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Smoluchowski dynamics

(1) dYy
t = −

1
2
∇U(Yy

t )dt +
√

KTdWt

I Yy
0 = y ∈ Rn, U : Rn → R and W is an n-dimensional

standard Wiener process
I Unique invariant measure given by the Gibbs measure

µKT (dy) =
1

CT
e−

U(y)
KT dy

I Ergodicity, i.e., Yy converges in law to µKT

I Extensively used in physics and chemistry for the simulation
of canonical ensemble (NVT), i.e., of an ensemble with
constant temperature
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Motivation of simulated annealing

For T → 0, the Gibbs measure

µKT (dy) =
1

CT
e−

U(y)
KT dy { arg min

y∈Rn
U(y).

Choose a “cooling schedule” T = T(t) such that
I the “instantaneously invariant” measures µKT(t) concentrate

around arg min U(y) for t → ∞,
I the (time-inhomogeneous) Markov process

dYy
t = −

1
2
∇U(Yy

t )dt +
√

KT(t)dWt

remains ergodic.
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Spectral gap

Consider the infinitesimal generator Lσ of the Smoluchowski SDE
with constant σ = KT :

Lσf = −
1
2
〈∇U,∇f〉+

σ

2
∆f .

I Lσ is symmetric on L2(Rn, µσ) and has a discrete,
non-positive spectrum.

I Spectral gap

λσ = −
σ

2
inf

{
‖∇f‖L2(µσ)

∣∣∣∣∣ ‖f‖L2(µσ) = 1 and
∫
Rn

fdµσ = 0
}

I λσ controls the convergence of the distribution of the
Smoluchowski process to its invariant distribution.
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Elliptic simulated annealing

Assume that
I U is smooth,
I U and ‖∇U‖ converge to infinity for ‖x‖ → ∞,
I ‖∇U‖2 −∆U is bounded from below.

Theorem

Given a decreasing cooling schedule σ = σ(t)→ 0, such that
σ(t) = k/ log(t) for some constant k > c, where

c = lim
t→∞
−σ(t) log(λσ(t)).

Then the law of the process Yσ(·)
t converges to a distribution

supported on arg miny U(y).
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Heisenberg groups – construction

We consider the Heisenberg groups as a prototype of the state
space of hypo-elliptic simulated annealing.
I A2

p denotes the space of non-commutative polynomials of
degree 2 in p variables {e1, . . . , ep}.

I Forms a nil-potent associative algebra of degree two.
I g2p denotes the Lie algebra generated by {e1, . . . , ep} (with

respect to [x, y] = xy − yx, x, y ∈ A2
p).

I Define exp : g2p → A2
p by its (nil-potent) power series and set

G2
p B exp

(
g

2
p

)
.
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Heisenberg groups – properties

I exp : g2p → G2
p is a global chart of the Lie group G2

p .
I Representation as matrix group, e.g., for p = 2:

G2
2 '


1 a c
0 1 b
0 0 1


∣∣∣∣∣∣∣∣∣ a, b , c ∈ R

 .
I dim(G2

p) = (p + 1)p/2
I Brownian motion Xt defined by X0 = 1 ∈ G2

p and

dXt =

p∑
i=1

Xtei ◦ dB i
t

I Natural to use Xt as driving noise for simulated annealing on
G2

p or g2p
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Elliptic vs. hypo-elliptic simulated annealing

Starting point of elliptic simulated annealing

A small stochastic perturbation of a classical gradient flow allows
the flow to overcome local minima (having the Gibbs measure as
invariant distribution). Decreasing the perturbation slowly enough
induces convergence to arg min U.

Starting point of hypo-elliptic simulated annealing

Given a driving, hypo-elliptic process. Want to construct a Markov
process with invariant measure given by the Gibbs measure. How
does the appropriate drift look like?
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Homogeneous spaces

Definition
Given a Lie group G. A finite-dimensional smooth manifold M such
that
I there is a right-action r : M × G → M, i.e.,

r(r(x, g), h) = r(x, gh), x ∈ M, g, h ∈ G,
I r is transitive, i.e., ∀x ∈ M, g 7→ r(x, g) is surjective,

is called homogeneous space.

