Weierstrass Institute for Applied Analysis and Stochastics

Asymptotics beats Monte Carlo: The case of correlated local vol baskets

Christian Bayer and Peter Laurence
WIAS Berlin and Università di Roma

Outline

1 Introduction

2 Outline of our approach

3 Heat kernel expansions

4 Numerical examples

Outline

1 Introduction

2 Outline of our approach

3 Heat kernel expansions

4 Numerical examples

Methods of European option pricing

$$
u\left(t, S_{t}\right)=e^{-r(T-t)} E\left[f\left(S_{T}\right) \mid S_{t}\right]
$$

Example (Example treated in this work)

- $f(\mathbf{S})=\left(\sum_{i=1}^{n} w_{i} S_{i}-K\right)^{+}$, at least one weight positive
- n large (e.g., $n=500$ for SPX)
- PDE methods
- (Quasi) Monte Carlo method
- Fourier transform based methods
- Approximation formulas

Methods of European option pricing

$$
u\left(t, S_{t}\right)=e^{-r(T-t)} E\left[f\left(S_{T}\right) \mid S_{t}\right]
$$

Example (Example treated in this work)

- $f(\mathbf{S})=\left(\sum_{i=1}^{n} w_{i} S_{i}-K\right)^{+}$, at least one weight positive
- n large (e.g., $n=500$ for SPX)
- PDE methods

Pros: fast, general
Cons: curse of dimensionality, path-dependence may or may not be easy to include

- (Quasi) Monte Carlo method
- Fourier transform based methods
- Approximation formulas

Methods of European option pricing

$$
u\left(t, S_{t}\right)=e^{-r(T-t)} E\left[f\left(S_{T}\right) \mid S_{t}\right]
$$

Example (Example treated in this work)

- $f(\mathbf{S})=\left(\sum_{i=1}^{n} w_{i} S_{i}-K\right)^{+}$, at least one weight positive
- n large (e.g., $n=500$ for SPX)
- PDE methods
- (Quasi) Monte Carlo method

Pros: very general, easy to adapt, no curse of dimensionality
Cons: slow, quasi MC may be difficult in high dimensions

- Fourier transform based methods
- Approximation formulas

Methods of European option pricing

$$
u\left(t, S_{t}\right)=e^{-r(T-t)} E\left[f\left(S_{T}\right) \mid S_{t}\right]
$$

Example (Example treated in this work)

- $f(\mathbf{S})=\left(\sum_{i=1}^{n} w_{i} S_{i}-K\right)^{+}$, at least one weight positive
- n large (e.g., $n=500$ for SPX)
- PDE methods
- (Quasi) Monte Carlo method
- Fourier transform based methods

Pros: very fast to evaluate ("explicit formula")
Cons: only available for affine models, difficult to generalize, curse of dimensionality

- Approximation formulas

Methods of European option pricing

$$
u\left(t, S_{t}\right)=e^{-r(T-t)} E\left[f\left(S_{T}\right) \mid S_{t}\right]
$$

Example (Example treated in this work)

- $f(\mathbf{S})=\left(\sum_{i=1}^{n} w_{i} S_{i}-K\right)^{+}$, at least one weight positive
- n large (e.g., $n=500$ for SPX)
- PDE methods
- (Quasi) Monte Carlo method
- Fourier transform based methods
- Approximation formulas

Pros: very fast evaluation
Cons: derived on case by case basis, therefore very restrictive

Methods of European option pricing

$$
u\left(t, S_{t}\right)=e^{-r(T-t)} E\left[f\left(S_{T}\right) \mid S_{t}\right]
$$

Example (Example treated in this work)

- $f(\mathbf{S})=\left(\sum_{i=1}^{n} w_{i} S_{i}-K\right)^{+}$, at least one weight positive
- n large (e.g., $n=500$ for SPX)
- PDE methods
- (Quasi) Monte Carlo method
- Fourier transform based methods
- Approximation formulas
- Work horse methods: PDE methods and (in particular) (Q)MC
- Particular models allowing approximation formulas (e.g., SABR formula) or FFT (Heston model) very popular

Approximation formulas based on expansions in option parameters

- Expansions in large/small strike or large/small maturity
- Extensions e.g., by P. Friz et al.
- Expansions in large/small strike or large/small maturity

Example (Large strike expansion, Lee formula)

- $\partial_{K} \mathrm{Call}\left(S_{0}, T, K\right)=-P\left(S_{T} \geq K\right)$
- For $K \gg 1$, this is a rare event (large deviation)
- Lee formula: $m:=\log \left(S_{0} / K\right), \beta$ related to moment explosion

- Extensions e.g., by P. Friz et al

Approximation formulas based on expansions in option parameters

- Expansions in large/small strike or large/small maturity

Example (Large strike expansion, Lee formula)

- $\partial_{K} \mathrm{Call}\left(S_{0}, T, K\right)=-P\left(S_{T} \geq K\right)$
- For $K \gg 1$, this is a rare event (large deviation)
- Lee formula: $m:=\log \left(S_{0} / K\right), \beta$ related to moment explosion

$$
\lim _{m \rightarrow \pm \infty} \frac{T}{m} \sigma_{I}^{2}\left(S_{0}, T, K\right)=\beta_{ \pm}
$$

- Extensions e.g., by P. Friz et al.

Small noise expansion (stochastic approach)

- Consider the (one-dimensional) model

$$
d S_{t}=\sigma\left(t, S_{t}\right) d W_{t}, \quad S_{0} \in \mathbb{R}
$$

- Expansion: $S_{t}^{\epsilon}=S_{0}+\epsilon S_{1, t}+\frac{1}{2} \epsilon^{2} S_{2, t}+o\left(\epsilon^{2}\right)$, with

$$
\begin{aligned}
& S_{1, t}=\int_{0}^{t} \sigma\left(s, S_{0}\right) d W_{s} \\
& S_{2, t}=2 \int_{0}^{t} \partial_{x} \sigma\left(s, S_{0}\right) S_{1, s} d W_{s}
\end{aligned}
$$

- Wiener chaos decomposition
- $E\left[f\left(S_{T}\right)\right] \approx f\left(S_{0}\right)+\epsilon f^{\prime}\left(S_{0}\right) E\left[S_{1, T}\right]+$ $+\frac{1}{2} \epsilon^{2}\left(f^{\prime}\left(S_{0}\right) E\left[S_{2, T}\right]+f^{\prime \prime}\left(S_{0}\right) E\left[S_{1, T}^{2}\right]\right)$
- For non-smooth payoffs, extensions possible by Malliavin weights.

Small noise expansion (stochastic approach)

- Consider the (one-dimensional) model

$$
d S_{t}^{\epsilon}=\epsilon \sigma\left(t, S_{t}^{\epsilon}\right) d W_{t}, \quad S_{0}^{\epsilon}=S_{0} \in \mathbb{R}
$$

- Expansion: $S_{t}^{\epsilon}=S_{0}+\epsilon S_{1, t}+\frac{1}{2} \epsilon^{2} S_{2, t}+o\left(\epsilon^{2}\right)$, with

$$
\begin{aligned}
& S_{1, t}=\int_{0}^{t} \sigma\left(s, S_{0}\right) d W_{s}, \\
& S_{2, t}=2 \int_{0}^{t} \partial_{x} \sigma\left(s, S_{0}\right) S_{1, s} d W_{s}
\end{aligned}
$$

- Wiener chaos decomposition
- $E\left[f\left(S_{T}\right)\right] \approx f\left(S_{0}\right)+\epsilon f^{\prime}\left(S_{0}\right) E\left[S_{1, T}\right]+$ $+\frac{1}{2} \epsilon^{2}\left(f^{\prime}\left(S_{0}\right) E\left[S_{2, T}\right]+f^{\prime \prime}\left(S_{0}\right) E\left[S_{1, T}^{2}\right]\right)$
- For non-smooth payoffs, extensions possible by Malliavin weights.
- Consider the (one-dimensional) model

$$
d S_{t}^{\epsilon}=\epsilon \sigma\left(t, S_{t}^{\epsilon}\right) d W_{t}, \quad S_{0}^{\epsilon}=S_{0} \in \mathbb{R}
$$

- Expansion: $S_{t}^{\epsilon}=S_{0}+\epsilon S_{1, t}+\frac{1}{2} \epsilon^{2} S_{2, t}+o\left(\epsilon^{2}\right)$, with

$$
\begin{aligned}
& S_{1, t}=\int_{0}^{t} \sigma\left(s, S_{0}\right) d W_{s} \\
& S_{2, t}=2 \int_{0}^{t} \partial_{x} \sigma\left(s, S_{0}\right) S_{1, s} d W_{s}
\end{aligned}
$$

