Introduction

Application to the model

Conclusions

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

References

Existence, Uniqueness and Stability of Invariant Distributions in Continuous-Time Stochastic Models

Christian Bayer and Klaus Wälde

Weierstrass Institute for Applied Analysis and Stochastics and University of Mainz

SAET 2012 Conference Brisbane July 1, 2012

Introduction	

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

References

Outline

Introduction

- Search and matching models
- Our model

2 Abstract stability theory in continuous time

- Setting and methodology
- Existence of an invariant probability measure
- Uniqueness of invariant measures
- Stability

3 Application to the model

- Existence and stability
- A sufficient condition for recurrence

Introduction	
0000	

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Outline

Introduction

- Search and matching models
- Our model

2 Abstract stability theory in continuous time

- Setting and methodology
- Existence of an invariant probability measure
- Uniqueness of invariant measures
- Stability
- 3 Application to the model
 - Existence and stability
 - A sufficient condition for recurrence

Introductio	on
0000	

Application to the model

Conclusions

References

Search and matching models

Search and matching models

- Extremely popular these days (and for many years now)
- Inspired by work of Diamond, Mortensen and Pissarides
- Apart from some recent examples (e.g. our companion paper and the references therein), these models do not include a saving mechanism

Our setup

- Pissarides textbook model (without Nash-bargaining) extended for a consumption-saving mechanism
- Process of matching and separation is augmented to allow for self-insurance of workers
- We describe distributional prediction for labour market status and wealth using Fokker-Planck equations in a companion paper

Introductio	on
0000	

Application to the model

Conclusions F

References

Search and matching models

Search and matching models

- Extremely popular these days (and for many years now)
- Inspired by work of Diamond, Mortensen and Pissarides
- Apart from some recent examples (e.g. our companion paper and the references therein), these models do not include a saving mechanism

Our setup

- Pissarides textbook model (without Nash-bargaining) extended for a consumption-saving mechanism
- Process of matching and separation is augmented to allow for self-insurance of workers
- We describe distributional prediction for labour market status and wealth using Fokker-Planck equations in a companion paper

Introduction ○●○○	Abstract stability theory in continuous time	Application to the model	Conclusions	References
The mo	del			

Matching on the labour market

- ► Transitions between states z ∈ {w, b} with (state-dependent) matching rate µ and separation rate s
- Wage w and benefits b are exogenous (in this stability paper, not in companion paper)
- Representation for maximisation problem as a stochastic differential equation with two Poisson processes

$$dz(t) = \Delta \left[dq_{\mu} - dq_{s}
ight], \quad \Delta \equiv w - b$$

Corresponds to cont. time Markov chain

Budget constraint of an individual

$$da(t) = \{ra(t) + z(t) - c(t)\} dt$$

Interest rate on wealth r, consumption c (t)

Introduction ○●○○	Abstract stability theory in continuous time	Application to the model	Conclusions	References
The mo	del			

Matching on the labour market

- ► Transitions between states z ∈ {w, b} with (state-dependent) matching rate µ and separation rate s
- Wage w and benefits b are exogenous (in this stability paper, not in companion paper)
- Representation for maximisation problem as a stochastic differential equation with two Poisson processes

$$dz(t) = \Delta \left[dq_{\mu} - dq_{s}
ight], \quad \Delta \equiv w - b$$

Corresponds to cont. time Markov chain

Budget constraint of an individual

$$da(t) = \{ra(t) + z(t) - c(t)\} dt$$

► Interest rate on wealth r, consumption c (t)

Introduction	Abstract stability theory in continuous time	Application to the model	Conclusions	References
Optimal	lity			

Utility functions

Intertemporal

$$U(t) = E_t \int_t^\infty e^{-\rho[\tau-t]} u(c(\tau)) d\tau$$

CRRA instantaneous utility function

$$u(c(\tau)) = \frac{c(\tau)^{1-\sigma}-1}{1-\sigma}, \quad \sigma > 0$$

Optimality condition

- Generalized Keynes-Ramsey rule
- Represented for this paper by policy function c(a(t), z(t))

