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Problem statement

E – finite dimensional vector space with inner product ⟨·, ·⟩ and norm ∥·∥.

We consider the problem:

min
x
f(x) s.t.: Ax = b, x ∈ K̄. (P)

Denote: L = {x ∈ E|Ax = b}, X̄ = K̄ ∩ L, X = K ∩ L.

Assumptions:

1. f : E → R is possibly non-convex, continuous on X̄ and continuously

differentiable on X;

2. K̄ ⊂ E is closed convex either set or pointed one (i.e., K̄ ∩ (−K̄) = {0});

3. Linear operator A : E → Rm has full rank, i.e., im(A) = Rm, b ∈ Rm;

4. Problem (P) admits a global solution. We let fmin(X) = min{f(x)|x ∈ X̄}.
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Related works

■ Unconstrained or “Projection”-based, treating X̄ as a simple set.

[Nesterov, Polyak, ’06], [Agarwal et al., ’17], [Carmon et al., ’17], [Cartis, Gould,

Toint, ’12, ’18, ’19], [Ghadimi, Lan, ’16], [Birgin, Martinez, ’18], [Curtis et al., ’17].

■ Augmented Lagrangian algorithms.

[Bolte et al., ’18], [Andreani et al., ’19, ’21], [Birgin, Martinez, ’20], [Grapiglia,

Yuan, ’20], [Khanh, Mordukhovich, Tran, ’23].

■ Barrier methods for non-negative orthant and/or quadratic programming

[Ye, ’92], [Faybusovich, Lu, ’06], [Lu, Yuan, ’07], [Tseng et al., ’11], [Bian et al.,

’15], [Bomze et al., ’19], [Haeser, Liu, Ye, ’19], [O’Neill, Wright, ’20].

Our goals:

■ Feasible iterates ⇒ Interior-point algorithms.

■ General sets or cones ⇒ (Logarithmically homogeneous) self-concordant

barriers.

■ Favorable global complexity guarantees ⇒ Quadratic/cubic regularization.
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(Logarithmically homogeneous) self-concordant barrier

A function h : K̄ → (−∞,∞] with domh = K is called a ν-self-concordant barrier

(SCB) [Nesterov, Nemirovski, 1994] for the set K̄ if:

(a) h is a standard self-concordant function:

|D3h(x)[u, u, u]| ≤ 2D2h(x)[u, u]3/2;

(b) h is a ν-self-concordant barrier for K̄:

sup
u∈Rn

{2Dh(x)[u]−D2h(x)[u, u]} ≤ ν; (⟨∇h(x), (∇2h(x))−1∇h(x)⟩ ≤ ν)

If additionally K̄ is a regular cone: closed convex, solid, contains no lines, K ̸= ∅ and

(c) h is logarithmically homogeneous:

h(tx) = h(x)− ν ln(t) ∀x ∈ K, t > 0.

Then h is called a logarithmically homogeneous ν-self-concordant barrier (LHSCB).

Example: h(x) = − ln(x). Indeed |−2/x3| ≤ 2(1/x2)3/2,

−1/x · (1/x2)−1(−1/x) = 1, − ln(tx) = − ln(x)− ln t.
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Auxiliary facts

The Hessian H(x) ≜ ∇2h(x) : E → E∗ gives rise to a local norm and its dual

∥u∥x ≜ ⟨H(x)u, u⟩1/2, ∥s∥∗x ≜ ⟨[H(x)]−1s, s⟩1/2. (1)

Let d ∈ E. For all t ∈ [0, 1
∥d∥x

) , we have

x+ td ∈ K (2)

h(x+ td) ≤ h(x) + t⟨∇h(x), d⟩+ t2∥d∥2xω(t∥d∥x), (3)

where ω(t) ≜ −t−ln(1−t)
t2 , t ∈ [0, 1).
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First-order approximate KKT conditions

Definition 1

Given ε ≥ 0, a point x̄ ∈ E is an ε-KKT point for problem (P) if there exists ȳ ∈ Rm

such that Ax̄ = b, x̄ ∈ K

and

■ Option A: K̄ be a convex set: ⟨∇f(x̄)−A∗ȳ, x− x̄⟩ ≥ −ε ∀x ∈ K̄.

