Advanced Topics from Scientific Computing
TU Berlin Winter 2022/23
Notebook 06
(cc) Er-sA Jürgen Fuhrmann

Contents

Nonlinear systems of equations

Automatic differentiation
Dual numbers
Dual numbers in Julia
ForwardDiff.j
Solving nonlinear systems of equations
Fixpoint iteration scheme:
Definition of $\mathrm{M}(\mathrm{u})$
Newton iteration scheme
Linear and quadratic convergence
newton1: Newton method with AD
dnewton: Damped Newton scheme
Parameter embedding
NLsolve.jl
Summary

Nonlinear systems of equations

Automatic differentiation

Dual numbers

We all know the field of complex numbers \mathbb{C} : they extend the real numbers \mathbb{R} based on the introduction of i with $i^{2}=-1$.

Dual numbers are defined by extending the real numbers by formally introducing a number ε with $\varepsilon^{2}=0$

$$
\mathbb{D}=\{a+b \varepsilon \mid a, b \in \mathbb{R}\}=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\} \subset \mathbb{R}^{2 \times 2}
$$

Dual numbers form a ring, not a field.

- Evaluating polynomials on dual numbers: Let $p(x)=\sum_{i=0}^{n} p_{i} x^{i}$. Then

$$
\begin{aligned}
p(a+b \varepsilon) & =\sum_{i=0}^{n} p_{i} a^{i}+\sum_{i=1}^{n} i p_{i} a^{i-1} b \varepsilon \\
& =p(a)+b p^{\prime}(a) \varepsilon
\end{aligned}
$$

- This can be generalized to any analytical function. \Rightarrow automatic evaluation of function and derivative at once
\Rightarrow forward mode automatic differentiation
Multivariate dual numbers: generalization for partial derivatives

Dual numbers in Julia

Nathan Krislock provided a simple dual number arithmetic example in Julia.

- Define a struct parametrized with type T. This is akin a template class in C_{++}

The type shall work with all methods working with Number

- In order to construct a Dual number from arguments of different types, allow promotion aka "parameter type homogenization"
begin
struct DualNumber $\{\mathrm{T}\}$ <: Number where $\{\mathrm{T}$ <: Real\} value::T
deriv::T
end
DualNumber $(v, d)=$ DualNumber (promote $(v, d) \ldots$)
end;

Define a way to convert a Real to DualNumbe
Base.promote_rule(::Type\{DualNumber\{T\}\}, ::Type\{<:Real\}) where $\mathbf{T}<:$ Real $=$ DualNumber\{T\}
Base.convert(::Type\{DualNumber\{T\}\}, x::ReaZ) where T <:Real = DualNumber(x,zero(T$)$)
$\mathrm{d}=\operatorname{DualNumber}(5,4)$
d=DualNumber $(5,4)$
Accessing its components:
$(5,4)$
d.value,d.deriv

Simple arithmetic for dual numbers
All these definitions add methods to the functions $+, /, *,-$, inv which allow them to work for Dualnumber

```
begin
    import Base: +, /, *, -, inv
    +(x::DualNumber, y::DualNumber) = DualNumber(x.value + y.value, x.deriv + y.deriv)
    -(y::DualNumber) = DualNumber(-y.value, -y.deriv)
    -(x::DualNumber, y::DualNumber) = x + - y
    *(x::DualNumber, y::DuaZNumber) = DualNumber(x.value*y.value, x.value*y.deriv +
    x.deriv*y.value)
        inv(y::DualNumber{T}) where T<:Union{Integer, Rational} = DualNumber(1//y.value,
    (-y.deriv)//y.value^2)
        inv(y::DualNumber{T}) where T<:Union{AbstractFloat,AbstractIrrational} =
    DualNumber(1/y.value, (-y.deriv)/y.value^2)
    /(x::DualNumber, y::DualNumber) = x*inv(y)
end;
Base.sin(x::DualNumber{T}) where T= DualNumber(sin(x.value),\operatorname{cos(x.value)*x.deriv);}
Base.log(x::DualNumber{T}) where T = DualNumber(log(x.value),x.deriv/x.value)
```

