INTRODUCTION
We investigate extensions of the lattice Boltzmann method towards fluid-structure interaction problems. Focusing on a D2Q9 model, we consider a LBGK evolution
\[(1) \quad f_i(n+1,j+1,c_j) = f_i(n,j) + h f_i^n(c_j) - f_i^n(2c_j - c_i, u) + f_i^\text{eq}(2c_j - c_i, u)\]
on a regular h-spaced lattice, with equilibrium function
\[f_i^n = f_i^\rho + f_i^\text{c} - c_i, u + f_i^\text{eq}(2c_i - c_j, u)\]
where \(f_i^\rho, f_i^\text{c}, c_i, u\) are weights depending on the particular LBM realization.

Asymptotic Analysis
The numerical solution of (1) can be predicted using an asymptotic expansion:
\[(2) \quad F_i = f_i^0 + h f_i^1 + h^2 f_i^2(2)\]
whose coefficients can be defined [5] inserting the ansatz (2) into (1), as functions of pressure and velocity (solution of Navier-Stokes equations).

From (3), the prediction can be written as a sum of equilibrium+ non-equilibrium, the latter depending on velocity gradients
\[(4) \quad F_i = f_i^0 (1 + h^2 c_i^2, p, h\alpha) + f_i^\text{eq}(2) (\nabla u)\]

MOVING BOUNDARY LBM
An additional rule (refill) is needed to initialize the nodes entering the fluid domain (fig.1).
The \(\text{EQ}+\text{NE} \text{ refill}\) initializes new fluid nodes approximating the interior prediction (4):
\[f_i(\text{new node}) = f_i^n (1 + h^2 c_i^2, p, h\alpha) + f_i^\text{eq}(2)\]
extrapolating equilibrium (pressure and velocity) and non-equilibrium part.

According to (4), a low order approximation of non-equilibrium is sufficient: it can be copied from a neighbor

BENCHMARK, RESULTS & DISCUSSION
We consider a channel flow past a moving disk, whose motion is constrained by a spring (fig.3). Forces on the obstacle are computed with (6), and Newton equations are integrated (explicit Euler) for velocity and position of the disk.

At a time when vertical force is maximum, we approximate the local interface stresses comparing
\[\begin{align*}
\text{CME:} & \quad \sigma_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \delta_{ij} \frac{1}{3} \nabla \cdot u \right), \\
\text{me:} & \quad \sigma_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right),
\end{align*}\]
within LBM, forces on a solid obstacle can be efficiently computed using the Momentum Exchange Algorithm (MEA) [6] (fig.2).

Within LBM, forces on a solid obstacle can be efficiently computed using the Momentum Exchange Algorithm (MEA) [6] (fig.2).

At each boundary node, the momentum exchanged along each LB-link is computed (using the post-
collision distribution pointing into the solid):
\[\hat{f}_{ij}^\text{ME} = f_{ij}^0 (f_{ij}^0 (c_j - c_i, \kappa))\]
the sum of the contributions (5) along the boundary is used to approximate hydrodynamic force.

Corrected Momentum Exchange
Using (3), we find that the following correction is needed to obtain a Galilean invariant (in relevant orders) force computation:
\[\hat{f}_{ij}^\text{CME} = \hat{f}_{ij}^\text{ME} (c_j - c_i, \kappa)\]

Accuracy Results [2,3]
- Corrected ME provides an accurate (first order in \(h\)) global force evaluation
- CME is consistent also for Lees-Edwards BC (periodic in Galilean-transformed systems), useful tool in suspension simulations [7]
- Local interface stresses are approximated only up to order \(h^0\)

Local Boundary Forces
At selected points of the interfaces (●), two extrapolation methods are investigated (fig.6): (A) ME-based extrapolation: stresses are extrapolated from (6), using the expansion of the momentum exchanged (7) (B) pop-based extrapolation: LB distributions are approximated on the boundary.

(A) is more efficient within the LBM (no need of off-grid extrapolation), while (B) might be better in terms of stability, since it can be combined with different extrapolation rules.

FORCE EVALUATION

BIBLIOGRAPHY:
[2] Caiazzo, A. Asymptotic Analysis of lattice Boltzmann Method for Fluid-
[3] Caiazzo, A. Local t boundary forces in lattice-Boltzmann: analysis of
[6] Ladd A. Galilean invariant simulations of particle suspensions via a discretized
[7] Lorenz E, Hoekstra AG. Lattice-Boltzmann Simulations for
Multi-scale Flows. Series on Computational Science, Faculty of Science, University of Amsterdam.
[8] Schäfer M, Turek S. Benchmark Computations of Laminar Flow around a

Acknowledgments: A. Caiazzo is thankful to Michael Junk for his supervision.
This research has been funded by the DFG (Deutsche Forschungsgemeinschaft) and it is currently supported by the European Commission, through the COAST project (EU-FP6-IST-FET Contract 033664).