■ Option B: K̄ be a convex cone:

s̄ = ∇f(x̄)−A∗ȳ ∈ K̄∗,

(0 ≤)⟨s̄, x̄⟩ ≤ ε.

Motivation: ε-perturbation of the standard first-order stationarity condition

⟨∇f(x̄)−A∗ȳ, x− x̄⟩ ≥ 0, ∀x ∈ K̄.
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Second-order approximate KKT conditions

Definition 2

Given ε1, ε2 ≥ 0, a point x̄ ∈ E is an (ε1, ε2)-2KKT point for problem (P) if there

exists ȳ ∈ Rm such that Ax̄ = b, x̄ ∈ K and

■ ■ Option A: K̄ be a convex set: ⟨∇f(x̄)−A∗ȳ, x− x̄⟩ ≥ −ε1 ∀x ∈ K̄.

■ Option B: K̄ be a convex cone:

s̄ = ∇f(x̄)−A∗ȳ ∈ K̄∗,

(0 ≤)⟨s̄, x̄⟩ ≤ ε1.

■ ∇2f(x̄) +
√
ε2H(x̄) ⪰ 0 on L0 = {v ∈ E|Av = 0}.
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Preliminaries

Potential function:

Fµ(x) ≜ f(x) + µh(x) ∀x ∈ K, µ > 0. (4)

Define the set of feasible directions Tx ≜ {v ∈ E|Av = 0, ∥v∥x < 1}.

Local smoothness assumption

f : E → R ∪ {+∞} is continuously differentiable on X and there exists a constant

M > 0 such that for all x ∈ X and v ∈ Tx we have

f(x+ v)− f(x)− ⟨∇f(x), v⟩ ≤ M

2
∥v∥2x. (5)

If the set X is bounded, we have λmin(H(x)) ≥ σ for some σ > 0. If f has a

M -Lipschitz continuous gradient, then our assumption holds. Indeed,

f(x+ v)− f(x)− ⟨∇f(x), v⟩ ≤ M

2
∥v∥2 ≤ M

2σ
∥v∥2x.
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Main algorithm ideas

Step direction: vµ(x) ≜ argmin
v∈E:Av=0

{Fµ(x) + ⟨∇Fµ(x), v⟩+
1

2
∥v∥2x}. (6)

Optimality conditions (yµ(x) is a Lagrange multiplier):

∇Fµ(x) +H(x)vµ(x)−A∗yµ(x) = 0, (7)

−Avµ(x) = 0. (8)

Parameterized arcs x+(t) ≜ x+ tvµ(x) ∈ X for t ∈ Ix,µ ≜ [0, 1
∥vµ(x)∥x

)

If t∥vµ(x)∥x ≤ 1/2:

Fµ(x
+(t))− Fµ(x) ≤ −t∥vµ(x)∥2x

(
1− M + 2µ

2
t

)
≜ −ηx(t). (9)

Minimizing w.r.t. t ∈ [0, 1
2∥vµ(x)∥x

], we obtain stepsize:

tµ,M (x) ≜
1

max{M + 2µ, 2∥vµ(x)∥x}
= min

{
1

M + 2µ
,

1

2∥vµ(x)∥x

}
.
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First-order Adaptive Hessian-Barrier Algorithm – FAHBA(µ, ε, L0, x
0)

Result: Point xk, dual variables yk, sk = ∇f(xk)−A∗yk.

repeat

Set ik = 0. Find vk ≜ vµ(x
k) and yk ≜ yµ(x

k) from

minv∈E:Av=0{Fµ(x
k) + ⟨∇Fµ(x

k), v⟩+ 1
2∥v∥

2
xk}.

repeat

Set αk ≜ min
{

1
2ikLk+2µ

, 1
2∥vk∥

xk

}
;

Set zk = xk + αkv
k, ik = ik + 1;

until

f(zk) ≤ f(xk) + ⟨∇f(xk), zk − xk⟩+ 2ik−1Lk∥zk − xk∥2xk . (10)

;

Set Lk+1 = 2ik−1Lk, xk+1 = zk, k = k + 1;

until ∥vk∥xk < ε
3ν ;
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Complexity theorem

Complexity theorem for FAHBA [D., Staudigl, 2021, 2024]

Let our assumptions hold. Set h - SCB if K̄ is a convex set or h - LHSCB if K̄ is a

convex cone.