Define a function for comparison with known derivative:
testdual (generic function with 1 method)
function testdual($\mathbf{x}, \mathrm{f}, \mathrm{df}$)
xdual=DualNumber ($\mathrm{x}, 1$)
fdual=f(xdual)
$\mathrm{fdual}=\mathrm{f}$
$-\mathrm{f}=\mathrm{f}(\mathrm{x})$
$-\mathrm{f}=\mathrm{f}(\mathrm{x})$
$\mathrm{-df}=\mathrm{df}(\mathrm{x})$
err=_df-fdual.deriv
($\mathrm{f}=-\mathrm{f}, \mathrm{f}$ _dual=fdual.value), (df=_df,df_dual=fdual.deriv), (error=err,)
end
Polynomial expressions:
p (generic function with 1 method)
$\mathrm{p}(\mathrm{x})=\mathrm{x}^{\wedge} 3+2 \mathrm{x}+1$
dp (generic function with 1 method)
$\mathrm{dp}(\mathrm{x})=3 \mathrm{x}^{\wedge} 2+2$
$\left(\left(f=34, f _d u a l=34\right),\left(d f=29, d f _d u a l=29\right),(\right.$ error $\left.=0)\right)$
testdual ($3, \underline{p}, \underline{d p}$)

Standard functions:
$\left((f=0.420167, f\right.$ _dual $=0.420167),\left(d f=0.907447, d f _d u a l=0.907447\right),($ error $\left.=0.0)\right)$ testdual $(13, \sin , \cos)$
$\left(\left(f=2.56495, f _d u a l=2.56495\right),\left(d f=0.0769231, d f _d u a l=0.0769231\right),(\right.$ error $=0.0)$ testdual $(13, \log , x->1 / x)$

Function composition:
$\left(\left(f=-0.506366, f _d u a l=-0.506366\right),\left(d f=17.2464, d f _d u a l=17.2464\right),(\right.$ error $\left.=0.0)\right)$
testdual $\left(10, x->\sin \left(x^{\wedge} 2\right), x->2 x * \cos \left(x^{\wedge} 2\right)\right)$

If we apply dual numbers in the right way, we can do calculations with derivatives of complicated nonlinear expressions without the need to write code to calculate derivatives.

ForwardDiff.jl

The ForwardDiff.j! package provides a full implementation of these facilities.
testdual1 (generic function with 1 method)

- function testdual1($\mathbf{x , f , d f)}$ _ $d f=d f(x)$
_df_dual=ForwardDiff.derivative(f,x) ($f=f(x), d f=_d f, d f _d u a l=_d f _d u a l$, error=abs (_df-_df_dual))
- end
$\left(f=0.14112, d f=-0.989992, d f _d u a l=-0.989992\right.$, error $\left.=0.0\right)$
testdual1 $(3, \sin , \cos)$
Let us plot some complicated function:
g (generic function with 1 method)
$\mathrm{g}(\mathrm{x})=\sin (\exp (0.2 * \mathrm{x})+\cos (3 \mathrm{x}))$
dg (generic function with 1 method)
$\mathrm{dg}(\mathrm{x})=$ ForwardDiff . derivative (g, x)

Solving nonlinear systems of equations

Let $A_{1} \ldots A_{n}$ be functions depending on n unknowns $u_{1} \ldots u_{n}$. Solve the system of nonlinear equations:

$$
A(u)=\left(\begin{array}{c}
A_{1}\left(u_{1} \ldots u_{n}\right) \\
A_{2}\left(u_{1} \ldots u_{n}\right) \\
\vdots \\
A_{n}\left(u_{1} \ldots u_{n}\right)
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)=f
$$

$A(u)$ can be seen as a nonlinar operator $A: D \rightarrow \mathbb{R}^{n}$ where $D \subset \mathbb{R}^{n}$ is its domain of definition.
There is no analogon to Gaussian elimination, so we need to solve iteratively.

Fixpoint iteration scheme:

Assume $A(u)=M(u) u$ where for each $u, M(u): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear operator.
Then we can define the iteration scheme: choose an initial value u_{0} and at each iteration step, solve

$$
M\left(u^{i}\right) u^{i+1}=f
$$

Terminate if

$$
\left\|A\left(u^{i}\right)-f\right\|<\varepsilon \quad \text { (residual based) }
$$

or

$$
\left\|u_{i+1}-u_{i}\right\|<\varepsilon \quad \text { (update based). }
$$

- Large domain of convergence

Convergence may be slow

- Smooth coefficients not necessary
fixpoint! (generic function with 1 method)
function fixpoint!(u,M,f; imax=100, tol=1.0e-10)
history=Float64[]
for $i=1$: imax 2
res $=\operatorname{norm}(M(\mathrm{u}) * u-f)$
push! (history, res)
if res<tol
return u,history
end
$\mathrm{u}=\mathrm{M}(\mathrm{u}) \backslash \mathrm{f}$
en
error("No convergence after \$imax iterations")
end