- Wiener chaos decomposition
- $E\left[f\left(S_{T}\right)\right] \approx f\left(S_{0}\right)+\epsilon f^{\prime}\left(S_{0}\right) E\left[S_{1, T}\right]+$
- For non-smooth payoffs, extensions possible by Malliavin weights.
- Consider the (one-dimensional) model

$$
d S_{t}^{\epsilon}=\epsilon \sigma\left(t, S_{t}^{\epsilon}\right) d W_{t}, \quad S_{0}^{\epsilon}=S_{0} \in \mathbb{R}
$$

- Expansion: $S_{t}^{\epsilon}=S_{0}+\epsilon S_{1, t}+\frac{1}{2} \epsilon^{2} S_{2, t}+o\left(\epsilon^{2}\right)$, with

$$
\begin{aligned}
& S_{1, t}=\int_{0}^{t} \sigma\left(s, S_{0}\right) d W_{s} \\
& S_{2, t}=2 \int_{0}^{t} \partial_{x} \sigma\left(s, S_{0}\right) S_{1, s} d W_{s}
\end{aligned}
$$

- Wiener chaos decomposition
- $E\left[f\left(S_{T}\right)\right] \approx f\left(S_{0}\right)+\epsilon f^{\prime}\left(S_{0}\right) E\left[S_{1, T}\right]+$ $+\frac{1}{2} \epsilon^{2}\left(f^{\prime}\left(S_{0}\right) E\left[S_{2, T}\right]+f^{\prime \prime}\left(S_{0}\right) E\left[S_{1, T}^{2}\right]\right)+\cdots$
- For non-smooth payoffs, extensions possible by Malliavin weights.

Small noise expansion (PDE approach)

- Price $u^{\epsilon}\left(t, S_{0}\right)$ solves $L^{\epsilon} u=0$ with $L^{\epsilon}=\partial_{t}+\frac{1}{2} \epsilon^{2} \sigma^{2} \partial_{x}^{2}=: L_{0}+\epsilon^{2} L_{2}$
- Ansatz $u^{\epsilon}=u_{0}+\epsilon u_{1}+\frac{1}{2} \epsilon^{2} u_{2}+\cdots$ gives (regular perturbation)

$$
L_{0} u_{0}+\epsilon L_{0} u_{1}+\epsilon^{2}\left(\frac{1}{2} L_{0} u_{2}+L_{2} u_{0}\right)+o\left(\epsilon^{2}\right)=0
$$

- Formally, we get

- For non-smooth payoffs, a singular perturbation in the fast variable $y:=(x-K) / \epsilon$ can be used
- Price $u^{\epsilon}\left(t, S_{0}\right)$ solves $L^{\epsilon} u=0$ with $L^{\epsilon}=\partial_{t}+\frac{1}{2} \epsilon^{2} \sigma^{2} \partial_{x}^{2}=: L_{0}+\epsilon^{2} L_{2}$
- Ansatz $u^{\epsilon}=u_{0}+\epsilon u_{1}+\frac{1}{2} \epsilon^{2} u_{2}+\cdots$ gives (regular perturbation)

$$
L_{0} u_{0}+\epsilon L_{0} u_{1}+\epsilon^{2}\left(\frac{1}{2} L_{0} u_{2}+L_{2} u_{0}\right)+o\left(\epsilon^{2}\right)=0
$$

- Formally, we get

- For non-smooth payoffs, a singular perturbation in the fast variable $y:=(x-K) / \epsilon$ can be used

Small noise expansion (PDE approach)

- Price $u^{\epsilon}\left(t, S_{0}\right)$ solves $L^{\epsilon} u=0$ with $L^{\epsilon}=\partial_{t}+\frac{1}{2} \epsilon^{2} \sigma^{2} \partial_{x}^{2}=: L_{0}+\epsilon^{2} L_{2}$
- Ansatz $u^{\epsilon}=u_{0}+\epsilon u_{1}+\frac{1}{2} \epsilon^{2} u_{2}+\cdots$ gives (regular perturbation)

$$
L_{0} u_{0}+\epsilon L_{0} u_{1}+\epsilon^{2}\left(\frac{1}{2} L_{0} u_{2}+L_{2} u_{0}\right)+o\left(\epsilon^{2}\right)=0
$$

- Formally, we get

$$
\begin{gathered}
u_{0}\left(T, S_{0}\right)=f\left(S_{0}\right), \quad L_{0} u_{0}=0, \quad L_{0} u_{1}=0, \quad \frac{1}{2} L_{0} u_{2}+L_{2} u_{0}=0, \ldots \\
u_{0}\left(t, S_{0}\right)=f\left(S_{0}\right), \quad u_{1}=0, \quad u_{2}\left(t, S_{0}\right)=2 \int_{t}^{T} L_{2} u_{0}\left(s, S_{0}\right) d s
\end{gathered}
$$

- For non-smooth payoffs, a singular perturbation in the fast
variable $y:=(x-K) / \epsilon$ can be used

Small noise expansion (PDE approach)

- Price $u^{\epsilon}\left(t, S_{0}\right)$ solves $L^{\epsilon} u=0$ with $L^{\epsilon}=\partial_{t}+\frac{1}{2} \epsilon^{2} \sigma^{2} \partial_{x}^{2}=: L_{0}+\epsilon^{2} L_{2}$
- Ansatz $u^{\epsilon}=u_{0}+\epsilon u_{1}+\frac{1}{2} \epsilon^{2} u_{2}+\cdots$ gives (regular perturbation)

$$
L_{0} u_{0}+\epsilon L_{0} u_{1}+\epsilon^{2}\left(\frac{1}{2} L_{0} u_{2}+L_{2} u_{0}\right)+o\left(\epsilon^{2}\right)=0
$$

- Formally, we get

$$
\begin{gathered}
u_{0}\left(T, S_{0}\right)=f\left(S_{0}\right), \quad L_{0} u_{0}=0, \quad L_{0} u_{1}=0, \quad \frac{1}{2} L_{0} u_{2}+L_{2} u_{0}=0, \ldots \\
u_{0}\left(t, S_{0}\right)=f\left(S_{0}\right), \quad u_{1}=0, \quad u_{2}\left(t, S_{0}\right)=2 \int_{t}^{T} L_{2} u_{0}\left(s, S_{0}\right) d s
\end{gathered}
$$

- For non-smooth payoffs, a singular perturbation in the fast variable $y:=(x-K) / \epsilon$ can be used

Outline

1 Introduction

2 Outline of our approach

3 Heat kernel expansions

4 Numerical examples

- Local volatility model for forward prices

$$
\begin{gathered}
d F_{i}(t)=\sigma_{i}\left(F_{i}(t)\right) d W_{i}(t), \quad i=1, \ldots, n \\
\left\langle d W_{i}(t), d W_{j}(t)\right\rangle=\rho_{i j} d t
\end{gathered}
$$

- Generalized spread option with payoff $\left(\sum_{i=1}^{n} w_{i} F_{i}-K\right)^{+}$, at least one w_{i} positive
- Goal: fast and accurate approximation formulas, even for high n
- $n=100$ or $n=500$ not uncommon (index options)

Setting

- Local volatility model for forward prices

$$
\begin{gathered}
d F_{i}(t)=\sigma_{i}\left(F_{i}(t)\right) d W_{i}(t), \quad i=1, \ldots, n \\
\left\langle d W_{i}(t), d W_{j}(t)\right\rangle=\rho_{i j} d t
\end{gathered}
$$

- Generalized spread option with payoff $\left(\sum_{i=1}^{n} w_{i} F_{i}-K\right)^{+}$, at least one w_{i} positive
- Goal: fast and accurate approximation formulas, even for high n
- $n=100$ or $n=500$ not uncommon (index options)

Setting

- Local volatility model for forward prices

$$
\begin{gathered}
d F_{i}(t)=\sigma_{i}\left(F_{i}(t)\right) d W_{i}(t), \quad i=1, \ldots, n \\
\left\langle d W_{i}(t), d W_{j}(t)\right\rangle=\rho_{i j} d t
\end{gathered}
$$

- Generalized spread option with payoff $\left(\sum_{i=1}^{n} w_{i} F_{i}-K\right)^{+}$, at least one w_{i} positive
- Goal: fast and accurate approximation formulas, even for high n
- $n=100$ or $n=500$ not uncommon (index options)

Example

- Black-Scholes model: $\sigma_{i}\left(F_{i}\right)=\sigma_{i} F_{i}$
- CEV model: $\sigma_{i}\left(F_{i}\right)=\sigma_{i} F_{i}^{\beta_{i}}$

Basket Carr-Jarrow formula

- Consider the basket (index) $\sum_{i=1}^{n} w_{i} F_{i}$:

$$
d \sum_{i=1}^{n} w_{i} F_{i}(t)=\sum_{i=1}^{n} w_{i} \sigma_{i}\left(F_{i}(t)\right) d W_{i}(t)
$$

- Ito's formula formally implies that
- Let $p\left(\mathbf{F}_{0}, \mathbf{F}, t\right):=P\left(\mathbf{F}(t) \in d \mathbf{F} \mid \mathbf{F}(0)=\mathbf{F}_{0}\right)$ and H_{n-1} be the Hausdorff measure on $\mathcal{E}(K)$, then we have the Carr-Jarrow formula

