0, 1.0, 1.0] 
 * Zero: [0.057582447577986924, 0.4839954302915904, 0.04126490295783218]
 * Inf-norm of residuals: 0.088086 
 * Iterations: 1000 
 * Convergence: false
   * |x - x'| < 0.0e+00: false 
   * |f(x)| < 1.0e-08: false 
 * Function Calls (f): 83 
 * Jacobian Calls (df/dx): 40

 = 

[0.0175049, -2.60128e-5, -0.0880858]

nlres2 Results of Nonlinear Solver Algorithm 
 * Algorithm: Newton with line-search 
 * Starting Point: [1.0, 1.0, 1.0] 
 * Zero: [-0.18848435786947373, 0.198519144942218, 0.4883882611017444] 
 * Inf-norm of residuals: 0.000000 
 * Iterations: 239 
 * Convergence: true 
   * |x - x'| < 0.0e+00: false 
   * |f(x)| < 1.0e-08: true 
 * Function Calls (f): 240 
 * Jacobian Calls (df/dx): 240

 = 

[-1.12965e-14, 8.32667e-17, 7.83734e-13]

nlres3 Results of Nonlinear Solver Algorithm 
 * Algorithm: Newton with line-search 
 * Starting Point: [1.0, 1.0, 1.0] 
 * Zero: [-0.18848435786937287, 0.19851914494226677, 0.48838826110144995] 
 * Inf-norm of residuals: 0.000000 
 * Iterations: 85 
 * Convergence: true 
   * |x - x'| < 0.0e+00: false 
   * |f(x)| < 1.0e-08: true 
 * Function Calls (f): 86 
 * Jacobian Calls (df/dx): 86

 = 

[-7.91034e-15, 5.27356e-16, 1.06304e-13]

 function embed_newton(A,F,U0; δ0=0.1,δgrowth=1.2, λ0=0,λ1=1)
 U=copy(U0)
 allhist=Vector[]
 λ=λ0
 δ=δ0
 while true
   U,hist=newton1(x->A(x,λ),F,U)
   push!(allhist,hist)
   if λ==λ1
    break
   end
   λ=min(λ+δ,λ1)
   δ*=δgrowth  
 end
 U,allhist
 end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

res4,hist4=embed_newton(A2λ,F2,U02,δ0=0.01,δgrowth=5.0)⋅

A2λ(res4,1.0)-F2⋅

plothistory(hist4)⋅

using NLsolve   ⋅

nlres1=nlsolve(u->A2λ(u,1.0)-F2, U02)⋅

A2λ(nlres1.zero,1.0)-F2⋅

nlres2=nlsolve(u->A2λ(u,1.0)-F2, U02, method=:newton)⋅

A2λ(nlres2.zero,1.0)-F2⋅

nlres3=nlsolve(u->A2λ(u,1.0)-F2, U02, method=:newton,autodiff=:forward)⋅

A2λ(nlres3.zero,1.0)-F2⋅
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Summary

Newton method with increasing damping + update based convergence control is rather robust -
I use this in my everyday work
Additional parameter embedding can help to solve even strongly nonlinear problems
NLSolve.jl provides a convenient default �rst stop for solving nonlinear systems in Julia, it relies
on a number of peer reviewed strategies