Definition of $M(u)$

```
M (generic function with 1 method)
    function M(u)
        [ 1+1.2*(u[1\mp@subsup{]}{}{\wedge}2+u[2\mp@subsup{]}{}{\wedge}2)
        -(u[1\mp@subsup{]}{}{\wedge2+u[2]^2) 1+1*(u[1\mp@subsup{]}{}{\wedge}2+u[2\mp@subsup{]}{}{\wedge}2)]}
    end
F=[1,3]
    F=[1,3]
(
            [1.28822, 1.61348]
            [3.16228, 26.9072, 1.45019, 1.87735, 0.614397, 0.471544, 0.229973, 0.1472, 0.0807!
)
    fixpt_result,fixpt_history=fixpoint!([0,0],M,F,imax=1000,tol=1.0e-10)
contraction (generic function with 1 method)
    contraction(h)=h[2:end]./h[1:end-1]
    function plothistory(history::Vector{<:Number})
        clf()
        semilogy(history)
        xlabel("steps")
        ylabel("residual")
        grid()
        gcf()
    end;
```

[8.50882, $0.0538958,1.29456,0.327268,0.76749,0.487702,0.640077,0.548586,0.60068,0$.

plothistory(fixpt_history)
[1.85807e-11, -8.93863e-11]
M(fixpt_result)*fixpt_result-F

Newton iteration scheme

The fixed point iteration scheme assumes a particular structure of the nonlinear system. In addition, one would need to investigate convergence conditions for each particular operator. Can we do better ? Let $A^{\prime}(u)$ be the Jacobi matrix of first partial derivatives of A at point u :

$$
A^{\prime}(u)=\left(a_{k l}\right)
$$

'with

$$
a_{k l}=\frac{\partial}{\partial u_{l}} A_{k}\left(u_{1} \ldots u_{n}\right)
$$

Then, one calculates in the i-th iteration step:

$$
u_{i+1}=u_{i}-\left(A^{\prime}\left(u_{i}\right)\right)^{-1}\left(A\left(u_{i}\right)-f\right)
$$

One can split this a follows:

- Calculate residual: $r_{i}=A\left(u_{i}\right)-f$
- Solve linear system for update: $A^{\prime}\left(u_{i}\right) h_{i}=r_{i}$
- Update solution: $u_{i+1}=u_{i}-h_{i}$

General properties are

- Potenially small domain of convergence - one needs a good initial value
- Possibly slow initial convergence
- Quadratic convergence close to the solution

Linear and quadratic convergence

Let $e_{i}=u_{i}-\hat{u}$.

- Linear convergence: observed for e.g. linear systems: Asymptotically constant error contraction rate

$$
\frac{\left\|e_{i+1}\right\|}{\left\|e_{i}\right\|} \sim \rho<1
$$

- Quadratic convergence: $\exists i_{0}>0$ such that $\forall i>i_{0}, \frac{\left\|e_{i+1}\right\|}{\left\|e_{i}\right\|^{2}} \leq M<1$.
- As $\left\|e_{i}\right\|$ decreases, the contraction rate decreases:

$$
\frac{\frac{\left\|e_{i+1}\right\|}{\left\|e_{i}\right\|}}{\frac{\left\|e_{i}\right\|}{\left\|e_{i-1}\right\|}}=\frac{\left\|e_{i+1}\right\|}{\frac{\left\|e_{i}\right\|^{2}}{\left\|e_{i-1}\right\|}} \leq\left\|e_{i-1}\right\| M
$$