Fix ε > 0, some initial guess L0 > 0 for the Lip. const. in (5),

the regularization parameter µ = ε
ν ,

and x0 to be a ν-analytic center: h(x) ≥ h(x0)− ν ∀x ∈ X.

Let (xk)k≥0 be the trajectory generated by FAHBA.

Then the algorithm stops in no more than

KI(ε, x
0) =

⌈
40(f(x0)− fmin(X) + ε)

ν2(max{M,L0}+ ε/ν)

ε2

⌉
= O

(
1

ε2

)
outer iterations, and the number of inner iterations is no more than

2(KI(ε, x
0) + 1) + max{log2(M/L0), 0}.

Moreover, the last iterate obtained by FAHBA constitutes a 2ε-KKT point for

problem (P) in the sense of definition on slide 12.
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Discussion

Anytime convergence by restarting the procedure, i.e., “path-following” method.

Define εi = 2−iε0 for i ≥ 0.

i-th restart/epoch: run FAHBA with the accuracy εi as an input and starting point

x0i that is the output of the previous restart.

p =
⌈
log2

ε0
ε

⌉
restarts to achieve any ε ∈ (0, ε0].

The total complexity is
∑p

i=0O(ε−2
i ) = O(ε−2).

Discussion:

■ Same complexity O(ε−2) as for unconstrained setting.

■ Previous works consider particular case K̄ = Rn
+.

■ The closest to ours result [Haeser, Liu, Ye, 2019] is O(ε−2) complexity under

similar assumptions, but only for K̄ = Rn
+. (see detailed discussion in the

paper).
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Preliminaries

Local second-order smoothness assumption

f : E → R ∪ {+∞} is twice continuously differentiable on X and there exists a

constant M > 0 such that, for all x ∈ X and v ∈ Tx, we have

∥∇f(x+ v)−∇f(x)−∇2f(x)v∥∗x ≤ M

2
∥v∥2x. (11)

Then: f(x+ v)−
[
f(x) + ⟨∇f(x), v⟩+ 1

2
⟨∇2f(x)v, v⟩

]
≤ M

6
∥v∥3x. (12)

The above assumption subsumes the standard Lipschitz Hessian setting if X is

bounded.

Step direction:

vµ,L(x) ∈ Argmin
v∈E:Av=0

{Q(2)
µ,L(x, v) ≜ Fµ(x) + ⟨∇Fµ(x), v⟩+

1

2
⟨∇2f(x)v, v⟩+ L

6
∥v∥3x}.
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Second-order Adaptive Hessian-Barrier Algorithm (SAHBA)

Result: Point xk, dual variables yk−1, sk = ∇f(xk)−A∗yk−1.

Set 144ε ≜ L < M0 – guess for M , µ = ε
4ν , k = 0, x0 ∈ X – 4ν-a.c.;

repeat

repeat

Set Lk = 2ikMk. Find vk ≜ vµ,Lk
(xk) and yk ≜ yµ,Lk

(xk) from

min
v:Av=0

{
Fµ(x

k) + ⟨∇Fµ(x
k), v⟩+ 1

2
⟨∇2f(xk)v, v⟩+ Lk

6
∥v∥3xk

}
.

Set αk ≜ min

{
1,

1

2∥vk∥xk

}
.

until
f(xk + αkv

k) ≤ f(xk) + αk⟨∇f(xk), vk⟩+
α2
k

2
⟨∇2f(xk)vk, vk⟩+ Lkα

3
k

6
∥vk∥3xk ,

and ∥∇f(xk + αkv
k)−∇f(xk)− αk∇2f(xk)vk∥∗xk ≤ Lkα

2
k

2
∥vk∥2xk .