- Consider the basket (index) $\sum_{i=1}^{n} w_{i} F_{i}$:
- Ito's formula formally implies that

$$
\begin{aligned}
& \quad\left(\sum_{i=1}^{n} w_{i} F_{i}(t)-K\right)^{+}=\left(\sum_{i=1}^{n} w_{i} F_{i}(0)-K\right)^{+}+ \\
& + \\
& +\sum_{i=1}^{n} w_{i} \int_{0}^{T} \mathbf{1}_{\sum w_{i} F i(u)>K} d F_{i}(u)+\frac{1}{2} \int_{0}^{T} \delta_{\sum w_{i} F_{i}(u)=K} \sigma_{\mathcal{N}, \mathcal{B}}^{2}(\mathbf{F}(u)) d u \\
& \text { Let } p\left(\mathbb{F}_{0}, \mathbb{F}, t\right):=P\left(\mathbb{F}(t) \in d \mathbb{F} \mid \mathbb{F}(0)=\mathbb{F}_{0}\right) \text { and } H_{n-1} \text { be the } \\
& \text { Hausdorff measure on } \delta(K) \text {, then we have the Carr-Jarrow } \\
& \text { formula }
\end{aligned}
$$

Basket Carr-Jarrow formula

- Consider the basket (index) $\sum_{i=1}^{n} w_{i} F_{i}$:
- Ito's formula formally implies (with $\mathcal{E}(K)=\left\{\mathbf{F} \mid \sum w_{i} F_{i}=K\right\}$) that

$$
C(\mathbf{F}(0), K, T)=\left(\sum_{i=1}^{n} w_{i} F_{i}(0)-K\right)^{+}+\frac{1}{2} \int_{0}^{T} E\left[\sigma_{\mathcal{N}, \mathcal{B}}^{2}(\mathbf{F}(u)) \delta_{\mathcal{E}(K)}(\mathbf{F}(u))\right] d u
$$

- Let $p\left(\mathbb{F}_{0}, \mathbf{F}, t\right):=P\left(\mathbf{F}(t) \in d \mathbf{F} \mid \mathbf{F}(0)=\mathbf{F}_{0}\right)$ and H_{n-1} be the

Hausdorff measure on $\mathcal{E}(K)$, then we have the Carr-Jarrow
formula

Basket Carr-Jarrow formula

- Consider the basket (index) $\sum_{i=1}^{n} w_{i} F_{i}$:
- Ito's formula formally implies (with $\mathcal{E}(K)=\left\{\mathbf{F} \mid \sum w_{i} F_{i}=K\right\}$) that

$$
C(\mathbf{F}(0), K, T)=\left(\sum_{i=1}^{n} w_{i} F_{i}(0)-K\right)^{+}+\frac{1}{2} \int_{0}^{T} E\left[\sigma_{\mathcal{N}, \mathcal{B}}^{2}(\mathbf{F}(u)) \delta_{\mathcal{E}(K)}(\mathbf{F}(u))\right] d u
$$

- Let $p\left(\mathbf{F}_{0}, \mathbf{F}, t\right):=P\left(\mathbf{F}(t) \in d \mathbf{F} \mid \mathbf{F}(0)=\mathbf{F}_{0}\right)$ and H_{n-1} be the Hausdorff measure on $\mathcal{E}(K)$, then we have the Carr-Jarrow formula

$$
\begin{aligned}
& C\left(\mathbf{F}_{0}, K, T\right)=\left(\sum_{i=1}^{n} w_{i} F_{i}(0)-K\right)^{+}+ \\
+ & \frac{1}{2} \int_{0}^{T} \frac{1}{|w|} \int_{\mathcal{E}(K)} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i}\left(F_{i}\right) \sigma_{j}\left(F_{j}\right) \rho_{i j} p\left(\mathbf{F}_{0}, \mathbf{F}, u\right) H_{n-1}(d \mathbf{F}) d u .
\end{aligned}
$$

- Heat kernel expansion (to be discussed in detail later):

$$
\sigma_{\mathcal{N}, \mathcal{B}}^{2}(\mathbf{F}) p\left(\mathbf{F}_{0}, \mathbf{F}, t\right) \approx \frac{1}{(2 \pi t)^{n / 2}} \exp \left(-\frac{d\left(\mathbf{F}_{0}, \mathbf{F}\right)^{2}}{2 t}-C\left(\mathbf{F}_{0}, \mathbf{F}\right)\right)
$$

- By change of variables $F_{n}=\frac{1}{w_{n}}\left(K-\sum_{i=1}^{n-1} w_{i} F_{i}\right)$ on \mathcal{E}_{K} :

$$
H_{n-1}(d \mathbf{F})=\frac{|w|}{\left|w_{n}\right|} d F_{1} \cdots d F_{n-1}
$$

- Laplace approximation: with $\mathbf{F}^{*}=\operatorname{argmin}_{\mathbf{F} \in \mathcal{E}_{K}} d\left(\mathbf{F}_{0}, \mathbf{F}\right)$ and $\mathcal{G}_{K}=\left\{\left(F_{1}, \ldots, F_{n-1}\right) \mid \sum_{i=1}^{n-1} w_{i} F_{i}<K\right\}$

We rely on the principle of not feeling the boundary.

Approximations

- Heat kernel expansion (to be discussed in detail later):

$$
\sigma_{\mathcal{N}, \mathcal{B}}^{2}(\mathbf{F}) p\left(\mathbf{F}_{0}, \mathbf{F}, t\right) \approx \frac{1}{(2 \pi t)^{n / 2}} \exp \left(-\frac{d\left(\mathbf{F}_{0}, \mathbf{F}\right)^{2}}{2 t}-C\left(\mathbf{F}_{0}, \mathbf{F}\right)\right)
$$

- By change of variables $F_{n}=\frac{1}{w_{n}}\left(K-\sum_{i=1}^{n-1} w_{i} F_{i}\right)$ on \mathcal{E}_{K} :

$$
H_{n-1}(d \mathbf{F})=\frac{|w|}{\left|w_{n}\right|} d F_{1} \cdots d F_{n-1}
$$

- Laplace approximation: with $\mathbf{F}^{*}=\operatorname{argmin}_{\mathrm{F} \in \mathcal{E}_{K}} d\left(\mathrm{~F}_{0}, \mathbf{F}\right)$ and $\mathcal{G}_{K}=\left\{\left(F_{1}, \ldots, F_{n-1}\right) \mid \sum_{i=1}^{n-1} w_{i} F_{i}<K\right\}$

We rely on the principle of not feeling the boundary.

Approximations

- Heat kernel expansion (to be discussed in detail later):

$$
\sigma_{\mathcal{N}, \mathcal{B}}^{2}(\mathbf{F}) p\left(\mathbf{F}_{0}, \mathbf{F}, t\right) \approx \frac{1}{(2 \pi t)^{n / 2}} \exp \left(-\frac{d\left(\mathbf{F}_{0}, \mathbf{F}\right)^{2}}{2 t}-C\left(\mathbf{F}_{0}, \mathbf{F}\right)\right)
$$

- By change of variables $F_{n}=\frac{1}{w_{n}}\left(K-\sum_{i=1}^{n-1} w_{i} F_{i}\right)$ on \mathcal{E}_{K} :

$$
H_{n-1}(d \mathbf{F})=\frac{|w|}{\left|w_{n}\right|} d F_{1} \cdots d F_{n-1}
$$

- Laplace approximation: with $\mathbf{F}^{*}=\operatorname{argmin}_{\mathbf{F} \in \mathcal{E}_{K}} d\left(\mathbf{F}_{0}, \mathbf{F}\right)$ and

$$
\mathcal{G}_{K}=\left\{\left(F_{1}, \ldots, F_{n-1}\right) \mid \sum_{i=1}^{n-1} w_{i} F_{i}<K\right\}
$$

$$
\int_{\mathcal{G}_{K}} e^{-\frac{d\left(\mathbf{F}_{0}, \mathbf{F}^{2}\right)^{2}}{2 t}-C\left(\mathbf{F}_{0}, \mathbf{F}\right)} d F_{1} \cdots d F_{n-1} \approx e^{-\frac{d\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)^{2}}{2 t}-C\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)} \int_{\mathbb{R}^{n-1}} e^{-\frac{\mathbf{z}^{T} Q \mathbf{z}}{2 t}} d \mathbf{z}
$$

$$
=t^{\frac{n-1}{2}} e^{-\frac{d\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)^{2}}{2 t}-C\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)} \frac{(2 \pi)^{\frac{n-1}{2}}}{\sqrt{\operatorname{det} Q}}
$$