- In practice, we can watch $\left\|r_{i}\right\|$ or $\left\|h_{i}\right\|$

newtonl: Newton method with AD

This is the situation where we could apply automatic differentiation for vector functions of vectors.
A1 (generic function with 1 method)
A1 (u) $=\mathrm{M}(\mathrm{u}) * \mathrm{u}$
newton1 (generic function with 1 method)
function newton1(A,b,u0; tol=1.0e-12, maxit=100)
history=Float64[]
$\mathrm{u}=\mathrm{copy}$ (u0)
it=0
converged=false
while !converged \& \& it<maxit
res=A(u)-b
jac=ForwardDiff.jacobian((v)->A(v)-b ,u)
$\mathrm{h}=\mathrm{jac} \backslash$ res
u-=h
nm=norm (h)
push! (history,nm)
it=it+1
converged=tru
end
end
converged
return u,history
else
throw("convergence failed")
end
([1.28822, 1.61348], [3.02185, 0.846373, 0.432681, 0.102853, 0.0030576, 3.19945e-6, 3.3511
. newton_result1, newiton_history1=newton1(A1, F,[0,0.1],tol=1.e-13)

plothistory(newton_history1)
Calculate function and derivative at once ?
Let us take a more complicated example with an operator dependent on a parameter λ which allows to adjust the "severity" of the nonlinearity. For $\lambda=0$, it is linear, for $\lambda=1$ it is strongly nonlinear.

A2 λ (generic function with 1 method)
A2 $\lambda(x, \lambda)=\left[x[1]+10 \lambda * x[1]^{\wedge} 5+3 \lambda * x[2] * x[3]\right.$,
$0.1 * x[2]+10 \lambda * x[2] \wedge 5-3 \lambda * x[1]-x[3]$, $\left.10 \lambda * x[3]^{\wedge} 5+10 \lambda * x[1] * x[2] * x[3]+x[3] / 100\right]$

A2 (generic function with 1 method)
$\mathrm{A} 2(\mathrm{x})=\mathrm{A} 2 \lambda(\mathrm{x}, 1)$
$F 2=[0.1,0.1,0.1]$
F2=[0.1,0.1,0.1]
U02 $=[1.0,1.0,1.0]$
U02 $=[1,1.0,1.0]$
$([-0.188484,0.198519,0.488388],[0.39077,0.345694,0.389908,0.977557,0.300465,0.1952$

- res2,hist2=newton1(A2, F2, U02)
[-2.77556e-17, -2.77556e-17, 0.0]
A2 (res2)-F2
Newton steps: 86

plothistory(hist2)
Here, we observe that we have to use lots of iteration steps and see a rather erratic behaviour of the residual. After ≈ 80 steps we arrive in the quadratic convergence region where convergence is fast.

dnewton: Damped Newton scheme

There are may ways to improve the convergence behaviour and/or to increase the convergence radius in such a case. The simplest ones are:

- find a good estimate of the initial value
- damping: do not use the full update, but damp it by some factor which we increase during the iteration process until it reaches 1

```
dnewton (generic function with 1 method)
```

function dnewton($\mathrm{A}, \mathrm{b}, \mathrm{u0}$; tol=1.0e-12, maxit=100, damp=1, damp_growth=1)
result=DiffResults.JacobianResult(u0)
history=Float64[]
$\mathrm{u}=$ copy (u0)
it=1
while it<maxit
Forwarddiff.jacobian!(resutt,(v)->A(v)-b ,u)
res=DiffResults.vatue(result)
jac=DiffResults.jacobian(result)
$h=j a c \backslash r e s$

push!(history, nm)
if $\mathrm{nm}<\mathrm{tol}$
return u,history
end
it=it+1 damp=min(damp*damp_growth,1.0)

end

throw("convergence failed")
end
In this implementation, we also try to save work by evaluating result and Jacobian once.
([-0.188484, 0.198519, 0.488388], [0.39077, 0.38541, 0.375394, 0.358292, 0.340649, 1.79877
res3,hist3=dnewton(A2,F2,U02, damp=0.1, damp_growth=2, maxit=1000)

Newton steps: 16

plothistory(hist3)
[-2.77556e-17, -2.77556e-17, 0.0]
A2(res3)-F2
The example shows: damping indeed helps to improve the convergece behaviour. If we would keep the damping parameter less than 1 , we loose the quadratic convergence behavior

A more sophisticated strategy would be line search: automatic detection of a damping factor which prevents the residual from increasing

Parameter embedding

Another option is the use of parameter embedding for parameter dependent problems.
Problem: solve $A\left(u_{\lambda}, \lambda\right)=f$ for $\lambda=1$

- Assume $A\left(u_{0}, 0\right)$ can be easily solved.
- Choose step size δ

1. Solve $A\left(u_{0}, 0\right)=f$
2. Set $\boldsymbol{\lambda}=0$
3. Solve $A\left(u_{\lambda+\delta}, \lambda+\delta\right)=f$ with initial value u_{λ}
4. Set $\boldsymbol{\lambda}=\lambda+\delta$
5. If $\lambda<1$ repeat with 3 .

