Asymptotics beats Monte Carlo: The case of correlated local vol baskets

Christian Bayer and Peter Laurence

WIAS Berlin and Università di Roma
Outline

1. Introduction
2. Outline of our approach
3. Heat kernel expansions
4. Numerical examples
1 Introduction

2 Outline of our approach

3 Heat kernel expansions

4 Numerical examples
Methods of European option pricing

\[u(t, S_t) = e^{-r(T-t)} E \left[f(S_T) \mid S_t \right] \]

Example (Example treated in this work)

\[f(S) = \left(\sum_{i=1}^{n} w_i S_i - K \right)^+ \], at least one weight positive

\(n \) large (e.g., \(n = 500 \) for SPX)

- PDE methods
- (Quasi) Monte Carlo method
- Fourier transform based methods
- Approximation formulas

November 28, 2013

Page 4 (32)
Methods of European option pricing

\[u(t, S_t) = e^{-r(T-t)} E \left[f(S_T) \mid S_t \right] \]

Example (Example treated in this work)

- \(f(S) = \left(\sum_{i=1}^{n} w_i S_i - K \right)^+ \), at least one weight positive
- \(n \) large (e.g., \(n = 500 \) for SPX)

- PDE methods
 - **Pros**: fast, general
 - **Cons**: curse of dimensionality, path-dependence may or may not be easy to include
 - (Quasi) Monte Carlo method
 - Fourier transform based methods
 - Approximation formulas
Methods of European option pricing

\[u(t, S_t) = e^{-r(T-t)}E\left[f(S_T) \mid S_t\right] \]

Example (Example treated in this work)

- \(f(S) = \left(\sum_{i=1}^{n} w_i S_i - K\right)^+ \), at least one weight positive
- \(n \) large (e.g., \(n = 500 \) for SPX)

- PDE methods
- (Quasi) Monte Carlo method

 Pros: very general, easy to adapt, no curse of dimensionality

 Cons: slow, quasi MC may be difficult in high dimensions

- Fourier transform based methods
- Approximation formulas
Methods of European option pricing

\[u(t, S_t) = e^{-r(T-t)} E \left[f(S_T) \mid S_t \right] \]

Example (Example treated in this work)

- \(f(S) = \left(\sum_{i=1}^{n} w_i S_i - K \right)^+ \), at least one weight positive
- \(n \) large (e.g., \(n = 500 \) for SPX)

- PDE methods
- (Quasi) Monte Carlo method
- Fourier transform based methods

Pros: very fast to evaluate (“explicit formula”)

Cons: only available for affine models, difficult to generalize, curse of dimensionality

- Approximation formulas
Methods of European option pricing

\[u(t, S_t) = e^{-r(T-t)}E \left[f(S_T) \mid S_t \right] \]

Example (Example treated in this work)

- \(f(S) = \left(\sum_{i=1}^{n} w_i S_i - K \right)^+ \), at least one weight positive
- \(n \) large (e.g., \(n = 500 \) for SPX)

- PDE methods
- (Quasi) Monte Carlo method
- Fourier transform based methods
- Approximation formulas

Pros: very fast evaluation

Cons: derived on case by case basis, therefore very restrictive
Methods of European option pricing

\[u(t, S_t) = e^{-r(T-t)}E[f(S_T)|S_t] \]

Example (Example treated in this work)

- \[f(S) = \left(\sum_{i=1}^{n} w_i S_i - K\right)^+, \text{ at least one weight positive} \]
- \[n \text{ large (e.g., } n = 500 \text{ for SPX)} \]

- PDE methods
- (Quasi) Monte Carlo method
- Fourier transform based methods
- Approximation formulas
- Work horse methods: PDE methods and (in particular) (Q)MC
- Particular models allowing approximation formulas (e.g., SABR formula) or FFT (Heston model) very popular
Approximation formulas based on expansions in option parameters

- Expansions in large/small strike or large/small maturity

Example (Large strike expansion, Lee formula)

- \(\partial_K \text{Call}(S_0, T, K) = -P(S_T \geq K) \)
- For \(K \gg 1 \), this is a rare event (large deviation)
- Lee formula: \(m := \log(S_0/K) \), \(\beta \) related to moment explosion

\[
\lim_{m \to \pm\infty} \frac{T}{m} \sigma_I^2(S_0, T, K) = \beta_\pm
\]

- Extensions e.g., by P. Friz et al.
Approximation formulas based on expansions in option parameters

- Expansions in large/small strike or large/small maturity

Example (Large strike expansion, Lee formula)

- \[\partial_K \text{Call}(S_0, T, K) = -P(S_T \geq K) \]
- For \(K \gg 1 \), this is a rare event (large deviation)
 - Lee formula: \(m \) := \(\log(S_0/K) \), \(\beta \) related to moment explosion
 \[\lim_{m \to \pm \infty} \frac{T}{m} \sigma^2(T, S_0, T, K) = \beta_\pm \]

- Extensions e.g., by P. Friz et al.
Approximation formulas based on expansions in option parameters

- Expansions in large/small strike or large/small maturity

Example (Large strike expansion, Lee formula)

- $\partial_K \text{Call}(S_0, T, K) = -P(S_T \geq K)$
- For $K \gg 1$, this is a rare event (*large deviation*)
- **Lee formula:** $m := \log(S_0/K)$, β related to moment explosion
 \[
 \lim_{m\to\pm\infty} \frac{T}{m} \sigma_I^2(S_0, T, K) = \beta_\pm
 \]

- Extensions e.g., by P. Friz et al.
Consider the (one-dimensional) model

\[dS_t = \sigma(t, S_t)dW_t, \quad S_0 \in \mathbb{R} \]

Expansion: \(S^\epsilon_t = S_0 + \epsilon S_{1,t} + \frac{1}{2} \epsilon^2 S_{2,t} + o(\epsilon^2), \) with

\[S_{1,t} = \int_0^t \sigma(s, S_0)dW_s, \]
\[S_{2,t} = 2 \int_0^t \partial_x \sigma(s, S_0)S_{1,s}dW_s \]

Wiener chaos decomposition

\[E[f(S_T)] \approx f(S_0) + \epsilon f'(S_0)E[S_{1,T}] + \frac{1}{2} \epsilon^2 \left(f''(S_0)E[S_{2,T}] + f'''(S_0)E[S_{1,T}^2] \right) + \cdots \]

For non-smooth payoffs, extensions possible by Malliavin weights.
Small noise expansion (stochastic approach)

Consider the (one-dimensional) model

\[dS_t^\epsilon = \epsilon \sigma(t, S_t^\epsilon) dW_t, \quad S_0^\epsilon = S_0 \in \mathbb{R} \]

Expansion: \(S_t^\epsilon = S_0 + \epsilon S_{1,t} + \frac{1}{2} \epsilon^2 S_{2,t} + o(\epsilon^2) \), with

\[S_{1,t} = \int_0^t \sigma(s, S_0) dW_s, \]

\[S_{2,t} = 2 \int_0^t \partial_x \sigma(s, S_0) S_{1,s} dW_s \]

Wiener chaos decomposition

\[E[f(S_T)] \approx f(S_0) + \epsilon f'(S_0) E[S_{1,T}] + \frac{1}{2} \epsilon^2 \left(f''(S_0) E[S_{2,T}] + f'''(S_0) E[S_{1,T}^2] \right) + \cdots \]

For non-smooth payoffs, extensions possible by Malliavin weights.
Consider the (one-dimensional) model

\[dS_t^\varepsilon = \varepsilon \sigma(t, S_t^\varepsilon) dW_t, \quad S_0^\varepsilon = S_0 \in \mathbb{R} \]

Expansion: \(S_t^\varepsilon = S_0 + \varepsilon S_{1,t} + \frac{1}{2} \varepsilon^2 S_{2,t} + o(\varepsilon^2) \), with

\[S_{1,t} = \int_0^t \sigma(s, S_0) dW_s, \]

\[S_{2,t} = 2 \int_0^t \partial_x \sigma(s, S_0) S_{1,s} dW_s \]

Wiener chaos decomposition

\[E\left[f(S_T)\right] \approx f(S_0) + \varepsilon f'(S_0) E\left[S_{1,T}\right] + \frac{1}{2} \varepsilon^2 \left(f''(S_0) E\left[S_{2,T}\right] + f'''(S_0) E\left[S_{1,T}^2\right]\right) + \cdots \]

For non-smooth payoffs, extensions possible by Malliavin weights.
Consider the (one-dimensional) model

\[dS^\epsilon_t = \epsilon \sigma(t, S^\epsilon_t) dW_t, \quad S^\epsilon_0 = S_0 \in \mathbb{R} \]

