
31.10.22, 22:51 🎈 nb04-julia-reproducibility.jl — Pluto.jl

localhost:1237/edit?id=d87f6dce-5932-11ed-32ec-2399fa79f064 1/5

Advanced Topics from Scienti�c Computing
TU Berlin Winter 2022/23
Notebook 04

 Jürgen Fuhrmann

These are the slides of a talk given at the 1st MaRDI workshop on Scienti�c Computing

�st MaRDI Workshop on Scienti�c Computing

Reproducibility infrastructure
of the Julia language
Jürgen Fuhrmann
WIAS Berlin

The Two Language Problem

... is at least a three language problem: you need to consider the build system, and at present we are talking about CMake...

Each project needs its own guru to maintain the build system and to help to compile the code on new machines or to maintain docker containers
Python APIs are easy to explain to general users, e��cient algorithms are implemented in C/C++. Python project codebases are intransparent for
many of their users
Containers are the new binaries

We are in an exponential boundary layer hitting a wall regarding the complexity of build systems

dreamstudio.ai CC01.0

Julia

Syntax comparable to matlab, python/numpy
Just-ahead-of time compilation to native code high potential for performance without need to vectorize or to call a computational
kernel in another language
Performant multi-dimensional arrays
Comprehensive linear algebra
Parallelization: SIMD, multithreading, distributed
Interoperability with C, C++, python, R
Use of modern knowledge in language design
Open source (MIT License)

https://julialang.org

Open source
Julia is an open source project with o
GitHub.

Packages

Packages extend Julia's core functionality. Each package is a git repository with standardized structure.

Package Registries provide the infrastructure for �nding package repositories via package names
Default General Registry: ≈ 8500 open source packages
Pkg.jl - the built-in Package Manager is part of the Julia standard library
Composability of packages due to generic Julia source code (like C++ header only libs)

xkcd.com

Anatomy of a Julia package

http://creativecommons.org/licenses/by-sa/4.0/
https://wwuindico.uni-muenster.de/event/1180/contributions/1542/
https://workshop.mardi.ovh/
https://julialang.org/
https://pkgdocs.julialang.org/v1/

31.10.22, 22:51 🎈 nb04-julia-reproducibility.jl — Pluto.jl

localhost:1237/edit?id=d87f6dce-5932-11ed-32ec-2399fa79f064 2/5

Julia packages have a standardized structure

Locally, each package is stored in a directory named e.g. MyPack for package MyPack.jl .
Structure of a package directory:

MyPack/src : subdirectory for package source code
MyPack/src/MyPack.jl : code de�ning a module MyPack

Further Julia sources included by MyPack.jl
MyPack/test : code for unit testing
MyPack/docs : markdown sources + code for documentation

LICENSE: (open source) license
Project.toml: Metadata

pDtsf
├─ .github
│ ⋮
│
├─ .gitignore
├─ LICENSE.md
├─ Project.toml
├─ README.md
├─ benchmarks
│ ⋮
│
├─ docs
│ ⋮
│
├─ src
│ ⋮
│
└─ test
 ⋮

Package metadata

Contents of Project.toml for the ForwardDi�f.jl package

 name = "ForwardDiff"name = "ForwardDiff"
uuid = "f6369f11-7733-5829-9624-2563aa707210"uuid = "f6369f11-7733-5829-9624-2563aa707210"
version = "0.10.32"version = "0.10.32"

[deps][deps]
CommonSubexpressions = "bbf7d656-a473-5ed7-a52c-81e309532950"CommonSubexpressions = "bbf7d656-a473-5ed7-a52c-81e309532950"
DiffResults = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"DiffResults = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
DiffRules = "b552c78f-8df3-52c6-915a-8e097449b14b"DiffRules = "b552c78f-8df3-52c6-915a-8e097449b14b"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
LogExpFunctions = "2ab3a3ac-af41-5b50-aa03-7779005ae688"LogExpFunctions = "2ab3a3ac-af41-5b50-aa03-7779005ae688"
NaNMath = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"NaNMath = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
Preferences = "21216c6a-2e73-6563-6e65-726566657250"Preferences = "21216c6a-2e73-6563-6e65-726566657250"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"

