
BROWNIAN MOTION AND ITÔ CALCULUS

CHRISTIAN BAYER

Abstract. The aim of this text is to give an introduction to Itô calculus. It

is based on a short course about the subject given by the author at the WK-
Summer camp 2006 at the lake Weissensee in Austria. The emphasis lies on

the probabilistic basics of the stochastic integration and, in the second part,
on the connections with PDEs.
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1. Preliminaries from Probability Theory

Let
(
Ω,F , P

)
be a probability space. Mostly for convenience, we will usually

assume the probability space to be complete, i. e. given A ∈ F with P (A) = 0 and
1
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B ⊂ A, then B ∈ F . Completeness allows us to avoid formulations like “property
. . . is satisfied outside a set with probability 0” in favor of “property . . . is satisfied
almost surely (a. s.)”, and the assumption does not cost us anything, since it is
always possible to pass to the completion of a probability space.

1.1. Independence. One of the most important notions of probability is the no-
tion of independence, which plays a dominant rôle in statistics and somehow sep-
arates probability theory from measure theorem. We start with the elementary
definition.

Definition 1.1. Given two measurable sets A and B. The sets are called indepen-
dent if

P (A ∩B) = P (A)P (B).
We write A ⊥⊥ B.

This definition is not satisfying, since we are really interested whether two – or
more – given random variables are independent or not. By a random variable we
understand a measurable function from the measurable space (Ω,F) to a polish
– i. e. seperable, complete, metrizeable – space endowed with its Borel σ-field.
Usually, this space will be R or Rd, but in some situations we will consider random
variables taking values in more general polish spaces. Polish spaces are attractive
since integration theory can be constructed using the same ideas as in the case
of finite-dimensional vector spaces. We do not go into details her and refer to
Teichmann[10].

Definition 1.2. Given n random variables X1, . . . , Xn taking values in some polish
space (H,B(H)), where B(H) denotes the Borel σ-field on H. X1, . . . , Xn are called
independent if for all bounded and measurable functions fi : H → R, i = 1, . . . , n,
we have

E
(
f1(X1) · · · fn(Xn)

)
= E

(
f1(X1)

)
· · ·E

(
fn(Xn)

)
.

A family {Xi, i ∈ I} is called independent if the elements of each finite subset
are independent. Again we use the symbol ⊥⊥ to indicate independence of random
variables.

Remark 1.3. As the following example shows, it is not enough to require that each
Xi is (pairwise) independent of each Xj , i, j = 1, . . . , n.

Example 1.4. Let X and Y be two independent random variables with P (X =
1) = P (Y = 1) = 1

2 and P (X = −1) = P (Y = −1) = 1
2 , i. e.

P
(
X = (−1)i, Y = (−1)j

)
=

1
4
, i, j ∈ {0, 1}.

Define the random variable Z = XY , i. e. Z(ω) = X(ω)Y (ω). Elementary calcu-
lations show that both X ⊥⊥ Z and Y ⊥⊥ Z, but the three random variables X, Y ,
and Z are obviously not independent.

Lemma 1.5. Let µi = (Xi)∗P be the law of the random variable Xi, i = 1, . . . , n,
i. e. µi is the probability measure on B(H) satisfying µi(A) = P (Xi ∈ A) for
A ∈ B(H). The random variables X1, . . . , Xn are independent if and only if their
joint law µ on B(Hn), i. e. the law of the random vector X = (X1, . . . , Xn), is the
product measure of the µis, in symbols µ = µ1 ⊗ · · · ⊗ µn.

Proof. The lemma follows easily using the fact that B(Hd) is generated by the
system of all measurable rectangles A1 × · · · ×An, Ai ∈ B(H), i = 1, . . . , n. �

Even this definition is not really satisfactory for us. The notion of independence
of σ-fields allows us to say that a random variable is independent of a σ-field, i. e. of
every random variable measurable with respect to this σ-field.
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Definition 1.6. Let {Gi, i ∈ I} be a family of σ-fields on Ω, Gi ⊂ F , ∀i ∈ I. The
σ-fields Gi are independent if ∀n ∈ N, ∀i1, . . . , in ∈ I with ij 6= il for j 6= 1 and
for all Gij -measurable random variables Xij , j = 1, . . . , n we have: the random
variables Xi1 , . . . , Xin are independent.

Remark 1.7. Note that a collection of random variables {Xi, i ∈ I} is independent
if and only if the collection of the respective generated σ-fields {σ(Xi), i ∈ I} is
independent. Recall that the σ-field σ(f) generated by a function f : Ω → H is the
smallest σ-field on Ω such that f is Borel-measurable.

1.2. Conditional Expectations. The concept of conditional expectations and
probabilities is maybe one of the most difficult concepts in probability theory, since
often rather subtle problems appear. We begin with the general definition. Note
that we work with R-valued random variables in this subsection. The generalization
to Rd-valued ones is obvious, as is the generalization to Banach space valued random
variables.

Definition 1.8. Given X ∈ L1
(
Ω,F , P

)
and a sub-σ-field G ⊂ F . The conditional

expectation of X with respect to G is the unique G-measurable random variable
Z ∈ L1

(
Ω,G, P

)
such that

E
(
Y Z

)
= E

(
Y X

)
, ∀Y ∈ L∞

(
Ω,G, P

)
.

We write Z = E
(
X|G

)
. (Note that we used the same symbol for the measure P on

F and its restriction to G.)

Proof of existence. Let us first assume that X ≥ 0 and define the measure µX on
(Ω,G) by

µX(C) = E(1CX), C ∈ G,
where the indicator function of the set C is defined by

1C(ω) =

{
1 ω ∈ C
0 ω /∈ C

.

This measure is absolutely continuous with respect to P , therefore the Radon-
Nikodym theorem implies existence of a (unique) density, i. e. of a (non-negative)
function Z ∈ L1(Ω,G, P ) such that

E(Y X) =
∫

Ω

Y (ω)µX(dω) =
∫

Ω

Y (ω)Z(ω)P (dω) = E(ZY )

for Y ∈ L∞(Ω,G, P ).
The proof in the general case follows by considering the positive and the negative

part of X separately. �

Remark 1.9. The conditional expectation is an almost surely defined random vari-
able. It is unique as an element of L1(Ω,G, P ).

Remark 1.10 (Conditional expectation as an orthogonal projection). Assume that G
contains all F-measurable sets of P -measure 0. Then we may consider L2(Ω,G, P ) ⊂
L2(Ω,F , P ) and it is easy to see that L2(G) is even a closed subspace of L2(F).
Therefore, there is an orthogonal projection L2(F) → L2(G), and this orthogonal
projection is nothing else but the conditional expectation. In other words, the
conditional expectation of an L2-random variable is the best approximation by a
G-measurable random variable in the least square sense.

Proposition 1.11. The conditional expectation has the following properties.
(1) Linearity: α, β ∈ R, X,Y ∈ L1(Ω,F , P ), then

E
(
αX + βY

∣∣G)
= αE

(
X

∣∣G)
+ βE

(
Y

∣∣G)
,
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where the equality, as usual, is understood in L1, i. e. a. s.
(2) Monotonicity: X,Y ∈ L1(F), X ≥ Y a. s., then E(X|G) ≥ E(Y |G) a. s.
(3) Jensen’s inequality: X ∈ L1(G), ϕ : R → R convex, then E(ϕ(X)|G) ≥
ϕ
(
E(X|G)

)
a. s.

(4) Continuity: E(·|G) : L1(Ω,F , P ) → L1(Ω,G, P ) is continuous. More precisely,

E
(
|E(X|G)|

)
≤ E

(
|X|

)
, X ∈ L1

(
Ω,F , P

)
.

By restriction, we get continuous maps E(·|G) : Lp(Ω,F , P ) → Lp(Ω,G, P ), 1 <
p <∞.
(5) For any X ∈ L1(F) we have E

(
E(X|G)

)
= E(X).

(6) If X ∈ L1(F) is actually G-measurable, then E(X|G) = X a. s. In contrast, if
X ⊥⊥ G (i. e. σ(X) ⊥⊥ G, then E(X|G) = E(X) a. s.
(7) Tower law: Given another σ-field H ⊂ G ⊂ F and X ∈ L1(F), then we have
the equality (in L1(Ω,H, P ))

E
(
E

(
X

∣∣G)∣∣H)
= E

(
X

∣∣H)
.

(8) For X ∈ Lp(F) and Y ∈ Lq(G), 1 ≤ p ≤ ∞, 1
p + 1

q = 1, we get

E
(
XY

∣∣G)
= Y E

(
X

∣∣G)
, a. s.

Proof. (1) and (2) are easily seen, (3) follows using similar ideas as for Jensen’s
inequality for the expectation.

(5) is proved by using the G-measurable function Y ≡ 1 in the defining property
of the conditional expectation, see Definition 1.8. Note that (5) can be interpreted
as a special case of the tower law for the trivial σ-field H = {∅,Ω}.

For the proof of (4) note that monotonicity implies that |E(X|G)| ≤ E(|X| |G)
and the above inequality follows by property (5). Continuity of the restriction to
Lp follows in the same way, using the Jensen inequality.

The first part of (6) follows immediately from the definition. Given X ⊥⊥ G,
X ∈ L1(F), Y ∈ L∞(G) we have, using X ⊥⊥ Y ,

E(XY ) = E(X)E(Y ) = E
(
E(X)Y

)
.

Thus, we can choose E(X) = E(X|G).
For the proof of (8), choose V ∈ L∞(G) and note that

E(XY V ) = E
(
E(XY |G)V

)
and – using an L∞-approximation of Y V –

E(XY V ) = E
(
E(X|G)Y V ),

and consequently E(XY |G) = Y E(X|G).
For the tower law we need to verify that E(E(X|G)Y ) = E(XY ), for all Y ∈

L∞(H). Using properties (5) and (8), we can argue as follows:

E
(
E(X|G)Y

)
= E

(
E(XY |G)

)
= E(XY ). �

Definition 1.12. The conditional probability of a set A ∈ F with respect to the
σ-field G is the random variable P (A|G) = E(1A|G).

Note that the conditional probability does not necessarily define a random mea-
sure, i. e. it might not be true that for almost all ω the function F → R, A 7→
P (A|G)(ω) is a probability measure. Indeed, for a given set A ∈ F it is certainly
true (due to monotonicity of the conditional expectation) that P (A|G)(ω) ∈ [0, 1],
for almost all ω. If, however, F contains an uncountably infinite number of sets,
we cannot be sure that ∀A ∈ F : P (A|G)(ω) ∈ [0, 1] for almost all ω, since the
intersection of uncountably many sets with probability 1 does not need to have
probability 1.
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It is always possible to choose the conditional probability of a probability measure
on R (or Rd) as a random measure, and we will do so.

We will also need the notion of the conditional expectation of one random vari-
able conditioned on the event that some other random variable takes a certain
value. Given two random variables X and Y on (Ω,F , P ), it is rather obvious to
define the conditional expectation of X given Y by

E(X|Y ) = E(X|σ(Y )).

Definition 1.13. Let h : R → R be a Borel-measurable, Y∗P -integrable function
such that E(X|Y )(ω) = h(Y (ω)) for almost all ω. Then we define the expectation
of X given Y = y by

E(X|Y = y) = h(y), y ∈ R.
Note that such a function h always exists and is Y∗P -a. s. unique.

1.3. Central Limit Theorem and Law of Large Numbers. The central limit
theorem is one of the most important theorems in probability and statistics. It
roughly says that the average of independent random variables is asymptotically
normal. In many cases, the central limit theorem is applied as follows: one is
given a random variable X which is either explicitly given as an average of many
independent random variables – for example, in Monte-carlo approximations – or
can at least be interpreted in that way. Then, if the number of independent variables
is large enough, one replaces the unknown true distribution of X by a normal
distribution.

We make precise what we mean by “asymptotic normality” by formulating one
version of the theorem.

Theorem 1.14. Let (Xn)n∈N be a sequence of independent, identically distributed
(i. i. d.) real random variables such that both the expected value m = E(X1) and
the variance σ2 = E((X1 −m)2) exist. Let Sn =

∑n
i=1Xi. Then

√
n

1
nSn −m

σ
⇀ N (0, 1),

where N (0, 1) is a standard normal distribution and the limit is understood in the
sense of weak convergence.

Remark 1.15. Recall that a sequence of probability measures (µn)n∈N on some pol-
ish space (H,B(H)) converges weakly to some probability measure µ on (H,B(H))
if for all continuous, bounded f : H → R we have∫

H

f(x)µn(dx) →
∫

H

f(x)µ(dx).

A sequence of random variables converges weakly to some distribution if their laws
converges weakly to the distribution in the above sense.

A similar theorem holds for Rd-valued random variables, and we will later en-
counter an infinite-dimensional version.