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	Abstract stability theory in continuous time	Application to the model	Conclusions	References
Optimal	lity			

Utility functions

Intertemporal

$$U(t) = E_t \int_t^\infty e^{-\rho[\tau-t]} u(c(\tau)) d\tau$$

CRRA instantaneous utility function

$$u(c(\tau)) = \frac{c(\tau)^{1-\sigma}-1}{1-\sigma}, \quad \sigma > 0$$

Optimality condition

- Generalized Keynes-Ramsey rule
- Represented for this paper by policy function c(a(t), z(t))

Introduction	Abstract stability theory in continuous time	Application to the model	Conclusions	References
Dynami	cs			

System to be understood

Frictional labour market equation

$$dz(t) = \Delta [dq_{\mu} - dq_{s}], \quad \Delta \equiv w - b$$

Optimal evolution of wealth

$$da(t) = \{ra(t) + z(t) - c(a(t), z(t))\} dt$$

Different regimes

- Low interest rate r ≤ ρ: bounded state space [-b/r, a^{*}_w] for wealth
- ▶ High interest rate $r \ge \rho + \mu$: a_t increasing to ∞
- ► Intermediate case: a_t increasing to ∞ when larger than a threshold value

Introduction	Abstract stability theory in continuous time	Application to the model	Conclusions	References
Dynami	cs			

System to be understood

Frictional labour market equation

$$dz(t) = \Delta [dq_{\mu} - dq_{s}], \quad \Delta \equiv w - b$$

Optimal evolution of wealth

$$da(t) = \{ra(t) + z(t) - c(a(t), z(t))\} dt$$

Different regimes

- Low interest rate r ≤ ρ: bounded state space [-b/r, a^{*}_w] for wealth
- High interest rate $r \ge \rho + \mu$: a_t increasing to ∞
- ► Intermediate case: a_t increasing to ∞ when larger than a threshold value

Introduction

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Outline

Introduction

- Search and matching models
- Our model

2 Abstract stability theory in continuous time

- Setting and methodology
- Existence of an invariant probability measure
- Uniqueness of invariant measures
- Stability

3 Application to the model

- Existence and stability
- A sufficient condition for recurrence

Introduction	Abstract stability theory in continuous time	Application to the model	Conclusions	References
Setting				

- ► State space $(\mathbf{X}, \mathcal{B}(\mathbf{X}))$ locally compact separable metric space
- ► (X_t)_{t∈[0,∞[} right-continuous, time-homogeneous strong Markov process

ション 小田 マイビット ビー シックション

- Transition kernel $P^t(x, A) := P(X_t \in A | X_0 = x)$
- Semi-group $P_t f(x) \coloneqq E[f(X_t)|X_0 = x] = \int_{\mathbf{X}} f(y) P^t(x, dy).$

Example

For the wealth-employment process (A_t, z_t) in the low-interest-regime, the state space is chosen to be $\mathbf{X} = [-b/r, a_w^*] \times \{w, b\}$, a compact, separable metric space.

Introduction	Abstract stability theory in continuous time	Application to the model	Conclusions	References
Setting				

- ► State space $(\mathbf{X}, \mathcal{B}(\mathbf{X}))$ locally compact separable metric space
- ► (X_t)_{t∈[0,∞[} right-continuous, time-homogeneous strong Markov process
- Transition kernel $P^t(x, A) := P(X_t \in A | X_0 = x)$
- Semi-group $P_t f(x) \coloneqq E[f(X_t)|X_0 = x] = \int_{\mathbf{X}} f(y) P^t(x, dy).$

Example

For the wealth-employment process (A_t, z_t) in the low-interest-regime, the state space is chosen to be $\mathbf{X} = [-b/r, a_w^*] \times \{w, b\}$, a compact, separable metric space.