Expansion: \(S^\epsilon_t = S_0 + \epsilon S_{1,t} + \frac{1}{2} \epsilon^2 S_{2,t} + o(\epsilon^2) \), with

\[S_{1,t} = \int_0^t \sigma(s, S_0) dW_s, \]
\[S_{2,t} = 2 \int_0^t \partial_x \sigma(s, S_0) S_{1,s} dW_s \]

Wiener chaos decomposition

\[E \left[f(S_T) \right] \approx f(S_0) + \epsilon f'(S_0) E \left[S_{1,T} \right] + \frac{1}{2} \epsilon^2 \left(f''(S_0) E \left[S_{2,T} \right] + f'''(S_0) E \left[S_{1,T}^2 \right] \right) + \cdots \]

For non-smooth payoffs, extensions possible by Malliavin weights.
Price $u^\epsilon(t, S_0)$ solves $L^\epsilon u = 0$ with $L^\epsilon = \partial_t + \frac{1}{2} \epsilon^{2} \sigma^{2} \partial_{x}^{2} =: L_0 + \epsilon^{2} L_2$

Ansatz $u^\epsilon = u_0 + \epsilon u_1 + \frac{1}{2} \epsilon^{2} u_2 + \cdots$ gives (regular perturbation)

$$L_0 u_0 + \epsilon L_0 u_1 + \epsilon^{2} \left(\frac{1}{2} L_0 u_2 + L_2 u_0 \right) + o(\epsilon^{2}) = 0$$

Formally, we get

$$u_0(T, S_0) = f(S_0), \quad L_0 u_0 = 0, \quad L_0 u_1 = 0, \quad \frac{1}{2} L_0 u_2 + L_2 u_0 = 0, \ldots$$

$$u_0(t, S_0) = f(S_0), \quad u_1 = 0, \quad u_2(t, S_0) = 2 \int_{t}^{T} L_2 u_0(s, S_0) ds$$

For non-smooth payoffs, a singular perturbation in the fast variable $y := (x - K)/\epsilon$ can be used
Small noise expansion (PDE approach)

- Price $u^\epsilon(t, S_0)$ solves $L^\epsilon u = 0$ with $L^\epsilon = \partial_t + \frac{1}{2} \epsilon^2 \sigma^2 \partial_x^2 =: L_0 + \epsilon^2 L_2$

- Ansatz $u^\epsilon = u_0 + \epsilon u_1 + \frac{1}{2} \epsilon^2 u_2 + \cdots$ gives (regular perturbation)

\[L_0 u_0 + \epsilon L_0 u_1 + \epsilon^2 \left(\frac{1}{2} L_0 u_2 + L_2 u_0 \right) + o(\epsilon^2) = 0 \]

- Formally, we get

\[
\begin{align*}
 u_0(T, S_0) &= f(S_0), \\
 L_0 u_0 &= 0, \\
 L_0 u_1 &= 0, \\
 \frac{1}{2} L_0 u_2 + L_2 u_0 &= 0, \ldots
\end{align*}
\]

\[
\begin{align*}
 u_0(t, S_0) &= f(S_0), \\
 u_1 &= 0, \\
 u_2(t, S_0) &= 2 \int_t^T L_2 u_0(s, S_0) ds
\end{align*}
\]

- For non-smooth payoffs, a singular perturbation in the fast variable $y := (x - K)/\epsilon$ can be used
Small noise expansion (PDE approach)

- Price \(u^\epsilon(t, S_0) \) solves \(L^\epsilon u = 0 \) with
 \[L^\epsilon = \partial_t + \frac{1}{2} \epsilon^2 \sigma^2 \partial_x^2 =: L_0 + \epsilon^2 L_2 \]

- Ansatz \(u^\epsilon = u_0 + \epsilon u_1 + \frac{1}{2} \epsilon^2 u_2 + \cdots \) gives (regular perturbation)
 \[L_0 u_0 + \epsilon L_0 u_1 + \epsilon^2 \left(\frac{1}{2} L_0 u_2 + L_2 u_0 \right) + o(\epsilon^2) = 0 \]

- Formally, we get
 \[u_0(T, S_0) = f(S_0), \quad L_0 u_0 = 0, \quad L_0 u_1 = 0, \quad \frac{1}{2} L_0 u_2 + L_2 u_0 = 0, \ldots \]
 \[u_0(t, S_0) = f(S_0), \quad u_1 = 0, \quad u_2(t, S_0) = 2 \int_t^T L_2 u_0(s, S_0) ds \]

- For non-smooth payoffs, a singular perturbation in the fast variable \(y := (x - K)/\epsilon \) can be used.
Small noise expansion (PDE approach)

- Price $u^\epsilon(t, S_0)$ solves $L^\epsilon u = 0$ with $L^\epsilon = \partial_t + \frac{1}{2}\epsilon^2 \sigma^2 \partial_x^2 =: L_0 + \epsilon^2 L_2$

- Ansatz $u^\epsilon = u_0 + \epsilon u_1 + \frac{1}{2}\epsilon^2 u_2 + \cdots$ gives (regular perturbation)

 $$L_0 u_0 + \epsilon L_0 u_1 + \epsilon^2 \left(\frac{1}{2} L_0 u_2 + L_2 u_0 \right) + o(\epsilon^2) = 0$$

- Formally, we get

 $$u_0(T, S_0) = f(S_0), \quad L_0 u_0 = 0, \quad L_0 u_1 = 0, \quad \frac{1}{2} L_0 u_2 + L_2 u_0 = 0, \ldots$$

 $$u_0(t, S_0) = f(S_0), \quad u_1 = 0, \quad u_2(t, S_0) = 2 \int_t^T L_2 u_0(s, S_0) ds$$

- For non-smooth payoffs, a singular perturbation in the fast variable $y := (x - K)/\epsilon$ can be used
Outline

1 Introduction

2 Outline of our approach

3 Heat kernel expansions

4 Numerical examples
Local volatility model for forward prices

\[dF_i(t) = \sigma_i(F_i(t))dW_i(t), \quad i = 1, \ldots, n, \]

\[\langle dW_i(t), dW_j(t) \rangle = \rho_{ij}dt \]

Generalized spread option with payoff \((\sum_{i=1}^{n} w_i F_i - K)^+\), at least one \(w_i\) positive

Goal: fast and accurate approximation formulas, even for high \(n\)

\(n = 100\) or \(n = 500\) not uncommon (index options)

Example

- Black-Scholes model: \(\sigma_i(F_i) = \sigma_i F_i\)
- CEV model: \(\sigma_i(F_i) = \sigma_i F_i^{\beta_i}\)
Setting

- Local volatility model for forward prices

\[dF_i(t) = \sigma_i(F_i(t))dW_i(t), \quad i = 1, \ldots, n, \]
\[\langle dW_i(t), dW_j(t) \rangle = \rho_{ij}dt \]

- Generalized spread option with payoff \(\left(\sum_{i=1}^{n} w_i F_i - K \right)^+ \), at least one \(w_i \) positive

- Goal: fast and accurate approximation formulas, even for high \(n \)

- \(n = 100 \) or \(n = 500 \) not uncommon (index options)

Example

- Black-Scholes model: \(\sigma_i(F_i) = \sigma_i F_i \)
- CEV model: \(\sigma_i(F_i) = \sigma_i F_i^{\beta_i} \)
Setting

- Local volatility model for forward prices

\[dF_i(t) = \sigma_i(F_i(t))dW_i(t), \quad i = 1, \ldots, n, \]
\[\langle dW_i(t), dW_j(t) \rangle = \rho_{ij}dt \]

- Generalized spread option with payoff \((\sum_{i=1}^{n} w_iF_i - K)^+\), at least one \(w_i\) positive

- Goal: fast and accurate approximation formulas, even for high \(n\)

- \(n = 100\) or \(n = 500\) not uncommon (index options)

Example

- Black-Scholes model: \(\sigma_i(F_i) = \sigma_iF_i\)

- CEV model: \(\sigma_i(F_i) = \sigma_iF_i^{\beta_i}\)
Basket Carr-Jarrow formula

Consider the basket (index) $\sum_{i=1}^{n} w_i F_i$:

$$d \sum_{i=1}^{n} w_i F_i(t) = \sum_{i=1}^{n} w_i \sigma_i(F_i(t)) dW_i(t)$$

Ito’s formula formally implies that

Let $p(F_0, F, t) := P(F(t) \in dF | F(0) = F_0)$ and H_{n-1} be the Hausdorff measure on $\mathcal{E}(K)$, then we have the Carr-Jarrow formula

$$C(F_0, K, T) = \left(\sum_{i=1}^{n} w_i F_i(0) - K \right)^+ +$$

$$+ \frac{1}{2} \int_{0}^{T} \frac{1}{|w|} \int_{\mathcal{E}(K)} \sum_{i,j=1}^{n} w_i w_j \sigma_i(F_i) \sigma_j(F_j) \rho_{ij} p(F_0, F, u) H_{n-1}(dF) du.$$
Basket Carr-Jarrow formula