Projection: for a fixed point o ∈ M, define π : G → M by
π(g) = r(o, g).
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Setting of hypo-elliptic simulated annealing

Assumption A
1 G is a finite-dimensional, connected Lie group with Lie

algebra g and right-invariant Haar measure η.
2 M is a compact homogeneous space w.r.t. G with a positive

finite measure ηM invariant w.r.t. the right action of G on M.
3 U ∈ C∞(M; [0,∞[).

Remark

Assumption A is satisfied by compact Lie groups like SO(3), acting
on themselves.
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Heisenberg torus

I G2
p is not compact.

I Define a discrete sub-group of G2
p .

I l2p = 〈{ ei | i = 1, . . . , p } ∪ { 1
2 [ei , ej] | i < j }〉Z ⊂ g2P

I L2
p B exp(l2p) ⊂ G2

p

I M B L2
p�G2

p = { L2
p g | g ∈ G2

p } is called Heisenberg torus (not
a group!).

I Construct a right-invariant measure ηM from the Lebesgue
measure on Tp(p+1)/2 using M ' Tp(p+1)/2.

I E.g.,, for p = 2, set e3 = 1
2 [e1, e2] and define φ : g22 → T3 by

φ(z1e1 + z2e2 + z3e3) = ([z1], [z2], [z3 − [z2]z1 + [z1]z2]),

where [z] B z mod 1. Get a diffeom. φ ◦ exp−1 : L2
2�G2

2 → T3.
I M together with ηM satisfies Assumption A.
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Hypo-ellipticity

Assumption B

Let n = dim(G) and assume that there are d < n left-invariant
vector-fields V1, . . . ,Vd on G, which already generate g
(Hörmander condition). Define a stochastic process Xt on G with
X0 = 1 ∈ G and

dXt =
d∑

i=1

Vi(Xt ) ◦ dB i
t .

I Xt is hypo-elliptic, i.e., has a smooth transition density.

I For G = G2
p , d = p <

p(p+1)
2 = n and Vi(x) = xei ,

i = 1, . . . , p.
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Sub-Riemannian gradient

I Drift −1
2∇U is the direction of steepest descent in a

Riemannian environment.
I Noise Xt can traverse the whole space, but locally only

horizontal directions are possible.
I Carré-du-champs operator

Γ(f , g)(x) =
d∑

i=1

Vi f(x)Vig(x), x ∈ G

I Γ(U, ·) : f 7→ Γ(U, f) defines a left-invariant, horizontal
vector-field.
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Hypo-elliptic Smoluchowski dynamics

I σ = σ(t) cooling schedule.
I Push the vector fields V1, . . . ,Vd and Γ(U, ·) to vector fields

VM
1 , . . . ,V

M
d and ΓM(U, ·) on M using π : G → M.

I Define the Smoluchowski dynamics on M

dYt = −
1
2

ΓM(U, ·)(Yt )dt +
√
σ(t)

d∑
i=1

VM
i (Yt ) ◦ dB i

t .

I Locally invariant Gibbs measure

µσ(dx) =
1

Cσ
exp

(
−

U(x)

σ

)
ηM(dx).
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Hypo-elliptic simulated annealing

Theorem (Baudoin, Hairer and Teichmann)

Let U0 = minx∈M U(x). There are constants R , c > 0 such that the
simulated annealing process Yt with

σ(t) =
c

log(R + t)

satisfies
P(Yt ∈ Aδ) ≤ D

√
µσ(t)(Aδ), ∀δ > 0,

where Aδ =
{

x ∈ M
∣∣∣ U(x) ≥ U0 + δ

}
.

Remark
For a non-compact state space M, there are additional
boundedness conditions, e.g., on

∣∣∣U(x) − d(x, x0)2
∣∣∣.
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Set-up in R3 – 1

Since g22 ' R
3, hypo-elliptic simulated annealing in G2

2 can be
interpreted as hypo-elliptic simulated annealing in R3.

V1(x) =

 1
0
−x2

 , V2(x) =

 0
1
x1

 .
This corresponds to the “sub-Riemannian gradient”

Γ(U, ·)(x) =

 ∂x1U(x) − x2∂x3U(x)
∂x2U(x) + x1∂x3U(x)

x1∂x2U(x) − x2∂x1U(x) + (x2
1 + x2

2 )∂x3U(x).


