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Weak approximation of solutions of SDEs

dXt = V0(Xt )dt +
d∑

i=1

Vi(Xt ) ◦ dB i
t C

d∑
i=0

Vi(Xt ) ◦ dB i
t , (1)

I V0, . . . ,Vd : RN → RN vector fields,
I Bt a d-dimensional Brownian motion, B0

t B t ,
I X0 = x ∈ RN.

Problem

For f : RN → R sufficiently regular, compute u(0, x) B E [f(XT )].

Example
I Option pricing
I Numerical solution of parabolic PDEs: ∂tu + Lu = 0
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Stochastic Taylor expansion

Ito formula for Stratonovich calculus

df(Xt ) = V0f(Xt )dt +
d∑

i=1

Vi f(Xt ) ◦ dB i
t =

d∑
i=0

Vi f(Xt ) ◦ dB i
t ,

where Vi f(x) B Vi(x) · ∇f(x).

Stochastic Taylor expansion

f(Xt ) = f(x) +
d∑

i=0

∫ t

0
Vi f(Xs) ◦ dB i

s ,
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Stochastic Taylor expansion

Ito formula for Stratonovich calculus

df(Xt ) = V0f(Xt )dt +
d∑

i=1

Vi f(Xt ) ◦ dB i
t =

d∑
i=0

Vi f(Xt ) ◦ dB i
t ,

where Vi f(x) B Vi(x) · ∇f(x).

Stochastic Taylor expansion

f(Xt ) = f(x) +
d∑

i1=0

Vi1 f(x)B i1
t +

d∑
i1,i2=0

Vi1Vi2 f(x)

∫ t

0
B i1

t2
◦ dB i2

t2

+
d∑

i1,i2,i3=0

∫
0≤t1≤t2≤t3≤t

Vi1Vi2Vi3 f(Xt1) ◦ dB i1
t1
◦ dB i2

t2
◦ dB i3

t3
,
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Stochastic Taylor expansion

Ito formula for Stratonovich calculus

df(Xt ) = V0f(Xt )dt +
d∑

i=1

Vi f(Xt ) ◦ dB i
t =

d∑
i=0

Vi f(Xt ) ◦ dB i
t ,

where Vi f(x) B Vi(x) · ∇f(x).

Stochastic Taylor expansion

f(Xt ) =
m∑

k=0

∑
(i1,...,ik )∈{0,...,d}k

Vi1 · · ·Vik f(x)B(i1,...,ik )
t + Rm(t , x, f),

supx

√
E

[
R2

m

]
= O(t

m+1
2 ), B(i1,...,ik )

t B
∫

0≤t1≤···≤tk≤t ◦dB i1
t1
· · · ◦ dB ik

tk
.
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Random ODEs

I Let W be a (d + 1)-dimensional process with paths of
bounded variation, define X̃t = X(W)t by the random ODE

d
dt

X̃t =
d∑

i=0

Vi(X̃t )Ẇ i
t , X̃0 = x. (2)

I Ordinary Taylor expansion:

f(X̃t ) =
m∑

k=0

∑
(i1,...,ik )∈{0,...,d}k

Vi1 · · ·Vik f(x)W (i1,...,ik )
t + R̃m(t , x, f)

I Remember: Stochastic Taylor expansion

f(Xt ) =
m∑

k=0

∑
(i1,...,ik )∈{0,...,d}k

Vi1 · · ·Vik f(x)B(i1,...,ik )
t + Rm(t , x, f)
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Cubature on Wiener space

Definition
W is a cubature formula on Wiener space of degree m iff

E
[
W (i1,...,ik )

t

]
= E

[
B(i1,...,ik )

t

]
for k ≤ m.

Remark

In fact, only need multi-indices (i1, . . . , ik ) such that
k + #{` : i` = 0} ≤ m: B0

t counts twice due to scaling of Brownian
motion. This property is ignored for ease of presentation!

I Cubature formulas with finite support exist (Lyons and Victoir)
I Construction of cubature formulas for m > 5 interesting open

problem
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Weak approximation

I Local error: E [f(Xt )] − E
[
f(X̃ (m)

t )
]

= O(t(m+1)/2).