- If δ is small enough, we can ensure that u_{λ} is a good initial value for $u_{\lambda+\delta}$
- Possibility to adapt δ depending on Newton convergence
embed＿newton（generic function with 1 method）
function embed＿newton（A，F，U0；$\delta 0=0.1, \delta$ growth $=1.2, \lambda 0=0, \lambda 1=1$ ）
U＝copy（U0）
allhist＝Vector［］
$\lambda=\lambda 0$
$\delta=\delta 0$
while true
U，hist＝newton1（ $x->A(x, \lambda), F, U)$
push！（allhist，hist）
if $\lambda==\lambda 1$
break
$\lambda=\min (\lambda+\delta, \lambda 1)$
$\delta *=\delta$ growth
end
U，allhist
end
（ 1：$\quad[-0.188484,0.198519,0.488388]$
［［100．408，1．41554e－14］，［28．0258，16．6762，13．3379，10．6677，8．53262，more ，3．
）
res4，hist4＝embed＿newton（ $\underline{\text { A2 }}, \underline{\underline{2}, \underline{U 02}, \delta 0=0.01, \delta g r o w t h=5.0) ~}$

```
[0.0, 8.32667e-17, -5.55112e-17]
A2 （res \(4,1.0\) ）－F2
```

Newton steps： 50
plothistory（generic function with 2 methods）

NLsolve．j1

using NLsolve
nlres1 $=$ Results of Nonlinear Solver Algorithm
＊Algorithm：Trust－region with dogleg and autoscaling
＊Starting Point：［1．0，1．0，1．0］${ }^{\text {Z }}$ Zero：［0．057582447577986924，0．4839954302915904，0．04126490295783218］
＊Inf－norm of residuals： 0.088086
＊Iterations： 1000
Convergence：false
$*\left|x-x^{\prime}\right|<0.0 \mathrm{e}+00:$ false
＊$|f(x)|$＜1．0e－08：false
＊Jacobian Calls（ $\mathrm{df} / \mathrm{dx}$ ）：
nlres1＝nlsolve（u－＞A2X（u，1．0）－F2，U02）
［0．0175049，－2．60128e－5，－0．0880858］
A2入（nlres1．zero，1．0）－F2
nlres2＝Results of Nonlinear Solver Algorithm
＊Algorithm：Newton with line－search
＊Starting Point：［1．0，1．0，1．0］
＊Zero：［－0．18848435786947373，0．198519144942218， 0.4883882611017444$]$
＊Inf－norm of residuals： 0.000000
＊Iterations： 239
Convergence：true
$*\left|x-x^{\prime}\right|<0.0 \mathrm{e}+00:$ false
＊$|\mathrm{f}(\mathrm{x})|<1.0 \mathrm{e}-08$ ：true
＊Function Catls（f）：240 240
nlres2＝nlsolve（u－＞A2入（u，1．0）－F2，U02，method＝：newton）
［－1．12965e－14，8．32667e－17，7．83734e－13］
A2 （nlres2．zero，1．0）－F2

```
nlres3 \(=\) Results of Nonlinear Solver Algorithm
```

＊Algorithm：Newton with line－search
＊Zero：［－0．18848435786937287，0．19851914494226677，0．48838826110144995］
＊Inf－norm of residuals：0．000000
＊Iterations： 85
Convergence：true
$*\left|x-x^{\prime}\right|<0.0 \mathrm{e}+00:$ false
＊$|\mathrm{f}(\mathrm{x})|$＜1．0e－08：true
－Function Calls（f）： 86
nlres3＝nlsolve（u－＞A2入（u，1．0）－F2，U02，method＝：newton，autodiff＝：forward）
－7．91034e－15，5．27356e－16，1．06304e－13］
A2 （nlres3．zero，1．0）－F2

Summary

- Newton method with increasing damping + update based convergence control is rather robust -

I use this in my everyday work

- Additional parameter embedding can help to solve even strongly nonlinear problems
- NLSolve.jl provides a convenient default first stop for solving nonlinear systems in Julia, it relies on a number of peer reviewed strategies