;
Set Mk+1 = max{2ik−1Mk, L}, xk+1 = xk + αkv

k, k = k + 1;

until ∥vk−1∥xk−1 < ∆k−1 ≜
√

ε
12Lk−1ν

and ∥vk∥xk < ∆k ≜
√

ε
12Lkν

;
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Complexity theorem

Complexity theorem for SAHBA [D., Staudigl, 2021, 2024]

Let our assumptions hold. Set h - SCB if K̄ is a convex set or h - LHSCB if K̄ is a

convex cone. Fix ε > 0, some initial guess M0 > 144ε for the Lip. const. in (11),

the regularization parameter µ = ε
4ν ,

and x0 to be a 4ν-analytic center.

Let (xk)k≥0 be the trajectory generated by SAHBA.

Then the algorithm stops in no more than

KII(ε, x
0) =

⌈
576ν3/2

√
2max{M,M0}(f(x0)− fmin(X) + ε)

ε3/2

⌉
= O

(
1

ε
3
2

)
outer iterations, and the number of inner iterations is no more than

2(KII(ε, x
0) + 1) + 2max{log2(2M/M0), 1}.

Moreover, the output of SAHBA is an (ε, max{M,M0}ε
24ν )-2KKT point for problem (P)

in the sense of definition on slide 13.
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Discussion

■ Same restarting strategy can be applied to achieve any-time convergence via a

“path-following” method with same complexity O(ε−3/2) up to a constant factor.

■ Similar bound O(ε−3/2) as for unconstrained setting.

■ The closest to ours result [Haeser, Liu, Ye, 2019] (trust-region method), [O’Neill,

Wright, 2020] (Newton-CG method) is O(ε−3/2) complexity under similar

assumptions, but with K̄ = Rn
+. Later [He, Lu, 2022] obtained close results for

convex cones.

P. Dvurechensky, M. Staudigl, Hessian barrier algorithms for non-convex conic

optimization, Mathematical Programming, 2024 (arXiv:2111.00100, 2021).

P. Dvurechensky, M. Staudigl, Barrier Algorithms for Constrained Non-Convex

Optimization, ICML 2024.
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Work in progress

■ Extensions for convex setting:

If f is convex, level sets of Fµ are bounded (e.g., f coercive) or K̄ is compact,

slightly modified algorithms guarantee f(xk)− fmin(X) ≤ ε in

■ O
(
(f(x0)− fmin(X)) +

1
ε

)
by the first-order method.

■ O
(
(f(x0)− fmin(X)) +

1√
ε

)
by the second-order method.

■ Inexact oracle information, inexact resolution of subproblems.

■ Numerical implementation.
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1 Barrier algorithms for non-convex optimization

2 Minimizing self-concordant functions

Unconstrained minimization by path-following methods

Composite minimization by gradient regularization of Newton method

Projection-free constrained minimization of self-concordant functions
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Problem statement

f∗ = min
x∈E

f(x), (13)

where f is a Mf -self-concordant function:

|D3f(x)[u, u, u]| ≤ 2MfD
2f(x)[u, u]3/2. (14)

Standard approach (e.g., [Nesterov, 2004]): apply Damped Newton Method (DNM)

x+ = x− [∇2f(x)]−1∇f(x)
1 +Mfλf (x)

, (15)

where λf (x) = ∥∇f(x)∥∗x.

Local quadratic convergence if x ∈ Q ≜
{
x ∈ E : λf (x) ≤ 1

2Mf

}
.

Complexity to reach Q:

N ≤ ∆(x0)

ω
(
1
2

) = O(∆(x0)), ∆(x0) ≜ M2
f (f(x0)− f∗). (16)
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Path-following scheme for general self-concordant functions

Start from some x0 ∈ E. Define the central path x(t) for 0 ≤ t ≤ 1:

∇f(x(t)) = t∇f(x0). (17)

Clearly, x(1) = x0 and x(0) = x∗ and this is a trajectory of minimizers:

x(t) = argmin
x∈E

{
ft(x) ≜ f(x)− t⟨∇f(x0), x⟩

}
, 0 ≤ t ≤ 1. (18)

Define: β = 0.026, γ = 0.1125.