- Consider the basket (index) \(\sum_{i=1}^{n} w_i F_i \):
- Ito’s formula formally implies that

\[
\left(\sum_{i=1}^{n} w_i F_i(t) - K \right)^+ = \left(\sum_{i=1}^{n} w_i F_i(0) - K \right)^+ + \\
+ \sum_{i=1}^{n} w_i \int_{0}^{T} \mathbf{1}_{\sum w_i F_i(u) > K} dF_i(u) + \frac{1}{2} \int_{0}^{T} \delta_{\sum w_i F_i(u) = K} \sigma^2_{\mathcal{N}, \mathcal{B}(\mathbf{F}(u))} du
\]

- Let \(p(F_0, F, t) := P(F(t) \in dF | F(0) = F_0) \) and \(H_{n-1} \) be the Hausdorff measure on \(\mathcal{E}(K) \), then we have the Carr-Jarrow formula

\[
C(F_0, K, T) = \left(\sum_{i=1}^{n} w_i F_i(0) - K \right)^+ + \\
+ \frac{1}{2} \int_{0}^{T} \frac{1}{|w|} \int_{\mathcal{E}(K)} \sum_{i,j=1}^{n} w_i w_j \sigma_i(F_i) \sigma_j(F_j) \rho_{ij} p(F_0, F, u) H_{n-1}(dF) \, du.
\]
Consider the basket (index) \(\sum_{i=1}^{n} w_i F_i \):

Ito's formula formally implies (with \(\mathcal{E}(K) = \{ F \mid \sum w_i F_i = K \} \)) that

\[
C(F(0), K, T) = \left(\sum_{i=1}^{n} w_i F_i(0) - K \right)^+ + \frac{1}{2} \int_{0}^{T} E \left[\sigma_{N,B}(F(u)) \delta_{\mathcal{E}(K)}(F(u)) \right] du
\]

Let \(p(F_0, F, t) := P(F(t) \in dF \mid F(0) = F_0) \) and \(H_{n-1} \) be the Hausdorff measure on \(\mathcal{E}(K) \), then we have the Carr-Jarrow formula

\[
C(F_0, K, T) = \left(\sum_{i=1}^{n} w_i F_i(0) - K \right)^+ +
\]

\[
\frac{1}{2} \int_{0}^{T} \frac{1}{|w|} \int_{\mathcal{E}(K)} \sum_{i,j=1}^{n} w_i w_j \sigma_i(F_i) \sigma_j(F_j) \rho_{ij} p(F_0, F, u) H_{n-1}(dF) du.
\]
Consider the basket (index) $\sum_{i=1}^{n} w_i F_i$:

Ito’s formula formally implies (with $\mathcal{E}(K) = \{F | \sum w_i F_i = K\}$) that

\[
C(F(0), K, T) = \left(\sum_{i=1}^{n} w_i F_i(0) - K\right)^+ + \frac{1}{2} \int_{0}^{T} E \left[\sigma_{N,\mathcal{B}}^2(F(u)) \delta_{\mathcal{E}(K)}(F(u))\right] du
\]

Let $p(F_0, F, t) := P(F(t) \in dF | F(0) = F_0)$ and H_{n-1} be the Hausdorff measure on $\mathcal{E}(K)$, then we have the Carr-Jarrow formula

\[
C(F_0, K, T) = \left(\sum_{i=1}^{n} w_i F_i(0) - K\right)^+ +
\]

\[
+ \frac{1}{2} \int_{0}^{T} \frac{1}{|w|} \int_{\mathcal{E}(K)} \sum_{i,j=1}^{n} w_i w_j \sigma_i(F_i) \sigma_j(F_j) \rho_{ij} p(F_0, F, u) H_{n-1}(dF) du.
\]
Heat kernel expansion (to be discussed in detail later):

\[\sigma_{N,B}^2 \mathcal{B}(\mathbf{F}) p(\mathbf{F}_0, \mathbf{F}, t) \approx \frac{1}{(2\pi t)^{n/2}} \exp \left(-\frac{d(\mathbf{F}_0, \mathbf{F})^2}{2t} - C(\mathbf{F}_0, \mathbf{F}) \right) \]

By change of variables \(F_n = \frac{1}{w_n} \left(K - \sum_{i=1}^{n-1} w_i F_i \right) \) on \(\mathcal{E}_K \):

\[H_{n-1}(d\mathbf{F}) = \frac{|w|}{|w_n|} dF_1 \cdots dF_{n-1} \]

Laplace approximation: with \(\mathbf{F}^* = \text{argmin}_{\mathbf{F} \in \mathcal{E}_K} d(\mathbf{F}_0, \mathbf{F}) \) and \(\mathcal{G}_K = \{ (F_1, \ldots, F_{n-1}) | \sum_{i=1}^{n-1} w_i F_i < K \} \)

\[\int_{\mathcal{G}_K} e^{-\frac{d(\mathbf{F}_0, \mathbf{F})^2}{2t}} - C(\mathbf{F}_0, \mathbf{F}) dF_1 \cdots dF_{n-1} \approx e^{-\frac{d(\mathbf{F}_0, \mathbf{F}^*)^2}{2t}} - C(\mathbf{F}_0, \mathbf{F}^*) \int_{\mathbb{R}^{n-1}} e^{-\frac{z^T Q z}{2t}} d\mathbf{z} \]

\[= t^{\frac{n-1}{2}} e^{-\frac{d(\mathbf{F}_0, \mathbf{F}^*)^2}{2t}} - C(\mathbf{F}_0, \mathbf{F}^*) \frac{(2\pi)^{\frac{n-1}{2}}}{\sqrt{\det Q}} \]

We rely on the principle of not feeling the boundary.
Heat kernel expansion (to be discussed in detail later):

\[
\sigma_{N,B}^2 \approx \frac{1}{(2\pi t)^{n/2}} \exp \left(-\frac{d(F_0, F)^2}{2t} - C(F_0, F)\right)
\]

By change of variables \(F_n = \frac{1}{w_n} \left(K - \sum_{i=1}^{n-1} w_i F_i \right) \) on \(E_K \):

\[
H_{n-1}(dF) = \frac{|w|}{|w_n|} dF_1 \cdots dF_{n-1}
\]

Laplace approximation: with \(F^* = \arg\min_{F \in E_K} d(F_0, F) \) and \(G_K = \{(F_1, \ldots, F_{n-1})\mid \sum_{i=1}^{n-1} w_i F_i < K\} \)

\[
\int_{G_K} e^{-\frac{d(F_0,F)^2}{2t} - C(F_0,F)} dF_1 \cdots dF_{n-1} \approx e^{-\frac{d(F_0,F^*)^2}{2t} - C(F_0,F^*)} \int_{\mathbb{R}^{n-1}} e^{-\frac{z^T Q z}{2t}} d\mathbf{z}
\]

\[
= t^{\frac{n-1}{2}} e^{-\frac{d(F_0,F^*)^2}{2t} - C(F_0,F^*)} \frac{(2\pi)^{n-1}}{\sqrt{\det Q}}
\]

We rely on the principle of not feeling the boundary.
Approximations

- Heat kernel expansion (to be discussed in detail later):
 \[\sigma_{N,B}^2(F)p(F_0,F,t) \approx \frac{1}{(2\pi t)^{n/2}} \exp \left(-\frac{d(F_0,F)^2}{2t} - C(F_0,F) \right) \]

- By change of variables \(F_n = \frac{1}{w_n} \left(K - \sum_{i=1}^{n-1} w_i F_i \right) \) on \(\mathcal{E}_K \):
 \[H_{n-1}(dF) = \frac{|w|}{|w_n|} dF_1 \cdots dF_{n-1} \]

- Laplace approximation: with \(F^* = \arg\min_{F \in \mathcal{E}_K} d(F_0,F) \) and
 \[\mathcal{G}_K = \{ (F_1, \ldots, F_{n-1}) | \sum_{i=1}^{n-1} w_i F_i < K \} \]
 \[\int_{\mathcal{G}_K} e^{-\frac{d(F_0,F)^2}{2t} - C(F_0,F)} dF_1 \cdots dF_{n-1} \approx e^{-\frac{d(F_0,F^*)^2}{2t} - C(F_0,F^*)} \int_{\mathbb{R}^{n-1}} e^{-\frac{z^TQz}{2t}} dz \]
 \[= t^{\frac{n-1}{2}} e^{-\frac{d(F_0,F^*)^2}{2t} - C(F_0,F^*)} \frac{(2\pi)^{n-1}}{\sqrt{\det Q}} \]