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Set-up in R3 – 2

We test a variant of the Rastrigin potential

U(x) = 30 +
3∑

i=1

(
x2

i − 10 cos(2πxi)
)
.

Note that min U = 0 attained at ymin = (0, 0, 0).

Remark
The Riemannian gradient ∇U grows linearly in x, whereas the
sub-Riemannian gradient Γ(U, ·) grows like ‖x‖3, which requires a
much finer time-resolution for the approximation of the SDE.
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Results – table

Elliptic simulated annealing
t E(‖Yt‖) E(U(Yt )) minω U(Yt (ω))

1 5.43 55.25 4.45
256 1.81 8.84 1.14

2048 1.62 6.77 0.12
Hypo-elliptic simulated annealing

t E(‖Yt‖) E(U(Yt )) minω U(Yt (ω))

1 5.92 68.85 6.89
256 1.88 10.19 0.02

2048 1.58 6.50 0.32

I Y0 = (5, 5,−5), ‖Y0‖ = 8.66, U(Y0) = 50.25, ymin = (0, 0, 0)

I c = 15
I “E” denotes an average over 500 sampled paths
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Results – histogram for t = 1

Starting value: Y0 = (5, 5,−5), c = 15, ymin = (0, 0, 0).
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Results – histogram for t = 4000

Starting value: Y0 = (5, 5,−5), c = 15, ymin = (0, 0, 0).
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Results – histogram for t = 4000 for too fast cooling

Starting value: Y0 = (5, 5,−5), c = 3, ymin = (0, 0, 0).
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Set-up

I Represent SO(3) ' S3

I Choose to vector fields from so(3)

V1 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , V2 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 .
I Potential

U(x) = 4.5 + (x1 + 1)4 −2 cos(2π(x1 + 1)) + x2
2 − cos(πx2)+

+ x2
3 −

1
2

cos(2πx3) + x2
4 − cos(πx4).
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Set up – 2

I Potential

U(x) = 4.5 + (x1 + 1)4 −2 cos(2π(x1 + 1)) + x2
2 − cos(πx2)+

+ x2
3 −

1
2

cos(2πx3) + x2
4 − cos(πx4).

I Use a geometrical approximation scheme for the solution of
the SDE, i.e., Xn ∈ SO(3) for every n

I miny U(y) = 0 attained at ymin = (−1, 0, 0, 0)

I We start at y0 = (1, 0, 0, 0).
I The scheme is simpler than any elliptic simulated annealing

scheme.
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Numerical results

Hypo-elliptic simulated annealing, c = 1.4
t E(‖Yt − ymin‖) E(U(Yt )) minω Yt (ω)

2 1.0388 3.5504 0.0023
30 0.6925 1.4253 0.0138

2046 0.6083 1.0135 0.0101
65564 0.5871 0.8998 0.0079

Hypo-elliptic simulated annealing, c = 5
t E(‖Yt − ymin‖) E(U(Yt )) minω Yt (ω)

2 1.1191 5.2407 0.1885
30 0.8964 3.2517 0.0082

2046 0.3868 1.0925 0.0075
65564 0.2897 0.6725 0.0596

I Y0 = (1, 0, 0, 0), ymin = (−1, 0, 0, 0), ‖Y0 − ymin‖ = 2,
U(Y0) = 16
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Histogram – t = 2, c = 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

I c = 5



Introduction The theory of hypo-elliptic simulated annealing Numerical examples Conclusions

Histogram – t = 62, c = 5
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Histogram – t = 65534, c = 5
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Histogram – t = 131070, c = 1.4
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Conclusions

I Construction of hypo-elliptic Smoluchowski (or
Ornstein-Uhlenbeck) processes with Gibbs measure as
invariant measure

I Simulated annealing for hypo-elliptic Smoluchowski processes
– both theoretical and experimental justification

I Additional numerical cost due to instability in genuinely
“elliptic” situations (e.g., when vector fields need to be
non-linear for hypo-elliptic simulated annealing)

I Competitive in certain situations of constraint optimization
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