Numerical examples

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Hypo-elliptic simulated annealing

Christian Bayer¹ Josef Teichmann² Richard Warnung³

¹Department of Mathematics Royal Institute of Technology, Stockholm

> ²Department of Mathematics ETH Zurich

³Raiffeisen Capital Investment, Vienna

07/30/2009 Berlin

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Outline

Introduction

- Smoluchowski dynamics
- Simulated annealing in continuous time
- Motivation for hypo-elliptic simulated annealing
- 2 The theory of hypo-elliptic simulated annealing
 - Setting of hypo-elliptic simulated annealing
 - The gradient
 - Hypo-elliptic simulated annealing
- 3 Numerical examples
 - Example in \mathbb{R}^3
 - Example on SO(3)

4 Conclusions

Introduction

Numerical examples

ション 小田 マイビット ビー シックション

Conclusions

Smoluchowski dynamics

(1)
$$dY_t^y = -\frac{1}{2}\nabla U(Y_t^y)dt + \sqrt{KT}dW_t$$

- ► $Y_0^y = y \in \mathbb{R}^n$, $U : \mathbb{R}^n \to \mathbb{R}$ and W is an *n*-dimensional standard Wiener process
- Unique invariant measure given by the Gibbs measure

$$\mu_{KT}(dy) = \frac{1}{C_T} e^{-\frac{U(y)}{KT}} dy$$

- Ergodicity, i.e., Y^y converges in law to µ_{KT}
- Extensively used in physics and chemistry for the simulation of *canonical ensemble* (NVT), i.e., of an ensemble with constant temperature

Introduction

Numerical examples

ション 小田 マイビット ビー シックション

Smoluchowski dynamics

(1)
$$dY_t^y = -\frac{1}{2}\nabla U(Y_t^y)dt + \sqrt{KT}dW_t$$

- ► $Y_0^y = y \in \mathbb{R}^n$, $U : \mathbb{R}^n \to \mathbb{R}$ and W is an *n*-dimensional standard Wiener process
- Unique invariant measure given by the Gibbs measure

$$\mu_{KT}(dy) = \frac{1}{C_T} e^{-\frac{U(y)}{KT}} dy$$

- Ergodicity, i.e., Y^y converges in law to µ_{KT}
- Extensively used in physics and chemistry for the simulation of *canonical ensemble* (NVT), i.e., of an ensemble with constant temperature

Introduction

Numerical examples

Conclusions

Smoluchowski dynamics

(1)
$$dY_t^y = -\frac{1}{2}\nabla U(Y_t^y)dt + \sqrt{KT}dW_t$$

- ► $Y_0^y = y \in \mathbb{R}^n$, $U : \mathbb{R}^n \to \mathbb{R}$ and W is an *n*-dimensional standard Wiener process
- Unique invariant measure given by the Gibbs measure

$$\mu_{KT}(dy) = \frac{1}{C_T} e^{-\frac{U(y)}{KT}} dy$$

- Ergodicity, i.e., Y^y converges in law to µ_{KT}
- Extensively used in physics and chemistry for the simulation of *canonical ensemble* (NVT), i.e., of an ensemble with constant temperature

Numerical examples

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Motivation of simulated annealing

For $T \rightarrow 0$, the Gibbs measure

$$\mu_{KT}(dy) = \frac{1}{C_T} e^{-\frac{U(y)}{KT}} dy \rightsquigarrow \arg\min_{y \in \mathbb{R}^n} U(y).$$

Choose a "cooling schedule" T = T(t) such that

- the "instantaneously invariant" measures µ_{KT(t)} concentrate around arg min U(y) for t → ∞,
- the (time-inhomogeneous) Markov process

$$dY_t^y = -\frac{1}{2}\nabla U(Y_t^y)dt + \sqrt{KT(t)}dW_t$$

remains ergodic.