Introd	uction

Methodology

There are (at least) two very different approaches:

Functional analysis: use the classical theory of strongly continuous semi-groups of linear operators on Banach spaces

Probability: analogy to discrete-time Markov chains, i.e., study the recurrence structure

- We are going to follow the probabilistic road, the semi-group (P_t)_{t∈[0,∞[} and its infinitesimal generator will *not* be used.
- Based on a long history of results, ultimate treatment by Meyn and Tweedie and their co-authors in 90's.

Introc	luctio	

References

Methodology

There are (at least) two very different approaches:

- Functional analysis: use the classical theory of strongly continuous semi-groups of linear operators on Banach spaces
 - Probability: analogy to discrete-time Markov chains, i.e., study the recurrence structure
 - We are going to follow the probabilistic road, the semi-group (P_t)_{t∈[0,∞[} and its infinitesimal generator will *not* be used.
 - Based on a long history of results, ultimate treatment by Meyn and Tweedie and their co-authors in 90's.

Introduction

Outline

Goal

- Stability is a rather vague concept.
- Here: ergodicity in the sense that for any initial state x, $P^t(x, \cdot) \xrightarrow{t \to \infty} \pi$ for some unique probability distribution π .
- No time-averaging necessary.

Definition

A measure μ on **X** is called invariant, iff

$$\forall A \in \mathcal{B}(\mathbf{X}), \ \forall t \geq 0 : P^t_{\mu}(A) \coloneqq \int_{\mathbf{X}} P^t(x, A) \mu(dx) = \mu(A),$$

i.e., the process X_t with $law(X_0) = \mu$ is stationary.

Introduction

Outline

Goal

- Stability is a rather vague concept.
- Here: ergodicity in the sense that for any initial state x, $P^t(x, \cdot) \xrightarrow{t \to \infty} \pi$ for some unique probability distribution π .
- No time-averaging necessary.

Definition

A measure μ on **X** is called invariant, iff

$$\forall A \in \mathcal{B}(\mathbf{X}), \ \forall t \geq 0 : P^t_{\mu}(A) \coloneqq \int_{\mathbf{X}} P^t(x, A) \mu(dx) = \mu(A),$$

i.e., the process X_t with $law(X_0) = \mu$ is stationary.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

References

Outline – 2

Outline of the proof of stability:

(1) Existence of an invariant distribution

- (2) Uniqueness of invariant measures
- (3) Convergence

Remark

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

References

Outline – 2

Outline of the proof of stability:

- (1) Existence of an invariant distribution
- (2) Uniqueness of invariant measures
- (3) Convergence

Remark

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

References

Outline – 2

Outline of the proof of stability:

- (1) Existence of an invariant distribution
- (2) Uniqueness of invariant measures
- (3) Convergence

Remark

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Outline – 2

Outline of the proof of stability:

- (1) Existence of an invariant distribution
- (2) Uniqueness of invariant measures
- (3) Convergence

Remark

Introduction	
0000	

Existence of an invariant probability measure

- Existence of an invariant probability distribution depends on a growth condition: no mass is allowed to escape to infinity.
- X_t is bounded in probability on average, iff ∀x ∈ X, ε > 0 there is a compact set C ⊂ X s.t.

$$\liminf_{t\to\infty}\frac{1}{t}\int_0^t P^s(x,C)ds\geq 1-\epsilon.$$

- Compactness of measures $\frac{1}{t} \int_0^t P^s(x, C) ds$
- ► X_t has the weak Feller property, iff for any bounded cont. $f : \mathbf{X} \to \mathbb{R}$ and $t > 0, x \mapsto \int_{\mathbf{X}} f(y) P^t(x, dy)$ is continuous.

Theorem (Beneš '68)

If the process X_t is bounded in probability on average and has the weak Feller property, then there is an invariant probability measure.