The strong law of large numbers says that the average of an i. i. d. sequence of
integrable random variables converges almost surely to the expected value of the
random variable. It is very helpful if we want to approximate the expected value
of a given random variable X ∈ L1(Ω,F , P ). Given a sequence Xn of independent
copies of X, i. e. the (Xn)n∈N are independent and all of them have the same law
as X. Consequently, Xn ∈ L1(Ω,F , P ) for each n.

Theorem 1.16. Let Sn = X1 + · · · + Xn, n ∈ N, denote the sequence of partial
sums of (Xn). Then

lim
n→∞

Sn

n
= E(X) a. s.
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For proofs and more general formulations of the central limit theorem and the
strong law of large numbers see, for example, Bauer[1] or Billingsley[3].

1.4. Gaussian Random Variables. In this subsection we study properties of
multi-dimensional Gaussian random variables. Recall that the one-dimensional
Gaussian measure with mean m ∈ R and variance σ2 > 0 has the density p(x) =

1√
2πσ2 exp

(
− (x−m)2

2σ2

)
.

Definition 1.17. Given an Rd-valued random variable X. Define the vector m =
E(X) = (E(X1), . . . , E(Xd)) and the covariance matrix Σ = (σij)i,j=1,...,d by σij =
E

(
(Xi − E(Xi))(Xj − E(Xj))

)
, i, j = 1 . . . , d. X follows a Gaussian distribution

with mean m and covariance matrix Σ, symbolically X ∼ N (m,Σ), if all the one-
dimensional projections have (one-dimensional) Gaussian distributions:

〈λ ,X〉 ∼ N
(
〈λ ,m〉 , 〈λ ,Σλ〉

)
, ∀λ ∈ Rd.

Remark 1.18. Note that the covariance matrix is a symmetric, non-negative definite
matrix. For us, Dirac distributions are Gaussian distributions (with variance 0).
This is convenient for notational purposes and also because with this convention,
the L2-limit of a sequence of Gaussian random variables is again a Gaussian random
variable.

Furthermore, note that for an Rd-valued Gaussian random variableX and anm×
d-matrix A, the random variable AX is nn Rm-valued Gaussian random variable.

Proposition 1.19. Given a d-dimensional Gaussian random variable X with pair-
wise uncorrelated components, i. e. with a diagonal covariance matrix. Then the
components X1, . . . , Xd of X are independent.

Proof. The proof is rather simple, since for a diagonal covariance matrix the distri-
bution function of the vector X is the product of the distribution functions of its
components, which implies independence of the components. �

Remark 1.20. Proposition 1.19 says that uncorrelated random variables, which
are jointly Gaussian, are independent. Of course, uncorrelatedness usually does
not imply independence, which makes it so very hard to determine independence
in practice. As the following example shows, this is not even true for Gaussian
random variables which are not jointly Gaussian.

Example 1.21. Let X ∼ N (0, 1) and for each c ≥ 0 define the random variable
Yc by

Yc(ω) =

{
X(ω), |X(ω)| ≤ c

−X(ω), |X(ω)| > c
.

Then, for each non-negative c, Yc ∼ N (0, 1). We calculate the correlation between
X and Yc. For c = 0, Y0 = −X and thus E(XY0) = −1. In general,

E(XYc) = E
(
X21{|X|≤c}

)
− E

(
X21{|X|>c}

)
.

For c → ∞, the second term on the right hand side converges to 0 by dominated
convergence. Thus, limc→∞E(XYc) = 1, which implies – by continuity in c –
existence of a c0 such that X and Yc0 are uncorrelated. (Numerically, c0 ≈ 0.54.)
But for each c,

P (X > c, Yc > c) = 0 6= P (X > c)P (Yc > c),

implying that X and Yc are never independent. It is easy to see (directly) that the
vector (X,Yc) is not Gaussian.
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2. Stochastic Processes

Definition 2.1. Given a probability space (Ω,F , P ) and an index set I, a stochastic
process is a collection {Si, i ∈ I} of random variables Si : Ω → R (or Rd, we will
not discuss more general processes), i ∈ I.

We are mainly interested in stochastic processes in continuous time, i. e. with
I = [0, T ] or I = [0,∞[ and then we write (St)t∈[0,T ] or (St)t∈[0,∞[, respectively.

2.1. Kolmogorov’s Extension Theorem. In modeling, one often postulates dis-
tributional properties of the finite dimensional projections (Si1 , . . . , Sin

), i1, . . . , in ∈
I, of a stochastic process and asks oneself whether it is possible to construct a pro-
cess satisfying these properties (it might happen the some postulates contradict
each other, even though it is not obvious from the beginning; we will see a few
examples of this kind.)

More precisely, given the finite dimensional marginals, i. e. the distributions of
all finite-dimensional projections of a process, is it possible to find a probability
space such that one can define a stochastic process thereon having the required
marginals? It is clear, that some consistency relations must hold: the distribution
of (Si1 , Si2) already determines both the distributions of Si1 and Si2 and (Si2 , Si1).
It turns out, that this consistency requirement is already enough to guarantee the
existence of a stochastic process.

Theorem 2.2. Given an index set I and a family {µi1,...,in | n ∈ N, i1, . . . , in ∈ I},
where µi1,...,in is a probability measures on Rn (or Rdn), satisfying the consistency
relations

µi1,...,in
(Ai1 × · · · ×Ain

) = µiσ(1),...,iσ(n)(Aiσ(1) × · · · ×Aiσ(n))

for all n ∈ N, i1, . . . , in ∈ I, Ai1 , . . . , Ain ∈ B(R) and all permutations σ of n
numbers, and

µi1,...,in
(Ai1 × · · · ×Ain

) = µi1,...,in,j1,...,jm
(Ai1 × · · · ×Ain

× R× · · · × R)

for all n,m ∈ N, i1, . . . , in, j1, . . . , jm ∈ I, Ai1 , . . . , Ain
∈ B(R) (or the respective

conditions for Rd instead of R). Then there is a probability space (Ω,F , P ) and a
stochastic process (Si)i∈I thereon such that

µi1,...,in
(Ai1 × · · · ×Ain

) = P (Si1 ∈ Ai1 , . . . , Sin
∈ Ain

)

for all n ∈ N, i1, . . . , in ∈ I, Ai1 , . . . , Ain
∈ B(R). In other words, µi1,...,in

=
(Si1 , . . . , Sin)∗P .

Remark 2.3. The proof of Kolmogorov’s extension theorem shows that we can
choose the probability space Ω = RI with the σ-field generated by the 1-dimensional
projections, i. e. F = σ({πi, i ∈ I}) = B(R)⊗I , where πi : RI → R, (xj)j∈I 7→ xi,
and Si = πi, i ∈ I. In the case of I = [0,∞[, we get the space of all functions
[0,∞[→ R as our probability space. (Note that it is not surprising that one might
need a large enough probability space.) This representation of the stochastic process
– with Ω = RI , F = B(R)⊗I , Si(ω) = ωi and P such that S has the prescribed
marginals – is called canonical representation of the process.

The proof is quite technical. We refer to Bauer[1] and Billingsley[3] for a measure
theoretic proof and to Teichmann[10] for a functional analytic proof.

Remark 2.4. It is possible to interpret the newly constructed probability space
(Ω,F , P ) as the projective limit of the family of probability spaces (Rn,B(Rn), µi1,...,in

)
or the respective spaces in the d-dimensional case.
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2.2. Equality of Stochastic processes. Apart from equality of stochastic pro-
cesses in terms of finite-dimensional marginals, we will discuss two important no-
tions of equality. In this subsection, we consider stochastic processes defined on
some complete probability space (Ω,F , P ) indexed by a general index set I.

Definition 2.5. Two stochastic processes S and U are indistinguishable if

P
(
{ω ∈ Ω | ∀i ∈ I : Si(ω) = Ui(ω)}

)
= 1.

This is one occasion where it is convenient to assume completeness of the proba-
bility space: otherwise, we could not be sure that the set above is even measurable,
even if we knew that the inner measure of the set was 1.

Indistinguishability is a very strong notion, and, indeed, it is often too strong,
as the following example shows.

Example 2.6. Let (Ω,F , P ) = ([0, 1],B([0, 1]), dx) and define the following sto-
chastic processes (indexed by I = [0, 1]) thereon: Si(ω) = 0 for all ω ∈ [0, 1] and

Ui(ω) =

{
0 ω 6= i

1 ω = i
,

i, ω ∈ [0, 1]. Then, even though for each i, Ui 6= 1 in only one ω, we have P ({∀i ∈
[0, 1] : Si = Ui}) = 0, there is not a single ω such that Si(ω) = Ui(ω) for all
i. Nevertheless, the finite-dimensional marginals of these two processes are the
same. This already shows that the finite-dimensional marginals do not uniquely
determine a process. (This is rather obvious since the finite-dimensional marginals
do not determine the probability space at all, provided it is rich enough.)

Definition 2.7. Two stochastic processes S and U are versions or modifications
of each other if

∀i ∈ I : P
(
{ω ∈ Ω | Si(ω) = Ui(ω)}

)
= 1.

Naturally, Definition 2.7 is much weaker than Definition 2.5. The two definitions
are equivalent if the index set is at most countably infinite. Note that two processes
which are versions of each others have the same finite-dimensional distributions.

2.3. Regularity of Stochastic Processes. In this subsection, we consider a sto-
chastic process (St)t∈[0,∞[ in continuous time with values in R defined on a proba-
bility space (Ω,F , P ). It is easy to generalize the notions to processes with values
in polish spaces.

Definition 2.8. S is called measurable if the mapping S : [0,∞[×Ω → R, (t, ω) 7→
St(ω) is measurable with respect to the product σ-field B([0,∞[)⊗F .

Despite being fairly natural, the notion of measurability of processes does not
play a big rôle in the theory.

Definition 2.9. A stochastic process S is called separable if there is a countable,
dense subset D ⊂ [0,∞[ and a measurable set N ∈ F with P (N) = 0 such that
∀t ∈ [0,∞[ and any sequence (tn)n∈N with tn ∈ D, n ∈ N, and limn→∞ tn = t we
have:

∃ lim
n→∞

Stn
(ω) = St(ω), ∀ω ∈ N c.

Definition 2.10. S is called continuous if there is a measurable set N ∈ F with
P (N) = 0 such that ∀ω ∈ N c the function t 7→ St(ω) is continuous.

Remark 2.11. For a fixed ω, the function t 7→ St(ω) is called a trajectory or a path
of the process.
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Clearly, any continuous (separable) process allows for a modification such that
continuity (separability) holds for all sample paths, i. e. ∀ω. Any continuous process
is also separable. It can be shown that each real-valued stochastic process has
a separable modification (it might happen that the separable modification takes
values in R), see Billingsley[3], Theorem 38.1, but there are real-valued stochastic
processes which do not have measurable modifications, see Stoyanov[9].

Kolmogorov established a powerful method to determine whether a given process
has a continuous modification. Recall that a function f : [0,∞[→ R is called locally
Hölder continuous of order γ if ∀t0 ∈ [0,∞[ we find a neighborhood U of t0 and a
constant C > 0 such that

sup
s,t∈U,s6=t

|f(s)− f(t)|γ

|s− t|
≤ C.

Theorem 2.12 (Kolmogorov-Čentsov). Given a stochastic process S such that
there are positive constants α, β, c with

E
(
|Ss − St|α

)
≤ c |s− t|1+β

, ∀s, t ∈ [0,∞[.

Then there is a modification S′ of S such that all trajectories of S′ are locally Hölder
continuous of order γ for all 0 < γ < β

α . In particular, S′ is continuous.

Again, the proof is rather technical and therefore omitted, e. g. see Bauer[1] or
Teichmann[10].

Finally, we want to be able to define an integral with respect to stochastic pro-
cesses. For this reason, it is natural to discuss processes with trajectories of finite
variation. Given f : [0,∞[→ R, the variation of f on [0, t] is defined by

(2.1) V (f)t = sup
{n−1∑

i=1

|f(ti+1)− f(ti)|
∣∣∣ n ∈ N, 0 = t0 < · · · < tn = t

}
.

The total variation of f is the function t 7→ V (f)t and we say that f has finite
variation if V (f)t <∞, ∀t ∈ [0,∞[. Note that a function f of finite variation may
have unbounded variation in the sense that limt→∞ V (f)t = ∞.

Definition 2.13. A process S has finite variation if there is a measurable set
N ∈ F with P (N) = 0 such that ∀ω ∈ N c the trajectories t 7→ St(ω) are functions
of finite variation.

2.4. Stochastic Processes as Measures on Path Space. Kolmogorov’s ex-
tension theorem, Theorem 2.2, provides a construction of a probability measure
P on the measurable space (R[0,∞[,B(R)⊗[0,∞[) such that the stochastic process
given by the evaluation functionals St(ω) = πt(ω) = ω(t) has the prescribed finite-
dimensional marginals.