Introduction	The theory of hypo-elliptic simulated annealing	Numerical examples	Conclusions
- · · ·			

Spectral gap

Consider the infinitesimal generator L^{σ} of the Smoluchowski SDE with constant $\sigma = KT$:

$$L^{\sigma}f = -\frac{1}{2}\langle \nabla U, \nabla f \rangle + \frac{\sigma}{2}\Delta f.$$

- L^σ is symmetric on L²(ℝⁿ, μ_σ) and has a discrete, non-positive spectrum.
- Spectral gap

$$\lambda^{\sigma} = -\frac{\sigma}{2} \inf \left\{ \left\| \nabla f \right\|_{L^{2}(\mu_{\sigma})} \middle| \left\| f \right\|_{L^{2}(\mu_{\sigma})} = 1 \text{ and } \int_{\mathbb{R}^{n}} f d\mu_{\sigma} = 0 \right\}$$

 λ^σ controls the convergence of the distribution of the Smoluchowski process to its invariant distribution.

Elliptic simulated annealing

Assume that

- U is smooth,
- *U* and $||\nabla U||$ converge to infinity for $||x|| \to \infty$,
- $\|\nabla U\|^2 \Delta U$ is bounded from below.

Theorem

Given a decreasing cooling schedule $\sigma = \sigma(t) \rightarrow 0$, such that $\sigma(t) = k/\log(t)$ for some constant k > c, where

$$c = \lim_{t \to \infty} -\sigma(t) \log(\lambda^{\sigma(t)}).$$

Then the law of the process $Y_t^{\sigma(\cdot)}$ converges to a distribution supported on $\arg \min_y U(y)$.

ション 小田 マイビット ビー シックション

Heisenberg groups – construction

We consider the *Heisenberg groups* as a prototype of the state space of hypo-elliptic simulated annealing.

- ► A²_p denotes the space of non-commutative polynomials of degree 2 in p variables {e₁,..., e_p}.
- Forms a *nil-potent* associative algebra of degree two.
- ▶ g_p^2 denotes the *Lie algebra* generated by $\{e_1, \ldots, e_p\}$ (with respect to [x, y] = xy yx, $x, y \in \mathbb{A}_p^2$).
- Define exp : $\mathfrak{g}_p^2 \to \mathbb{A}_p^2$ by its (nil-potent) power series and set

$$G_{\rho}^{2} \coloneqq \exp\left(\mathfrak{g}_{\rho}^{2}\right).$$

Introduction

Numerical examples

Heisenberg groups – properties

- exp : $g_{\rho}^2 \rightarrow G_{\rho}^2$ is a global chart of the *Lie group* G_{ρ}^2 .
- Representation as matrix group, e.g., for p = 2:

$$G_2^2 \simeq \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\}.$$

•
$$\dim(G_p^2) = (p+1)p/2$$

▶ Brownian motion X_t defined by $X_0 = 1 \in G_p^2$ and

$$dX_t = \sum_{i=1}^p X_t e_i \circ dB_t^i$$

► Natural to use X_t as driving noise for simulated annealing on G_p^2 or g_p^2

Introduction

Numerical examples

Heisenberg groups – properties

- exp : $g_p^2 \to G_p^2$ is a global chart of the *Lie group* G_p^2 .
- Representation as matrix group, e.g., for p = 2:

$$G_2^2 \simeq \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\}.$$

•
$$\dim(G_p^2) = (p+1)p/2$$

▶ Brownian motion X_t defined by $X_0 = 1 \in G_p^2$ and

$$dX_t = \sum_{i=1}^p X_t e_i \circ dB_t^i$$

► Natural to use X_t as driving noise for simulated annealing on G_p^2 or \mathfrak{g}_p^2

Elliptic vs. hypo-elliptic simulated annealing

Starting point of elliptic simulated annealing

A small stochastic perturbation of a classical gradient flow allows the flow to overcome local minima (having the Gibbs measure as invariant distribution). Decreasing the perturbation slowly enough induces convergence to arg min *U*.