Approximations

- Heat kernel expansion (to be discussed in detail later):

$$
\sigma_{\mathcal{N}, \mathcal{B}}^{2}(\mathbf{F}) p\left(\mathbf{F}_{0}, \mathbf{F}, t\right) \approx \frac{1}{(2 \pi t)^{n / 2}} \exp \left(-\frac{d\left(\mathbf{F}_{0}, \mathbf{F}\right)^{2}}{2 t}-C\left(\mathbf{F}_{0}, \mathbf{F}\right)\right)
$$

- By change of variables $F_{n}=\frac{1}{w_{n}}\left(K-\sum_{i=1}^{n-1} w_{i} F_{i}\right)$ on \mathcal{E}_{K} :

$$
H_{n-1}(d \mathbf{F})=\frac{|w|}{\left|w_{n}\right|} d F_{1} \cdots d F_{n-1}
$$

- Laplace approximation: with $\mathbf{F}^{*}=\operatorname{argmin}_{\mathbf{F} \in \mathcal{E}_{K}} d\left(\mathbf{F}_{0}, \mathbf{F}\right)$ and $\mathcal{G}_{K}=\left\{\left(F_{1}, \ldots, F_{n-1}\right) \mid \sum_{i=1}^{n-1} w_{i} F_{i}<K\right\}$

$$
\begin{aligned}
\int_{\mathcal{G}_{K}} e^{-\frac{d\left(\mathbf{F}_{0}, \mathbf{F}^{2}\right)^{2}}{2 t}-C\left(\mathbf{F}_{0}, \mathbf{F}\right)} d F_{1} \cdots d F_{n-1} & \approx e^{-\frac{d\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)^{2}}{2 t}-C\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)} \int_{\mathbb{R}^{n-1}} e^{-\frac{\mathbf{z}^{T} Q \mathbf{z}}{2 t}} d \mathbf{z} \\
& =t^{\frac{n-1}{2}} e^{-\frac{d\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)^{2}}{2 t}}-C\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right) \frac{(2 \pi)^{\frac{n-1}{2}}}{\sqrt{\operatorname{det} Q}}
\end{aligned}
$$

We rely on the principle of not feeling the boundary.

Matching to implied volatilities

Theorem

$$
\begin{aligned}
& C_{\mathcal{B}}\left(\mathbf{F}_{0}, K, T\right)=\left(\sum_{i=1}^{n} w_{i} F_{i}(0)-K\right)^{+}+ \\
+ & \frac{1}{2 \sqrt{2 \pi}\left|w_{n}\right| d\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)^{2} \sqrt{\operatorname{det} Q}} e^{-C\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)-\frac{d\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)}{2 T}} T^{3 / 2}+o\left(T^{3 / 2}\right), \text { as } T \rightarrow 0 .
\end{aligned}
$$

- Bachelier implied vol (with $\left.\bar{F}_{0}=\sum_{i=1}^{n} w_{i} F_{0, i}\right)$:

- Black-Scholes implied voila:

$$
\sigma_{B S} \sim \sigma_{B S, 0}+T \sigma_{B S, 1} \text { with } \sigma_{B S, 0}=\frac{\left|\log \left(\bar{F}_{0} / K\right)\right|}{d\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)},
$$

Matching to implied volatilities

Theorem

$$
\begin{aligned}
& C_{\mathcal{B}}\left(\mathbf{F}_{0}, K, T\right)=\left(\sum_{i=1}^{n} w_{i} F_{i}(0)-K\right)^{+}+ \\
+ & \frac{1}{2 \sqrt{2 \pi}\left|w_{n}\right| d\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)^{2} \sqrt{\operatorname{det} Q}} e^{-C\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)-\frac{d\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)}{2 T}} T^{3 / 2}+o\left(T^{3 / 2}\right), \text { as } T \rightarrow 0 .
\end{aligned}
$$

- Bachelier implied vol (with $\bar{F}_{0}=\sum_{i=1}^{n} w_{i} F_{0, i}$):

$$
\sigma_{B} \sim \sigma_{B, 0}+T \sigma_{B, 1} \text { with } \sigma_{B, 0}=\frac{\left|\bar{F}_{0}-K\right|}{d\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)\left|\bar{F}_{0}\right|}, \sigma_{B, 1}=\cdots
$$

- Black-Scholes implied voila:

Matching to implied volatilities

Theorem

$$
\begin{aligned}
& C_{\mathcal{B}}\left(\mathbf{F}_{0}, K, T\right)=\left(\sum_{i=1}^{n} w_{i} F_{i}(0)-K\right)^{+}+ \\
+ & \frac{1}{2 \sqrt{2 \pi}\left|w_{n}\right| d\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)^{2} \sqrt{\operatorname{det} Q}} e^{-C\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)-\frac{d\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)}{2 T}} T^{3 / 2}+o\left(T^{3 / 2}\right), \text { as } T \rightarrow 0 .
\end{aligned}
$$

- Bachelier implied vol (with $\bar{F}_{0}=\sum_{i=1}^{n} w_{i} F_{0, i}$):

$$
\sigma_{B} \sim \sigma_{B, 0}+T \sigma_{B, 1} \text { with } \sigma_{B, 0}=\frac{\left|\bar{F}_{0}-K\right|}{d\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)\left|\bar{F}_{0}\right|}, \sigma_{B, 1}=\cdots
$$

- Black-Scholes implied voila:

$$
\sigma_{B S} \sim \sigma_{B S, 0}+T \sigma_{B S, 1} \text { with } \sigma_{B S, 0}=\frac{\left|\log \left(\bar{F}_{0} / K\right)\right|}{d\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)}, \sigma_{B S, 1}=\cdots
$$

Greeks

- Goal: sensitivity w. r. t. model parameter κ of the option price

$$
C_{\mathcal{B}}\left(\mathbf{F}_{0}, K, T\right) \approx C_{B S}\left(\bar{F}_{0}, K, \sigma_{B S}, T\right)
$$

- Sensitivity: $\underbrace{\partial_{\kappa} C_{B S}}_{\text {BS greek }}\left(\bar{F}_{0}, K, \sigma_{B S}, T\right)+\underbrace{v_{B S}}_{\text {BS vega }}\left(\bar{F}_{0}, K, \sigma_{B S}, T\right) \partial_{\kappa} \sigma_{B S}$
- Recall that $\sigma_{B S, 0}, \sigma_{B S, 1}$ explicit up to \mathbf{F}^{*}
- By the minimizing property: $\left.\partial_{F_{i}} d^{2}\left(\mathrm{~F}_{0}, \mathrm{~F}_{K}(\mathbf{G})\right)\right|_{\mathrm{G}=\mathrm{G}^{*}}=0$
- Differentiating with respect to κ gives

Up to the above system of linear equations for $\partial_{\kappa} \mathbf{F}^{*}$, there are explicit expression for the sensitivities of the approximate option prices.

Greeks

- Goal: sensitivity w. r. t. model parameter κ of the option price

$$
C_{\mathcal{B}}\left(\mathbf{F}_{0}, K, T\right) \approx C_{B S}\left(\bar{F}_{0}, K, \sigma_{B S}, T\right)
$$

- Sensitivity: $\partial_{K} C_{B S}\left(\bar{F}_{0}, K, \sigma_{B S}, T\right)+v_{B S}\left(\bar{F}_{0}, K, \sigma_{B S}, T\right) \partial_{K} \sigma_{B S}$
- Recall that $\sigma_{B S, 0}, \sigma_{B S, 1}$ explicit up to \mathbf{F}^{*}
- By the minimizing property: $\left.\partial_{F_{i}} d^{2}\left(\mathbf{F}_{0}, \mathbf{F}_{K}(\mathbf{G})\right)\right|_{\mathbf{G}=\mathbf{G}^{*}}=0$
- Differentiating with respect to κ gives

$$
\left.\partial_{\kappa} \partial_{F_{i}} d^{2}\left(\mathbf{F}_{0}, \mathbf{F}_{K}(\mathbf{G})\right)\right|_{\mathbf{G}^{*}}+\left.\sum_{l=1}^{n-1} \partial_{F_{l}} \partial_{F_{i}} d^{2}\left(\mathbf{F}_{0}, \mathbf{F}_{K}(\mathbf{G})\right)\right|_{\mathbf{G}^{*}} \partial_{\kappa} F_{l}^{*}=0
$$

Up to the above system of linear equations for $\partial_{\kappa} \mathbf{F}^{*}$, there are explicit expression for the sensitivities of the approximate option prices.