We rely on the principle of not feeling the boundary.
Heat kernel expansion (to be discussed in detail later):

\[
\sigma^2_{N,B}(\mathbf{F}) p(\mathbf{F}_0, \mathbf{F}, t) \approx \frac{1}{(2\pi t)^{n/2}} \exp \left(-\frac{d(\mathbf{F}_0, \mathbf{F})^2}{2t} - C(\mathbf{F}_0, \mathbf{F}) \right)
\]

By change of variables \(F_n = \frac{1}{w_n} \left(K - \sum_{i=1}^{n-1} w_i F_i \right) \) on \(\mathcal{E}_K \):

\[
H_{n-1}(d\mathbf{F}) = \frac{|w|}{|w_n|} dF_1 \cdots dF_{n-1}
\]

Laplace approximation: with \(\mathbf{F}^* = \text{argmin}_{\mathbf{F} \in \mathcal{E}_K} d(\mathbf{F}_0, \mathbf{F}) \) and
\[
\mathcal{G}_K = \{ (F_1, \ldots, F_{n-1}) | \sum_{i=1}^{n-1} w_i F_i < K \}
\]

\[
\int_{\mathcal{G}_K} e^{-\frac{d(\mathbf{F}_0, \mathbf{F})^2}{2t} - C(\mathbf{F}_0, \mathbf{F})} dF_1 \cdots dF_{n-1} \approx e^{-\frac{d(\mathbf{F}_0, \mathbf{F}^*)^2}{2t} - C(\mathbf{F}_0, \mathbf{F}^*)} \int_{\mathbb{R}^{n-1}} e^{-\frac{z^T Q z}{2t}} dz
\]

\[
= t^{\frac{n-1}{2}} e^{-\frac{d(\mathbf{F}_0, \mathbf{F}^*)^2}{2t} - C(\mathbf{F}_0, \mathbf{F}^*)} \frac{(2\pi)^{n-1/2}}{\sqrt{\det Q}}
\]

We rely on the principle of not feeling the boundary.
Matching to implied volatilities

Theorem

\[C_B(F_0, K, T) = \left(\sum_{i=1}^{n} w_i F_i(0) - K \right)^+ + \]
\[+ \frac{1}{2 \sqrt{2\pi} |w_n| d(F_0, F^*)^2 \sqrt{\det Q}} e^{-C(F_0,F^*)} - \frac{d(F_0,F^*)}{2T} T^{3/2} + o(T^{3/2}), \text{ as } T \to 0. \]

- Bachelier implied vol (with \(\bar{F}_0 = \sum_{i=1}^{n} w_i F_{0,i} \)):
 \[\sigma_B \sim \sigma_{B,0} + T \sigma_{B,1} \text{ with } \sigma_{B,0} = \frac{|\bar{F}_0 - K|}{d(F_0, F^*) |\bar{F}_0|}, \sigma_{B,1} = \cdots \]

- Black-Scholes implied voila:
 \[\sigma_{BS} \sim \sigma_{BS,0} + T \sigma_{BS,1} \text{ with } \sigma_{BS,0} = \frac{|\log (\bar{F}_0/K)|}{d(F_0, F^*)}, \sigma_{BS,1} = \cdots \]
Matching to implied volatilities

Theorem

\[
C_B(F_0, K, T) = \left(\sum_{i=1}^{n} w_i F_i(0) - K \right)^+ + \\
\frac{1}{2 \sqrt{2\pi} |w_n| d(F_0, F^*)^2 \sqrt{\det Q}} e^{-C(F_0,F^*)} - \frac{d(F_0,F^*)}{2T} T^{3/2} + o(T^{3/2}), \text{ as } T \to 0.
\]

- Bachelier implied vol (with \(\bar{F}_0 = \sum_{i=1}^{n} w_i F_{0,i} \)):

 \[
 \sigma_B \sim \sigma_{B,0} + T \sigma_{B,1} \text{ with } \sigma_{B,0} = \frac{|\bar{F}_0 - K|}{d(F_0, F^*) |\bar{F}_0|}, \sigma_{B,1} = \cdots
 \]

- Black-Scholes implied voila:

 \[
 \sigma_{BS} \sim \sigma_{BS,0} + T \sigma_{BS,1} \text{ with } \sigma_{BS,0} = \frac{\left| \log \left(\frac{\bar{F}_0}{K} \right) \right|}{d(F_0, F^*)}, \sigma_{BS,1} = \cdots
 \]
Matching to implied volatilities

Theorem

\[C_B(F_0, K, T) = \left(\sum_{i=1}^{n} w_i F_i(0) - K \right)^+ + \]

\[+ \frac{1}{2 \sqrt{2\pi} |w_n| d(F_0, F^*)^2 \sqrt{\det Q}} e^{-C(F_0, F^*) - \frac{d(F_0, F^*)}{2T} T^{3/2} + o(T^{3/2})}, \text{ as } T \to 0. \]

- **Bachelier implied vol** (with \(F_0 = \sum_{i=1}^{n} w_i F_{0,i} \)):

 \[\sigma_B \sim \sigma_{B,0} + T \sigma_{B,1} \text{ with } \sigma_{B,0} = \frac{|F_0 - K|}{d(F_0, F^*) |F_0|}, \sigma_{B,1} = \cdots \]

- **Black-Scholes implied voila**:

 \[\sigma_{BS} \sim \sigma_{BS,0} + T \sigma_{BS,1} \text{ with } \sigma_{BS,0} = \frac{|\log(F_0/K)|}{d(F_0, F^*)}, \sigma_{BS,1} = \cdots \]
Greeks

- Goal: sensitivity w. r. t. model parameter κ of the option price

$$C_B(F_0, K, T) \approx C_{BS}(\bar{F}_0, K, \sigma_{BS}, T)$$

- Sensitivity: $\partial_\kappa C_{BS}(\bar{F}_0, K, \sigma_{BS}, T) + \nu_{BS}(\bar{F}_0, K, \sigma_{BS}, T) \partial_\kappa \sigma_{BS}$

- Recall that $\sigma_{BS,0}, \sigma_{BS,1}$ explicit up to F^*
 - By the minimizing property: $\partial_{F_i} \partial^2 (F_0, F_K(G))\big|_{G=G^*} = 0$
 - Differentiating with respect to κ gives

$$\partial_\kappa \partial_{F_i} \partial^2 (F_0, F_K(G))\big|_{G^*} + \sum_{l=1}^{n-1} \partial_{F_i} \partial_{F_j} \partial^2 (F_0, F_K(G))\big|_{G^*} \partial_\kappa F_l^* = 0$$

Up to the above system of linear equations for $\partial_\kappa F^*$, there are explicit expression for the sensitivities of the approximate option prices.
Goal: sensitivity w. r. t. model parameter κ of the option price

$$C_B(F_0, K, T) \approx C_{BS}(\overline{F}_0, K, \sigma_{BS}, T)$$

Sensitivity: $\frac{\partial}{\partial \kappa} C_{BS}(\overline{F}_0, K, \sigma_{BS}, T) + \nu_{BS}(\overline{F}_0, K, \sigma_{BS}, T) \frac{\partial}{\partial \kappa} \sigma_{BS}$

Recall that $\sigma_{BS,0}, \sigma_{BS,1}$ explicit up to \overline{F}^*

By the minimizing property: $\frac{\partial F_i}{\partial \kappa} d^2 (F_0, F_K(G)) \bigg|_{G=G^*} = 0$

Differentiating with respect to κ gives

$$\frac{\partial F_i}{\partial \kappa} d^2 (F_0, F_K(G)) \bigg|_{G=G^*} + \sum_{l=1}^{n-1} \frac{\partial F_i}{\partial F_l} \frac{\partial F_i}{\partial \kappa} d^2 (F_0, F_K(G)) \bigg|_{G=G^*} \frac{\partial \kappa F^*_l}{\partial \kappa} = 0$$

Up to the above system of linear equations for $\frac{\partial \kappa \overline{F}^*}{\partial \kappa}$, there are explicit expression for the sensitivities of the approximate option prices.
Heat kernels and geometry

\[d\mathbf{X}_t = b(\mathbf{X}_t)dt + \sigma(\mathbf{X}_t)dW_t, \]

\[L = \frac{1}{2} a^{i,j} \frac{\partial^2}{\partial x^i \partial x^j} + b^i \frac{\partial}{\partial x^i}, \quad a = \sigma^T \sigma \]