Our goal is to follow the central path approximately:

λft(x) ≡ ∥∇f(x)− t∇f(x0)∥∗x ≤ β

Mf
(19)

by the path-following (PF) scheme:

(t+, x+) = P(t, x) ≡

{
t+ = max

{
t− γ

Mf∥∇f(x0)∥∗
x
, 0
}
,

x+ = x− [∇2f(x)]−1(∇f(x)− t+∇f(x0)).
(20)

Unlike the standard setting, f is only a SCF, not SCB.
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Complexity theorem

Complexity theorem for the path-following scheme [D., Nesterov, 2018]

Let f be a Mf -self-concordant function.

Consider the following process:

t0 = 1, x0 ∈ E, (tk+1, xk+1) = P(tk, xk), k ≥ 0, (21)

where P is defined in (20). Assume that λf (xk) ≥ 1
2Mf

for all k = 0, . . . , N . Then

tN ≤

(
1− γ(γ − 2β)N

2M2
f (f(x0)− f∗)

)N

≤ exp

{
− γ(γ − 2β)N2

2M2
f (f(x0)− f∗)

}
. (22)

Moreover, when tk+1 = 0, the scheme automatically switches to the

quadratically-convergent Newton method.

Finally, the complexity to find xN ∈ Q is Õ(
√
∆(x0)).

■ Global super linear convergence.

■ Improved, „accelerated“, complexity Õ(
√
∆(x0)) (cf. Õ(∆(x0)) for the DNM).

■ Adaptive version: iteratively try step-sizes γk = 21−ikγk−1.
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√
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√
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Finally, the complexity to find xN ∈ Q is Õ(
√
∆(x0)).

■ Global super linear convergence.

■ Improved, „accelerated“, complexity Õ(
√
∆(x0)) (cf. Õ(∆(x0)) for the DNM).

■ Adaptive version: iteratively try step-sizes γk = 21−ikγk−1.
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Predictor-corrector path-following scheme

Define: β = 0.0015, γ = 0.1158.

Predictor-corrector path-following (PCPF) scheme:

(t+, x+) = P̃(t, x) ≡



t+ = max
{
t− γ

Mf∥∇f(x0)∥∗
x
, 0
}

y = x− γ
Mf∥∇f(x0)∥∗

x
[∇2f(x)]−1∇f(x0)

x+ = y − [∇2f(y)]−1(∇f(y)− t+∇f(x0)).
(23)

Unlike the standard setting, f is only an SCF, not SCB.
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Complexity theorem

Complexity theorem for PCPF scheme [D., Nesterov, 2022]

Let f be a Mf -self-concordant function. Consider the following process:

t0 = 1, x0 ∈ E, (tk+1, xk+1) = P̃(tk, xk), k ≥ 0, (24)

where P is defined in (23). Assume that λf (xk) ≥ 1
2Mf

for all k = 0, . . . , N . Then

tN ≤

(
1− κ(β, γ)N

2M2
f (f(x0)− f∗)

)N

≤ exp

{
− κ(β, γ)N2

M2
f (f(x0)− f∗)

}
. (25)

Moreover, when tk+1 = 0, the scheme automatically switches to the

quadratically-convergent Newton method.

Finally, the complexity to find xN ∈ Q is Õ(
√
∆(x0)).

■ Global super linear convergence.

■ Improved, „accelerated“, complexity Õ(
√
∆(x0)) (cf. Õ(∆(x0)) for the DNM).

■ Adaptive version: iteratively try step-sizes γk = 21−ikγk−1.

■ Improved constant factor compared to path-following scheme.
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√
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Implications for constrained minimization problems

■ Improved complexity for feasibility problems

Find x s.t. x ∈ Q ⊂ Rn and Ax = b, (26)

where x ∈ Rn, b ∈ Rm, A ∈ Rm×n, Q – closed, convex with 0 ∈ intQ.

■ Improved constants in the complexity for minimization with primal method

min ⟨c, x⟩ s.t. x ∈ Q ⊂ Rn, (27)

Q – convex compact with nonempty interior.