Outline

1 Introduction

2 Outline of our approach

3 Heat kernel expansions

4 Numerical examples

Heat kernels and geometry

$$
\begin{gathered}
d \mathbf{X}_{t}=b\left(\mathbf{X}_{t}\right) d t+\sigma\left(\mathbf{X}_{t}\right) d W_{t}, \\
L=\frac{1}{2} a^{i, j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+b^{i} \frac{\partial}{\partial x^{i}}, \quad a=\sigma^{T} \sigma
\end{gathered}
$$

- Heat kernel: fundamental solution $p(\mathbf{x}, \mathbf{y}, t)$ of $\frac{\partial}{\partial t} u=L u$
- Transition density of \mathbf{X}_{t}

Heat kernels and geometry

$$
\begin{gathered}
d \mathbf{X}_{t}=b\left(\mathbf{X}_{t}\right) d t+\sigma\left(\mathbf{X}_{t}\right) d W_{t}, \\
L=\frac{1}{2} a^{i, j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+b^{i} \frac{\partial}{\partial x^{i}}, \quad a=\sigma^{T} \sigma
\end{gathered}
$$

- Heat kernel: fundamental solution $p(\mathbf{x}, \mathbf{y}, t)$ of $\frac{\partial}{\partial t} u=L u$
- Transition density of \mathbf{X}_{t}

"Can you hear the shape of the drum?"(Kac '66)

Take $L=\Delta$ on a domain D and relate:

- Geometrical properties of the domain D
- Partition function $Z=\sum_{k \in \mathbb{N}} e^{\gamma_{k} t}$
- Heat kernel

Heat kernels and geometry

$$
\begin{gathered}
d \mathbf{X}_{t}=b\left(\mathbf{X}_{t}\right) d t+\sigma\left(\mathbf{X}_{t}\right) d W_{t} \\
L=\frac{1}{2} a^{i, j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+b^{i} \frac{\partial}{\partial x^{i}}, \quad a=\sigma^{T} \sigma
\end{gathered}
$$

- Heat kernel: fundamental solution $p(\mathbf{x}, \mathbf{y}, t)$ of $\frac{\partial}{\partial t} u=L u$
- Transition density of \mathbf{X}_{t}

"Can you hear the shape of the drum?"(Kac '66)

Take $L=\Delta$ on a domain D and relate:

- Geometrical properties of the domain D
- Partition function $Z=\sum_{k \in \mathbb{N}} e^{\gamma_{k} t}$
- Heat kernel
- E.g. $-\gamma_{k} \sim C(n)(k / \operatorname{vol} D)^{2 / n}$ (Weyl, '46)
- E.g. (for $n=2$): $Z=\frac{\text { area }}{4 \pi t}-\frac{\text { circ. }}{\sqrt{4 \pi t}}+O(1)$ (McKean \& Singer, '67)

The Riemannian metric associated to a diffusion

$$
\begin{gathered}
d \mathbf{X}_{t}=b\left(\mathbf{X}_{t}\right) d t+\sigma\left(\mathbf{X}_{t}\right) d W_{t}, \\
L=\frac{1}{2} a^{i j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+b^{i} \frac{\partial}{\partial x^{i}}, \quad a=\sigma^{T} \sigma
\end{gathered}
$$

- On \mathbb{R}^{n} (or a submanifold), introduce $g^{i j}:=a^{i j}$, Riemannian metric tensor $\left(g_{i j}(\mathbf{x})\right)_{i, j=1}^{n}:=\left(\left(g^{i j}(\mathbf{x})\right)_{i, j=1}^{n}\right)^{-1}$
- Geodesic distance:

- inf attained by a smooth curve, the geodesic
- Laplace-Beltrami operator: $\Delta_{g}=\left(\operatorname{det}\left(g_{i j}\right)\right)^{-\frac{1}{2}} \frac{\partial}{\partial x^{N}}\left(\operatorname{det}\left(g_{i j}\right)\right)^{2} g^{i j} \frac{\partial}{\partial x^{j}}$

The Riemannian metric associated to a diffusion

$$
\begin{gathered}
d \mathbf{X}_{t}=b\left(\mathbf{X}_{t}\right) d t+\sigma\left(\mathbf{X}_{t}\right) d W_{t}, \\
L=\frac{1}{2} a^{i j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+b^{i} \frac{\partial}{\partial x^{i}}, \quad a=\sigma^{T} \sigma
\end{gathered}
$$

- On \mathbb{R}^{n} (or a submanifold), introduce $g^{i j}:=a^{i j}$, Riemannian metric tensor $\left(g_{i j}(\mathbf{x})\right)_{i, j=1}^{n}:=\left(\left(g^{i j}(\mathbf{x})\right)_{i, j=1}^{n}\right)^{-1}$
- Geodesic distance:

$$
d(\mathbf{x}, \mathbf{y}):=\inf _{\mathbf{z}(0)=\mathbf{x}, \mathbf{z}(1)=\mathbf{y}} \int_{0}^{1} \sqrt{\sum g_{i j}(\mathbf{z}(t)) \dot{\mathbf{z}}^{i}(t) \dot{\mathbf{z}}^{j}(t)} d t
$$

- inf attained by a smooth curve, the geodesic

The Riemannian metric associated to a diffusion

$$
\begin{gathered}
d \mathbf{X}_{t}=b\left(\mathbf{X}_{t}\right) d t+\sigma\left(\mathbf{X}_{t}\right) d W_{t}, \\
L=\frac{1}{2} a^{i j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+b^{i} \frac{\partial}{\partial x^{i}}, \quad a=\sigma^{T} \sigma
\end{gathered}
$$

- On \mathbb{R}^{n} (or a submanifold), introduce $g^{i j}:=a^{i j}$, Riemannian metric tensor $\left(g_{i j}(\mathbf{x})\right)_{i, j=1}^{n}:=\left(\left(g^{i j}(\mathbf{x})\right)_{i, j=1}^{n}\right)^{-1}$
- Geodesic distance:

$$
d(\mathbf{x}, \mathbf{y}):=\inf _{\mathbf{z}(0)=\mathbf{x}, \mathbf{z}(1)=\mathbf{y}} \int_{0}^{1} \sqrt{\sum g_{i j}(\mathbf{z}(t)) \dot{\mathbf{z}}^{i}(t) \dot{\mathbf{z}}^{j}(t)} d t
$$

- inf attained by a smooth curve, the geodesic

The Riemannian metric associated to a diffusion

$$
\begin{gathered}
d \mathbf{X}_{t}=b\left(\mathbf{X}_{t}\right) d t+\sigma\left(\mathbf{X}_{t}\right) d W_{t} \\
L=\frac{1}{2} a^{i j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+b^{i} \frac{\partial}{\partial x^{i}}, \quad a=\sigma^{T} \sigma
\end{gathered}
$$

- On \mathbb{R}^{n} (or a submanifold), introduce $g^{i j}:=a^{i j}$, Riemannian metric tensor $\left(g_{i j}(\mathbf{x})\right)_{i, j=1}^{n}:=\left(\left(g^{i j}(\mathbf{x})\right)_{i, j=1}^{n}\right)^{-1}$
- Geodesic distance:

$$
d(\mathbf{x}, \mathbf{y}):=\inf _{\mathbf{z}(0)=\mathbf{x}, \mathbf{z}(1)=\mathbf{y}} \int_{0}^{1} \sqrt{\sum g_{i j}(\mathbf{z}(t)) \dot{\mathbf{z}}^{i}(t) \dot{\mathbf{z}}^{j}(t)} d t
$$

- inf attained by a smooth curve, the geodesic
- Laplace-Beltrami operator: $\Delta_{g}=\left(\operatorname{det}\left(g_{i j}\right)\right)^{-\frac{1}{2}} \frac{\partial}{\partial x^{i}}\left(\operatorname{det}\left(g_{i j}\right)\right)^{\frac{1}{2}} g^{i j} \frac{\partial}{\partial x^{j}}$

$$
L=\frac{1}{2} a^{i j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+b^{i} \frac{\partial}{\partial x^{i}}=\frac{1}{2} \Delta_{g}+h^{i} \frac{\partial}{\partial x^{i}}
$$

$$
p_{N}\left(\mathbf{x}_{0}, \mathbf{x}, T\right)=\sqrt{\operatorname{det}\left(g(\mathbf{x})_{i j}\right)} U_{N}\left(\mathbf{x}_{0}, \mathbf{x}, T\right) \frac{e^{-\frac{d^{2}\left(\mathbf{x}_{0}, \mathbf{x}\right)}{2 T}}}{(2 \pi T)^{\frac{n}{2}}}
$$

- $U_{N}\left(\mathbf{x}_{0}, \mathbf{x}, T\right)=\sum_{k=0}^{N} u_{k}\left(\mathbf{x}_{0}, \mathbf{x}\right) T^{k}$, the heat kernel coefficients

field h along the geodesic z joining $\mathbf{x}_{\mathbf{0}}$ to \mathbf{x} with $h^{i}=b^{i}-\frac{1}{2 \sqrt{\operatorname{det}\left(g_{i j}\right)}} \frac{\partial}{\partial x^{j}}\left[\sqrt{\operatorname{det}\left(g_{i j}\right)} g^{i j}\right\rceil$