Now we try to take another point of view: regard a stochastic process (St)t∈[0,∞[

– defined on a general probability space (Ω,F , P ) – as a random variable taking
values in a suitable space of curves, i. e. consider the random variable

(2.2) ω 7→ S·(ω) = (t 7→ St(ω)).

Of course, S· is always a function, thus ∀ω ∈ Ω : S·(ω) ∈ R[0,∞[, and we even have
S· : (Ω,F) → (R[0,∞[,B(R)⊗[0,∞[) is a measurable function. Indeed, measurability
of S· with respect to (F ,B(R)⊗[0,∞[) is equivalent to measurability of St with
respect to (F ,B(R)) for all t ∈ [0,∞[ – recall that B(R)⊗[0,∞[ is nothing else but
the σ-field generated by all the projections – and the latter is satisfied by definition
of a stochastic process. Therefore, we can define the law (S·)∗P of S·, which is
a probability measure on (R[0,∞[,B(R)⊗[0,∞[), in fact, the law of S· is just the
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probability measure given in the canonical representation of the process, i. e. the
probability measure given by Kolmogorov’s extension theorem!

Remark 2.14. In some sense, one wants to use the canonical representation of a
stochastic process (as a measure on its path-space), since this contains all necessary
information and it is often easier to work with a more concrete space than with
the general, abstract probability space. Sometimes, one also uses the additional
structure of path space, like the vector space structure.

While the canonical representation of a process is appealing because of its gen-
erality, it has severe restrictions: some very natural, interesting subsets of R[0,∞[

turn out to be non-measurable.

Lemma 2.15. ∀A ∈ B(R)⊗[0,∞[ ∃I ⊂ [0,∞[ with |I| ≤ ℵ0 such that ∀x ∈ R[0,∞[

and ∀y ∈ A we have:

∀t ∈ [0,∞[: x(t) = y(t) =⇒ x ∈ A.

Less formal, Lemma 2.15 says that a B(R)⊗[0,∞[-measurable set is already de-
termined by countably many time points. For a proof of the lemma see Bauer[1] or
Billingsley[3].

Corollary 2.16. Let C([0,∞[) ⊂ R[0,∞[ denote the set of all continuous functions
f : [0,∞[→ R. Then C([0,∞[) /∈ B(R)⊗[0,∞[. In other words: a statement like “the
process S almost surely has continuous paths” does not make sense.

Proof. Assume that C([0,∞[) is measurable and let y be any continuous function.
Let I be the countable set from Lemma 2.15. We can certainly find a non-continuous
function x : [0,∞[→ R such that ∀t ∈ I : x(t) = y(t). By assumption, we may
conclude that x ∈ C([0,∞[), i. e. x is continuous, a contradiction. �

Remark 2.17. If we work with the canonical representation, a statement like
“P

(
C([0,∞[)

)
= 0.7” is not well-defined. In the case of continuous processes, we

could, of course, pass to the completion. Nevertheless, it is unsatisfactory that
sets like the set of continuous functions or the set of separable functions are not
measurable.

If we are given a continuous stochastic process S it just does not make sense to
work with the full canonical probability space: after all, we know that the (outer)
probability of all non-continuous paths is 0, i. e. the process is concentrated on
a very small subspace. There are basically two possible approaches to define S
as a random variable on the space of continuous functions, both of which lead to
the same result. Recall that C([0,∞[) is a polish space when endowed with the
topology of uniform convergence on compact subsets.

Lemma 2.18. The trace σ-field C([0,∞[) ∩ B(R)⊗[0,∞[ = {C([0,∞[) ∩ A | A ∈
B(R)⊗[0,∞[} coincides with the Borel σ-field on C([0,∞[):

C([0,∞[) ∩ B(R)⊗[0,∞[ = B
(
C([0,∞[)

)
.

For the proof see Bauer[1]. Now we can either restrict P to C([0,∞[) by consid-
ering the trace probability P ′

(
A∩C([0,∞[)

)
= P (A) for A∩C([0,∞[) or we again

consider the map S· : Ω → C([0,∞[), this time as a random variable taking values
in the measurable space

(
C([0,∞[),B(C([0,∞[))

)
, and define P ′ as the law of S·,

i. e. P ′ = (S·)∗P .
Summarizing this subsection, when working with a continuous stochastic process,

we can always assume that Ω = C([0,∞[) (or C([0, T ])) endowed with its Borel σ-
field.
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2.5. Martingales. The concepts of martingales is one of the most fundamental
concepts in the theory of stochastic processes. Unfortunately, lack of time and
space does not allow us to go into details, so this subsection is nothing more but a
collection of a few definitions. We start with a probability space (Ω,F , P ).

Definition 2.19. A filtration is an increasing family (Ft)t∈[0,∞[ (or t ∈ [0, T ], or
t ∈ N,. . . ) of sub-σ-fields of F , i. e. ∀t : Ft ⊂ F and for s < t we have Fs ⊂ Ft.
The quadruple (Ω,F , (Ft), P ) is called a filtered probability space.
A stochastic process (St)t∈[0,∞[ is called adapted to the filtration (Ft)t∈[0,∞[ if St

is Ft-measurable for all t ∈ [0,∞[.

Definition 2.20. Given a filtered probability space as in Definition 2.19. A mar-
tingale is an adapted stochastic process S such that for all t ∈ [0,∞[ we have
St ∈ L1(Ω,F , P ) and

E(St|Fs) = Ss a. s. , ∀s < t.

Note that the martingale property depends on the filtration and on the probabil-
ity measure. The problems whether a martingale remains a martingale or whether
a specific stochastic process becomes a martingale under a change of the filtration
or a change of the probability measure are interesting and often very difficult.

Remark 2.21. If the index t actually represents time, a filtration is often interpreted
as a model of the flow of information: Ft is thought to represent all the information
available at time t – e. g. available to all the traders on the market. Then, a
martingale could be interpreted as a fair game: the best guess – in the least square
sense – of the future value ST at the present time t is the current value St.

Definition 2.22. A stopping time is a random variable τ : Ω → [0,∞] such that
{ω | τ(ω) ≤ t} ∈ Ft, ∀t ∈ [0,∞[. Note that a stopping time may have the value
+∞.

In stochastic analysis, one often assumes the following condition on the under-
lying filtered probability space.

Definition 2.23. A filtered probability space is said to satisfy the usual conditions
if (1) (Ω,F , P ) is a complete probability space and ∀t the σ-field Ft contains all
the sets of F with probability 0 and
(2) The filtration is right-continuous, i. e. ∀t

Ft =
⋂
s>t

Fs.

Definition 2.24. A locale martingale is a stochastic process S such that there is a
sequence (τn)n∈N of stopping times with τn →∞ for n→∞ such that the stopped
process

Sτn
t = St∧τn = Smin(t,τn)

is a martingale for each n ∈ N. The sequence (τn)n∈N is called localizing sequence
for the locale martingale S.

3. Brownian Motion

Brownian motion is named after the British botanist Robert Brown, who first
observed the shivery motion of pollen particles in liquid. As a mathematical model,
it was first introduced by Thorvald Thiele in 1880. Independently, Louis Bachelier
used Brownian motion as a model for stock markets already in his PhD thesis
in 1900. 5 years later, Albert Einstein introduced (the mathematical) Brownian
motion to physics. Brownian motion is also known as Wiener process after Norbert
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Wiener who – together with Paul Lévy – made important contributions to the
analysis of Brownian motion in the 1920s.

From now on, we always work with a complete probability space (Ω,F , P ).
Whenever we use a filtered probability space, we assume the usual conditions to be
in force, c. f. Definition 2.23.

Definition 3.1. An R-valued stochastic process B = (Bt)t∈[0,∞[ is called Wiener
process if
(i) B is a Gaussian process, i. e. ∀n ∈ N, ∀(t1, . . . , tn) ∈ [0,∞[n the random vector
(Bt1 , . . . , Btn) is an n-dimensional Gaussian random variable and
(ii) the mean value function satisfies E(Bt) = 0, t ∈ [0,∞[, and the covariance
function is given by E(BtBs) = t ∧ s = min(t, s), s, t ∈ [0,∞[.

Definition 3.1 specifies all the finite-dimensional marginals since a Gaussian dis-
tribution is uniquely determined by its first and second moments. Thus, we could
immediately construct a Wiener process by appealing to Kolmogorov’s extension
theorem – the consistency requirements are satisfied. We will, however, give a more
constructive, less abstract construction later on.

Proposition 3.2. (i) The Wiener process has stationary and independent incre-
ments, i. e. Bt+h − Bt ∼ N (0, h) ∀t (h > 0) and for 0 ≤ s < t ≤ u < v we have
Bt −Bs ⊥⊥ Bv −Bu.
(ii) The Wiener process has a continuous modification.

Proof. By Gaussianity, (Bt, Bt+h) ∼ N (0,Σ) with Σ =
(

t t
t t+h

)
, implying that

Bt+h−Bt is again Gaussian and we are only left to check the parameters: E(Bt+h−
Bt) = 0 and E

(
(Bt+h −Bt)2

)
= (t+ h)− 2t+ t = h. Thus, Bt+h −Bt ∼ N (0, h).

By a similar reasoning we see that (Bt−Bs, Bv−Bu) is 2-dimensional Gaussian
random variable with covariance E

(
(Bt −Bs)(Bv −Bu)

)
= t− t− s+ s = 0. As a

consequence of Proposition 1.19, we get Bt −Bs ⊥⊥ Bv −Bu.
By induction (or using the Laplace transform), one can prove that

E
(
(Bt −Bs)2k

)
=

(2k)!
k!2k

(t− s)k

for s < t and k ∈ N. Now apply the Kolmogorov-Čentsov theorem, Theorem 2.12,
with α = 2k, β = k − 1. This gives existence of Hölder-continuous paths of order
0 < γ < k−1

2k and for k →∞ existence of a Hölder-continuous modification of order
0 < γ < 1

2 . In particular, there is a continuous modification. �

Henceforth, we will always work with a continuous version of the Wiener process,
and we add a third requirement in Definition 3.1:

(iii) ∀ω ∈ Ω : t 7→Wt(ω) is continuous.

In stochastic analysis, one needs the richer structure of a filtered probability
space

(
Ω,F , (Ft)t∈[0,∞[, P

)
(satisfying the usual conditions).

Definition 3.3. A Brownian motion is an adapted process B = (Bt)t∈[0,∞[ satis-
fying:
(1) B is a Gaussian process with E(Bt) = 0 and E(BsBt) = s ∧ t for s, t ∈ [0,∞[,
(2) all sample paths of B are continuous, i. e. ∀ω ∈ Ω : t 7→ Bt(ω) is continuous,
(3) Bt −Bs ⊥⊥ Fs for all s, t ∈ [0,∞[, s < t.

Remark 3.4. The main difference between a Wiener process and a Brownian motion
is adaptedness of Brownian motion and the fact that the Brownian increment Bt−
Bs is independent of all the information Fs at time s. Note that our nomenclature
– distinguishing between Wiener processes and Brownian motion – is by no means
canonical: for most authors, these two names are synonyms. We want, however,
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to stress the aforementioned difference: in stochastic analysis, one needs to work
with Brownian motion, not with Wiener processes. An alternative way to stress
this difference would be to call a Wiener process an intrinsic Brownian motion,
since it is determined only by “inner” properties – i. e. by the relations between the
distributions at different points in time – whereas Brownian motion has to account
for “extern” factors, namely the given filtration.

More precisely, let B be a Wiener process (with continuous paths). Then we
may define its natural filtration by Ft = σ(Bs, 0 ≤ s ≤ t), the σ-field generated by
all the random variables Bs with s ≤ t. One can show that the completion – with
respect to the null sets of F – satisfies the usual conditions and B is a Brownian
motion with respect to this (special) filtered probability space. In this sense, each
Wiener process is a Brownian motion. This, of course, is not true for a fixed, given
filtration, which might also take other sources of information into account.

To summarize, each Brownian motion is a Wiener process, but the converse is
not true. We only have that for each Wiener process there is a filtration such that
the Wiener process is a Brownian motion with respect to that filtration.

From now on, we always use the natural filtration of a Wiener process, so from
now on we use both names synonymously.

Remark 3.5. It is a rather surprising fact that we do not really need to require
Gaussianity. Given a stochastic process S with stationary and independent incre-
ments, S0 = 0, E(St) = 0, E(SsSt) = s∧ t and with continuous sample paths, then
S is a Gaussian process and, hence, a Wiener process.

As discussed before, we can interpret the Brownian motion as a probability
measure P on the measurable space

(
C([0,∞[),B(C([0,∞[))

)
. The probability

space
(
C([0,∞[),B(C([0,∞[)), P

)
is called Wiener space.