■ Improved constants in the complexity for minimization with dual method

min⟨c, x⟩ s.t. Bx = 0, x ∈ Q ⊂ Rn, (28)

where B ∈ Rm×n and 0 ∈ intQ.

P. Dvurechensky, Y. Nesterov. Global performance guarantees of second-order

methods for unconstrained convex minimization. CORE Discussion Paper 2018/32.

P. Dvurechensky, Y. Nesterov. Improved global performance guarantees of

second-order methods in convex minimization. arXiv:2408.11022.
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Problem statement

min
x∈E

{F (x) ≜ f(x)+ψ(x)}, (29)

where f is a Mf -self-concordant function, ψ is a simple closed convex function.

Related works

■ Proximal DNM [Tran-Dinh, Kyrillidis, Cevher, 2015].

■ Composite PF method [Tran-Dinh, Liang, Toh, 2022] with ψ Lipschitz.

■ Cubic regularization [Hanzely et al., 2022] for ψ = 0 and semi-strongly

self-concordant f , sublinear rate.

■ Newton algorithms with gradient norm regularization for f with Lipschitz

Hessian [Mishchenko, 2021], [Doikov, Nesterov, 2021], [Doikov, Mishchenko,

Nesterov, 2022] or quasi-self-concordant [Doikov, 2023].

We analyze a Newton method with gradient norm regularization for self-concordant

functions (GRN-SCF).
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Newton method with gradient norm regularization for self-concordant functions

Gradient-regularized Newton method for self-concordant functions (GRN-SCF):

x+ = argmin
y∈E

{
⟨∇f(x), y − x⟩+ 1

2
⟨∇2f(x)(y − x), y − x⟩ (30)

+
σ∥F ′(x)∥x

2
∥y − x∥2x+ψ(y)

}
, (31)

where σ ≥ 0 and F ′(x) ∈ ∂F (x), meaning that we use (sub)gradient

regularization.

NB: if ψ is an indicator of a convex set, GRN-SCF requires projection.

We show that the iterates stay on the sublevel set defined by the starting point

L(x0) ≜ {x ∈ domψ : F (x) ≤ F (x0)}.

We assume that this sublevel set is bounded. This implies

D(x0) ≜ sup
x,y∈L(x0)

∥y − x∥x < +∞. (32)
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Complexity theorem

Complexity theorem for GRN-SCF [D., 2024]

Let in (29) f be a Mf -self-concordant function, sublevel set L(x0) be bounded,

σ = 3Mf .

Then, GRN-SCF has global linear convergence rate, i.e., for k ≥ 1,

F (xk)−F (x∗) ≤ exp
(
− k

54MfD(x0)

)(
F (x0)−F (x∗)

)
+exp

(
−k
4

)
g0D(x0).

Moreover, if ∥F ′(x0)∥∗x0 ≤ 4
45Mf

, GRN-SCF has local quadratic convergence

∥F ′(xk+1)∥∗xk+1 ≤ 45Mf

4
(∥F ′(xk)∥∗xk)

2.

We propose also an adaptive version.

Ours vs [Hanzely et al., 2022]: wider problem class and linear convergence.

Future work: combination of HBA and gradient regularization.

P. Dvurechensky. Newton method with gradient regularization for minimizing

self-concordant functions. In preparation.
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4

)
g0D(x0).

Moreover, if ∥F ′(x0)∥∗x0 ≤ 4
45Mf

, GRN-SCF has local quadratic convergence

∥F ′(xk+1)∥∗xk+1 ≤ 45Mf

4
(∥F ′(xk)∥∗xk)

2.

We propose also an adaptive version.

Ours vs [Hanzely et al., 2022]: wider problem class and linear convergence.

Future work: combination of HBA and gradient regularization.

P. Dvurechensky. Newton method with gradient regularization for minimizing

self-concordant functions. In preparation.

Minimization involving self-concordance · 27.08.2024 · Page 37 (48)



Complexity theorem

Complexity theorem for GRN-SCF [D., 2024]

Let in (29) f be a Mf -self-concordant function, sublevel set L(x0) be bounded,

σ = 3Mf . Then, GRN-SCF has global linear convergence rate, i.e., for k ≥ 1,

F (xk)−F (x∗) ≤ exp
(
− k

54MfD(x0)

)(
F (x0)−F (x∗)

)
+exp

(
−k
4

)
g0D(x0).