[compat][compat]
Calculus = "0.2, 0.3, 0.4, 0.5"Calculus = "0.2, 0.3, 0.4, 0.5"
CommonSubexpressions = "0.3"CommonSubexpressions = "0.3"
DiffResults = "0.0.1, 0.0.2, 0.0.3, 0.0.4, 1.0.1"DiffResults = "0.0.1, 0.0.2, 0.0.3, 0.0.4, 1.0.1"
DiffRules = "1.4.0"DiffRules = "1.4.0"
DiffTests = "0.0.1, 0.1"DiffTests = "0.0.1, 0.1"
LogExpFunctions = "0.3"LogExpFunctions = "0.3"
NaNMath = "0.2.2, 0.3, 1"NaNMath = "0.2.2, 0.3, 1"
Preferences = "1"Preferences = "1"
SpecialFunctions = "0.8, 0.9, 0.10, 1.0, 2"SpecialFunctions = "0.8, 0.9, 0.10, 1.0, 2"
StaticArrays = "0.8.3, 0.9, 0.10, 0.11, 0.12, 1.0"StaticArrays = "0.8.3, 0.9, 0.10, 0.11, 0.12, 1.0"
julia = "1"julia = "1"

[extras][extras]
Calculus = "49dc2e85-a5d0-5ad3-a950-438e2897f1b9"Calculus = "49dc2e85-a5d0-5ad3-a950-438e2897f1b9"
DiffTests = "de460e47-3fe3-5279-bb4a-814414816d5d"DiffTests = "de460e47-3fe3-5279-bb4a-814414816d5d"
InteractiveUtils = "b77e0a4c-d291-57a0-90e8-8db25a27a240"InteractiveUtils = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets][targets]
test = ["Calculus", "DiffTests", "SparseArrays", "Test", "InteractiveUtils"]test = ["Calculus", "DiffTests", "SparseArrays", "Test", "InteractiveUtils"]

Package metadata

Contents of Project.toml

Package name
UUID to identify package, name is secondary

 manage di�ferent packages with the same name
Version according to Semantic Versioning
[deps] section: list of package dependecies with UUIDs
[compat] section: version compatibility bounds for dependencies and julia

Further info: author, additional packages for testing

dreamstudio.ai CC01.0

Adding a package

julia> Pkg.add("MyPkg")

�. Package name and UUID are looked up in a registry
�. Package git repo URL read from registry (nowadays packages are cached and served from a package server by default)
�. Calculation of version compatibility for package and dependencies
�. Code of package and dependencies downloaded to ~/.julia/packages/
�. Package and dependencies recorded in current active environment

A�ter adding a package, using MyPkg allows to use the package content in a Julia session or project source.

dreamstudio.ai CC01.0

Registries

31.10.22, 22:51 🎈 nb04-julia-reproducibility.jl — Pluto.jl

localhost:1237/edit?id=d87f6dce-5932-11ed-32ec-2399fa79f064 3/5

A registry is a directory collecting metadata of packages for look-up

Default: https://github.com/JuliaRegistries/General
Like blockchain: no deletions, continued forever
Packages must be open source
Automated heuristic decision process for new packages to be registered

Local copy kept up-to-date for each Julia installation
Multiple (e.g. institutional) registries are possible

dreamstudio.ai CC01.0

Environments

Environment: directory with Project.toml and Manifest.toml

Project.toml : name + UUIDs of all packages added
Manifest.toml : name + UUID + version + git-hash of package and all of its depedencies and their dependencies

Each project can have its own environment
$ julia : activate default environment for julia version, e.g. ~/.julia/environments/v1.7
$ julia --project=@xyz : activate environment in ~/.julia/environments/xyz
$ julia --project=dir and julia> Pkg.activate("dir") activate environment in directory dir

dreamstudio.ai CC01.0

Further features & details

Consistent package updates
Package garbage collection
Access to older revisions and git branches
Standardized test environment for Julia packages. Julia core developers can test new julia versions with the registered packages to �nd out regressions
Artifacts: Artifacts.toml records BLOBS available at given URL + content hash to be installed along with a project/package without the need to have them in git
Binary (jll) packages: pre-built, cross compiled libraries for all relevant architectures managed as Artifacts allow to use libraries implemented in other languages in a simple an reliable
way