- Heat kernel: fundamental solution \(p(x, y, t) \) of \(\frac{\partial}{\partial t} u = Lu \)
- Transition density of \(\mathbf{X}_t \)

"Can you hear the shape of the drum?" (Kac '66)

Take \(L = \Delta \) on a domain \(D \) and relate:

- Geometrical properties of the domain \(D \)
- Partition function \(Z = \sum_{k \in \mathbb{N}} e^{\gamma_k t} \)
- Heat kernel
- E.g. \(-\gamma_k \sim C(n)(k/\text{vol } D)^{2/n} \) (Weyl, '46)
- E.g. (for \(n = 2 \)): \(Z = \frac{\text{area}}{4\pi t} - \frac{\text{circ.}}{\sqrt{4\pi t}} + O(1) \) (McKean & Singer, '67)
Heat kernels and geometry

\[dX_t = b(X_t)dt + \sigma(X_t)dW_t, \]

\[L = \frac{1}{2}a^{i,j} \frac{\partial^2}{\partial x^i \partial x^j} + b^i \frac{\partial}{\partial x^i}, \quad a = \sigma^T \sigma \]

- Heat kernel: fundamental solution \(p(x, y, t) \) of \(\frac{\partial}{\partial t}u = Lu \)
- Transition density of \(X_t \)

"Can you hear the shape of the drum?" (Kac ’66)

Take \(L = \Delta \) on a domain \(D \) and relate:

- Geometrical properties of the domain \(D \)
- Partition function \(Z = \sum_{k \in \mathbb{N}} e^{\gamma_k t} \)
- Heat kernel

- E.g. \(-\gamma_k \sim C(n)(k/ \text{vol } D)^{2/n} \) (Weyl, ’46)
- E.g. (for \(n = 2 \)): \(Z = \frac{\text{area}}{4\pi t} - \frac{\text{circ.}}{\sqrt{4\pi t}} + O(1) \) (McKean & Singer, ’67)
Heat kernels and geometry

\[d\mathbf{X}_t = b(\mathbf{X}_t)dt + \sigma(\mathbf{X}_t)dW_t, \]

\[L = \frac{1}{2} a^{i,j} \frac{\partial^2}{\partial x^i \partial x^j} + b^i \frac{\partial}{\partial x^i}, \quad a = \sigma^T \sigma \]

- Heat kernel: fundamental solution \(p(x, y, t) \) of \(\frac{\partial}{\partial t} u = Lu \)
- Transition density of \(\mathbf{X}_t \)

"Can you hear the shape of the drum?" (Kac ’66)

Take \(L = \Delta \) on a domain \(D \) and relate:
- Geometrical properties of the domain \(D \)
- Partition function \(Z = \sum_{k \in \mathbb{N}} e^{\gamma_k t} \)
- Heat kernel
- E.g. \(-\gamma_k \sim C(n)(k/\text{vol } D)^{2/n}\) (Weyl, ’46)
- E.g. (for \(n = 2 \)): \(Z = \frac{\text{area}}{4\pi t} - \frac{\text{circ.}}{\sqrt{4\pi t}} + O(1) \) (McKean & Singer, ’67)
The Riemannian metric associated to a diffusion

\[dX_t = b(X_t)dt + \sigma(X_t)dW_t, \]

\[L = \frac{1}{2} a^{ij} \frac{\partial^2}{\partial x^i \partial x^j} + b^i \frac{\partial}{\partial x^i}, \quad a = \sigma^T \sigma \]

- On \(\mathbb{R}^n \) (or a submanifold), introduce \(g^{ij} := a^{ij} \), Riemannian metric tensor \((g_{ij}(x))_{i,j=1}^n := \left((g^{ij}(x))_{i,j=1}^n\right)^{-1}\)
- Geodesic distance:
 \[d(x, y) := \inf_{z(0)=x, z(1)=y} \int_0^1 \sqrt{\sum g_{ij}(z(t))\dot{z}^i(t)\dot{z}^j(t)} \, dt \]
 inf attained by a smooth curve, the geodesic
- Laplace-Beltrami operator: \(\Delta_g = \left(\det(g_{ij})\right)^{-\frac{1}{2}} \frac{\partial}{\partial x^i} \left(\det(g_{ij})\right)^{\frac{1}{2}} g^{ij} \frac{\partial}{\partial x^j} \)
 \[L = \frac{1}{2} a^{ij} \frac{\partial^2}{\partial x^i \partial x^j} + b^i \frac{\partial}{\partial x^i} = \frac{1}{2} \Delta_g + h^i \frac{\partial}{\partial x^i} \]
The Riemannian metric associated to a diffusion

\[dX_t = b(X_t) dt + \sigma(X_t) dW_t, \]

\[L = \frac{1}{2} a^{ij} \frac{\partial^2}{\partial x^i \partial x^j} + b^i \frac{\partial}{\partial x^i}, \quad a = \sigma^T \sigma \]

- On \(\mathbb{R}^n \) (or a submanifold), introduce \(g^{ij} := a^{ij} \), Riemannian metric tensor \((g_{ij}(x))_{i,j=1}^n := \left((g^{ij}(x))_{i,j=1}^n \right)^{-1} \)

- Geodesic distance:
 \[d(x, y) := \inf_{z(0)=x, z(1)=y} \int_0^1 \sqrt{\sum g_{ij}(z(t)) \dot{z}^i(t) \dot{z}^j(t)} dt \]

- Inf attained by a smooth curve, the geodesic

- Laplace-Beltrami operator: \(\Delta_g = \left(\det(g_{ij}) \right)^{-\frac{1}{2}} \frac{\partial}{\partial x^i} \left(\det(g_{ij}) \right)^{\frac{1}{2}} g^{ij} \frac{\partial}{\partial x^i} \)

\[L = \frac{1}{2} a^{ij} \frac{\partial^2}{\partial x^i \partial x^j} + b^i \frac{\partial}{\partial x^i} = \frac{1}{2} \Delta_g + h^i \frac{\partial}{\partial x^i} \]
The Riemannian metric associated to a diffusion

\[dX_t = b(X_t)dt + \sigma(X_t)dW_t, \]

\[L = \frac{1}{2} a^{ij} \frac{\partial^2}{\partial x^i \partial x^j} + b^i \frac{\partial}{\partial x^i}, \quad a = \sigma^T \sigma \]

- On \(\mathbb{R}^n \) (or a submanifold), introduce \(g^{ij} := a^{ij}, \) Riemannian metric tensor \((g_{ij}(x))_{i,j=1}^n := \left((g^{ij}(x))_{i,j=1}^n\right)^{-1} \)

- Geodesic distance:
 \[d(x, y) := \inf_{z(0) = x, z(1) = y} \int_0^1 \sqrt{\sum g_{ij}(z(t)) \dot{z}^i(t) \dot{z}^j(t)} dt \]

- inf attained by a smooth curve, the geodesic

- Laplace-Beltrami operator: \(\Delta_g = \left(\det(g_{ij})\right)^{-\frac{1}{2}} \frac{\partial}{\partial x^i} \left(\det(g_{ij})\right)^{\frac{1}{2}} g^{ij} \frac{\partial}{\partial x^j} \)

\[L = \frac{1}{2} a^{ij} \frac{\partial^2}{\partial x^i \partial x^j} + b^i \frac{\partial}{\partial x^i} = \frac{1}{2} \Delta_g + h^i \frac{\partial}{\partial x^i} \]
The Riemannian metric associated to a diffusion

\[dX_t = b(X_t)dt + \sigma(X_t)dW_t, \]

\[L = \frac{1}{2} a^{ij} \frac{\partial^2}{\partial x^i \partial x^j} + b^i \frac{\partial}{\partial x^i}, \quad a = \sigma^T \sigma \]