Moreover, if ∥F ′(x0)∥∗x0 ≤ 4
45Mf

, GRN-SCF has local quadratic convergence

∥F ′(xk+1)∥∗xk+1 ≤ 45Mf

4
(∥F ′(xk)∥∗xk)

2.

We propose also an adaptive version.

Ours vs [Hanzely et al., 2022]: wider problem class and linear convergence.

Future work: combination of HBA and gradient regularization.

P. Dvurechensky. Newton method with gradient regularization for minimizing

self-concordant functions. In preparation.

Minimization involving self-concordance · 27.08.2024 · Page 37 (48)



Complexity theorem

Complexity theorem for GRN-SCF [D., 2024]

Let in (29) f be a Mf -self-concordant function, sublevel set L(x0) be bounded,

σ = 3Mf . Then, GRN-SCF has global linear convergence rate, i.e., for k ≥ 1,

F (xk)−F (x∗) ≤ exp
(
− k

54MfD(x0)

)(
F (x0)−F (x∗)

)
+exp

(
−k
4

)
g0D(x0).

Moreover, if ∥F ′(x0)∥∗x0 ≤ 4
45Mf

, GRN-SCF has local quadratic convergence

∥F ′(xk+1)∥∗xk+1 ≤ 45Mf

4
(∥F ′(xk)∥∗xk)

2.

We propose also an adaptive version.

Ours vs [Hanzely et al., 2022]: wider problem class and linear convergence.

Future work: combination of HBA and gradient regularization.

P. Dvurechensky. Newton method with gradient regularization for minimizing

self-concordant functions. In preparation.

Minimization involving self-concordance · 27.08.2024 · Page 37 (48)



Content

1 Barrier algorithms for non-convex optimization

Problem statement

Self-concordant barriers

Approximate optimality conditions

First-order algorithm

Second-order algorithm

2 Minimizing self-concordant functions

Unconstrained minimization by path-following methods

Composite minimization by gradient regularization of Newton method

Projection-free constrained minimization of self-concordant functions

Minimization involving self-concordance · 27.08.2024 · Page 38 (48)



Problem statement

min
x∈X⊂E

f(x), (P)

where f is Mf -self-concordant function,

X – convex compact with atomic or another Linear Minimization Oracle (LMO)

friendly structure: ℓ1-ball, Spectrahedron, etc. ⇒ Frank-Wolfe (FW)/Conditional

Gradient (CG) methods [Frank & Wolfe, 1956], [Levitin & Polyak, 1966], [Jaggi, 2013].

Standard analysis relies on Lipschitz gradient/bounded curvature.

Related works

■ [Bach, 2010], [Ostrovskii & Bach, 2018] Non-Lipschitz smooth losses in ML.

■ [Odor et al., 2016] FW algorithm for Poisson inverse problem in phase retrieval.

■ [Liu et al., 2020] Newton-FW algorithm for minimizing self-concordant functions.

■ [Carderera & Pokutta, 2020] Newton-FW approach for objectives with Lipschitz

Hessians.

■ [Zhao & Freund, 2020] FW for composite minimization involving LHSCB.
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Algorithm

Preliminaries:

Linear minimization oracle: s(x) = argmins∈X ⟨∇f(x), s⟩.

FW gap Gap(x) = ⟨∇f(x), x− s(x)⟩ (NB: Gap(x) ≥ f(x)− f∗).

Frank-Wolfe method for SCF:

While Gap(xk) > ε do

1. Obtain sk = s(xk);

2. Set αk = min
{
1, Gap(xk)

Mf∥sk−xk∥
xk (Gap(xk)+Mf∥sk−xk∥

xk )

}
;

3. Update xk+1 = xk + αk(s
k − xk).
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Complexity theorem

Let

S(x0) = {x ∈ X |f(x) ≤ f(x0)}, and L∇f = max
x∈S(x0)

λmax(∇2f(x)).

