
31.10.22, 23:33 🎈 nb05-julia-plotting.jl — Pluto.jl

localhost:1235/edit?id=69ece150-5966-11ed-3747-034b081fc015 1/6

Advanced Topics from Scientific Computing

TU Berlin Winter 2022/23

Notebook 05

Jürgen Fuhrmann

Plotting & visualization in Julia
PyPlot
Plots
Makie
PlutoVista
GridVisualize.jl

Plotting & visualization in Julia
Human perception is much better adapted to visual representation than to numbers

Purposes of plotting:

Visualization of research results for publications & presentations
Debugging + developing algorithms
"In-situ visualization" of evolving computations
Investigation of data
1D, 2D, 3D, 4D data

PyPlot

PyPlot.jl: Interface to python/matplotlib
realization via PyCall.jl
Full functionality of matplotlib
also as backend for Plots.jl
Problem: slow - most code in python, no support for GPU acceleration

Resources:
Julia package
Julia examples
Matplotlib documentation

We can choose the way the plot is created: in the browser it can make sense to create it as a vector
graphic in svg format. The alternatice is png, a pixel based format.

How to create a plot ?

Instead of a begin/end block we used a let block. In a let block, all new variables are local and don't
interfer with other pluto cells.

This plot is not nice. It lacks:

orientation lines ("grid")
title
axis labels
label of the plot
size adjustment

import PyPlot
 ⋅

PyPlot.svg(true);⋅

let
 X=collect(0:0.01:10)
	 PyPlot.clf() # Clear the figure
	 PyPlot.plot(X,sin.(exp.(X/3))) # call the plot function
	 figure=PyPlot.gcf() # return figure to Pluto
end

⋅
⋅
⋅
⋅
⋅
⋅

using LaTeXStrings
 ⋅

http://creativecommons.org/licenses/by-sa/4.0/
https://github.com/JuliaPy/PyPlot.jl
https://matplotlib.org/
https://github.com/JuliaPy/PyPlot.jl
https://gist.github.com/gizmaa/7214002
https://gist.github.com/gizmaa/7214002

31.10.22, 23:33 🎈 nb05-julia-plotting.jl — Pluto.jl

localhost:1235/edit?id=69ece150-5966-11ed-3747-034b081fc015 2/6

Thanks to the LaTeXStrings package, we can use math strings in plot labels here, we just need
to prefix the strings with "L".

Plotting 2D data

k: l:

let
	 X=collect(0:0.01:10)
	 PyPlot.clf() # clear plot
	 PyPlot.plot(X,sin.(exp.(X/3)),
	 	 label=L"$\sin(e^{x/3})$", color=:red) # Plot with LaTeX label
	 PyPlot.plot(X,exp.(sin.(X/3)),
	 	 label=L"$e^{\sin x/3}$",color=(0.2,0.2,0.7)) # Plot with label
	 PyPlot.legend(loc="lower left") # legend placement
	 PyPlot.title("A better plot") # The plot title
	 PyPlot.grid() # add grid lines to the plot
	 PyPlot.xlabel("x") # x axis label
	 PyPlot.ylabel("y") # y axis label
	 figure=PyPlot.gcf() # obtain figure from the plot
	 figure.set_size_inches(8,3) # adjust size 1 inch is about 100 px
	 PyPlot.savefig("myplot.png") # save figure to disk
	 figure # return figure
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

let
	 PyPlot.clf()
	 X=collect(0:0.05:10)
	 Y=X
	 PyPlot.suptitle("Filled contours aka heatmap: k=$(k) l=$(l)")
	 F=[sin(k*π*X[i])*sin(l*π*Y[j]) for i=1:length(X), j=1:length(Y)]
	 PyPlot.contourf(X,Y,F) # plot filled contours
	 PyPlot.xlabel("x")
	 PyPlot.ylabel("y")
	 figure=PyPlot.gcf()
	 figure.set_size_inches(3,3)
	 figure
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

let
	 PyPlot.clf()
	 X=collect(0:0.05:10)
	 Y=X
	 PyPlot.suptitle("Contour plot: k=$(k) l=$(l)")
	 F=[sin(k*π*X[i])*sin(l*π*Y[j]) for i=1:length(X), j=1:length(Y)]
	 PyPlot.contour(X,Y,F,colors=:black)
	 PyPlot.xlabel("x")
	 PyPlot.ylabel("y")
figure=PyPlot.gcf()
	 figure.set_size_inches(3,3)
	 figure
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

31.10.22, 23:33 🎈 nb05-julia-plotting.jl — Pluto.jl

localhost:1235/edit?id=69ece150-5966-11ed-3747-034b081fc015 3/6

Remove the moire in the plot:

This occurs in contourf when we use many colors to make a smooth impression.