Introduction	
0000	

Application to the model

Conclusions

References

Existence of an invariant probability measure

- Existence of an invariant probability distribution depends on a growth condition: no mass is allowed to escape to infinity.
- X_t is bounded in probability on average, iff ∀x ∈ X, ε > 0 there is a compact set C ⊂ X s.t.

$$\liminf_{t\to\infty}\frac{1}{t}\int_0^t P^s(x,C)ds\geq 1-\epsilon.$$

- Compactness of measures $\frac{1}{t} \int_0^t P^s(x, C) ds$
- ► X_t has the weak Feller property, iff for any bounded cont. $f : \mathbf{X} \to \mathbb{R}$ and $t > 0, x \mapsto \int_{\mathbf{X}} f(y) P^t(x, dy)$ is continuous.

Theorem (Beneš '68)

If the process X_t is bounded in probability on average and has the weak Feller property, then there is an invariant probability measure.

Introduction	
0000	

Application to the model

Conclusions

References

Existence of an invariant probability measure

- Existence of an invariant probability distribution depends on a growth condition: no mass is allowed to escape to infinity.
- X_t is bounded in probability on average, iff ∀x ∈ X, ε > 0 there is a compact set C ⊂ X s.t.

$$\liminf_{t\to\infty}\frac{1}{t}\int_0^t P^s(x,C)ds\geq 1-\epsilon.$$

- Compactness of measures $\frac{1}{t} \int_0^t P^s(x, C) ds$
- ► X_t has the weak Feller property, iff for any bounded cont. $f : \mathbf{X} \to \mathbb{R}$ and $t > 0, x \mapsto \int_{\mathbf{X}} f(y) P^t(x, dy)$ is continuous.

Theorem (Beneš '68)

If the process X_t is bounded in probability on average and has the weak Feller property, then there is an invariant probability measure.

イロト (母) (ヨ) (ヨ) (ヨ) () ()

[[SO EXISTENCE FOLLOWS FROM COMPACTNESS, AS THE ABOVE FAMILY OF MEASURES HAS SOME CONVERGENT SUBSEQUENCES. EACH LIMIT ALONG A CONVERGENT SUBSEQUENCE IS AN INVARIANT PROBABILITY MEASURE, BUT THERE CAN BE MORE THAN ONE. CONCEPTUALLY, WHY DO WE EVEN NEED WEAK FELLER? UNDERSTAND THE FOLLOWING PROOF!]]

Introduction	

Application to the model

Conclusions Re

References

Uniqueness of the invariant measure

 X_t is recurrent, iff there is a (non-trivial) σ-finite measure μ such that

$$A \in \mathcal{B}(\mathbf{X}), \ \mu(A) > 0 \Rightarrow \forall x \in \mathbf{X} : \ P(\tau_A < \infty | X_0 = x) = 1,$$

where $\tau_A := \inf\{t \ge 0 | X_t \in A\}$.

Theorem (Azéma, Duflo, Revuz '69)

If the process X_t is recurrent, then there is a unique σ -finite invariant measure (up to constant multiples).

Example

Let W_t be 1-dimensional Brownian motion. By recurrence, there is a unique invariant measure, whose density satisfies $\Delta f = 0$, implying that f = 1.

Introduction

Application to the model

Conclusions Re

References

Uniqueness of the invariant measure

 X_t is recurrent, iff there is a (non-trivial) σ-finite measure μ such that

$$A \in \mathcal{B}(\mathbf{X}), \ \mu(A) > 0 \Rightarrow \forall x \in \mathbf{X} : \ P(\tau_A < \infty | X_0 = x) = 1,$$

where $\tau_A := \inf\{t \ge 0 | X_t \in A\}$.

Theorem (Azéma, Duflo, Revuz '69)

If the process X_t is recurrent, then there is a unique σ -finite invariant measure (up to constant multiples).

Example

Let W_t be 1-dimensional Brownian motion. By recurrence, there is a unique invariant measure, whose density satisfies $\Delta f = 0$, implying that f = 1.

Introduction	

Application to the model

Conclusions Re

References

Uniqueness of the invariant measure

 X_t is recurrent, iff there is a (non-trivial) σ-finite measure μ such that

$$A \in \mathcal{B}(\mathbf{X}), \ \mu(A) > 0 \Rightarrow \forall x \in \mathbf{X} : \ P(\tau_A < \infty | X_0 = x) = 1,$$

where $\tau_A := \inf\{t \ge 0 | X_t \in A\}$.