3.1. Construction of Brownian Motion. We have already remarked that Kol-
mogorov’s extension theorem guarantees the existence of Brownian motion. Here,
we give two alternative, more concrete constructions. As a prerequisite, note that
for any distribution we can find a sequence of independent random variables all of
which having the given distribution. This fact, which we have already used with-
out much thought, is actually a special case of Kolmogorov’s extension theorem:
the case of a countable index set, where all the finite-dimensional marginals are
given by the product measure of the distribution of the 1-dimensional marginals
and where all 1-dimensional marginals are the same.

The first approach approximates Brownian motion by random walks. For sim-
plicity, we restrict ourselves to the construction of a Brownian motion defined on
[0, 1]. General Brownian motion can then be obtained by “sticking together” a
sequence of independent Brownian motions on [0, 1].

Theorem 3.6 (Donsker’s Theorem). Given an i. i. d. sequence (Xn)n∈N of random
variables with E(Xn) = 0 and E(X2

n) = 1, e. g. take P (Xn = −1) = P (Xn = 1) =
1
2 . Now fix n ∈ N and define the process B(n) on [0, 1] by

B
(n)
t (ω) =

1√
n
S[nt](ω) + (nt− [nt])

1√
n
X[nt]+1(ω),

where Sm =
∑m

i=1Xi and [x] denotes the largest integer smaller than x. In other
words, B(n) is a piecewise linear interpolation of the random walk 1√

n
Sm, m =

0, . . . , n. Denote by B(n)
∗ P the corresponding distribution on C([0, 1]) and denote

by B∗P the distribution of the Wiener process on [0, 1]. Then

B
(n)
∗ P ⇀ B∗P, n→∞,
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again in the sense of weak convergence.

Proof. For a proof of Donsker’s Theorem see Billingsley[2]. �

Remark 3.7. Donsker’s Theorem is also known as functional central limit theorem.
Indeed, it resembles the central limit theorem quite a lot, with the law of Brownian
motion playing the rôle of the standard normal law.

The following, more abstract approach is appealing since it already prepares the
construction of the Itô integral. This time, let (Xn)n∈N denote an i. i. d. sequence of
N (0, 1)-distributed random variables. Furthermore, let (en)n∈N denote some ONB
of the Hilbert space L2

(
[0,∞[,B([0,∞[), dt

)
. We define a map

(3.1) η : L2
(
[0,∞[,B([0,∞[), dt

)
→ L2

(
Ω,F , P

)
, η(en) = Xn, n ∈ N.

It is not difficult to check that η is well-defined as a linear, continuous map and
even gives an isometry in the sense that

∀f, g ∈ L2
(
[0,∞[

)
: 〈f , g〉L2([0,∞[) = 〈η(f) , η(g)〉L2(Ω) .

The image η
(
L2([0,∞[)

)
of η is a Gaussian subspace of L2(Ω), i. e. for n ∈ N and

f1, . . . , fn ∈ L2([0,∞[) the vector (η(f1), . . . , η(fn)) is jointly Gaussian with mean
value 0. Note that 1[0,t] ∈ L2([0,∞[), ∀t ∈ [0,∞[, and define Bt = η(1[0,t]). The
process (Bt)t∈[0,∞[ is Gaussian with

E(Bt) = 0

and

E(BtBs) =
〈
η(1[0,t]) , η(1[0,s])

〉
L2(Ω)

=
∫ ∞

0

1[0,t](u)1[0,s](u)du = t ∧ s

for t, s ∈ [0,∞[. Thus, B defines a Brownian motion. Note that this construction
does not immediately give a continuous process: we need to pass to a continuous
version.

3.2. Regularity of Brownian Motion. Apart from Hölder continuity, the paths
of Brownian motion exhibit rather irregular behaviour. We start with a heuristic
argument from Billingsley[3].

Given a Brownian motion B and a real number c > 0, define the process B′ by

B′t(ω) =
1
c
Bc2t(ω), t ∈ [0,∞[.

B′ is again a Brownian motion. Note that time is contracted with a factor c2,
whereas scale is contracted by c, a relation which is often written as

(3.2) dBt ≈
√
dt.

It seems reasonable that – for c large enough – B should somewhere on [0, c] have
a chord with slope exceeding 1 with probability close to 1. But this means that B′

has, with the same high probability, a chord with a slope exceeding c on the time-
interval [0, 1

c ]. Consequently, Brownian motion should have chords with arbitrarily
large slope on every arbitrarily small interval!

We collect some of the path properties of Brownian motion in the next theorem.
The proofs are often rather technical and therefore omitted, with the exception of
the first property, which will be proved later on.

Theorem 3.8. (1) The paths of Brownian motion have a. s. infinite variation on
each bounded interval. In particular, P

(
V (B)t = +∞

)
= 1 for each t ∈ [0,∞[.

(2) The paths of Brownian motion are a. s. nowhere differentiable.
(3) Given ε > 0. B a. s. crosses 0 infinitely often on the interval [0, ε].
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(4) Let Z(ω) = {t ∈ [0,∞[ | Bt(ω) = 0}. Z is a. s. an unbounded, nowhere dense,
perfect set with Lebesgue measure 0.

Theorem 3.8, (2) means that the pathological case of a continuous function which
is nowhere continuous is the generic, usual case of a continuous function, at least
if measured by the Wiener measure. Recall that a set is perfect if it is closed and
has no isolated points. A set A is nowhere dense if for each open interval I there is
an open interval J ⊂ I such that J ∩A = ∅.

Given a stochastic process S. For any partition ∆ = {0 = t0 < · · · < tn = t} of
[0, t] let

T∆
t (S) =

∑
i

(Sti+1 − Sti
)2

and
|∆| = max

i=0,...,n−1
(ti+1 − ti).

Definition 3.9. S is of finite quadratic variation if there is a finite process 〈S , S〉
such that for all t ∈ [0,∞[ and any sequence ∆n of partitions of [0, t] such that
|∆n| → 0 we have

(3.3) lim
n→∞

T∆n
t (S) = 〈S , S〉t .

The process 〈S , S〉 is called the quadratic variation process associated with S. The
limit should actually be understood as a limit in probability, uniform in t, but for
our purposes it is enough to consider limits in L2(Ω), separately for each t.

Theorem 3.10. The Wiener process B has finite quadratic variation

〈B ,B〉t = t, ∀t ∈ [0,∞[.

Moreover, along uniform partitions of the form ∆n = {0, 1
2n t, . . . ,

2n−1
2n t, t} the

convergence in (3.3) also holds in the sense of a. s. convergence.

Proof. We only prove the first part. Given any partition 0 = t0 < t1 < · · · <
tn−1 < tn = t and call it ∆. Then

∥∥T∆
t (B)− t

∥∥2

L2(Ω)
= E

[(n−1∑
i=0

(Bti+1 −Bti
)2 − t

)2]
= E

[(n−1∑
i=0

(
(Bti+1 −Bti

)2 − (ti+1 − ti)
))2]

Multiplying out the last line gives

(3.4)
∥∥T∆

t (B)− t
∥∥2

L2(Ω)
=

n−1∑
i=0

E
[(

(Bti+1 −Bti)
2 − (ti+1 − ti)

)2]
+

+ 2
∑

0≤i<j≤n−1

E
[(

(Bti+1 −Bti)
2 − (ti+1 − ti)

)(
(Btj+1 −Btj )

2 − (tj+1 − tj)
)]
.

By independence of the increments of Brownian motion, we get∑
0≤i<j≤n−1

E
[(

(Bti+1 −Bti
)2 − (ti+1 − ti)

)(
(Btj+1 −Btj

)2 − (tj+1 − tj)
)]

=

=
∑

0≤i<j≤n−1

E
[
(Bti+1 −Bti

)2 − (ti+1 − ti)
]
E

[
(Btj+1 −Btj

)2 − (tj+1 − tj)
]

= 0.
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For each i = 0, . . . , n − 1, the corresponding part of the first term gives, using
E

(
(Bti+1 −Bti

)4
)

= 3(ti+1 − ti)2 and E
(
(Bti+1 −Bti

)2
)

= ti+1 − ti,

E
[(

(Bti+1 −Bti
)2−(ti+1 − ti)

)2]
=

= E
[
(Bti+1 −Bti

)4 − 2(ti+1 − ti)(Bti+1 −Bti
)2 + (ti+1 − ti)2

]
= 2(ti+1 − ti)2.

Inserting these intermediate results into (3.4), we get

�(3.5)
∥∥T∆

t (B)− t
∥∥2

L2(Ω)
= 2

n−1∑
i=0

(ti+1 − ti)2 ≤ 2t |∆| → 0, for |∆| → 0.

As promised, we now prove that paths of Brownian motion are a. s. of infinite
variation.

Corollary 3.11. The Wiener process a. s. is of infinite variation on every interval
[s, t], s < t.

Proof. Since 〈B ,B〉t−〈B ,B〉s = t−s, where convergence of (3.3) is understood in
L2(Ω), there is a sequence ∆m = {tmi } of partitions of the interval [s, t] such that

(3.6) lim
m→∞

T∆m(B) = t− s, a. s.

Along this sequence of partitions we may estimate∑
i

(Btm
i+1

−Btm
i

)2 ≤ max
i

∣∣∣Btm
i+1

−Btm
i

∣∣∣×∑
i

∣∣∣Btm
i+1

−Btm
i

∣∣∣
≤ max

i

∣∣∣Btm
i+1

−Btm
i

∣∣∣ (V (B)t − V (B)s).

The left hand side converges to the positive number t−s, whereas on the right hand
side maxi

∣∣∣Btm
i+1

−Btm
i

∣∣∣ → 0 for m→∞ by uniform continuity of B on [s, t]. This
is only possible, if the variation of B on [s, t] is a. s. infinite, i. e. V (B)t−V (B)s =
∞. �

Corollary 3.11 shows that it is not possible to define integrals with respect to
Brownian motion in a pathwise sense using Lebesgue-Stieltjes integrals.

3.3. The Law of Iterated Logarithms. The law of iterated logarithms gives the
long- and short-time asymptotics of the paths of Brownian motion. Note that for
a Brownian motion B, the process B′ defined by B′t = tB1/t for t > 0 and B′0 = 0
is a Brownian motion. This allows us to infer the long-time behaviour from the
short-time behaviour and vice-versa.

The strong law of large numbers implies that

lim
t→∞

Bt

t
= 0, a. s.

The law of iterated logarithms gives the precise rate of growth, at least in some
sense.

Theorem 3.12. For a Brownian motion B on [0,∞[, the following equations hold
with respect to almost sure convergence.

lim sup
t→∞

Bt√
2t log log t

= +1, lim inf
t→∞

Bt√
2t log log t

= −1

lim sup
t→0+

Bt√
2t log log(1/t)

= +1, lim inf
t→0+

Bt√
2t log log(1/t)

= −1.

Proof. For a proof see Bauer[1] or Revuz-Yor[8]. �
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3.4. Markov Processes. Before we continue our discussion of Brownian motion,
we need to define an important class of processes, the Markov processes. Start with
a stochastic process S = (St)t∈[0,∞[ defined on a probability space (Ω,F , P ) which
we endow with the natural filtration of S, i. e. with the filtration Ft = σ(Ss, 0 ≤
s ≤ t). As usual, we restrict ourselves to R-valued processes and remark that a
generalization is straightforward.

Definition 3.13. S is a Markov-process if and only if for all bounded, measurable
functions f

E
(
f(Su)

∣∣Ft

)
= E

(
f(Su)

∣∣St

)
, ∀u ≥ t ∈ [0,∞[.

In other words: the conditional distribution of Su with respect to Ft is the same
as the conditional distribution with respect to St.

This means that the process is without memory in the sense that complete
knowledge of the process up to time t does not give us more information on the
process at some future time u > t than only knowledge of the process at time t, the
process has forgotten the past (before t). Alternatively, S is a Markov process if
and only if Ft and σ(Su, u ≥ t) are conditionally independent given St, ∀t ∈ [0,∞[.

For x ∈ R, A ∈ B(R) and t < u define

(3.7) Pt,u(x,A) = E
(
Su ∈ A

∣∣St = x
)
.

Pt,u is a Markov kernel, i. e. for fixed A the function x 7→ Pt,u(x,A) is Borel-
measurable, and for fixed x the function A 7→ Pt,u(x,A) is a probability measure
on (R,B(R)). We interpret Pt,u(x,A) as the probability for the process to be within
the set A at time u provided that the process starts at point x at time t.

Furthermore, Pt,u is a transition function, i. e. it satisfies the Chapman-Kolmogorov
equation

(3.8) Pt,u(x,A) =
∫

R
Pv,u(y,A)Pt,v(x, dy),

for any t < v < u.
For the following considerations we need to go back to the canonical represen-

tation of the stochastic process S. We choose Ω = R[0.∞[, F = B(R)⊗[0,∞[ and we
may assume that St is the evaluation functional on R[0,∞[, i. e. St(ω) = ω(t). As
before, we choose the natural filtration (Ft)t≥0. Recall that we identify a stochas-
tic process with a probability measure on R[0,∞[. Before, we used the probability
measure P to define the transition functions Pt,u. Now we want to go the other
way round: given the transition functions, can we construct a Markov process with
these transition functions?