- On \(\mathbb{R}^n \) (or a submanifold), introduce \(g^{ij} := a^{ij} \), Riemannian metric tensor \((g^{ij}(x))_{i,j=1}^n := \left((g^{ij}(x))_{i,j=1}^n\right)^{-1} \)
- Geodesic distance:
 \[d(x, y) := \inf_{z(0)=x, z(1)=y} \int_0^1 \sqrt{\sum g_{ij}(z(t)) \dot{z}^i(t) \dot{z}^j(t)} dt \]
 \(\inf \) attained by a smooth curve, the \textit{geodesic}
- Laplace-Beltrami operator:
 \[\Delta_g = \left(\det(g_{ij})\right)^{-\frac{1}{2}} \frac{\partial}{\partial x^i} \left(\det(g_{ij})\right)^{\frac{1}{2}} g^{ij} \frac{\partial}{\partial x^j} \]
 \[L = \frac{1}{2} a^{ij} \frac{\partial^2}{\partial x^i \partial x^j} + b^i \frac{\partial}{\partial x^i} = \frac{1}{2} \Delta_g + h^i \frac{\partial}{\partial x^i} \]
Heat kernel expansion

\[p_N(x_0, x, T) = \sqrt{\det(g(x)_{ij})} U_N(x_0, x, T) e^{-\frac{d^2(x_0, x)}{2T}} \]

\[U_N(x_0, x, T) = \sum_{k=0}^{N} u_k(x_0, x) T^k, \text{ the heat kernel coefficients} \]

\[u_0(x_0, x) = \sqrt{\Delta(x_0, x)} e^{\int_z \langle h(z(t)) \, , \dot{z}(t) \rangle_g dt} \]

\[\Delta is the Van Vleck-DeWitt determinant: \]
\[\Delta(x_0, x) = \frac{1}{\sqrt{\det(g(x_0)_{ij}) \det(g(x)_{ij})}} \det \left(-\frac{1}{2} \frac{\partial^2 d^2}{\partial x_0 \partial x} \right). \]

\[e^{\int_z \langle h(z(t)) \, , \dot{z}(t) \rangle_g dt} is the exponential of the work done by the vector field \(h \) along the geodesic \(z \) joining \(x_0 \) to \(x \) with \]
\[h^i = b^i - \frac{1}{2 \sqrt{\det(g_{ij})}} \frac{\partial}{\partial x^j} \left[\sqrt{\det(g_{ij})} g^{ij} \right] \]
Heat kernel expansion

\[p_N(x_0, x, T) = \sqrt{\text{det}(g(x)_{ij})} U_N(x_0, x, T) \frac{e^{-\frac{d^2(x_0, x)}{2T}}}{(2\pi T)^{n/2}} \]

- \(U_N(x_0, x, T) = \sum_{k=0}^{N} u_k(x_0, x) T^k \), the heat kernel coefficients
- \(u_0(x_0, x) = \sqrt{\Delta(x_0, x)} e^{\int_z \langle h(z(t)), \dot{z}(t) \rangle_g dt} \)
- \(\Delta \) is the Van Vleck-DeWitt determinant:
 \[\Delta(x_0, x) = \frac{1}{\sqrt{\text{det}(g(x_0)_{ij}) \text{det}(g(x)_{ij})}} \text{det} \left(-\frac{1}{2} \frac{\partial^2 d^2}{\partial x_0 \partial x} \right) \).
- \(e^{\int_z \langle h(z(t)), \dot{z}(t) \rangle_g dt} \) is the exponential of the work done by the vector field \(h \) along the geodesic \(z \) joining \(x_0 \) to \(x \) with
 \[h^i = b^i - \frac{1}{2 \sqrt{\text{det}(g_{ij})}} \frac{\partial}{\partial x^j} \left[\sqrt{\text{det}(g_{ij})} g^{ij} \right] \]
Assumption

The cut-locus of any point is empty, i.e., any two points are connected by a unique minimizing geodesic.

Theorem (Varadhan ’67)

\(b = 0, \sigma \) uniformly Hölder continuous, system uniformly elliptic, then

\[
\lim_{T \to 0} T \log p(x, y, T) = -\frac{1}{2} d(x, y)^2.
\]

Theorem (Yosida ’53)

On a compact Riemannian manifold, assume smooth vector fields and an ellipticity property. Then

\[
p(x, y, T) - p_N(x, y, T) = O(T^N) \text{ as } T \to 0.
\]

Theorem (Azencott ’84)

For a locally elliptic system in an open set \(U \subset \mathbb{R}^n, x, y \in U \) such that \(d(x, y) < d(x, \partial U) + d(y, \partial U) \), we have

\[
p(x, y, T) - p_N(x, y, T) = O(T^N) \text{ as } T \to 0.
\]
Heat kernel expansion – 2

Assumption

The cut-locus of any point is empty.

Theorem (Varadhan ’67)

\(b = 0, \sigma \) uniformly Hölder continuous, system uniformly elliptic, then

\[
\lim_{T \to 0} T \log p(x, y, T) = -\frac{1}{2} d(x, y)^2.
\]

Theorem (Yosida ’53)

On a compact Riemannian manifold, assume smooth vector fields and an ellipticity property. Then

\[
p(x, y, T) - p_N(x, y, T) = O(T^N) \text{ as } T \to 0.
\]

Theorem (Azencott ’84)

For a locally elliptic system in an open set \(U \subset \mathbb{R}^n, x, y \in U \) s. t. \(d(x, y) < d(x, \partial U) + d(y, \partial U) \), we have

\[
p(x, y, T) - p_N(x, y, T) = O(T^N) \text{ as } T \to 0.
\]
Assumption

The cut-locus of any point is empty.

Theorem (Varadhan ’67)

\[b = 0, \sigma \text{ uniformly Hölder continuous, system uniformly elliptic, then} \]
\[\lim_{T \to 0} T \log p(x, y, T) = -\frac{1}{2}d(x, y)^2. \]

Theorem (Yosida ’53)

On a compact Riemannian manifold, assume smooth vector fields and an ellipticity property. Then
\[p(x, y, T) - p_N(x, y, T) = O(T^N) \text{ as } T \to 0. \]

Theorem (Azencott ’84)

For a locally elliptic system in an open set \(U \subset \mathbb{R}^n, x, y \in U \) s. t. \(d(x, y) < d(x, \partial U) + d(y, \partial U) \), we have
\[p(x, y, T) - p_N(x, y, T) = O(T^N) \text{ as } T \to 0. \]
Assumption
The cut-locus of any point is empty.

Theorem (Varadhan ’67)
b = 0, \sigma uniformly Hölder continuous, system uniformly elliptic, then
\lim_{T \to 0} T \log p(x, y, T) = -\frac{1}{2} d(x, y)^2.

Theorem (Yosida ’53)
On a compact Riemannian manifold, assume smooth vector fields and
an ellipticity property. Then \(p(x, y, T) - p_N(x, y, T) = O(T^N) \) as \(T \to 0 \).

Theorem (Azencott ’84)
For a locally elliptic system in an open set \(U \subset \mathbb{R}^n \), \(x, y \in U \)
s. t. \(d(x, y) < d(x, \partial U) + d(y, \partial U) \), we have
\(p(x, y, T) - p_N(x, y, T) = O(T^N) \) as \(T \to 0 \).
The local vol case

- **Domain** \mathbb{R}^n_+, $dF_i(t) = \sigma_i(F_i(t))dW_i(t), \quad i = 1, \ldots, n$

- $L = \frac{1}{2} \rho_{ij} \sigma_i(x^i) \sigma_j(x^j) \frac{\partial^2}{\partial x^i \partial x^j}$

- Let $A \in \mathbb{R}^{n \times n}$ be such that $A \rho A^T = I_n$. Change variables $F \rightarrow y \rightarrow x$ according to

 $$y_i = \int_0^{F_i} \frac{du}{\sigma_i(u)}, \quad i = 1, \ldots, n, \quad x = Ay, \quad L \rightarrow \frac{1}{2} \frac{\partial^2}{\partial x_i^2} - \frac{1}{2} A_{ik} \sigma'_k(F_k) \frac{\partial}{\partial x_i}$$

- Isomorphic (up to boundary) to Euclidean geometry:

 $$d(F_0, F) = |x_0 - x|$$

- Geodesics known in closed form

- CEV case: $\sigma_i(F_i) = \sigma_i F_i^{\beta_i}$, zeroth and first order heat kernel coefficients given explicitly
The local vol case

- Domain \mathbb{R}^n_+, $dF_i(t) = \sigma_i(F_i(t))dW_i(t)$, $i = 1, \ldots, n$
- $L = \frac{1}{2}\rho_{ij}\sigma_i(x^i)\sigma_j(x^j)\frac{\partial^2}{\partial x^i \partial x^j}$
- Let $A \in \mathbb{R}^{n \times n}$ be such that $A\rho A^T = I_n$. Change variables $F \rightarrow y \rightarrow x$ according to

 $y_i = \int_0^{F_i} \frac{du}{\sigma_i(u)}$, $i = 1, \ldots, n$, $x = Ay$, $L \rightarrow \frac{1}{2} \frac{\partial^2}{\partial x^2} - \frac{1}{2} A_{ik}\sigma'_k(F_k) \frac{\partial}{\partial x_i}$

- Isomorphic (up to boundary) to Euclidean geometry:

 $d(F_0, F) = |x_0 - x|$

- Geodesics known in closed form
- CEV case: $\sigma_i(F_i) = \sigma_i F_i^{\beta_i}$, zeroth and first order heat kernel coefficients given explicitly
The local vol case