Theorem (Azéma, Duflo, Revuz '69)

If the process X_t is recurrent, then there is a unique σ -finite invariant measure (up to constant multiples).

Example

Let W_t be 1-dimensional Brownian motion. By recurrence, there is a unique invariant measure, whose density satisfies $\Delta f = 0$, implying that f = 1.

Application to the model

Conclusions

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

References

[[UNDERSTAND WHY STRONG FELLER IMPLIES RECURRENCE/UNIQUENESS]] [[UNDERSTAND WHY A-PERIODICITY NOT NECESSARY]]

Introduction	Abstract stability theory in continuous time	Application to the model	Conclusions	References
Stability	,			

Stability for us means convergence P^t(x, ·) → π for any x in total variation, i.e.,

$$d_{TV}(P^{t}(x,\cdot),\pi) \coloneqq \sup\left\{ \left| P^{t}(x,A) - \pi(A) \right| \mid A \in \mathcal{B}(\mathbf{X}) \right\} \xrightarrow{t \to \infty} 0.$$

Stability holds for a Harris recurrent Markov process X_t iff for some Δ > 0, the skeleton chain (X_nΔ)_{n∈ℕ} is irreducible.

Remark

Techniques based on Lyapunov functions even allow to specify the speed of convergence. But no general way to construct good Lyapunov functions.

Introduction	Abstract stability theory in continuous time ○○○○○●	Application to the model	Conclusions	References
Stability				

Stability for us means convergence P^t(x, ·) → π for any x in total variation, i.e.,

$$d_{\mathsf{TV}}(\mathsf{P}^t(x,\cdot),\pi) \coloneqq \sup\left\{\left|\mathsf{P}^t(x,A) - \pi(A)\right| \mid A \in \mathcal{B}(\mathbf{X})\right\} \xrightarrow{t \to \infty} 0.$$

Stability holds for a Harris recurrent Markov process X_t iff for some Δ > 0, the skeleton chain (X_nΔ)_{n∈ℕ} is irreducible.

Remark

Techniques based on Lyapunov functions even allow to specify the speed of convergence. But no general way to construct good Lyapunov functions.

Introduction

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Outline

Introduction

- Search and matching models
- Our model

2 Abstract stability theory in continuous time

- Setting and methodology
- Existence of an invariant probability measure
- Uniqueness of invariant measures
- Stability

3 Application to the model

- Existence and stability
- A sufficient condition for recurrence

Introduction	Abstract stability theory in continuous time	Applica ●○○

Existence and stability

- In the regimes of high and intermediate interest rates, wealth can converge to ∞.
- ► We concentrate on the low-interest-regime, where wealth is concentrated in a compact interval [-b/r, a^{*}_w].
- ▶ By continuity of solutions of ODEs in the initial value, (*a*_t, *z*_t) is a continuous function of (*a*₀, *z*₀), implying the weak Feller property.
- Existence of invariant probability measures.
- ▶ If $z_0 = b$ or $z_0 = w$ and no jump, then $a_t \rightarrow -b/r$ or $a_t \rightarrow a_w^*$, respectively, implying the existence of an irreducible skeleton.
- But how to prove recurrence?

Conclusions

References

tion to the model

Introduction	Abstract stability theory in continuous time	Application to the model ●○○	Conclusions
Exister	nce and stability		

In the regimes of high and intermediate interest rates, wealth can converge to ∞.

References

ション 小田 マイビット ビー シックション

- ► We concentrate on the low-interest-regime, where wealth is concentrated in a compact interval [-b/r, a^{*}_w].
- By continuity of solutions of ODEs in the initial value, (a_t, z_t) is a continuous function of (a₀, z₀), implying the weak Feller property.
- Existence of invariant probability measures.
- ▶ If $z_0 = b$ or $z_0 = w$ and no jump, then $a_t \rightarrow -b/r$ or $a_t \rightarrow a_w^*$, respectively, implying the existence of an irreducible skeleton.
- But how to prove recurrence?