Heat kernel expansion

$$
p_{N}\left(\mathbf{x}_{0}, \mathbf{x}, T\right)=\sqrt{\operatorname{det}\left(g(\mathbf{x})_{i j}\right)} U_{N}\left(\mathbf{x}_{0}, \mathbf{x}, T\right) \frac{e^{-\frac{d^{2}\left(\mathbf{x}_{0}, \mathbf{x}\right)}{2 T}}}{(2 \pi T)^{\frac{n}{2}}}
$$

- $U_{N}\left(\mathbf{x}_{0}, \mathbf{x}, T\right)=\sum_{k=0}^{N} u_{k}\left(\mathbf{x}_{0}, \mathbf{x}\right) T^{k}$, the heat kernel coefficients
- $u_{0}\left(\mathbf{x}_{0}, \mathbf{x}\right)=\sqrt{\Delta\left(\mathbf{x}_{0}, \mathbf{x}\right)} e^{\int_{z}\langle h(z(t)), \dot{z}(t)\rangle_{g} d t}$
- Δ is the Van Vleck-DeWitt determinant:
$\Delta\left(\mathbf{x}_{0}, \mathbf{x}\right)=\frac{1}{\sqrt{\operatorname{det}\left(g\left(\mathbf{x}_{0}\right)_{i j}\right) \operatorname{det}\left(g(\mathbf{x})_{i j}\right)}} \operatorname{det}\left(-\frac{1}{2} \frac{\partial^{2} d^{2}}{\partial \mathbf{x}_{0} \partial \mathbf{x}}\right)$.
- $e^{\int_{z}\langle h(z(t)), \dot{z}(t)\rangle_{g} d t}$ is the exponential of the work done by the vector field h along the geodesic z joining $\mathbf{x}_{\mathbf{0}}$ to \mathbf{x} with

$$
h^{i}=b^{i}-\frac{1}{2 \sqrt{\operatorname{det}\left(g_{i j}\right)}} \frac{\partial}{\partial x^{j}}\left[\sqrt{\operatorname{det}\left(g_{i j}\right)} g^{i j}\right]
$$

Heat kernel expansion - 2

Assumption

The cut-locus of any point is empty, i.e., any two points are connected by a unique minimizing geodesic.

\square
\square
For a locally elliptic system in an open set $U \subset \mathbb{R}^{n}, \mathbf{x}, \mathbf{y} \in U$ s. t. $d(\mathbf{x}, \mathbf{y})<d(\mathbf{x}, \partial U)+d(\mathbf{y}, \partial U)$, we have

Heat kernel expansion-2

Assumption

The cut-locus of any point is empty.

Theorem (Varadhan '67)

$b=0, \sigma$ uniformly Hölder continuous, system uniformly elliptic, then $\lim _{T \rightarrow 0} T \log p(\mathbf{x}, \mathbf{y}, T)=-\frac{1}{2} d(\mathbf{x}, \mathbf{y})^{2}$.

T
 On a compact Riemannian manifold, assume smooth vector fields and an ellipticity property. Then $p(\mathbf{x}, \mathbf{y}, T)-p_{N}(\mathbf{x}, \mathbf{y}, T)=O\left(T^{N}\right)$ as $T \rightarrow 0$

```
T
For a locally elliptic system in an open set U\subset 疎, x, y \inU
s. t. d(\mathbf{x},\mathbf{y})<d(\mathbf{x},\partialU)+d(\mathbf{y},\partialU), we have
p(\mathbf{x},\mathbf{y},T)-\mp@subsup{p}{N}{}(\mathbf{x},\mathbf{y},T)=O(\mp@subsup{T}{}{N})\mathrm{ as }T->0.
```

Approximations for local vol baskets • November 28, 2013 • Page 18 (32)

Heat kernel expansion-2

Assumption

The cut-locus of any point is empty.

Theorem (Varadhan '67)

$b=0, \sigma$ uniformly Hölder continuous, system uniformly elliptic, then $\lim _{T \rightarrow 0} T \log p(\mathbf{x}, \mathbf{y}, T)=-\frac{1}{2} d(\mathbf{x}, \mathbf{y})^{2}$.

Theorem (Yosida '53)

On a compact Riemannian manifold, assume smooth vector fields and an ellipticity property. Then $p(\mathbf{x}, \mathbf{y}, T)-p_{N}(\mathbf{x}, \mathbf{y}, T)=O\left(T^{N}\right)$ as $T \rightarrow 0$.

```
T
For a locally elliptic system in an open set U\subset\mp@subsup{\mathbb{R}}{}{n},\mathbf{x},\mathbf{y}\inU
s.t.d(\mathbf{x},\mathbf{y})<d(\mathbf{x},\partialU)+d(\mathbf{y},\partialU), we have
p(\mathbf{x},\mathbf{y},T)-\mp@subsup{p}{N}{}(\mathbf{x},\mathbf{y},T)=O(\mp@subsup{T}{}{N})\mathrm{ as }T->0.
```

Heat kernel expansion-2

Assumption

The cut-locus of any point is empty.

Theorem (Varadhan '67)

$b=0, \sigma$ uniformly Hölder continuous, system uniformly elliptic, then $\lim _{T \rightarrow 0} T \log p(\mathbf{x}, \mathbf{y}, T)=-\frac{1}{2} d(\mathbf{x}, \mathbf{y})^{2}$.

Theorem (Yosida '53)

On a compact Riemannian manifold, assume smooth vector fields and an ellipticity property. Then $p(\mathbf{x}, \mathbf{y}, T)-p_{N}(\mathbf{x}, \mathbf{y}, T)=O\left(T^{N}\right)$ as $T \rightarrow 0$.

Theorem (Azencott '84)

For a locally elliptic system in an open set $U \subset \mathbb{R}^{n}, \mathbf{x}, \mathbf{y} \in U$
s. t. $d(\mathbf{x}, \mathbf{y})<d(\mathbf{x}, \partial U)+d(\mathbf{y}, \partial U)$, we have
$p(\mathbf{x}, \mathbf{y}, T)-p_{N}(\mathbf{x}, \mathbf{y}, T)=O\left(T^{N}\right)$ as $T \rightarrow 0$.

Approximations for local vol baskets • November 28, 2013 • Page 18 (32)

The local vol case

- Domain $\mathbb{R}_{+}^{n}, d F_{i}(t)=\sigma_{i}\left(F_{i}(t)\right) d W_{i}(t), \quad i=1, \ldots, n$
- $L=\frac{1}{2} \rho_{i j} \sigma_{i}\left(x^{i}\right) \sigma_{j}\left(x^{j}\right) \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}$
- Let $A \in \mathbb{R}^{n \times n}$ be such that $A \rho A^{T}=I_{n}$. Change variables $\mathbf{F} \rightarrow \mathbf{y} \rightarrow \mathbf{x}$ according to $y_{i}=\int_{0}^{F_{i}} \frac{d u}{\sigma_{i}(u)}, i=1, \ldots, n, \quad \mathrm{x}=A \mathrm{y}, \quad L \rightarrow \frac{1}{2} \frac{\partial^{2}}{\partial x_{i}^{2}}-\frac{1}{2} A_{i k} \sigma_{k}^{\prime}\left(F_{k}\right) \frac{\partial}{\partial x_{i}}$
- Isomorphic (up to boundary) to Euclidean geometry:

$$
d\left(\mathbf{T}_{0}, \mathbb{F}\right)=\left|\mathbf{x}_{0}-\mathrm{x}\right|
$$

- Geodesics known in closed form
- CEV case: $\sigma_{i}\left(F_{i}\right)=\sigma_{i} F_{i}^{\beta_{i}}$, zeroth and first order heat kernel coefficients given explicitly

The local vol case

- Domain $\mathbb{R}_{+}^{n}, d F_{i}(t)=\sigma_{i}\left(F_{i}(t)\right) d W_{i}(t), \quad i=1, \ldots, n$
- $L=\frac{1}{2} \rho_{i j} \sigma_{i}\left(x^{i}\right) \sigma_{j}\left(x^{j}\right) \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}$
- Let $A \in \mathbb{R}^{n \times n}$ be such that $A \rho A^{T}=I_{n}$. Change variables $\mathbf{F} \rightarrow \mathbf{y} \rightarrow \mathbf{x}$ according to

$$
y_{i}=\int_{0}^{F_{i}} \frac{d u}{\sigma_{i}(u)}, i=1, \ldots, n, \quad \mathbf{x}=A \mathbf{y}, \quad L \rightarrow \frac{1}{2} \frac{\partial^{2}}{\partial x_{i}^{2}}-\frac{1}{2} A_{i k} \sigma_{k}^{\prime}\left(F_{k}\right) \frac{\partial}{\partial x_{i}}
$$