- Domain \mathbb{R}_+^n, $dF_i(t) = \sigma_i(F_i(t))dW_i(t)$, $i = 1, \ldots, n$
- $L = \frac{1}{2} \rho_{ij} \sigma_i(x^i) \sigma_j(x^j) \frac{\partial^2}{\partial x^i \partial x^j}$
- Let $A \in \mathbb{R}^{n \times n}$ be such that $A \rho A^T = I_n$. Change variables $F \rightarrow y \rightarrow x$ according to

$$y_i = \int_0^{F_i} \frac{du}{\sigma_i(u)}, i = 1, \ldots, n, \quad x = Ay, \quad L \rightarrow \frac{1}{2} \frac{\partial^2}{\partial x_i^2} - \frac{1}{2} A_{ik} \sigma'_k(F_k) \frac{\partial}{\partial x_i}$$

- Isomorphic (up to boundary) to Euclidean geometry:

$$d(F_0, F) = |x_0 - x|$$

- Geodesics known in closed form
- CEV case: $\sigma_i(F_i) = \sigma_i F_i^{\beta_i}$, zeroth and first order heat kernel coefficients given explicitly
The local vol case

- Domain \mathbb{R}_+^n, $dF_i(t) = \sigma_i(F_i(t))dW_i(t)$, $i = 1, \ldots, n$

- $L = \frac{1}{2}\rho_{ij}\sigma_i(x^i)\sigma_j(x^j)\frac{\partial^2}{\partial x^i \partial x^j}$

- Let $A \in \mathbb{R}^{n \times n}$ be such that $A\rho A^T = I_n$. Change variables $F \to y \to x$ according to

$$y_i = \int_0^{F_i} \frac{du}{\sigma_i(u)}, i = 1, \ldots, n, \quad x = Ay, \quad L \to \frac{1}{2} \frac{\partial^2}{\partial x_i^2} - \frac{1}{2}A_{ik}\sigma_k'(F_k)\frac{\partial}{\partial x_i}$$

- Isomorphic (up to boundary) to Euclidean geometry:

$$d(F_0, F) = |x_0 - x|$$

- Geodesics known in closed form

- CEV case: $\sigma_i(F_i) = \sigma_i F_i^{\beta_i}$, zeroth and first order heat kernel coefficients given explicitly
Outline

1 Introduction

2 Outline of our approach

3 Heat kernel expansions

4 Numerical examples
Optimization problem for F^* is non-linear with a linear constraint

With $q_i := \int_{F_{0,i}}^{F_i} \frac{du}{\sigma_i(u)}$, it is a quadratic optimization problem with non-linear constraint.

Fast convergence of Newton iteration

Given F^*, $C(F_0, F^*)$ is a line integral along the geodesic; this integral can be calculated in closed form in the CEV model.

Formulas can be evaluated in less than 2 seconds for $n = 100$.

Our work relies on the principle of not feeling the boundary.
Implementation

- Optimization problem for \mathbf{F}^* is non-linear with a linear constraint
- With $q_i := \int_{F_{0,i}}^{F_i} \frac{du}{\sigma_i(u)}$, it is a quadratic optimization problem with non-linear constraint
- Fast convergence of Newton iteration
- Given \mathbf{F}^*, $C(\mathbf{F}_0, \mathbf{F}^*)$ is a line integral along the geodesic; this integral can be calculated in closed form in the CEV model.
- Formulas can be evaluated in less than 2 seconds for $n = 100$

Our work relies on the principle of not feeling the boundary.
Implementation

- Optimization problem for F^* is non-linear with a linear constraint
- With $q_i := \int_{F_{0,i}}^{F_i} \frac{du}{\sigma_i(u)}$, it is a quadratic optimization problem with non-linear constraint
- Fast convergence of Newton iteration
- Given F^*, $C(F_0, F^*)$ is a line integral along the geodesic; this integral can be calculated in closed form in the CEV model.
- Formulas can be evaluated in less than 2 seconds for $n = 100$

Our work relies on the principle of not feeling the boundary.
Implementation

- Optimization problem for F^* is non-linear with a linear constraint
- With $q_i := \int_{F_{0,i}}^{F_i} \frac{du}{\sigma_i(u)}$, it is a quadratic optimization problem with non-linear constraint
- Fast convergence of Newton iteration
- Given F^*, $C(F_0, F^*)$ is a line integral along the geodesic; this integral can be calculated in closed form in the CEV model.
- Formulas can be evaluated in less than 2 seconds for $n = 100$

Our work relies on the principle of not feeling the boundary.
The initial guess in the Newton iteration

- Change of variable: \(q_i = \frac{F_i^{1-\beta_i} - F_{0,i}^{1-\beta_i}}{1-\beta_i}, \quad F_i = \left(F_{0,i}^{1-\beta_i} + (1 - \beta_i)q_i \right)^{1/(1-\beta_i)} \)

- \(\Lambda^{-1} = (\sigma_i \sigma_j \rho_{ij})_{i,j=1}^n \)

- Optimization problem: \(\min \mathbf{q}^T \Lambda \mathbf{q} : \sum_{i=1}^n w_i F_i(q_i) = K \)

- Linearized constraint: \(\sum_{i=1}^n w_i \left(F_{0,i} + F_{0,i}^{\beta_i}q_i \right) = K \)

- Minimizer \(q_0^* = \frac{K - \overline{F}_0}{F_{0}^T \Lambda^{-1} \overline{F}_0} \Lambda^{-1} \overline{F}_0 \) with Lagrange multiplier \(\lambda = 2 \frac{K - \overline{F}_0}{F_{0}^T \Lambda^{-1} \overline{F}_0} \), where \(\overline{F}_{0,i} = w_i F_{0,i} \)

- \(q_0^* \) not good enough (unless coupled with “1/2-slope rule”)

- Use as initial guess in Newton iteration
The initial guess in the Newton iteration

- Change of variable: \(q_i = \frac{F_{1-i} - F_{0,i}}{1-i} \), \(F_i = \left(F_{0,i} + (1 - i)q_i \right)^{1/(1-i)} \)

- \(\Lambda^{-1} = (\sigma_i \sigma_j \rho_{ij})_{i,j=1}^n \)

- Optimization problem: \(\min q^T \Lambda q : \sum_{i=1}^n w_i F_i(q_i) = K \)

- Linearized constraint: \(\sum_{i=1}^n w_i \left(F_{0,i} + F_{\beta,i}q_i \right) = K \)

- Minimizer \(q_0^* = \frac{K - \bar{F}_0}{\bar{F}_0^T \Lambda^{-1} \bar{F}_0} \Lambda^{-1} \bar{F}_0 \) with Lagrange multiplier \(\lambda = 2 \frac{K - \bar{F}_0}{\bar{F}_0^T \Lambda^{-1} \bar{F}_0} \), where \(\bar{F}_{0,i} = w_i F_{0,i} \)

- \(q_0^* \) not good enough (unless coupled with “1/2-slope rule”)

- Use as initial guess in Newton iteration
The initial guess in the Newton iteration

- Change of variable: \(q_i = \frac{F_i^{1-\beta_i} - F_0^{1-\beta_i}}{1-\beta_i} \), \(F_i = \left(F_0^{1-\beta_i} + (1 - \beta_i)q_i \right)^{1/(1-\beta_i)} \)

- \(\Lambda^{-1} = (\sigma_i \sigma_j \rho_{ij})_{i,j=1}^n \)

- Optimization problem: \(\min q^T \Lambda q : \sum_{i=1}^n w_i F_i(q_i) = K \)

- Linearized constraint: \(\sum_{i=1}^n w_i (F_{0,i} + F_{0,i}^\beta q_i) = K \)

- Minimizer \(q_0^* = \frac{K - \bar{F}_0}{\bar{F}_0^T \Lambda^{-1} \bar{F}_0} \Lambda^{-1} \bar{F}_0 \) with Lagrange multiplier \(\lambda = 2 \frac{K - \bar{F}_0}{\bar{F}_0^T \Lambda^{-1} \bar{F}_0} \), where \(\bar{F}_{0,i} = w_i F_{0,i} \)

- \(q_0^* \) not good enough (unless coupled with “1/2-slope rule”)

- Use as initial guess in Newton iteration
Numerical examples

- CEV model framework
- For CEV, the formulas are fully explicit apart from the minimizing configuration F^*
- We observe very fast convergence of the iteration, but the initial guess is crucial.
- Reference values obtained using:
 - Ninomiya Victoir discretization
 - Quasi Monte Carlo based on Sobol numbers, Monte Carlo for very high dimensions ($n \approx 100$)
 - Variance (dimension) reduction using Mean value Monte Carlo based on one-dimensional Black-Scholes prices
Numerical examples