Introduction	Abstract stability theory in continuous time	Application to the model ●○○	Conclusi
Fxister	nce and stability		

- In the regimes of high and intermediate interest rates, wealth can converge to ∞.
- ► We concentrate on the low-interest-regime, where wealth is concentrated in a compact interval [-b/r, a^{*}_w].
- By continuity of solutions of ODEs in the initial value, (a_t, z_t) is a continuous function of (a₀, z₀), implying the weak Feller property.
- Existence of invariant probability measures.
- ▶ If $z_0 = b$ or $z_0 = w$ and no jump, then $a_t \rightarrow -b/r$ or $a_t \rightarrow a_w^*$, respectively, implying the existence of an irreducible skeleton.
- But how to prove recurrence?

References

Introd	uction
0000	

Application to the model

onclusions F

References

Sufficient condition for recurrence

- Recurrence holds when transition kernel is smoothing.
- Diffusion case: recurrence follows under weak conditions
- Jump processes cannot smoothen as long as there is a positive probability of no jumps before t

Definition & theorem (Meyn and Tweedie '93)

 X_t is called a *T*-process if there is a Markov kernel *T* and a prob. measure ν on $[0, \infty]$ s.t.

- ► $\forall A \in \mathcal{B}(\mathbf{X})$: $x \mapsto T(x, A)$ is continuous
- $K_{\nu}(x,A) \coloneqq \int_0^\infty P^t(x,A)\nu(dt) \ge T(x,A)$
- $\blacktriangleright \forall x : T(x, \mathbf{X}) > 0.$

Any irreducible *T*-process, which is bounded in probability on average, is recurrent.

Introduction	
0000	

Application to the model

nclusions F

References

Sufficient condition for recurrence

- Recurrence holds when transition kernel is smoothing.
- Diffusion case: recurrence follows under weak conditions
- Jump processes cannot smoothen as long as there is a positive probability of no jumps before t

Definition & theorem (Meyn and Tweedie '93)

 X_t is called a *T*-process if there is a Markov kernel *T* and a prob. measure ν on $[0, \infty]$ s.t.

- ► $\forall A \in \mathcal{B}(\mathbf{X})$: $x \mapsto T(x, A)$ is continuous
- $K_{\nu}(x,A) \coloneqq \int_0^{\infty} P^t(x,A) \nu(dt) \ge T(x,A)$
- $\flat \quad \forall x: \ T(x,\mathbf{X}) > 0.$

Any irreducible T-process, which is bounded in probability on average, is recurrent.

Introduction	
0000	

Application to the model

nclusions F

References

Sufficient condition for recurrence

- Recurrence holds when transition kernel is smoothing.
- Diffusion case: recurrence follows under weak conditions
- Jump processes cannot smoothen as long as there is a positive probability of no jumps before t

Definition & theorem (Meyn and Tweedie '93)

 X_t is called a *T*-process if there is a Markov kernel *T* and a prob. measure ν on $[0, \infty]$ s.t.

- ► $\forall A \in \mathcal{B}(\mathbf{X})$: $x \mapsto T(x, A)$ is continuous
- $K_{\nu}(x,A) \coloneqq \int_0^{\infty} P^t(x,A) \nu(dt) \ge T(x,A)$
- $\blacktriangleright \forall x: T(x, \mathbf{X}) > 0.$

Any irreducible *T*-process, which is bounded in probability on average, is recurrent.

The wealth-employement process is a *T*-process

- ► Given (a₀, z₀), (a_t, z_t) is a deterministic function of the jump-times of z_t.
- Conditional on the number of jumps, the jump times have smooth densities.
- (a_t, z_t) is not smoothing, because no jump might occur.
- If at least one jump occurs, we have smoothing properties.
- Choose $v = \delta_{\tau}$ and

 $T((a_0, z_0), A) \coloneqq P((a_\tau, z_\tau) \in A, \text{ one jump in } [0, \tau] \mid a_0, z_0).$

- Technical condition: c = c(a, z) is C^1 .
- Illustration of how T-property replaces strong Feller condition.