Starting point of hypo-elliptic simulated annealing

Given a driving, hypo-elliptic process. Want to construct a Markov process with invariant measure given by the Gibbs measure. How does the appropriate drift look like?

Elliptic vs. hypo-elliptic simulated annealing

Starting point of elliptic simulated annealing

A small stochastic perturbation of a classical gradient flow allows the flow to overcome local minima (having the Gibbs measure as invariant distribution). Decreasing the perturbation slowly enough induces convergence to arg min *U*.

Starting point of hypo-elliptic simulated annealing

Given a driving, hypo-elliptic process. Want to construct a Markov process with invariant measure given by the Gibbs measure. How does the appropriate drift look like?

Homogeneous spaces

Definition

Given a Lie group G. A finite-dimensional smooth manifold M such that

- ▶ there is a right-action $r : M \times G \rightarrow M$, i.e., $r(r(x,g),h) = r(x,gh), x \in M, g, h \in G$,
- ▶ *r* is transitive, i.e., $\forall x \in M, g \mapsto r(x, g)$ is surjective,

is called homogeneous space.

Projection: for a fixed point $o \in M$, define $\pi : G \to M$ by $\pi(g) = r(o, g)$.

▲□▶▲□▶▲□▶▲□▶ □ のへで

Setting of hypo-elliptic simulated annealing

Assumption A

- G is a finite-dimensional, connected Lie group with Lie algebra g and right-invariant Haar measure η.
- M is a compact homogeneous space w.r.t. G with a positive finite measure η^M invariant w.r.t. the right action of G on M.

 $U \in C^{\infty}(M; [0, \infty[).$

Remark

Assumption A is satisfied by compact Lie groups like SO(3), acting on themselves.

Heisenberg torus

- ▶ G²_p is not compact.
- Define a discrete sub-group of G²_p.

$$I_p^2 = \langle \{ e_i \mid i = 1, \dots, p \} \cup \{ \frac{1}{2} [e_i, e_j] \mid i < j \} \rangle_{\mathbb{Z}} \subset \mathfrak{g}_p^2$$

•
$$L_p^2 \coloneqq \exp(\mathfrak{l}_p^2) \subset G_p^2$$

- M := L²_p ⊂ G²_p = { L²_pg | g ∈ G²_p } is called *Heisenberg torus* (not a group!).
- Construct a right-invariant measure η^M from the Lebesgue measure on T^{p(p+1)/2} using M ≃ T^{p(p+1)/2}.
- ▶ E.g.,, for p = 2, set $e_3 = \frac{1}{2}[e_1, e_2]$ and define $\phi : g_2^2 \to \mathbb{T}^3$ by

$$\phi(z_1e_1 + z_2e_2 + z_3e_3) = ([z_1], [z_2], [z_3 - [z_2]z_1 + [z_1]z_2]),$$

where $[z] := z \mod 1$. Get a diffeom. $\phi \circ \exp^{-1} : L_2^2 \setminus G_2^2 \to \mathbb{T}^3$. • *M* together with η^M satisfies Assumption A.

Hypo-ellipticity

Assumption B

Let $n = \dim(G)$ and assume that there are d < n left-invariant vector-fields V_1, \ldots, V_d on G, which already generate g (Hörmander condition). Define a stochastic process X_t on G with $X_0 = 1 \in G$ and

$$dX_t = \sum_{i=1}^d V_i(X_t) \circ dB_t^i.$$

- \blacktriangleright X_t is hypo-elliptic, i.e., has a smooth transition density.
- ► For $G = G_p^2$, $d = p < \frac{p(p+1)}{2} = n$ and $V_i(x) = xe_i$, i = 1, ..., p.