α: β:

There are analogues for contour contourf and surf on triangular meshes which will be discussed
once we get there in the course.

Plots

Plots.jl: General purpose plotting package with different backends

GPU support via default gr backend (based on "old" OpenGL)
Support of interactivity in the browser via plotly backend
precompilation time significantly improved over the last 2 years
Problem: up to now no good support for triangulations

In Pluto it is best to use the plotly interface. Plotly is a Javascript library for plotting which is quite
good and all kinds of x-y plots.

PlotlyBackend()

let
	 PyPlot.clf()
	 X=collect(0:0.05:10)
	 Y=X
	 PyPlot.suptitle("Contour + filled contours: k=$(k) l=$(l)")
	 F=[sin(k*π*X[i])*sin(l*π*Y[j]) for i=1:length(X), j=1:length(Y)]
 fmin=minimum(F)
	 fmax=maximum(F)
	 number_of_isolines=10
	 isolines=collect(fmin:(fmax-fmin)/number_of_isolines:fmax)
	 cnt=PyPlot.contourf(X,Y,F,cmap="hot",levels=100)
	 if fix_moire # It is not clear why this hack is necessary
	 	 for c in cnt.collections
 c.set_edgecolor("face")
 end
	 end
 axes=PyPlot.gca()
	 axes.set_aspect(1)
	 PyPlot.colorbar(ticks=isolines)
	 PyPlot.contour(X,Y,F,colors=:black,linewidths=0.75,levels=isolines)
	 PyPlot.xlabel("x")
	 PyPlot.ylabel("y")
	 figure=PyPlot.gcf()
	 figure.set_size_inches(3,3)
	 figure	
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

let
	 PyPlot.clf()
	 X=collect(0:0.05:10)
	 Y=X
	 PyPlot.suptitle("Surface plot: k=$(k) l=$(l)")
	 F=[sin(k*π*X[i])*sin(l*π*Y[j]) for i=1:length(X), j=1:length(Y)]

	 PyPlot.surf(X,Y,F,cmap=:summer) # 3D surface plot
	 ax=PyPlot.gca(projection="3d") # Obtain 3D plot axes
	 ax.view_init(α,β) # Adjust viewing angles

	 PyPlot.xlabel("x")
	 PyPlot.ylabel("y")
	 figure=PyPlot.gcf()
	 figure.set_size_inches(3,3)
	 figure

end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

using Plots
 ⋅

Plots.plotly() # Choose backend: gr in REPL, plotly in notebook⋅

https://github.com/JuliaPlots/Plots.jl

31.10.22, 23:33 🎈 nb05-julia-plotting.jl — Pluto.jl

localhost:1235/edit?id=69ece150-5966-11ed-3747-034b081fc015 4/6

X

[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1

 =

5.02.5 7.5 10.0

1

0

−1

2

e^{sin 3x}

sin e^{0.3x}

x
y

k: l:

0 2 4 6 8 10
0

2

4

6

8

10

−0.8

−0.4

0

0.4

0.8

−1

−0.5

0

0.5

Makie

GLMakie.jl
GPU based plotting using modern OpenGL - in fact the only package I know (regardless of
Julia) besides of vtk.
very good plot performance
Problem: still under development, long precompilation time

WGLMakie.jl maps Makie API to three.js, can be used from the browser
Problem: not very stable in the moment
Complicated to use in Pluto

Due to long loading time I do not show examples here.

PlutoVista

I created PlutoVista.jl for fast plotting in pluto notebooks. For 1D plots, PlutoVista calls back to
Plotly.js, and for 2D/3D plots it uses vtk.js, a visualization library for grid and volume data using
WebGL as backend.

X=collect(0:0.1:10)⋅

let
	 p=Plots.plot(size=(500,300),xlabel="x",ylabel="y",)
 Plots.plot!(p, X,exp.(sin.(3X)),label="e^{sin 3x}")
 Plots.plot!(p, X,sin.(exp.(0.3X)),label="sin e^{0.3x}")
end

⋅
⋅
⋅
⋅
⋅

F=[sin(k1*π*X[i])*sin(l1*π*X[j]) for i=1:length(X), j=1:length(X)];⋅

Plots.contour(X,X,F,fill=true,size=(400,350))⋅

Plots.surface(X,X,F,size=(300,300))⋅

using PlutoVista
 ⋅

https://github.com/JuliaPlots/GLMakie.jl
https://github.com/JuliaPlots/Makie.jl
https://github.com/j-fu/PlutoVista.jl

31.10.22, 23:33 🎈 nb05-julia-plotting.jl — Pluto.jl

localhost:1235/edit?id=69ece150-5966-11ed-3747-034b081fc015 5/6

0 2 4 6 8 10

−1

−0.5

0

0.5

1 sin

sinus plot

x

y
k: l:

GridVisualize.jl

The GridVisualize.jl package focuses on PlutoVista (for notebooks) and GLMakie (from REPL) as
backends. PyPlot and Plots are supported as well, but with less functionality.