- CEV model framework
- For CEV, the formulas are fully explicit apart from the minimizing configuration F^*
- We observe very fast convergence of the iteration, but the initial guess is crucial.
- Reference values obtained using:
 - Ninomiya Victoir discretization
 - Quasi Monte Carlo based on Sobol numbers, Monte Carlo for very high dimensions ($n \approx 100$)
 - Variance (dimension) reduction using Mean value Monte Carlo based on one-dimensional Black-Scholes prices
CEV index implied vol – three-dimensional visualization

Approximations for local vol baskets · November 28, 2013 · Page 24 (32)
CEV index implied vol – three-dimensional visualization

Approximations for local vol baskets · November 28, 2013 · Page 24 (32)
Spread option in dimension 10

- Recall: \(dF_i(t) = \sigma_i F_i(t)^{\beta_i} dW_i(t)\)
- \(\beta = (0.7, 0.2, 0.8, 0.3, 0.5, 0.5, 0.6, 0.6, 0.3, 0.3)\)
- \(\sigma = (0.8, 0.6, 0.9, 0.6, 0.8, 0.4, 0.9, 0.9, 0.3, 0.8)\)
- \(F_0 = (10, 13, 11, 18, 9, 10, 17, 16, 13, 17)\)
- \(w = (-1, -1, 1, 1, 1, -1, -1, 1, 1, 1)\)
Spread option in dimension 10

<table>
<thead>
<tr>
<th>T</th>
<th>$K = 32.9$</th>
<th>$K = 33.8$</th>
<th>$K = 34.1$</th>
<th>$K = 34.4$</th>
<th>$K = 35.3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3.6352</td>
<td>3.1609</td>
<td>3.0123</td>
<td>2.8684</td>
<td>2.4649</td>
</tr>
<tr>
<td>1</td>
<td>4.8959</td>
<td>4.4332</td>
<td>4.2857</td>
<td>4.1416</td>
<td>3.7292</td>
</tr>
<tr>
<td>2</td>
<td>6.6912</td>
<td>6.2385</td>
<td>6.0924</td>
<td>5.9487</td>
<td>5.5322</td>
</tr>
</tbody>
</table>

Table: Quasi Monte Carlo prices.

<table>
<thead>
<tr>
<th>T</th>
<th>$K = 32.9$</th>
<th>$K = 33.8$</th>
<th>$K = 34.1$</th>
<th>$K = 34.4$</th>
<th>$K = 35.3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3.6306</td>
<td>3.1562</td>
<td>3.0076</td>
<td>2.8637</td>
<td>2.4601</td>
</tr>
<tr>
<td>1</td>
<td>4.8844</td>
<td>4.4214</td>
<td>4.2739</td>
<td>4.1297</td>
<td>3.7174</td>
</tr>
<tr>
<td>2</td>
<td>6.6640</td>
<td>6.2109</td>
<td>6.0648</td>
<td>5.9211</td>
<td>5.5046</td>
</tr>
</tbody>
</table>

Table: Zero order asymptotic prices.
Spread option in dimension 10

<table>
<thead>
<tr>
<th>T</th>
<th>$K = 32.9$</th>
<th>$K = 33.8$</th>
<th>$K = 34.1$</th>
<th>$K = 34.4$</th>
<th>$K = 35.3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3.6352</td>
<td>3.1609</td>
<td>3.0123</td>
<td>2.8684</td>
<td>2.4649</td>
</tr>
<tr>
<td>1</td>
<td>4.8959</td>
<td>4.4332</td>
<td>4.2857</td>
<td>4.1416</td>
<td>3.7292</td>
</tr>
<tr>
<td>2</td>
<td>6.6912</td>
<td>6.2385</td>
<td>6.0924</td>
<td>5.9487</td>
<td>5.5322</td>
</tr>
</tbody>
</table>

Table: Quasi Monte Carlo prices.

<table>
<thead>
<tr>
<th>T</th>
<th>$K = 32.9$</th>
<th>$K = 33.8$</th>
<th>$K = 34.1$</th>
<th>$K = 34.4$</th>
<th>$K = 35.3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3.6353</td>
<td>3.1609</td>
<td>3.0123</td>
<td>2.8684</td>
<td>2.4648</td>
</tr>
<tr>
<td>1</td>
<td>4.8976</td>
<td>4.4348</td>
<td>4.2873</td>
<td>4.1431</td>
<td>3.7307</td>
</tr>
<tr>
<td>2</td>
<td>6.7015</td>
<td>6.2487</td>
<td>6.1027</td>
<td>5.9590</td>
<td>5.5423</td>
</tr>
</tbody>
</table>

Table: First order asymptotic prices.
Normalized errors

- Approximation error supposed to depend on “dimension-free”
time to maturity $\sigma^2 T$
- Use $\bar{\sigma} := \sigma_{N, B}(F_0)/\left(\sum_{i=1}^n w_i F_{0,i}\right)$ as proxy in local vol framework
- Normalized error: $\frac{\text{Rel. error}}{\sigma^2 T}$

<table>
<thead>
<tr>
<th>T</th>
<th>Dim. 5</th>
<th>Dim. 10</th>
<th>Dim. 15</th>
<th>Dim. 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.1555</td>
<td>-0.0293</td>
<td>0.3085</td>
<td>-0.0143</td>
</tr>
<tr>
<td>1</td>
<td>0.1481</td>
<td>-0.0261</td>
<td>0.3162</td>
<td>-0.0105</td>
</tr>
<tr>
<td>2</td>
<td>0.1429</td>
<td>-0.0218</td>
<td>0.3222</td>
<td>-0.0075</td>
</tr>
<tr>
<td>5</td>
<td>0.1376</td>
<td>-0.0129</td>
<td>0.3252</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.1328</td>
<td>-0.0035</td>
<td>0.3198</td>
<td></td>
</tr>
<tr>
<td>$\bar{\sigma}$</td>
<td>0.1704</td>
<td>0.3187</td>
<td>0.1073</td>
<td>0.2964</td>
</tr>
</tbody>
</table>

Table: Normalized relative error of the zero-order asymptotic prices.
Approximation error supposed to depend on “dimension-free”
time to maturity $\sigma^2 T$

- Use $\overline{\sigma} := \sigma_{N,B}(F_0)/\left(\sum_{i=1}^{n} w_i F_{0,i}\right)$ as proxy in local vol framework

- Normalized error: $\frac{\text{Rel. error}}{\overline{\sigma}^2 T}$

<table>
<thead>
<tr>
<th>T</th>
<th>Dim. 5</th>
<th>Dim. 10</th>
<th>Dim. 15</th>
<th>Dim. 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>-4.02×10^{-4}</td>
<td>1.76×10^{-4}</td>
<td>8.76×10^{-3}</td>
<td>5.06×10^{-5}</td>
</tr>
<tr>
<td>1</td>
<td>-9.47×10^{-4}</td>
<td>3.58×10^{-3}</td>
<td>1.53×10^{-3}</td>
<td>2.08×10^{-3}</td>
</tr>
<tr>
<td>2</td>
<td>-1.63×10^{-3}</td>
<td>8.09×10^{-3}</td>
<td>-3.92×10^{-3}</td>
<td>3.89×10^{-3}</td>
</tr>
<tr>
<td>5</td>
<td>-3.41×10^{-3}</td>
<td>1.71×10^{-2}</td>
<td>-1.33×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-7.15×10^{-3}</td>
<td>2.67×10^{-2}</td>
<td>-2.82×10^{-2}</td>
<td></td>
</tr>
</tbody>
</table>

$\overline{\sigma}$: 0.1704 0.3187 0.1073 0.2964

Table: Normalized error of the first order asymptotic prices.
First order prices

Approximations for local vol baskets · November 28, 2013 · Page 27 (32)
Relative errors

Approximations for local vol baskets · November 28, 2013 · Page 28 (32)
Objective: Compute the sensitivity (delta) w.r.t. $F_{0,3}$.

Note that the option payoff is

$$P(F) = (F_1 + F_2 - F_3 - K)^+$$
Relative error of delta

T = 0.5

T = 5

Approximations for local vol baskets · November 28, 2013 · Page 31 (32)
M. Avellaneda, D. Boyer-Olson, J. Busca, P. Friz: *Application of large

R. Azencott: *Densité des diffusions en temps petit: développements

C. Bayer, P. Laurence: *Asymptotics beats Monte Carlo: The case of

J. Gatheral, E. P. Hsu, P. Laurence, C. Ouyang, T.-H. Wang: *Asymptotics

P. Henry-Labordère: *Analysis, geometry, and modeling in finance*, CRC

R. S. Varadhan: *Diffusion processes in a small time interval*, Comm. Pure

K. Yosida: *On the fundamental solution of the parabolic equation in a