- Isomorphic (up to boundary) to Euclidean geometry:
- Geodesics known in closed form
- CEV case: $\sigma_{i}\left(F_{i}\right)=\sigma_{i} F_{i}^{\beta_{i}}$, zeroth and first order heat kernel coefficients given explicitly
- Domain $\mathbb{R}_{+}^{n}, d F_{i}(t)=\sigma_{i}\left(F_{i}(t)\right) d W_{i}(t), \quad i=1, \ldots, n$
- $L=\frac{1}{2} \rho_{i j} \sigma_{i}\left(x^{i}\right) \sigma_{j}\left(x^{j}\right) \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}$
- Let $A \in \mathbb{R}^{n \times n}$ be such that $A \rho A^{T}=I_{n}$. Change variables $\mathbf{F} \rightarrow \mathbf{y} \rightarrow \mathbf{x}$ according to

$$
y_{i}=\int_{0}^{F_{i}} \frac{d u}{\sigma_{i}(u)}, i=1, \ldots, n, \quad \mathbf{x}=A \mathbf{y}, \quad L \rightarrow \frac{1}{2} \frac{\partial^{2}}{\partial x_{i}^{2}}-\frac{1}{2} A_{i k} \sigma_{k}^{\prime}\left(F_{k}\right) \frac{\partial}{\partial x_{i}}
$$

- Isomorphic (up to boundary) to Euclidean geometry:

$$
d\left(\mathbf{F}_{0}, \mathbf{F}\right)=\left|\mathbf{x}_{0}-\mathbf{x}\right|
$$

- Geodesics known in closed form
- CEV case: $\sigma_{i}\left(F_{i}\right)=\sigma_{i} F_{i}^{\beta_{i}}$, zeroth and first order heat kernel coefficients given explicitly
- Domain $\mathbb{R}_{+}^{n}, d F_{i}(t)=\sigma_{i}\left(F_{i}(t)\right) d W_{i}(t), \quad i=1, \ldots, n$
- $L=\frac{1}{2} \rho_{i j} \sigma_{i}\left(x^{i}\right) \sigma_{j}\left(x^{j}\right) \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}$
- Let $A \in \mathbb{R}^{n \times n}$ be such that $A \rho A^{T}=I_{n}$. Change variables $\mathbf{F} \rightarrow \mathbf{y} \rightarrow \mathbf{x}$ according to

$$
y_{i}=\int_{0}^{F_{i}} \frac{d u}{\sigma_{i}(u)}, i=1, \ldots, n, \quad \mathbf{x}=A \mathbf{y}, \quad L \rightarrow \frac{1}{2} \frac{\partial^{2}}{\partial x_{i}^{2}}-\frac{1}{2} A_{i k} \sigma_{k}^{\prime}\left(F_{k}\right) \frac{\partial}{\partial x_{i}}
$$

- Isomorphic (up to boundary) to Euclidean geometry:

$$
d\left(\mathbf{F}_{0}, \mathbf{F}\right)=\left|\mathbf{x}_{0}-\mathbf{x}\right|
$$

- Geodesics known in closed form
- CEV case: $\sigma_{i}\left(F_{i}\right)=\sigma_{i} F_{i}^{\beta_{i}}$, zeroth and first order heat kernel coefficients given explicitly

Outline

2 Outline of our approach

3 Heat kernel expansions

4 Numerical examples

Approximations for local vol baskets • November 28, 2013 • Page 20 (32)

- Optimization problem for \mathbf{F}^{*} is non-linear with a linear constraint
- With $q_{i}:=\int_{F_{0, i}}^{F_{i}} \frac{d u}{\sigma_{i}(u)}$, it is a quadratic optimization problem with non-linear constraint
- Fast convergence of Newton iteration
- Given $\mathrm{F}^{*}, C\left(\mathrm{~F}_{0}, \mathrm{~F}^{*}\right)$ is a line integral along the geodesic; this integral can be calculated in closed form in the CEV model. - Formulas can be evaluated in less than 2 seconds for $n=100$ Our work relies on the principle of not feeling the boundary.
- Optimization problem for \mathbf{F}^{*} is non-linear with a linear constraint
- With $q_{i}:=\int_{F_{0, i}}^{F_{i}} \frac{d u}{\sigma_{i}(u)}$, it is a quadratic optimization problem with non-linear constraint
- Fast convergence of Newton iteration
- Given $\mathbf{F}^{*}, C\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)$ is a line integral along the geodesic; this integral can be calculated in closed form in the CEV model.
- Formulas can be evaluated in less than 2 seconds for $n=100$

Our work relies on the principle of not feeling the boundary.

- Optimization problem for \mathbf{F}^{*} is non-linear with a linear constraint
- With $q_{i}:=\int_{F_{0, i}}^{F_{i}} \frac{d u}{\sigma_{i}(u)}$, it is a quadratic optimization problem with non-linear constraint
- Fast convergence of Newton iteration
- Given $\mathbf{F}^{*}, C\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)$ is a line integral along the geodesic; this integral can be calculated in closed form in the CEV model.
- Formulas can be evaluated in less than 2 seconds for $n=100$

Our work relies on the principle of not feeling the boundary.

- Optimization problem for \mathbf{F}^{*} is non-linear with a linear constraint
- With $q_{i}:=\int_{F_{0, i}}^{F_{i}} \frac{d u}{\sigma_{i}(u)}$, it is a quadratic optimization problem with non-linear constraint
- Fast convergence of Newton iteration
- Given $\mathbf{F}^{*}, C\left(\mathbf{F}_{0}, \mathbf{F}^{*}\right)$ is a line integral along the geodesic; this integral can be calculated in closed form in the CEV model.
- Formulas can be evaluated in less than 2 seconds for $n=100$

Our work relies on the principle of not feeling the boundary.

The initial guess in the Newton iteration

- Change of variable: $q_{i}=\frac{F_{i}^{1-\beta_{i}}-F_{0, i}^{1-\beta_{i}}}{1-\beta_{i}}, F_{i}=\left(F_{0, i}^{1-\beta_{i}}+\left(1-\beta_{i}\right) q_{i}\right)^{1 /\left(1-\beta_{i}\right)}$
- $\Lambda^{-1}=\left(\sigma_{i} \sigma_{j} \rho_{i j}\right)_{i, j=1}^{n}$
- Optimization problem: $\min \mathbf{q}^{T} \Lambda \mathbf{q}: \sum_{i=1}^{n} w_{i} F_{i}\left(q_{i}\right)=K$

- Minimizer $\mathbf{q}_{0}^{*}=\frac{K-\bar{F}_{0}}{\mathbf{F}_{0}^{T} \Lambda^{-1} \widetilde{\mathbf{F}}_{0}} \Lambda^{-1} \widetilde{\mathbf{F}}_{0}$ with Lagrange multiplier $\lambda=2 \frac{K-\bar{F}_{0}}{\widetilde{\mathrm{~F}}_{0}^{T} \Lambda \cdot \widetilde{\mathrm{~F}}_{0}}$, where $\widetilde{F}_{0 i}=w_{i} F_{0}$
- q_{0}^{*} not good enough (unless coupled with " $1 / 2$-slope rule")
- Use as initial guess in Newton iteration

The initial guess in the Newton iteration

- Change of variable: $q_{i}=\frac{F_{i}^{1-\beta_{i}}-F_{0, i}^{1-\beta_{i}}}{1-\beta_{i}}, F_{i}=\left(F_{0, i}^{1-\beta_{i}}+\left(1-\beta_{i}\right) q_{i}\right)^{1 /\left(1-\beta_{i}\right)}$
- $\Lambda^{-1}=\left(\sigma_{i} \sigma_{j} \rho_{i j}\right)_{i, j=1}^{n}$
- Optimization problem: $\min \mathbf{q}^{T} \Lambda \mathbf{q}: \sum_{i=1}^{n} w_{i} F_{i}\left(q_{i}\right)=K$
- Linearized constraint: $\sum_{i=1}^{n} w_{i}\left(F_{0, i}+F_{0, i}^{\beta_{i}} q_{i}\right)=K$
- Minimizer $\mathbf{q}_{0}^{*}=\frac{K-\bar{F}_{0}}{\widetilde{\mathbf{F}}_{0}^{T} \Lambda^{-1} \widetilde{\mathbf{F}}_{0}} \Lambda^{-1} \widetilde{\mathbf{F}}_{0}$ with Lagrange multiplier $\lambda=2 \frac{K-\bar{F}_{0}}{\widetilde{\mathbf{F}}_{0}^{T} \Lambda^{-1} \widetilde{\mathbf{F}}_{0}}$, where $\widetilde{F}_{0, i}=w_{i} F_{0, i}$
- q_{0}^{*} not good enough (unless coupled with " $1 / 2$-slope rule")
- Use as initial guess in Newton iteration
- Change of variable: $q_{i}=\frac{F_{i}^{1-\beta_{i}}-F_{0, i}^{1-\beta_{i}}}{1-\beta_{i}}, F_{i}=\left(F_{0, i}^{1-\beta_{i}}+\left(1-\beta_{i}\right) q_{i}\right)^{1 /\left(1-\beta_{i}\right)}$
- $\Lambda^{-1}=\left(\sigma_{i} \sigma_{j} \rho_{i j}\right)_{i, j=1}^{n}$
- Optimization problem: $\min \mathbf{q}^{T} \Lambda \mathbf{q}: \sum_{i=1}^{n} w_{i} F_{i}\left(q_{i}\right)=K$
- Linearized constraint: $\sum_{i=1}^{n} w_{i}\left(F_{0, i}+F_{0, i}^{\beta_{i}} q_{i}\right)=K$
- Minimizer $\mathbf{q}_{0}^{*}=\frac{K-\bar{F}_{0}}{\widetilde{\mathbf{F}}_{0}^{T} \Lambda^{-1} \widetilde{\mathbf{F}}_{0}} \Lambda^{-1} \widetilde{\mathbf{F}}_{0}$ with Lagrange multiplier $\lambda=2 \frac{K-\bar{F}_{0}}{\widetilde{\mathbf{F}}_{0}^{T} \Lambda^{-1} \widetilde{\mathbf{F}}_{0}}$, where $\widetilde{F}_{0, i}=w_{i} F_{0, i}$
- \mathbf{q}_{0}^{*} not good enough (unless coupled with " $1 / 2$-slope rule")
- Use as initial guess in Newton iteration
- CEV model framework
- For CEV, the formulas are fully explicit apart from the minimizing configuration \mathbf{F}^{*}
- We observe very fast convergence of the iteration, but the initial guess is crucial.
- Reference values obtained using:
- Ninomiya Victoir discretization
- Quasi Monte Carlo based on Sobol numbers, Monte Carlo for very high dimensions ($n \approx 100$)
- Variance (dimension) reduction using Mean value Monte Carlo based on one-dimensional Black-Scholes prices
- CEV model framework
- For CEV, the formulas are fully explicit apart from the minimizing configuration \mathbf{F}^{*}
- We observe very fast convergence of the iteration, but the initial guess is crucial.
- Reference values obtained using:
- Ninomiya Victoir discretization
- Quasi Monte Carlo based on Sobol numbers, Monte Carlo for very high dimensions ($n \approx 100$)
- Variance (dimension) reduction using Mean value Monte Carlo based on one-dimensional Black-Scholes prices