Theorem 3.14. Given family (Pt,u)0≤t<u<∞ of transition functions, i. e. of Markov
kernels satisfying the Chapman-Kolmogorov equation (3.8), and a probability mea-
sure µ on R. Then there is a unique probability measure Pµ on the path space
(Ω,F) such that S is a Markov process with transition function (Pt,u)0≤t<u<∞ and
initial distribution µ, i. e.

(S0)∗Pµ(A) = Pµ(S0 ∈ A) = µ(A), ∀A ∈ B(R).

In particular, we write P x for the probability measure on path space such that
P x(S0 = x) = 1 for x ∈ R.

From now on we assume that the Markov process is time homogeneous, i. e. that
Pt,u only depends on the difference u − t for all t < u. With Pt = P0,t we get
Pt,u = Pu−t. For a bounded measurable function f define

(3.9) Ptf(x) =
∫

R
f(y)Pt(x, dy) = E

(
f(St)

∣∣S0 = x
)
, x ∈ R,
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with the convention that

(3.10) E
(
f(St)

∣∣S0 = x
)

=
∫

Ω

f(St(ω))P x(dω).

The Chapman-Kolmogorov equation (3.8) implies that PtPsf = Pt+sf , thus (Pt)t≥0

defines a semi-group, the transition semi-group.
Recall that a function f : R → R is a C0-function – a continuous function

vanishing at infinity – if f is continuous and lim|x|→∞ f(x) = 0. We denote the set
of all C0-functions by C0(R).

Definition 3.15. A Markov process S is called Feller process if
(1) its transition semi-group maps C0-functions to C0-functions, symbolically
Pt(C0(R)) ⊂ C0(R), and
(2) for each C0-function f and each x ∈ R we have Ptf(x) → f(x) as t→ 0+.

The transition semi-group of a Feller process defines a contraction semi-group
on the space C0(R) in the sense of functional analysis.

Definition 3.16. The infinitesimal generator of a Feller process S is the infini-
tesimal generator A of the corresponding transition semi-group, i. e. the operator
A : DA ⊂ C0(R) → C0(R) defined by

Af(x) = lim
t→0+

Ptf(x)− f(x)
t

= lim
t→0+

E
(
f(St)

∣∣S0 = x
)
− f(x)

t
.

Dynkin’s formula for the Feller process S says that for each function f ∈ DA,
the process (Mf

t )t∈[0,∞[ defined by

Mf
t = f(St)− f(S0)−

∫ t

0

Af(Ss)ds

is a martingale. Note that the converse is true, too: Given a Feller process S and
some function f ∈ C0(R). If there is a C0-function g such that

f(St)− f(S0)−
∫ t

0

g(Ss)ds

defines a martingale, then f ∈ DA and Af = g. In particular,

Ptf(x) = f(x) +
∫ t

0

Ps(Af)(x)ds.

We skip the discussion of Markov processes here, although there is still a lot to
say, and return to Brownian motion. The reader is referred to Revuz-Yor[8] for
more information on this topic.

3.5. Brownian Motion as a Markov Process. We begin by proving that Brow-
nian motion is a Markov process.

Theorem 3.17. Brownian motion B is a Markov process.

Proof. Since a distribution is uniquely characterized by its moment generating func-
tion, it is enough to show that the moment generating functions – i. e. Laplace
transforms – of P (Bt+s ∈ ·|Ft) and P (Bt+s ∈ ·|Bt) coincide for t, s > 0. For u ∈ R
calculate

E
(
exp(uBt+s)

∣∣Ft

)
= exp(uBt)E

(
exp(u(Bt+s −Bt))

∣∣Ft

)
= exp(uBt)E

(
exp(u(Bt+s −Bt))

)
= exp(uBt) exp(u2s/2)

= exp(uBt)E
(
exp(u(Bt+s −Bt))

∣∣Bt

)
= E

(
exp(uBt+s)

∣∣Bt

)
. �
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In fact, we even have for any fixed stopping time τ and measurable bounded
function f and t > 0

(3.11) E
(
f(Bτ+t)

∣∣Fτ

)
= E

(
f(Bτ+t)

∣∣Bτ

)
,

a fact known as strong Markov property. (Recall that the Markov property is (3.11)
for deterministic times τ only.)

Corollary 3.18. Fix t > 0 and define a stochastic process B′ by

B′u = Bt+u −Bt, u ≥ 0.

B′ is a Brownian motion independent of Ft. The same holds true when t is replaced
by some stopping time τ .

Next we want to compute the infinitesimal generator of the Brownian motion.
For this we need to understand the conditional distribution P (Bt ∈ ·|B0 = x),
which is only well-defined for x = 0. Somehow, we need to harmonize the point
of view regarding Markov processes with the point of view regarding Brownian
motion.

Recall that we can always understand Brownian motion as a probability measure
P on (C([0,∞[),B(C([0,∞[))). Then, Bt(ω) = ω(t), ω ∈ C([0,∞[), is nothing else
but the evaluation functional at t. For each real number x, define a probability
measure P x on Ω = C([0,∞[) by P x(A) = P (A− x) for A ∈ B(C([0,∞[)), i. e. P x

is the law of the process x+Bt. The transition semi-group of Brownian motion is
now defined by

(3.12) Ptf(x) = E
(
f(x+Bt)

)
=

∫
C([0,∞[)

f(Bt(ω))P x(dω).

Note that P x is exactly the P x given by Theorem 3.14 for the initial distribution
B0 ≡ x a. surely.

It turns out that the infinitesimal generator of Brownian motion is 1
2∆, one half

times the Laplace operator, which is a reformulation of the fact that the heat kernel
is a Gaussian density (modulo the factor 1

2 ). More precisely, for a C0-function f ,
we have

(3.13) Ptf(x) = E
(
f(x+Bt)

)
=

∫
R
f(y)

1√
2πt

exp
(
− (y − x)2

2t
)
dy

and it is well-known that the generator of the semi-group (3.13) is 1
2∆. Put

differently, we have learned that we can write the solution to the heat equation
∂
∂tu(t, x) = 1

2∆u(t, x) with u(0, x) = f(x) by

(3.14) u(t, x) = E
(
f(x+Bt)

)
.

We will come back to this later, in a more general setting.

3.6. Reflection Principle.

Theorem 3.19 (Reflection principle). Let τ be a stopping time and define a sto-
chastic process B′ by

B′t(ω) =

{
Bt(ω), t ≤ τ(ω)
2Bτ(ω)(ω)−Bt(ω), t > τ(ω)

.

Then B′ is a Brownian motion, too.

For a proof of the reflection principle see Revuz-Yor[8]. The name comes from
the observation that B′ follows the same paths as B until time τ , then it follows
the reflected path along the horizontal line passing through (τ,Bτ ), since

B′t −Bτ = −(Bt −Bτ ).
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For example, let τ be the first time B takes the value 1, i. e.

τ(ω) = inf{t ∈ [0,∞[ | Bt(ω) = 1}

with the convention that inf ∅ = ∞. Note that P (τ <∞) = 1. Then B′t = Bt until
Bt = 1 for the first time. Afterwards, B′t = 2−Bt.

3.7. Multidimensional Brownian Motion. By a d-dimensional Brownian mo-
tion we understand a stochastic process B = (Bt)t∈[0,∞[ =

(
(B1

t , . . . , B
d
t )

)
t∈[0,∞[

with values in Rd such that each of components (B1
t )t∈[0,∞[, . . . , (Bd

t )t∈[0,∞[ is a
one-dimensional Brownian motion and the Brownian motion B1, . . . , Bd are inde-
pendent.

We remark that multi-dimensional Brownian motion does not share all the prop-
erties of one-dimensional Brownian motion. For example, one- and two-dimensional
Brownian motions are recurrent : given an open set O ⊂ R (or O ⊂ R2) and a one-
dimensional (two-dimensional) Brownian motion B, then B a. s. hits O infinitely
often. On the other hand for d ≥ 3, Brownian motion is transient : given an open
ball O ⊂ Rd and a d-dimensional Brownian motion B starting outside O, then there
is a positive probability that B never hits O.

All the properties mentioned so far remain, however, true for d-dimensional
Brownian motion with minor modifications, e. g. the quadratic variation is d × t
instead of t and the infinitesimal generator is d-dimensional Laplacian times 1

2 .

4. Stochastic Integration

In this section, we introduce the stochastic integral with respect to Brownian
motion. For simplicity, we restrict ourselves to the L2-theory. The strategy closely
resembles the strategy for defining the Lebesgue integral for general measures: we
first identify a class of processes, for which there is a natural choice for the integral,
then we extend it to the closure of this class of simple integrands using limits.

We only define the stochastic integral of real-valued stochastic processes with
respect to one-dimensional Brownian motion and remark that the extension to the
multi-dimensional case is straightforward.

The standing assumption in this section is that we are given a filtered probability
space (Ω,F , (Ft), P ) and a Brownian motion B with respect to the filtration. We
assume the usual conditions to be in force.

4.1. Stochastic Integral for Simple Processes.

Definition 4.1. A stochastic process H = (Ht)t∈[0,∞[ is called simple predictable
process if it is of the form

(4.1) Ht =
n−1∑
i=0

Hi1]ti,ti+1](t)

for some n ∈ N, 0 ≤ t0 < t1 < · · · < tn <∞, and Hi ∈ L2(Ω,F , P ) with Hi being
Fti

-measurable, i = 0, . . . , n − 1. We denote the space of all simple predictable
processes by E .

We define the Itô-integral on E using Riemannian sums.

Definition 4.2 (Itô integral for simple predictable processes). Let H ∈ E with the
representation (4.1). Then we define the Itô integral of H with respect to B by

(4.2) I(H) =
n−1∑
i=0

Hi(Bti+1 −Bti).
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The time dependent Itô integral of H with respect to B evaluated at time t is
defined by

(4.3) I(H)t =
n−1∑
i=0

Hi(Bti+1∧t −Bti∧t) = I(H1[0,t]).

We also introduce the notations

I(H) =
∫ ∞

0

HsdBs = H ·B, I(H)t =
∫ t

0

HsdBs = (H ·B)t.

We collect some properties of the stochastic integral for simple predictable pro-
cesses.

Lemma 4.3. For all H ∈ E the process (I(H)t)t∈[0,∞[ is a continuous martingale,
which is linear in H. We have the following formulas:

(4.4) E
(∫ ∞

0

HsdBs

)
= 0

and

(4.5) E
[(∫ ∞

0

HsdBs

)2]
=

∫ ∞

0

E
(
H2

s

)
ds.

Proof. We start with the proof of equation (4.4). Let H ∈ E have the representa-
tion (4.1). Then,

E
(∫ ∞

0

HsdBs

)
= E

(n−1∑
i=0

Hi(Bti+1 −Bti)
)

=
n−1∑
i=0

E
(
E(Hi(Bti+1 −Bti

)|Fti
)
)

=
n−1∑
i=0

E
(
HiE((Bti+1 −Bti

)|Fti
)
)

= 0,

where we used Fti-measurability of Hi and (Bti+1 − Bti) ⊥⊥ Fti in the last step.
For the proof of equation (4.5) we proceed in a similar way.

E
[(∫ ∞

0

HsdBs

)2]
= E

[(n−1∑
i=0

Hi(Bti+1 −Bti
)
)2]

=
n−1∑
i=0

E
(
H2

i (Bti+1 −Bti)
2
)

+ 2
∑
i<j

E
(
HiHj(Bti+1 −Bti)(Btj+1 −Btj )

)

=
n−1∑
i=0

E
(
H2

i E
(
(Bti+1 −Bti)

2
∣∣Fti

))
+ 2

∑
i<j

E
(
HiHj(Bti+1 −Bti)E

(
Btj+1 −Btj

∣∣Ftj

))

=
n−1∑
i=0

E(H2
i )(ti+1 − ti) =

∫ ∞

0

E(H2
s )ds,

where we again used independence of Btj+1 − Btj
of Ftj

and that Hi, Hj , Bti+1

and Bti are Ftj -measurable for j > i.
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Continuity and linearity of the stochastic integral are obvious, the martingale
property follows from E(Bti+1∧t−Bti∧t|Fs) = Bti+1∧s−Bti∧s for 0 ≤ t, s <∞. �

Remark 4.4. Note that the formulas corresponding to (4.4) and (4.5) for finite time
t instead of infinite time follow immediately by replacing H by H1[0,t].