・ロト ・母 ト ・ヨ ト ・ヨ ・ つくで

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Hypo-ellipticity

Assumption B

Let $n = \dim(G)$ and assume that there are d < n left-invariant vector-fields V_1, \ldots, V_d on G, which already generate g (Hörmander condition). Define a stochastic process X_t on G with $X_0 = 1 \in G$ and

$$dX_t = \sum_{i=1}^d V_i(X_t) \circ dB_t^i.$$

- ► *X_t* is hypo-elliptic, i.e., has a smooth transition density.
- For $G = G_p^2$, $d = p < \frac{p(p+1)}{2} = n$ and $V_i(x) = xe_i$, i = 1, ..., p.

Numerical examples

ション 小田 マイビット ビー シックション

Sub-Riemannian gradient

- Drift $-\frac{1}{2}\nabla U$ is the direction of steepest descent in a Riemannian environment.
- Noise X_t can traverse the whole space, but locally only horizontal directions are possible.
- *Carré-du-champs* operator

$$\Gamma(f,g)(x) = \sum_{i=1}^{d} V_i f(x) V_i g(x), \quad x \in G$$

► $\Gamma(U, \cdot) : f \mapsto \Gamma(U, f)$ defines a left-invariant, horizontal vector-field.

Numerical examples

ション 小田 マイビット ビー シックション

Sub-Riemannian gradient

- Drift $-\frac{1}{2}\nabla U$ is the direction of steepest descent in a Riemannian environment.
- Noise X_t can traverse the whole space, but locally only horizontal directions are possible.
- Carré-du-champs operator

$$\Gamma(f,g)(x) = \sum_{i=1}^{d} V_i f(x) V_i g(x), \quad x \in G$$

Γ(U, ·) : f → Γ(U, f) defines a left-invariant, horizontal vector-field.

Numerical examples

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Conclusions

Hypo-elliptic Smoluchowski dynamics

- $\sigma = \sigma(t)$ cooling schedule.
- ▶ Push the vector fields $V_1, ..., V_d$ and $\Gamma(U, \cdot)$ to vector fields $V_1^M, ..., V_d^M$ and $\Gamma^M(U, \cdot)$ on *M* using $\pi : G \to M$.
- Define the Smoluchowski dynamics on M

$$dY_t = -\frac{1}{2}\Gamma^M(U,\cdot)(Y_t)dt + \sqrt{\sigma(t)}\sum_{i=1}^d V_i^M(Y_t) \circ dB_t^i.$$

Locally invariant Gibbs measure

$$\mu_{\sigma}(dx) = rac{1}{C_{\sigma}} \exp\left(-rac{U(x)}{\sigma}
ight) \eta^{M}(dx).$$

The theory of hypo-elliptic simulated annealing

Numerical examples

Conclusions

Hypo-elliptic simulated annealing

Theorem (Baudoin, Hairer and Teichmann)

Let $U_0 = \min_{x \in M} U(x)$. There are constants R, c > 0 such that the simulated annealing process Y_t with

$$\tau(t) = \frac{c}{\log(R+t)}$$

satisfies

$$P(Y_t \in A_{\delta}) \leq D \sqrt{\mu_{\sigma(t)}(A_{\delta})}, \quad \forall \delta > 0,$$

where $A_{\delta} = \{ x \in M \mid U(x) \ge U_0 + \delta \}.$

Remark

For a non-compact state space M, there are additional boundedness conditions, e.g., on $|U(x) - d(x, x_0)^2|$.

▲□▶▲舂▶▲≧▶▲≧▶ 差 のへで

Numerical examples

ション 小田 マイビット ビー シックション

Set-up in $\mathbb{R}^3 - 1$

Since $g_2^2 \simeq \mathbb{R}^3$, hypo-elliptic simulated annealing in G_2^2 can be interpreted as hypo-elliptic simulated annealing in \mathbb{R}^3 .

$$V_1(x) = \begin{pmatrix} 1\\0\\-x_2 \end{pmatrix}, \quad V_2(x) = \begin{pmatrix} 0\\1\\x_1 \end{pmatrix}.$$