I Fix a grid 0 = t0 < t1 < · · · < tn = T , define W by
concatenation of independent cubature formulas (of degree
m) on the subintervals [ti , ti+1].

I Global error: E [f(XT )] − E
[
f(X̃ (m)

T )
]

= O((sup ∆t)(m−1)/2)

I Used very stringent regularity conditions!
I Weaker assumption: non-uniform grid + Hörmander condition,

allow f to be uniformly Lipschitz only (Kusuoka)
I Support of W grows exponentially in n, but n usually small

(otherwise: recombination techniques or (quasi) Monte Carlo)
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Extensions

I Jump diffusions (B. and Teichmann): add jump times to grid,
but at most m/2 for each initial interval

I May reduce order of cubature method by two for each jump
I Backward SDEs (Crisan and Manolarakis): allows to solve

semilinear parabolic PDEs with cubature methods
I Stochastic PDEs (B. and Teichmann): epxectation of an

SPDE approximated by an expectation of a random PDE
I Conceptually easier than Euler methods in this case
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Example: SPDEs

dXt = (AXt + α(Xt ))dt +
d∑

i=1

σi(Xt )dB i
t

I Cubature method: solution X̃ of random PDE

˙̃X t = (AX̃t + α0(X̃t )) +
d∑

i=1

σi(X̃t )Ẇ i
t

I Use existing deterministic PDE solvers
I Euler method: iteration

Xn+1 = (AXn + α(Xn))∆tn +
d∑

i=1

σi(Xn)∆B i
n,

I Need to discretice A and develop new solver from scratch
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Signature

Definition
The collection of random variables

Sm
0,t B

(
B(i1,...,ik )

t

)
k≤m

is called truncated signature of the Brownian motion. (Analogous
definition for other processes/paths.)

I Values in a certain step m nilpotent Lie group (m = 2:
Heisenberg group).

I Algebra of paths corresponds nicely to group structure:
I concatenation of paths ≡ multiplication of signatures
I scaling of paths ≡ dilatation on the group
I metric on group obtained via geodesic paths

I Rough path: 1/p-Hölder continuous path in the Lie group.
(For Brownian motion: 2 < p < 3.)
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Universal limit theorem

I Rough DE: for a d-dimensional (smooth) path w consider

dX(w)t =
d∑

i=0

Vi(X(w)t )dw i
t

I Define the Ito map I(Sm
0,·(w)) B X(w)·

Theorem (Lyons)

I is continuous in 1/p-Hölder topology, uniformly on bounded sets,
provided that m ≥ bpc. Thus, the solution to the rough equation can
be extended to a wide family of non-smooth paths (+ signatures).

I Solution of SDE is continuous map of Brownian motion and
Lévy area.

I Given processes Wn s.t. S(Wn)→ S(B), we have strong
convergence of the solutions of SDEs. E.g., Wong-Zakai
theorem.
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Approximation

I For Continuity, only m = 2 needed, but higher order signature
gives better approximation

I Assume a grid 0 = t0 < t1 < · · · < tn = T and a piecewise
smooth process W on the grid such that
Sm(W)ti ,ti+1 = Sm(B)ti ,ti+1 .

I Approximation:
∣∣∣I(W) − I(B)

∣∣∣ ≤ (supi ∆ti)(m+1−p)/p , 2 < p < 3.
I Requires sampling of Lévy area.
I Cubature on Wiener space: Weak version of this result.
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Path-dependent functionals (B. and Friz)

Let f be a continuous functional on paths. Goal: Compute E [f(X·)]
using cubature on Wiener space.

I Consider a grid 0 = t0 < · · · < tn = T and a cubature formula
W on the grid.

I By a Donsker theorem for processes with Hölder paths in the
Heisenberg group, S2(W)0,· converges weakly to S2(B)0,·.