We can summarize Lemma 4.3 by saying that the Itô-integral

I : E ⊂ L2
(
[0,∞[×Ω,B([0,∞[)⊗F , dt⊗ P

)
→ L2

(
Ω,F , P

)
is an isometry. Note that we use the interpretation of a stochastic process H
as a map (t, ω) 7→ Ht(ω) here. The extension of the stochastic integral to the
norm-closure of E is then just abstract nonsense, provided we have identified the
norm-closure.

4.2. Extension of the Stochastic Integral.

Definition 4.5. The predictable σ-field P is the σ-field on [0,∞[×Ω generated by
all adapted, left-continuous processes, i. e. by all processes S satisfying

• ∀t ∈ [0,∞[: St : Ω → R is Ft-measurable,
• ∀ω ∈ Ω : S·(ω) : [0,∞[→ R is left-continuous (actually, we only need

left-continuity on a set of probability 1).
A stochastic process S is called predictable, if it is measurable with respect to the
predictable σ-field P.

Definition 4.6. A process S defined on [0,∞[×Ω is progressively measurable, if
∀t ∈ [0,∞[, the restriction of S to [0, t] × Ω is B([0, t]) ⊗ Ft-measurable. The pro-
gressive σ-field is the σ-field on [0,∞[×Ω generated by all progressively measurable
processes. We denote the progressive σ-field by Prog.

Remark 4.7. A process (Sn)n∈N is called predictable if Sn is Fn−1-measurable for
each n, and we immediately understand the rationale for the name: we know the
value of S at time n already only given the information Fn−1 already available at
time n− 1. In the continuous case, the value of a left continuous process S at time
t satisfies St = limε→0+ St−ε, so the value is known given the information available
immediately before time t, the information known an infinitesimal time befor t, so
to say.

In finance, the predictable processes ar often also called strategies.

Remark 4.8. In our case, for the purpose of defining the stochastic integral with
respect to Brownian motion, we can work with the progressive σ-field. In general,
this is not possible and one can only define the stochastic integral for predictable
processes. Note that each progressively measurable process and each predictable
process is adapted. We have the chain of inclusions

P ⊂ Prog ⊂ B([0,∞[)⊗F .

Example 4.9. Each simple predictable process is adapted and left-continuous,
therefore each simple predictable process is predictable, symbolically

E ⊂ L2
(
[0,∞[×Ω,P, dt⊗ P

)
.

Theorem 4.10. E = L2
(
[0,∞[×Ω,P, dt⊗ P

)
, i. e. the simple predictable processes

are dense in the space of predictable, square integrable processes.

This means, we are able integrate all predictable, square-integrable processes
with respect to Brownian motion. For a proof see Teichmann[10]. We use the
same notation as introduced in Definition 4.2. The following two theorems follow
easily by abstract nonsense or by approximation of predictable processes by simple
predictable processes.
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Theorem 4.11. For all H ∈ L2(P) the Itô integral t 7→ (H · B)t is a continuous
L2-martingale.

Theorem 4.12 (Itô’s Lemma). For each H ∈ L2([0,∞[×Ω,Pdt⊗ P ) we have

E
(∫ ∞

0

HsdBs

)
= 0

E
[( ∫ ∞

0

HsdBs

)2]
=

∫ ∞

0

E
(
H2

s

)
ds.

Given a process H ∈ L2([0,∞[×Ω,P, dt⊗P ) with continuous trajectories. Then
we can calculate the Itô integral of H as follows

(4.6)
∫ t

0

HsdBs = lim
N→∞

2N−1∑
i=0

H ti

2N
(B t(i+1)

2N
−B ti

2N
),

where the limit is understood in L2(Ω).

Remark 4.13. The first possible extension of the stochastic integral is to predictable
processes H satisfying

P
(∫ ∞

0

H2
sds <∞

)
= 1

instead of the stronger square-integrability condition. The stochastic integral for
processes like this is well-defined. Obviously, Itô’s lemma is no longer valid, and
the integrated process

t 7→
∫ t

0

HsdBs

is a local martingale instead of a true martingale.

4.3. Itô’s Formula. Itô’s formula is the change of variables formula for stochastic
integration theory. We start with a reminder on the change of variables formula for
functions of finite variation. Let x : R → R be a function of finite variation and let
f : R → R be a C1-function. Then the change of variables formula reads

df(x(t)) = f ′(x(t))dx(t)

or in another formulation

(4.7) f(x(t))− f(x(0)) =
∫ t

0

f ′(x(s))dx(s).

Example 4.14. The integral of a finite-variation function x with x(0) = 0 with
respect to itself satisfies ∫ t

0

x(s)dx(s) =
x(t)2

2
,

since

x(t)2 =
∫ t

0

2x(s)ẋ(s)ds = 2
∫ t

0

x(s)dx(s).

Let us do the same calculation for Brownian motion. Fix a partition 0 = t0 < · · · <
tn = t and calculate

n−1∑
i=0

Bti(Bti+1 −Bti) =
1
2

n−1∑
i=0

(
B2

ti+1
−B2

ti
− (Bti+1 −Bti)

2
)

=
1
2

n−1∑
i=0

(B2
ti+1

−B2
ti

)− 1
2

n−1∑
i=0

(Bti+1 −Bti
)2.

Note that
∑n−1

i=0 (B2
ti+1

−B2
ti

) is a telescopic sum equal to B2
t .

∑n−1
i=0 (Bti+1 −Bti

)2

converges to t in L2(Ω) for the fineness of the partition going to 0, as we have
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seen while computing the quadratic variation of Brownian motion. Again for the
fineness of the partition going to 0, the left hand side converges in L2(Ω) to the
integral of Brownian motion with respect to itself. So we have shown that

(4.8)
∫ t

0

BsdBs =
1
2
(B2

t − t).

How do we get the extra t-term in equation (4.8) as compared to the result
for finite-variation functions? Let us first recall why the change of variables for-
mula (4.7) holds in the case of finite variation. Fix time t and a small time-increment
∆t > 0 and assume additional regularity on f and x. By Taylor’s formula,

(4.9) ∆f(x(t)) = f ′(x(t))∆x(t) +
1
2
f ′′(x(t))(∆x(t))2 + o

(
(∆x(t))2

)
,

where ∆f(x(t)) = f(x(t+ ∆t))− f(x(t)) and ∆x(t) = x(t+ ∆t)− x(t). Again by
Taylor’s formula we get

(4.10) ∆x(t) = ẋ(t)∆t+ ẍ(t)(∆t)2 + o
(
(∆t)2

)
.

Equation (4.10) shows that (∆x(t))2 = o(∆t), so we may neglect the second order
term in equation (4.9) because it is very small as compared to the time increment.
Formally, this gives the change of variables formula for finite variation functions.

If we try the same reasoning for Brownian motion B instead of x, we recall that
∆Bt is of the order

√
∆t, see (3.2). This means that the second order term in (4.9)

is of the order of ∆t and cannot be neglected. All the higher order terms in Taylor’s
formula can, however, still be neglected as compared to the time increment. This
formal reasoning yields the change of variables formula

(4.11) f(Bt) = f(0) +
∫ t

0

f ′(Bs)dBs +
1
2

∫ t

0

f ′′(Bs)ds.

This is a first special case of Itô’s formula. Before formulating the general result,
we apply formula (4.11) to our above example.

Example 4.15. Let f(x) = x2. Then formula (4.11) applied to the process Bt

reads

B2
t = 2

∫ t

0

BsdBs +
∫ t

0

ds,

which immediately gives the correct result
∫ t

0
BsdBs = 1

2 (B2
t − t).

Theorem 4.16 (Itô’s Formula, one dimensional case). Let u, v ∈ L2
(
[0,∞[×Ω,P, dt⊗

P
)

be two predictable, square-integrable processes, let X0 be an F0-measurable,
square-integrable random variable. Define the stochastic process X by

(4.12) Xt = X0 +
∫ t

0

usds+
∫ t

0

vsdBs.

For a function f : [0,∞[×R → R which is C1 in time and C2 in the space variable,
we get

f(t,Xt) = f(0, X0) +
∫ t

0

ft(s,Xs)ds+
∫ t

0

fx(s,Xs)usds+

+
∫ t

0

fx(s,Xs)vsdBs +
1
2

∫ t

0

fxx(s,Xs)v2
sds,

where ft denotes the derivative of f with respect to the time variable and fx, fxx

denote the first and second derivative of f with respect to the space variable, respec-
tively.
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We remark that the formal argument presented above can be made precise:
approximate f by C3-functions in space and u and v by simple predictable processes
and write the the Taylor-expansion of order 3 for f(t,Xt). Then one can show that
the second order term converges to the one in Itô’s formula and that the rest term
vanishes in the limit, see Protter[7] for a detailed proof in full generality.

Remark 4.17. Processes of the form (4.12) are also called Itô processes. There is
an often used shorthand notation for Itô’s formula: introduce the notation

dXt = utdt+ vtdBt,

then Itô’s formula reads

(4.13) df(t,Xt) = ft(t,Xt) + fx(t,Xt)dXt +
1
2
fxx(t,Xt)(dXt)2,

with the formal multiplication rules “(dt)2 = dtdBt = 0” and “(dBt)2 = dt” applied
for the calculation of (dXt)2.

Theorem 4.18 (Itô’s Formula, multi-dimensional case). Let B denote d-dimensional
Brownian motion, let u be an n-dimensional predictable, square integrable process
and let v be an Rn×d-dimensional predictable, square integrable process (using any
norms on Rn and Rn×d. Furthermore, let X0 be an n-dimensional, F0-measurable
square integrable random variable and define

(4.14) Xt = X0 +
∫ t

0

usds+
∫ t

0

vsdBs,

an n-dimensional process (vsdBs is to be understood as a matrix-vector multipli-
cation). For a given function f : [0,∞[×Rn → R assumed to be C1 in the time
variable and C2 in the space variables, we get

df(t,Xt) =
∂f

∂t
(t,Xt)dt+

n∑
i=1

∂f

∂xi
(t,Xt)dXi

t +
1
2

n∑
i,j=1

∂2f

∂xi∂xj
(t,Xt)dXi

tdX
j
t ,

where x = (x1, . . . , xn), and we use the formal multiplication rules “(dt)2 = dtdBi
t =

0”, i = 1 . . . , d, and “dBi
tdB

j
t = δij”, i, j = 1 . . . , d, with δij being the Kronecker δ.

5. Stochastic Differential Equations

In this section we briefly study a special class of Itô process given by so-called
stochastic differential equations (SDEs).

5.1. Existence of Solutions. We fix a finite time horizon T > 0. Let B be a d-
dimensional Brownian motion, a : Rn → Rn, σ : Rn → Rn×d measurable functions.
Sometimes we will call a the drift and σ the volatility. By a stochastic differential
equation we understand an equation

(5.1) Xx
t = x+

∫ t

0

a(Xx
s )ds+

∫ t

0

σ(Xx
s )dBs, t ∈ [0, T ],

where x ∈ Rn is the initial value of the SDE. We also introduce the short-hand
notation

(5.2) dXx
t = a(Xx

t )dt+ σ(Xx
t )dBt.

Of course, it is also possible to consider non-autonomous SDEs, where a and σ
depend on x and t. Most of the theorems hold for this case, too, sometimes the
conditions need to be slightly adjusted. It is even possible to introduce SDEs where
the data are stochastic, i. e. a = a(ω, t, x), σ = σ(ω, t, x), but then the theory gets
more difficult.
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Definition 5.1. A stochastic process Xx is called strong solution to the SDE (5.1)
if Xx is predictable, satisfies∫ T

0

E
(
|a(Xx

s )|
)
ds+

∫ T

0

E
(
|σ(Xx

s )|2
)
ds <∞

and

Xx
t = x+

∫ t

0

a(Xx
s )ds+

∫ t

0

σ(Xx
s )dBs, ∀t ∈ [0, T ],

where the equality holds almost surely. Note that |·| denotes some norms on Rn

and Rn×d.

Remark 5.2. There is also the notion of a weak solution to the SDE (5.1). A weak
solution is a triple consisting of a filtered probability space satisfying the usual
conditions, a Brownian motion B defined thereon and, finally, a process Xx defined
thereon satisfying the SDE. Intuitively, the idea is that for a strong solution, the
probability space and the Brownian motion are fixed and the solution is a function
of the Brownian motion in a sense that can be made precise.

On the other hand, the concept of a weak solution is more flexible and allows,
for example, also that the Brownian motion is a function of the solution process X,
or more generally, both influence each other. Without proof, we remark that the
SDE

(5.3) Xt =
∫ t

0

sign(Xs)dBs

does not have a strong solution, but it has weak solutions. Note that each weak
solution of (5.3) is itself a Brownian motion.

Theorem 5.3 (Existence and Uniqueness). Let the coefficients a and σ be Lipschitz
with at most linear growth, i. e. there is a constant C > 0 such that

(5.4) |a(x)− a(y)|+ |σ(x)− σ(y)| ≤ C |x− y| , ∀x, y ∈ Rn

and

(5.5) |a(x)|+ |σ(x)| ≤ C(1 + |x|), ∀x ∈ Rn.