This corresponds to the "sub-Riemannian gradient"

$$\Gamma(U, \cdot)(x) = \begin{pmatrix} \partial_{x_1} U(x) - x_2 \partial_{x_3} U(x) \\ \partial_{x_2} U(x) + x_1 \partial_{x_3} U(x) \\ x_1 \partial_{x_2} U(x) - x_2 \partial_{x_1} U(x) + (x_1^2 + x_2^2) \partial_{x_3} U(x). \end{pmatrix}$$

Numerical examples

Set-up in $\mathbb{R}^3 - 2$

We test a variant of the Rastrigin potential

$$U(x) = 30 + \sum_{i=1}^{3} (x_i^2 - 10\cos(2\pi x_i)).$$

Note that min U = 0 attained at $y_{min} = (0, 0, 0)$.

Remark

The Riemannian gradient ∇U grows linearly in x, whereas the sub-Riemannian gradient $\Gamma(U, \cdot)$ grows like $||x||^3$, which requires a much finer time-resolution for the approximation of the SDE.

Numerical examples

Results - table

Elliptic simulated annealing					
t	$E(Y_t)$	$E(U(Y_t))$	$\min_{\omega} U(Y_t(\omega))$		
1	5.43	55.25	4.45		
256	1.81	8.84	1.14		
2048	1.62	6.77	0.12		
Hypo-elliptic simulated annealing					
t	$E(Y_t)$	$E(U(Y_t))$	$\min_{\omega} U(Y_t(\omega))$		
1	5.92	68.85	6.89		
256	1.88	10.19	0.02		
2048	1.58	6.50	0.32		

- ► $Y_0 = (5, 5, -5), ||Y_0|| = 8.66, U(Y_0) = 50.25, y_{min} = (0, 0, 0)$
- ▶ *c* = 15
- "E" denotes an average over 500 sampled paths

Introduction

Numerical examples

Results – histogram for t = 1

Starting value: $Y_0 = (5, 5, -5), c = 15, y_{min} = (0, 0, 0).$

Introduction

Numerical examples

Results – histogram for t = 4000

Starting value: $Y_0 = (5, 5, -5), c = 15, y_{min} = (0, 0, 0).$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Introduction

Numerical examples

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

э

Results – histogram for t = 4000 for too fast cooling

Starting value: $Y_0 = (5, 5, -5), c = 3, y_{min} = (0, 0, 0).$

Introduction

Numerical examples

Set-up

- ▶ Represent SO(3) ≃ S³
- Choose to vector fields from so(3)

$$V_1 = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad V_2 = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}.$$

Potential

$$U(x) = 4.5 + (x_1 + 1)^4 - 2\cos(2\pi(x_1 + 1)) + x_2^2 - \cos(\pi x_2) + x_3^2 - \frac{1}{2}\cos(2\pi x_3) + x_4^2 - \cos(\pi x_4).$$

ション 小田 マイビット ビー シックション

Set up – 2

Potential

$$U(x) = 4.5 + (x_1 + 1)^4 - 2\cos(2\pi(x_1 + 1)) + x_2^2 - \cos(\pi x_2) + x_3^2 - \frac{1}{2}\cos(2\pi x_3) + x_4^2 - \cos(\pi x_4).$$

- Use a geometrical approximation scheme for the solution of the SDE, i.e., X
 _n ∈ SO(3) for every n
- $\min_y U(y) = 0$ attained at $y_{\min} = (-1, 0, 0, 0)$
- We start at $y_0 = (1, 0, 0, 0)$.
- The scheme is simpler than any elliptic simulated annealing scheme.