I By the universal limit theorem, this implies convergence

E
[
f(X̃·)

]
→ E [f(X·)]

when sup ∆ti → 0.
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The Ninomiya-Victoir method

I On a (uniform) grid 0 = t0 < · · · < tn = T set ∆ti B ti+1 − ti ,
∆B j

i B B j
ti+1
− B j

ti
, Λi Bernoulli-distributed

I Set X0 = x and iteratively

X i+1 B

e
∆ti
2 V0e∆Bd

i Vd · · · e∆B1
i V1e

∆ti
2 V0X i , Λi = 1,

e
∆ti
2 V0e∆B1

i V1 · · · e∆Bd
i Vd e

∆ti
2 V0X i , Λi = −1.

(3)

I esVi x B z(1), where ż(t) = sVi(z(t)), z(0) = x
I Global error: E [f(XT )] − E

[
f
(
Xn

)]
= O((sup ∆ti)2)

I Interpretation as cubature method and splitting method
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QNV
∆t =

1
2

e
∆t
2 L0e∆tL1 · · · e∆tLd e

∆t
2 L0 +

1
2

e
∆t
2 L0e∆tLd · · · e∆tL1e

∆t
2 L0 ,

where L0f(x) = V0f(x), Li f(x) = 1
2V2

i f(x),

QNV
∆t ≈ P∆t B e∆tL0+∆t

∑d
i=1 Li
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Applicability in finance (B., Friz and Loeffen)

I Very advantageous when all ODEs can be solved explicitly
(otherwise: can use high order Runge-Kutta schemes).

Example (Generalized SABR model)

dX1
t = a

(
X2

t

)α (
X1

t

)β
dB1

t ,

dX2
t = κ(θ − X2

t )dt + bX2
t (ρdB1

t +
√

1 − ρ2dB2
t ),

where 1/2 ≤ α, β ≤ 1. (SABR: α = 1, κ = 0.)
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Example: Generalized SABR model – continued

I Drift trick: choose γ ∈ Rd , set V (γ)
0 (x) B V0(x) −

∑d
i=1 γ

iVi(x)
and consider

dXt = V (γ)
0 (Xt )dt +

d∑
i=1

Vi(Xt ) ◦ d
(
B i

t + γi t
)

I Apply N-V-scheme for vector fields V (γ)
0 ,V1, . . . ,Vd with ∆B i

j

replaced by ∆B i
j + γi∆t
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Generalized SABR – Numerical experiment

1 2 5 10 20 50 100

1e
−

05
1e

−
04

1e
−

03
1e

−
02

1e
−

01

Number of timesteps

R
el

. E
rr

or

Euler scheme
Ninomiya−Victoir scheme
Ninomiya−Victoir with drift
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Generalized SABR – Computational time

Method K M Rel. Error Time
Euler 32 8192000 0.00174 91.94 sec
Ninomiya-Victoir 4 2048000 0.00204 13.93 sec
NV with drift 4 1024000 0.00104 2.88 sec
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Multi-Level Monte Carlo (Giles)

I Systematic variance reduction technique

I X
(n)
T ≈ XT based on a uniform grid with size n.

I Idea:
1 Use X

(n/2)

T as control variate for X
(n)

T ; requires computation of

E
[
X

(n/2)

T

]
with high accuracy.

2 Use X
(n/4)

T as control variate for X
(n/2)

T ;
3 . . .

I Optimal: Work at each level is equal, i.e., the finer the grid, the
fewer samples need to be simulated.

I Time discretization error depends on finest grid, (Monte
Carlo) integration error on coarsest grid (with most samples).

Example

Euler method: complexity reduced from O(ε−3) to O(ε−2(log ε)2).
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Error control

Idea
Want to use a fine grid only when/where quantity of interest is
sensitive.

I Need some computable error control
I A priori error estimates: require no/little additional

computations, but are very crude.
I A posteriori estimates: possibly substantial additional work,

but accurate error control.
I Computable a posteriori estimates available following Talay

and Tubaro
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Adaptivity following Szepessy et al

(Stochastic) Control problem

Minimize (expected) work subject to the error (estimate) being
smaller than TOL.
Control variable: grid

I Deterministic control problem: leads to non-uniform,
deterministic grid

I Stochastic control problem: leads to non-uniform, random grid

Stochastic Algorithm
I Start with coarse grid, compute error estimate
I Where necessary, refine grid, and iterate
I Refinement requires some bridging procedure
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