Then there is a unique strong solution Xx of the SDE (5.1). This strong solution
has continuous paths and satisfies

(5.6) E
(

sup
0≤t≤T

|Xx
t |

2
)
< D(1 + |x|2)

for some constant D depending only on T and C – and the chosen norms.

For a proof we refer to Øksendal[6].
The conditions of Theorem 5.3 are the same as for the global existence and

uniqueness theorem for ODEs. Note that the Lipschitz condition for the volatility
can be slightly weakened: it is enough to assume a Hölder condition of order greater
or equal 1

2 .

Example 5.4 (Geometric Brownian Motion). Given constants µ, σ ∈ R, let S =
(St)t∈[0,T ] denote the solution of the SDE

(5.7) dSt = µStdt+ σStdBt,

with initial value S0 > 0. It is possible to derive the exact, explicit formula

(5.8) St = S0 exp
(
(µ− 1

2
σ2)t+ σBt

)
using Itô’s formula. In particular, for µ = 0, the process

E(σB)t = exp
(
σBt −

1
2
σ2t

)
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satisfies the “exponential” SDE

dE(σB)t = σE(σB)tdBt.

For this reason, E(σB) is called the “stochastic exponential” of σB. Note the dif-
ference between stochastic and ordinary exponential, which is again a consequence
of the second order correction term in Itô’s formula. The concept of the stochastic
exponential can be defined, in exactly the same way, for more general processes
such as continuous martingales and plays an important rôle in the theory.

We will come back to the geometric Brownian motion later, when we discuss a
more extensive example from mathematical finance.

Although the theory of stochastic differential equations has many similarities
with the theory of ordinary differential equations, there are several important dif-
ferences, many of them caused by the second order term in the stochastic change-of-
variables formula, i. e. Itô’s formula. We have already exhibited one instance of this
behaviour in the previous example, namely the form of the stochastic exponential.

Example 5.5. Let us study the solution to the two-dimensional SDE

dXt =
(

0 −1
1 0

)
XtdBt,

where B denotes a one-dimensional Brownian motion. Note that the driving matrix
is a rotation, so we would expect – in analogy to the deterministic case – the solution
to stay on the circle around the origin where its starting point is located. let us fix
X0 = (1, 0)T . Then we can check that

Xt = e
t
2

(
cosBt

sinBt

)
,

the solution looks like an outwards winding spiral, c. f. Figure 1. The reason for
this is that the high variation of the Brownian increments makes the process leave
the circle all the time, it drives the solution outwards. If we want the solution to
stay on the circle, we have to add an inward-pointing drift. Indeed, the solution to
the SDE

dYt =
(

0 −1
1 0

)
YtdBt −

1
2
Ytdt

with initial value Y0 = (1, 0)T is given by Yt = (cosBt, sinBt)T and stays on the
circle.

5.2. Markov Property and Infinitesimal Generators. In the course of this
subsection, let us assume we are given functions a and σ satisfying the conditions
of Theorem 5.3 and let Xx denote the solution to the SDE (5.1) with initial value
x ∈ Rn.

Theorem 5.6. The strong solution X = (Xx
t )t∈[0,T ],x∈Rn satisfies the Markov

property, i. e. for 0 < s < t ≤ T and for any bounded, measurable function f :
Rn → R we have

E
(
f(Xx

t )
∣∣Fs

)
= E

(
f(Xy

t−s)
)∣∣

y=Xx
s
,

where (Ft)t∈[0,T ], as usual, denotes the natural filtration of Brownian motion.

Remark 5.7. The notation in Theorem 5.6 means the following: Let h(y) = E(f(Xy
t−s)),

which is clearly a (deterministic) function in y. Then form the composition h◦Xx
s :

Ω → R.
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Figure 1. Sample path of the processes X and Y of Example 5.5

Proof. We give the proof as in Øksendal[6]. The solution to the SDE (5.1) obviously
satisfies

(5.9) Xx
t = Xx

s +
∫ t

s

a(Xx
u)du+

∫ t

s

σ(Xx
u)dBu,

s < t. We introduce the notation Xs,x
t , s ∈ [0, T ], t ∈ [s, T ], for the solution to the

SDE (5.1) started at time s at position Xs,x
s = x, i. e. Xs,x

t satisfies the equation

Xs,x
t = x+

∫ t

s

a(Xs,x
u )du+

∫ t

s

σ(Xs,x
u )dBu, s ≤ t ≤ T.

Then, (5.9) implies, by uniqueness of solutions, that

Xx
t = X

s,Xx
s

t .

For the sake of clarity, we write Xs,x
t (ω) = F (x, s, t, ω). By independence of the

increments of Brownian motion, we can immediately conclude that the random vari-
able ω 7→ F (x, s, t, ω) is independent of Fs, for any t ≥ s. Fix s and t and consider
the function g : Rn × Ω → Rn, g(x, ω) = f(F (x, s, t, ω)). g is (B(Rn)⊗ F)-B(Rn)-
measurable. Consequently – since product-σ-fields are generated by measurable
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rectangles – we can approximate g by sums of the form
m∑

k=1

φk(x)ψk(ω).

This allows us to calculate the conditional expectation of g(Xx
s (ω), ω) given Fs as

follows.

E
(
g
(
Xx

s (ω), ω)
∣∣Fs

)
(ω) = E

(
lim

∑
k

φk

(
Xx

s (ω)
)
ψk(ω)

∣∣∣Fs

)
(ω)

= lim
∑

k

E
(
φk

(
Xx

s (ω)
)
ψk(ω)

∣∣Fs

)
(ω)

= lim
∑

k

φk

(
Xx

s (ω)
)
E

(
ψk(ω)

∣∣Fs

)
(ω)

= lim
∑

k

E
(
φk(y)ψk(ω)

∣∣Fs

)
(ω)

∣∣∣
y=Xx

s (ω)

= E
(
g(y, ω)

∣∣Fs

)∣∣∣
y=Xx

s (ω)
= E

(
g(y, ω)

)∣∣∣
y=Xx

s (ω)
.

Here we applied several properties of conditional expectations: first we used con-
tinuity and linearity, then we used Fs-measurability of φk

(
Xx

s (ω)
)

and finally we
used independence of g(y, ω) and Fs for each fixed, deterministic y.

Re-expressing the last equation into our original variables, we have shown the
theorem. �

Since X is a Markov process, it has an infinitesimal generator, which we denote
by L. Recall that according to Dynkin’s formula, a given function f ∈ C0(Rn) is
in the domain of L if there is a g ∈ C0(Rn) such that the process

f(Xx
t )− f(x)−

∫ t

0

g(Xx
s )ds

is a martingale. In this case we also have Lf = g. Assume that f is even in C2
c (Rn),

the set of twice continuously differentiable functions with compact support. Then
we may apply Itô’s formula and get

f(Xx
t ) = f(x) +

n∑
i=1

∫ t

0

∂f

∂xi
(Xx

s )ai(Xx
s )ds(5.10)

+
n∑

i=1

d∑
j=1

∫ t

0

∂f

∂xi
(Xx

s )σij(Xx
s )dBj

s

+
1
2

∫ t

0

n∑
i,j=1

∂2f

∂xi∂xj
(Xx

s )bij(Xx
s )ds,

where b = σσT : Rn → Rn×n. Recall that the Itô integral of a square integrable,
predictable process is a martingale. Therefore, we get the desired result by moving
f(x) and all the dt-integrals to the left hand side in equation (5.10): the remainder
process on the right hand side then is a martingale. This proves the following
theorem.

Theorem 5.8. Let L be the infinitesimal generator of the SDE (5.1). Then
C2

c (Rn) ⊂ D(L) and for f ∈ C2
c (Rn) we have

Lf(x) =
n∑

i=1

ai(x)
∂f

∂xi
(x) +

1
2

n∑
i,j=1

bij(x)
∂2f

∂xi∂xj
(x),
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where a(x) = (a1(x), . . . , an(x)) is the drift and b(x) = (bij(x))i,j=1,...,n is the
matrix defined by b = σσT .

5.3. Feynman Kac Formula. Now we are finally able to clarify the connections
between SDEs and parabolic PDEs. More precisely, a certain class of PDEs can be
realized as a functional applied to the solution to a corresponding SDE. We call this
functional a “stochastic representation” of the PDE. The stochastic representation
can be an important tool both for theoretical analysis of the PDE and for numerical
calculation of its solutions, as we shall see later on.

In this subsection, we assume the conditions of Theorem 5.3 to be in force for
the functions a and σ. Furthermore, we note that we do not aim for the weakest
assumptions possible in the theorem statements. Let b = σσT and let L be the
second order differential operator defined in Theorem 5.8, i. e. L is the infinitesimal
generator of the SDE (5.1). We start by giving a stochastic representation for the
solution of the Cauchy problem associated to L, i. e. a solution to the problem of
finding a function u : [0, T ]× Rn → R satisfying the equation

(5.11)
{

∂u
∂t (t, x) = Lu(t, x), t > 0, x ∈ Rn

u(0, x) = f(x), x ∈ Rn ,

for a given function f : Rn → R. Note that L is understood as a differential
operator in x, not in t.

Theorem 5.9 (Kolmogorov’s Backward Equation). Given a function f ∈ C2
c (Rn)

and denote the solution of (5.1) at time t with initial valued x by Xx
t , as usual. Let

(5.12) u(t, x) = E
(
f(Xx

t )
)
, t ∈ [0, T ], x ∈ Rn.

Then u solves the Cauchy problem (5.11). In particular, u(t, ·) ∈ D(L) for each
t ∈ [0, T ].

Conversely, given a bounded C1,2-function v solution to the Cauchy problem (5.11).
Then v(t, x) = E

(
f(Xx

t )
)
.

Proof. We first prove that u given by (5.12) solves the PDE (5.11). First note that
u is differentiable in t. Indeed, by Dynkin’s formula we have f(Xx

t+s) − f(Xx
t ) =∫ t+s

t
Lf(Xx

u)du+ martingale for s > 0 and t. By taking the expectation we get

u(t+ s, x)− u(t, x)
s

=
1
s

∫ t+s

t

E(Lf(Xx
u))du,

and the limit for s → 0+ exists. Fix t and write g(x) = u(t, x). By Theorem 5.6
we have

g(Xx
s ) = E

(
f(Xy

t )
)∣∣

y=Xx
s

= E
(
f(Xx

t+s)
∣∣Fs

)
.

Consequently,

E
(
g(Xx

s )
)
− g(x)

s
=

1
s
E

(
E

(
f(Xx

t+s)
∣∣Fs

)
− E

(
f(Xx

t )
))

=
1
s

(
E

(
f(Xx

t+s)
)
− E

(
f(Xx

t )
))

=
u(t+ s, x)− u(t, x)

s

s→0+−−−−→ ∂u

∂t
(t, x),

since t 7→ u(t, x) is differentiable. This proves that

Lu(t, x) = lim
s→0+

E
(
g(Xx

s )
)
− g(x)

s

exists and is equal to ∂u
∂t (t, x), implying that u is a solution to the Cauchy prob-

lem (5.11).



BROWNIAN MOTION AND ITÔ CALCULUS 31

Now we prove the converse statement. The function v(t, x) satisfies the assump-
tions of Itô’s formula. Apply Itô’s formula to v(T − t,Xx

t ):

dtv(T − t,Xx
t ) = −∂v

∂t
(T − t,Xx

t )dt+ Lv(T − t,Xx
t )dt

+
n∑

i=1

d∑
j=1

∂v

∂xi
(T − t,Xx

t )σij(Xx
t )dBj

t .

Note that −∂v
∂t + Lv = 0 because v satisfies the PDE (5.11). Therefore, the right

hand side is a martingale with mean 0. Integrating from t = 0 to T and taking the
expectation, we get – using v(0, Xx

T ) = f(Xx
T ) –

E
(
f(Xx

T )
)

= v(T, x),

which shows that the stochastic representation (5.12) holds true for t = T . Note
that the same argument as above can be carried for T replaced by t ∈]0, T [, which
concludes the proof. �

The Feynman-Kac-formula is a generalization of the stochastic representation (5.12).

Theorem 5.10 (Feynman-Kac Formula). Given f ∈ C2
c (Rn) and q ∈ C(Rn)

bounded from below. Define

(5.13) u(t, x) = E
(
exp

(
−

∫ t

0

q
(
Xx

s

)
ds

)
f
(
Xx

t

))
, t ∈ [0, T ], x ∈ Rn.

u satisfies the PDE

(5.14)
∂u

∂t
(t, x) = Lu(t, x)− q(x)u(t, x)

with initial condition u(0, x) = f(x), t ∈ [0, T ], x ∈ Rn.
Conversely, given a bounded C1,2-solution v to the PDE (5.14) with initial con-

dition v(0, x) = f(x). Then v satisfies the stochastic representation (5.13).