It is tailored to the visualization of solutions of partial differential equations on 1D/2D/3D grids (of
simplices). The idea is to allow the same syntax for different space dimensions.

0 5 10

−1

−0.5

0

0.5

1

x

y

By passing the backend as a parameter to the visualization calls, we can have several backends used in
parallel.

PlutoVista.plot(X,sin.(2X),xlabel="x",ylabel="y",label="sin",legend=:ct, resolution=
(600,300), title="sinus plot")

⋅

F2=[sin(k2*π*X[i])*sin(l2*π*X[j]) for i=1:length(X), j=1:length(X)];⋅

PlutoVista.contour(X,X,F2,size=(400,350),levels=5,colormap=:hot)⋅

begin
	 using GridVisualize

	 using ExtendableGrids

end

⋅
⋅
⋅
⋅

let
	 vis=GridVisualizer(;Plotter=PlutoVista,layout=(1,3),size=(700,300))

	 g1=simplexgrid(X)
	 f1=map(sin,g1)
	 scalarplot!(vis[1,1],g1,f1)

	 g2=simplexgrid(X,X)
	 f2=map((x,y)->(sin(x)*cos(y)),g2)
	 scalarplot!(vis[1,2],g2,f2)

	 g3=simplexgrid(X,X,X)
	 f3=map((x,y,z)->(sin(x)*cos(y)*exp(z)),g3)
	 scalarplot!(vis[1,3],g3,f3)

	 reveal(vis)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

https://github.com/j-fu/GridVisualize.jl

31.10.22, 23:33 🎈 nb05-julia-plotting.jl — Pluto.jl

localhost:1235/edit?id=69ece150-5966-11ed-3747-034b081fc015 6/6

0.0 2.5 5.0 7.5 10.0
−1.0

−0.5

0.0

0.5

1.0

0.0 2.5 5.0 7.5 10.0
0

2

4

6

8

10

−1

−0.6

−0.2

0.2

0.6

1

−1

−0.667

−0.333

0

0.333

0.666

1

setting arbitrary contour levels with Plotly backend is not supported; use a rang
e to set equally-spaced contours or an integer to set the approximate number of c
ontours with the keyword `levels`. Setting levels to -0.9999232575641008:0.039990
7916144022:0.9996163231560091

setting arbitrary contour levels with Plotly backend is not supported; use a rang
e to set equally-spaced contours or an integer to set the approximate number of c
ontours with the keyword `levels`. Setting levels to -0.9999232575641008:0.333256
596786685:0.9996163231560092

 Gtk-Message: 22:54:45.012: Failed to load module "colorreload-gtk-module"Gtk-Message: 22:54:45.012: Failed to load module "colorreload-gtk-module"

setting arbitrary contour levels with Plotly backend is not supported; use a rang
e to set equally-spaced contours or an integer to set the approximate number of c
ontours with the keyword `levels`. Setting levels to -0.9999232575641008:0.039990
7916144022:0.9996163231560091

setting arbitrary contour levels with Plotly backend is not supported; use a rang
e to set equally-spaced contours or an integer to set the approximate number of c
ontours with the keyword `levels`. Setting levels to -0.9999232575641008:0.333256
596786685:0.9996163231560092

let
	 vis=GridVisualizer(;Plotter=PyPlot,layout=(1,2),size=(700,300))

	 g1=simplexgrid(X)
	 f1=map(sin,g1)
	 scalarplot!(vis[1,1],X,x->sin(x))

	 g2=simplexgrid(X,X)
	 f2=map((x,y)->(sin(x)*cos(y)),g2)
	 scalarplot!(vis[1,2],g2,f2)

	 reveal(vis)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

let
	 vis=GridVisualizer(;Plotter=Plots,layout=(1,2),size=(700,300))

	 g1=simplexgrid(X)
	 f1=map(sin,g1)
	 scalarplot!(vis[1,1],X,x->sin(x))

	 g2=simplexgrid(X,X)
	 f2=map((x,y)->(sin(x)*cos(y)),g2)
	 scalarplot!(vis[1,2],g2,f2)

	 reveal(vis)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