Complexity theorem for FW-SCF [D., Ostroukhov, Safin, Shtern, Staudigl, 2020]

For given ε > 0, define Nε(x
0) = min{k ≥ 0|f(xk)− f∗ ≤ ε}. Then,

Nε(x
0) ≤ 1

c1
ln

(
c1

(f(x0)− f∗)c2

)
+

4L∇fdiam(X )

ε
,

where c1, c2 are explicit constants depending on Mf , L∇f ,diam(X ).
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Discussion

We also propose extensions:

■ Minimization of generalized self-concordant functions [Sun & Tran-Dinh, 2018];

■ Line-search variants;

■ Linearly Convergent Variants on polytopes;

■ A conditional gradient homotopy method for conic-constrained problems:

min
x
g(x) s.t. x ∈ X,Ax ∈ K ⊆ H, (P)

where g is a closed convex lsc function, X ⊂ E is a LMO-friendly convex

compact, A : E → H is an affine mapping, and K is a closed convex pointed

cone.

P. Dvurechensky, P. Ostroukhov, K. Safin, S. Shtern, M. Staudigl, Self-Concordant

Analysis of Frank-Wolfe Algorithms, ICML 2020

P. Dvurechensky, K. Safin, S. Shtern, M. Staudigl, Generalized Self-Concordant

Analysis of Frank-Wolfe algorithms, Math. Progr., 2022

P. Dvurechensky, S. Shtern, M. Staudigl, A conditional gradient homotopy method

with applications to Semidefinite Programming, arXiv:2207.03101, 2022
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Thank you for your attention!
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Example for HBA

Regularized non-linear regression problem: training input convex neural networks

(ICNN) with sparsity penalty

ICNN: Φ(z, x), where z is the input data and x are parameters. If x ≥ 0 and ReLU

nonlinearity is used, then Φ(·, x) is convex. But, the training problem is non-convex.

min
x≥0

{
f(x) = ∥Φ(ẑ, x)− ŷ∥22 + λ∥x∥pp

}
, (33)

where ℓ(x) is a non-convex loss function, λ > 0, p ∈ (0, 1).
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Recent interest in non-Lipschitz smooth losses

■ [Bach, 2010] Logistic regression as a generalized self-concordant function.

■ [Owen, 2013] Self-concordance for empirical likelihood.

■ [Odor et al., 2016] Poisson inverse problem in phase retrieval.

■ [Ostrovskii & Bach, 2018] Finite-sample analysis of M-estimators using

self-concordance.

■ [Marteau-Ferey et al., 2019] Beyond least-squares: Fast rates for regularized

empirical risk minimization through self-concordance.
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Self-Concordant Functions, ν = 3

[Nesterov & Nemirovski, 1994]

■ Portfolio Optimization

f(x) = −
T∑

t=1

ln(⟨rt, x⟩), x ∈ X = ∆n

■ Covariance Estimation:

f(x) = − ln(det(x)) + tr(Σx),

x ∈ X = {x ∈ Sn+ : ∥vec(x)∥1 ≤ R}.

■ Poisson Inverse Problem

f(x) =

m∑
i=1

⟨wi, x⟩ −
m∑
i=1

yi ln(⟨wi, x⟩),

x ∈ X = {x ∈ Rn|∥x∥1 ≤ R}.

Minimization involving self-concordance · 27.08.2024 · Page 47 (48)



Generalised Self-Concordant Functions

■ Logistic Loss (ν = 2 or ν = 3).

f(x) =
1

m

m∑
i=1

ln (1 + exp(bi⟨ai, x⟩)) +
µ

2
∥x∥22.

where bi ∈ {−1, 1}, µ > 0, ai ∈ Rn.

■ Robust regression (ν = 2)

f(x) =
1

m

m∑
i=1

φ(bi − ⟨ai, x⟩), φ(u) = ln(eu + e−u).

■ Distance-Weighted Discrimination (ν = 2(q + 3)/(q + 2))

f(x) =
1

m

m∑
i=1

(a⊤i w + βyi + ξi)
−q + ⟨c, ξ⟩, x = (w, β, ξ).
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