・ロト・日本・日本・日本・日本・日本

ション 小田 マイビット ビー シックション

The wealth-employement process is a *T*-process

- ► Given (a₀, z₀), (a_t, z_t) is a deterministic function of the jump-times of z_t.
- Conditional on the number of jumps, the jump times have smooth densities.
- (a_t, z_t) is not smoothing, because no jump might occur.
- If at least one jump occurs, we have smoothing properties.
- Choose $v = \delta_{\tau}$ and

 $T((a_0, z_0), A) \coloneqq P((a_\tau, z_\tau) \in A, \text{ one jump in } [0, \tau] \mid a_0, z_0).$

- Technical condition: c = c(a, z) is C^1 .
- Illustration of how T-property replaces strong Feller condition.

The wealth-employement process is a *T*-process

- ► Given (a₀, z₀), (a_t, z_t) is a deterministic function of the jump-times of z_t.
- Conditional on the number of jumps, the jump times have smooth densities.
- (a_t, z_t) is not smoothing, because no jump might occur.
- If at least one jump occurs, we have smoothing properties.
- Choose $v = \delta_{\tau}$ and

 $T((a_0, z_0), A) \coloneqq P((a_\tau, z_\tau) \in A, \text{ one jump in } [0, \tau] \mid a_0, z_0).$

- Technical condition: c = c(a, z) is C^1 .
- Illustration of how T-property replaces strong Feller condition.

Introduction	Abstract stability theory in continuous time	Application to the model	Conclusions	References
Conclus	ions			

Framework

- Individual maximization problem inspired by search and matching models
- Extended for consumption-saving problem
- Question: Is there a unique long-run distribution to which initial distributions converge?

Techniques

- Markov chain-style ergodicity analysis for general, continuous time Markov processes
- T-processes by Meyn and Tweedie allow to prove recurrence for a wide class of (degenerate) diffusion and jump models

Result

Long-run-distribution exists in our matching-saving model

Introduction	Abstract stability theory in continuous time	Application to the model	Conclusions	References
Conclus	ions			

Framework

- Individual maximization problem inspired by search and matching models
- Extended for consumption-saving problem
- Question: Is there a unique long-run distribution to which initial distributions converge?

Techniques

- Markov chain-style ergodicity analysis for general, continuous time Markov processes
- T-processes by Meyn and Tweedie allow to prove recurrence for a wide class of (degenerate) diffusion and jump models

Result

Long-run-distribution exists in our matching-saving model (ロトイヨトイミトイミト き つへの)

Introduction	Abstract stability theory in continuous time	Application to the model	Conclusions	References
Conclus	ions			

Framework

- Individual maximization problem inspired by search and matching models
- Extended for consumption-saving problem
- Question: Is there a unique long-run distribution to which initial distributions converge?

Techniques

- Markov chain-style ergodicity analysis for general, continuous time Markov processes
- T-processes by Meyn and Tweedie allow to prove recurrence for a wide class of (degenerate) diffusion and jump models

Result

Long-run-distribution exists in our matching-saving model

Poforonooc				
Introduction	Abstract stability theory in continuous time	Application to the model	Conclusions	References

- Azéma, J,., Duflo, M., Revuz, D.: Propriétés relatives des processus de Markov récurrents, Z. Wahrschenlichkeitsth. 8, 157–181, 1967.
- Bayer, C., Waelde, K.: *Matching and saving in continuous time*, preprint 2011.
- Beneš, V.: Finite regular invariant measures for Feller processes, J. Appl. Prob. 5, 203–209, 1968.
- Meyn, S., Tweedie, R.: Stability of Markovian processes II: Continuous-time processes and sampled chains, Adv. Appl. Prob. 25, 487–517, 1993.