ション 小田 マイビット ビー シックション

Set up – 2

Potential

$$U(x) = 4.5 + (x_1 + 1)^4 - 2\cos(2\pi(x_1 + 1)) + x_2^2 - \cos(\pi x_2) + x_3^2 - \frac{1}{2}\cos(2\pi x_3) + x_4^2 - \cos(\pi x_4).$$

- Use a geometrical approximation scheme for the solution of the SDE, i.e., X
 _n ∈ SO(3) for every n
- $\min_y U(y) = 0$ attained at $y_{\min} = (-1, 0, 0, 0)$
- We start at $y_0 = (1, 0, 0, 0)$.
- The scheme is simpler than any elliptic simulated annealing scheme.

Introduction

Numerical examples

Numerical results

Hypo-elliptic simulated annealing, $c = 1.4$					
t	$E(Y_t - y_{\min})$	$E(U(Y_t))$	$\min_{\omega} Y_t(\omega)$		
2	1.0388	3.5504	0.0023		
30	0.6925	1.4253	0.0138		
2046	0.6083	1.0135	0.0101		
65564	0.5871	0.8998	0.0079		
Hypo-elliptic simulated annealing, $c = 5$					
Ну	po-elliptic simulat	ed annealin	g, c = 5		
Hyp t	bo-elliptic simulat $E(Y_t - y_{min})$	ed annealin $E(U(Y_t))$	g, $c = 5$ min _{ω} Y _t (ω)		
Hyp t 2	co-elliptic simulat $E(Y_t - y_{min})$ 1.1191	ed annealin $E(U(Y_t))$ 5.2407	g, $c = 5$ min _{ω} Y _t (ω) 0.1885		
Hyp t 2 30	bo-elliptic simulat $\frac{E(Y_t - y_{min})}{1.1191}$ 0.8964	ed annealin $E(U(Y_t))$ 5.2407 3.2517	g, $c = 5$ min _{ω} Y _t (ω) 0.1885 0.0082		
Hyp t 2 30 2046	bo-elliptic simulat $E(Y_t - y_{min})$ 1.1191 0.8964 0.3868	ed annealin $E(U(Y_t))$ 5.2407 3.2517 1.0925	g, $c = 5$ min _{ω} Y _t (ω) 0.1885 0.0082 0.0075		

► $Y_0 = (1, 0, 0, 0), y_{\min} = (-1, 0, 0, 0), ||Y_0 - y_{\min}|| = 2,$ $U(Y_0) = 16$

The theory of hypo-elliptic simulated annealing

Numerical examples

Conclusions

Histogram – t = 2, c = 5

596

The theory of hypo-elliptic simulated annealing

Numerical examples

Histogram – t = 62, c = 5

~ ~ ~ ~ ~

The theory of hypo-elliptic simulated annealing

Numerical examples

Histogram -t = 65534, c = 5

うくで

Introduction

Numerical examples

Histogram – t = 131070, c = 1.4

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Conclusions

- Construction of hypo-elliptic Smoluchowski (or Ornstein-Uhlenbeck) processes with Gibbs measure as invariant measure
- Simulated annealing for hypo-elliptic Smoluchowski processes
 both theoretical and experimental justification
- Additional numerical cost due to instability in genuinely "elliptic" situations (e.g., when vector fields need to be non-linear for hypo-elliptic simulated annealing)
- Competitive in certain situations of *constraint optimization*

References

- F. Baudoin, M. Hairer, J. Teichmann. *Ornstein-Uhlenbeck processes on Lie groups*, J. Func. Anal., 255(4), 2008.
- B. Driver, T. Melcher. *Hypoelliptic heat kernel inequalities on the Heisenberg group*, J. Func. Anal., 221(2), 2005.
- R. Holley, S. Kusuoka, D. Stroock. Asymptotics of the spectral gap with applications to the theory of simulated annealing, J. Func. Anal., 83(2), 1989.
- S. Kirkpatrick, C. D. Gelett, M. P. Vecchi. *Optimization by simulated annealing*, Science 220, May 1983.
- L. Miclo. Recuit simulé sur Rⁿ. Etude del l'évolution de l'énergie libre., Ann. Inst. H. Poincaré Prob. Stat., 28(2), 1992.