See the Yggdrasil repository for the build scripts for all registered jlls

Reproducible projects

Transferring Project.toml and Manifest.toml allows to reproduce the exact package composition of a project

Alice, working on Linux, creates a project using Julia and a number of Julia packages. She develops the code in a directory which is activated as a
Julia environment. She sets up a git repository containing source code, documentation and both Project.toml and Manifest.toml �les.
Bob, working on windows with the same Julia version, checks out the code from the repo. A call to Pkg.instantiate() installs all packages in the
exact combination of versions as Alice had them on her computer.

dreamstudio.ai CC01.0

Reproducible Notebooks: Pluto.jl

Browser based notebooks implemented in Julia and Javascript

Easy installation: installed as a single Julia package on Linux, MacOS, Windows
Reactive: cell results are automatically recalculated
Version controllable: no computational results in the notebook
Reproducible: notebooks contain their own environment
E��cient interaction with HTML+Javascript
Created by Fons van der Plas & his friends

PlutoVista.jl+vtk.js+webgl: 132651 nodes

More Pluto.jl Bene�ts

f(x,y,z)=sin(x)*cos(y)*z;⋅

https://github.com/JuliaRegistries/General
https://github.com/fonsp/pluto.jl

31.10.22, 22:51 🎈 nb04-julia-reproducibility.jl — Pluto.jl

localhost:1237/edit?id=d87f6dce-5932-11ed-32ec-2399fa79f064 4/5

Clara teaches a Julia based course in scienti�c computing. She prepares the course
material as Pluto notebooks. A�ter installation with simple instructions, students run
them on their computers. The package environment automatically installs all packages
necessary for a notebook. HTML and PDF previews available as well.
Students prepare their exam projects as Pluto notebooks. Clara can receive their work
and run it on her computer.
MIT (Computational Thinking), TU Berlin (Scienti�c Computing)

Download Julia and install it according to the procedure on you particular operating
system. Invoke Julia and issue the following commands:

using Pkg
Pkg.add("Pluto")
using Pluto
Pluto.run()

A menu will show up in the browser which allows to start the notebooks downloaded
from the course homepage.

Further infrastructure

DrWatson.jl manages code and computational results in a Julia project repository
Automatic generation of data �le names from simulation parameters

Documenter.jl: documentation
from docstrings in package sources

Visual Studio Code integration
Jupyter notebook support
Integration with quarto for reproducible publications

Some Issues

Package loading and using latency due to JIT precompilation aka "Time to �rst plot"
Currently, the Julia community undertakes dedicated successful e�forts towards �xing this problem

Missing formal interface descriptions
Julia alternative to C++20 concepts ? Traits ?
Bottom up design process, fear to lose opportunities due to too rigid formalizations

Resources for keeping infrastructure running
Many volunteers are involved at central points
Competitivity depends on package contributions
Server infrastructure costs

dreamstudio.ai CC01.0

Conclusions

Julia provides as well a fresh approach to reproducibility, learning from the experiences of of conda ,
npm etc.

Package management is part of the standard Julia work�low, available without further installation
Transparent package and project source code without the need to know two languages or
handling of build systems
Introductions to Julia at an early stage should explain working with environments etc.
Can we contribute to Julia and its infrastructure from the NFDI context ? (Same question for other
open source ecosystems)

https://github.com/JuliaDynamics/DrWatson.jl
https://github.com/JuliaDocs/Documenter.jl
https://github.com/JuliaLang/IJulia.jl
https://quarto.org/docs/computations/julia.html

31.10.22, 22:51 🎈 nb04-julia-reproducibility.jl — Pluto.jl

localhost:1237/edit?id=d87f6dce-5932-11ed-32ec-2399fa79f064 5/5