CEV index implied vol - three-dimensional visualization

CEV index implied vol - three-dimensional visualization

- Recall: $d F_{i}(t)=\sigma_{i} F_{i}(t)^{\beta_{i}} d W_{i}(t)$
- $\boldsymbol{\beta}=(0.7,0.2,0.8,0.3,0.5,0.5,0.6,0.6,0.3,0.3)$
- $\boldsymbol{\sigma}=(0.8,0.6,0.9,0.6,0.8,0.4,0.9,0.9,0.3,0.8)$
- $\mathbf{F}_{0}=(10,13,11,18,9,10,17,16,13,17)$
- $\mathbf{w}=(-1,-1,1,1,1,-1,-1,1,1,1)$

Spread option in dimension 10

T	$K=32.9$	$K=33.8$	$K=34.1$	$K=34.4$	$K=35.3$
0.5	3.6352	3.1609	3.0123	2.8684	2.4649
1	4.8959	4.4332	4.2857	4.1416	3.7292
2	6.6912	6.2385	6.0924	5.9487	5.5322
5	10.2656	9.8261	9.6825	9.5408	9.1251
10	14.2385	13.8122	13.6726	13.5298	13.1204

Table : Quasi Monte Carlo prices.

T	$K=32.9$	$K=33.8$	$K=34.1$	$K=34.4$	$K=35.3$
0.5	3.6306	3.1562	3.0076	2.8637	2.4601
1	4.8844	4.4214	4.2739	4.1297	3.7174
2	6.6640	6.2109	6.0648	5.9211	5.5046
5	10.2020	9.7617	9.6182	9.4763	9.0604
10	14.1930	13.7635	13.6229	13.4835	13.0728

Table : Zero order asymptotic prices.

Spread option in dimension 10

T	$K=32.9$	$K=33.8$	$K=34.1$	$K=34.4$	$K=35.3$
0.5	3.6352	3.1609	3.0123	2.8684	2.4649
1	4.8959	4.4332	4.2857	4.1416	3.7292
2	6.6912	6.2385	6.0924	5.9487	5.5322
5	10.2656	9.8261	9.6825	9.5408	9.1251
10	14.2385	13.8122	13.6726	13.5298	13.1204

Table : Quasi Monte Carlo prices.

T	$K=32.9$	$K=33.8$	$K=34.1$	$K=34.4$	$K=35.3$
0.5	3.6353	3.1610	3.0123	2.8684	2.4648
1	4.8976	4.4348	4.2873	4.1431	3.7307
2	6.7015	6.2487	6.1027	5.9590	5.5423
5	10.3507	9.9112	9.7678	9.6260	9.2100
10	14.6137	14.1863	14.0461	13.9069	13.4960

Table : First order asymptotic prices.

- Approximation error supposed to depend on "dimension-free" time to maturity $\sigma^{2} T$
- Use $\bar{\sigma}:=\sigma_{\mathcal{N}, \mathcal{B}}\left(\mathbf{F}_{0}\right) /\left(\sum_{i=1}^{n} w_{i} F_{0, i}\right)$ as proxy in local vol framework
- Normalized error: $\frac{\text { Rel. error }}{\bar{\sigma}^{2} T}$

T	Dim. 5	Dim. 10	Dim. 15	Dim. 100
0.5	0.1555	-0.0293	0.3085	-0.0143
1	0.1481	-0.0261	0.3162	-0.0105
2	0.1429	-0.0218	0.3222	-0.0075
5	0.1376	-0.0129	0.3252	
10	0.1328	-0.0035	0.3198	
$\bar{\sigma}$	0.1704	0.3187	0.1073	0.2964

Table : Normalized relative error of the zero-order asymptotic prices.

- Approximation error supposed to depend on "dimension-free" time to maturity $\sigma^{2} T$
- Use $\bar{\sigma}:=\sigma_{\mathcal{N}, \mathcal{B}}\left(\mathbf{F}_{0}\right) /\left(\sum_{i=1}^{n} w_{i} F_{0, i}\right)$ as proxy in local vol framework
- Normalized error: $\frac{\text { Rel. error }}{\bar{\sigma}^{2} T}$

T	Dim. 5	Dim. 10	Dim. 15	Dim. 100
0.5	-4.02×10^{-4}	1.76×10^{-4}	8.76×10^{-3}	5.06×10^{-5}
1	-9.47×10^{-4}	3.58×10^{-3}	1.53×10^{-3}	2.08×10^{-3}
2	-1.63×10^{-3}	8.09×10^{-3}	-3.92×10^{-3}	3.89×10^{-3}
5	-3.41×10^{-3}	1.71×10^{-2}	-1.33×10^{-2}	
10	-7.15×10^{-3}	2.67×10^{-2}	-2.82×10^{-2}	
$\bar{\sigma}$	0.1704	0.3187	0.1073	0.2964

Table : Normalized error of the first order asymptotic prices.

First order prices

Relative errors

$$
\begin{gathered}
\mathbf{F}_{0}=\left(\begin{array}{c}
13 \\
9 \\
9
\end{array}\right), \boldsymbol{\xi}=\left(\begin{array}{l}
0.1 \\
0.7 \\
0.6
\end{array}\right), \boldsymbol{\beta}=\left(\begin{array}{l}
0.3 \\
0.7 \\
0.5
\end{array}\right), \mathbf{w}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \\
\rho=\left(\begin{array}{lll}
1.0000 & 0.9142 & 0.7706 \\
0.9142 & 1.0000 & 0.8429 \\
0.7706 & 0.8429 & 1.0000
\end{array}\right) .
\end{gathered}
$$

- Objective: Compute the sensitivity (delta) w.r.t. $F_{0,3}$.
- Note that the option payoff is

$$
P(\mathbf{F})=\left(F_{1}+F_{2}-F_{3}-K\right)^{+}
$$

Delta

Relative error of delta

(M. Avellaneda, D. Boyer-OIson, J. Busca, P. Friz: Application of large deviation methods to the pricing of index options in finance, C. R. Math. Acad. Sci. Paris, 336(3), 2003.
R. Azencott: Densité des diffusions en temps petit: développements asymptotiques I, Seminar on probability XVIII, L. N. M. 1059, 1984.
C. Bayer, P. Laurence: Asymptotics beats Monte Carlo: The case of correlated local vol baskets, to appear in Comm. Pure Appl. Math.
(J. Gatheral, E. P. Hsu, P. Laurence, C. Ouyang, T.-H. Wang: Asymptotics of implied volatility in local volatility models, Math. Fin., 2010.
(P. Henry-Labordère: Analysis, geometry, and modeling in finance, CRC Press, 2009.
R. R. S. Varadhan: Diffusion processes in a small time interval, Comm. Pure Appl. Math. 20, 1967.
(K. Yosida: On the fundamental solution of the parabolic equation in a Riemannian space, Osaka Math. J. 5, 1953.