Remark 5.11. Note that we can also find stochastic representations of the corre-
sponding Cauchy problems for [0, T ] replaced by [0,∞[.

Remark 5.12. With a time change t→ T − t, (5.11) becomes

(5.15)
∂u

∂t
(t, x) + Lu(t, x) = 0, t ∈ [0, T ], x ∈ Rn

with terminal condition u(T, x) = f(x), x ∈ Rn. This problem has the stochastic
representation

(5.16) u(t, x) = E
(
f
(
XT

)∣∣Xt = x
)

= E
(
f
(
Xt,x

T

))
.

In the non-autonomous case, i. e. a = a(t, x), σ = σ(t, x), we cannot switch be-
tween (5.11) and (5.15) as before. In this case, we call (5.15) Kolmogorov’s back-
ward equation. Note that in this case we have L = Lt, i. e. the operator L is
time-dependent.

In the more general case of the Feynman-Kac formula, the time change results
in the PDE

(5.17)
∂u

∂t
(t, x) + Lu(t, x) + q(x)u(t, x) = 0, t ∈ [0, T ], x ∈ Rn

with terminal condition u(T, x) = f(x), x ∈ Rn. The stochastic representation in
this case reads
(5.18)

u(t, x) = E
((
−

∫ T

t

q
(
Xs

)
ds

)
f
(
XT

)∣∣∣Xt = x
)

= E
((
−

∫ T

t

q
(
Xt,x

s

)
ds

)
f
(
Xt,x

T

))
.
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In the non-autonomous case, the Feynman-Kac formula is the stochastic represen-
tation (5.18) for the PDE (5.17).

In the next theorem, which we present without proof, we indicate how one can
find stochastic representations for Dirichlet problems. Note that this theorem is
only one out of a big theory. LetXx

t , t ∈ [0,∞[, denote the solution of the SDE (5.1)
on [0,∞[.

Theorem 5.13. Let D ⊂ Rn be a domain, i. e. an open, connected set. For x ∈ D
let τx

D denote the first exit time for the process Xx with respect to D, i. e.

τx
D(ω) = inf{t > 0 | Xx

t (ω) /∈ D}.

Let φ be a bounded, continuous function on ∂D. Assume that the differential op-
erator L is uniformly elliptic, i. e. the eigenvalues of the matrices (bij(x))i,j=1,...,n

are positive and bounded away from 0 for x ∈ D. Define a function

(5.19) u(x) = E
(
φ
(
Xx

τx
D

))
, x ∈ D.

Note that u is well-defined since Xx
τx

D
∈ ∂D a. s. by continuity of the solution Xx

t

in t.
Then u ∈ C2+α(D) for all 0 ≤ α < 1 and it is a solution to the Dirichlet problem

(5.20)

{
Lu(x) = 0, x ∈ D

lim
x→y, x∈D

u(x) = φ(y), y ∈ D, y regular ,

where a point y ∈ ∂D is called regular if P (τy
D = 0) = 1.

Note that if L is uniformly elliptic on a neighborhood of D, then each y ∈ ∂D is
regular.

Recall that Kolmogorov’s backward equation is the heat equation for the infini-
tesimal generator L of X and there is a stochastic representation using the process
X. Let L∗ denote the (formal) adjoint operator of L, i. e.

(5.21) L∗f(y) =
n∑

i,j=1

∂2

∂yi∂yj

(
bij(y)f(y)

)
−

n∑
i=1

∂

∂yi

(
ai(y)f(y)

)
for f ∈ C2

c (Rn). The heat equation for the second order differential operator L∗ –
which is called Kolmogorov’s forward equation or Fokker-Plank equation – also has
a stochastic representation.

Indeed, let us assume that the law of the random variable Xx
t has a density (with

respect to Lebesgue measure) for each t ∈]0, T ] and each x ∈ Rn. For fixed t and
x, we denote this density by pt(x, y), y ∈ Rn, i. e.

E
(
f
(
Xx

t

))
=

∫
Rn

f(y)pt(x, y)dy,

for bounded measurable functions f . Note that the representation for Kolmogorov’s
backward equation given in Theorem 5.9 implies that pt(x, y) is the fundamental
solution of Kolmogorov’s backward equation. Thus, the density Pt is often called
heat kernel. This already suggests the following theorem.

Theorem 5.14 (Kolmogorov’s Forward Equation). Assume that y 7→ pt(x, y) is
twice continuously differentiable for each t ∈]0, T ] and each x ∈ Rn and C1 in t.
Then it satisfies the PDE

(5.22)
∂pt

∂t
(x, y) = L∗pt(x, y), t ∈]0, T ], x, y ∈ Rn,

where L∗ acts on y.
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Remark 5.15. If the operator L is elliptic in the sense of the theory of partial
differential equations, then the conditions of Theorem 5.14 are satisfied, i. e. the
process X has a smooth density.

Paul Malliavin proved that this is also true if the driving vector fields of the
SDE (5.1) satisfy Hörmander’s condition, i. e. the vector fields and their iterated
Lie-brackets span Rn at each point x ∈ Rn. In fact, Malliavin gave a probabilistic
proof – and generalization – of Hörmander’s Theorem on hypo-ellipticity of sum-
of-squares operators.

Thus, Hörmander’s condition is an algebraic sufficient condition for the assump-
tions of Theorem 5.14. If the conditions fail, Theorem 5.14 is still true in a disrti-
butional sense.

5.4. Numerics for Stochastic Differential Equations. As before, denote the
solution of (5.1) starting at x ∈ Rn by Xx

t , t ∈ [0, T ]. In general, we will not be
able to give an explicit formula for Xx

t . This is even more true here as in the case of
ODEs. Therefore, we need approximation methods. We will discuss the most simple
discretization method in more detail – en passant introducing two different notions
of approximation for SDEs – and then we give hints for possible generalizations
and higher order methods. The reader is referred to Kloeden-Platen[5] for detailed
information on this topic.

Obviously, approximations to Xx
t should also be random variables. So our “dis-

crete” approximations will usually only be discrete in time, but “continuous” –
i. e. non-discrete – in ω.

The SDE-analogue of the Euler scheme for ODEs is again called Euler scheme
or Euler-Maruyama scheme. For simplicity, we only write it down for equidistant
meshes in the autonomous case but remark that one can use more general partitions
of the time interval and that it is also applicable for non-autonomous SDEs. Fix a
starting value x ∈ Rd, the number of time steps N , i. e. we work with the uniform
mesh 0 = t0 < t1 < · · · < tN = T , and define ∆ti = ti+1 − ti, ∆Bi = Bti+1 − Bti

,
i = 0, . . . , N − 1. Note that ∆ti = T

N for each i in the equidistant case. We define

the approximation to Xx by X
(N)

0 = x and then recursively by

(5.23) X
(N)

i+1 = X
(N)

i + a(X
(N)

i )∆ti + σ(X
(N)

i )∆Bi,

i = 1, . . . , N − 1.
Naturally, a numerical approximation should converge to the true solution if we

let the number of time steps tend to infinity, symbolically

(5.24) lim
N→∞

X
(N)

N = Xx
T .

In which sense should (5.24) hold? Almost sure convergence seems to be problem-
atic, because in order to check almost sure convergence, one would need to calculate
the error for infinitely many ω’s, which is virtually impossible. The following two
concepts are more tractable, at least in a statistical sense, using the strong law of
large numbers and the central limit theorem. Note that these definitions are not
restricted to Euler schemes but are valid for any discrete approximation of an SDE.

Definition 5.16. A discrete approximation X
(N)

N of Xx at time T converges
strongly to Xx if

lim
N→∞

E
(∣∣Xx

T −X
(N)

N

∣∣) = 0.

Let δN = maxi=0,...,N−1 ∆ti denote the maximal step size. The method is called to
converge strongly with order γ > 0 if there is a positive constant C independent of
δ such that

E
(∣∣Xx

T −X
(N)

N

∣∣) ≤ C(δN )γ ,
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for each N .

Theorem 5.17. Assume that the data satisfy the condition of the existence and
uniqueness theorem, Theorem 5.3. Then the Euler-Maruyama approximation X

(N)

N

converges strongly to Xx
T with order 1

2 .

Proof. The proof is tedious but straightforward. The interested reader is referred
to Kloeden-Platen[5], Theorem 10.2.2. �

Theorem 5.17 is rather disappointing since an order 1
2 of convergence in a nu-

merical method is quite slow. Note that strong convergence implies almost sure
convergence along a subsequence of Ns.

If we want to solve the given SDE because we want to use the stochastic represen-
tation of the corresponding heat equation, i. e. Kolmogorov’s backward equation,
then, by Theorem 5.9, we actually need

(5.25) lim
N→∞

E
(
f
(
X

(N)

N

))
= E

(
f
(
Xx

T

))
.

If the SDE is the model of a financial market and we want to calculate the price
of a derivative, then, once again, we only need (5.25), as we shall see later. Note
that strong convergence implies convergence in the sense of equation (5.25) for all
Lipschitz functions f : Rn → R, but probability theory has a weaker notion of
convergence which is suitable for this purpose.

Definition 5.18. The discrete approximationX
(N)

N ofXx
T is said to converge weakly

to Xx
T if

lim
N→∞

E
(
f
(
X

(N)

N

))
= E

(
f
(
Xx

T

))
, ∀f ∈ Cl

p(Rn),

where Cl
p(Rn) denotes the space of all l-times continuously differentiable functions

Rn → R which together with their derivatives of order up to l have polynomial
growth. X

(N)
is said to converge to Xx

T with weak order γ > 0 if there is a positive
constant C such that∣∣∣E(

f
(
X

(N)

N

))
− E

(
f
(
Xx

T

))∣∣∣ ≤ C(δN )γ , ∀f ∈ C2(γ+1)
p

for each N large enough.

Usually, weak convergence is defined with respect to the space Cb(Rn) of bounded,
continuous functions. The advantage of Definition 5.18 is that Cl

p(Rn) includes all
polynomials, and thus one especially important class of functionals f . The defini-
tion is taken from Kloeden-Platen[5].

Theorem 5.19. Let the data a and σ of the SDE be four times continuously differ-
entiable. Then the uniform Euler-Maruyama approximation X

(N)

N converges weakly
of order 1 to the solution Xx

T of the SDE.

Proof. For the proof see Kloeden-Platen[5], Theorem 14.5.2, where one can also
find versions of the theorem with less stringent differentiability assumptions. �

As we have already remarked, often one is not satisfied with an approximation
X

(N)

N (ω) for Xx
T (ω), ω ∈ Ω. Instead, one needs an approximation for E(f(Xx

T )) for
some function f . Of course, we could take

(5.26) E
(
f
(
X

(N)

N

))
,

since strong convergence – and weak convergence, if f is regular enough – implies
convergence of the sequence (5.26) to the desired number. In general, we are,
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however, not able to explicitly calculate (5.26). For approximation we can use the
strong law of large numbers, see Theorem 1.16, i. e. we approximate (5.26) by

(5.27)
1
M

M∑
m=1

f
(
X

(N,m)

N

)
,

where (X
(N,m)

N )m∈N denotes a sequence of independent copies of X
(N)

N . Here, N
and M are fixed, large enough natural numbers. Note that this introduces another
source of error: Indeed, additionally to the error from the approximation (5.26) we
also have an error from the approximation of (5.26) by (5.27), i. e.

Error =
∣∣∣E(

f
(
Xx

T

))
− 1
M

M∑
m=1

f
(
X

(N,m)

N

)∣∣∣
≤

∣∣∣E(
f
(
Xx

T

))
− E

(
f
(
X

(N)

N

))∣∣∣ +
∣∣∣E(

f
(
X

(N)

N

))
− 1
M

M∑
m=1

f
(
X

(N,m)

N

)∣∣∣
= Edisc + Estat,

with Edisc being interpreted as the error coming from the time discretization of the
SDE and Estat as the statistical error coming from the application of the strong law
of large numbers. Note that the statistical error is a random variable!

We can control the discretization error Edisc using Theorem 5.17 or Theorem 5.19
– or rather the underlying error representations. For the control of the statistical
error we can use the central limit theorem. Indeed, assume that the random variable
f(X

(N)

N ) is square integrable, i. e.

σN (f) =
√
E

(
f
(
X

(N)

N

)2
)
− E

(
f
(
X

(N)

N

))2
<∞.

Then the central limit theorem, c. f. Theorem 1.14, implies that

√
M

1
M

∑M
m=1 f

(
X

(N,m)

N

)
− E

(
f
(
X

(N)

N

))
σN (f)

⇀ N (0, 1)

for M → ∞. We continue the argument in a heuristic way. Now assume that
M is already large enough such that the central limit theorem works, i. e. such
that the left hand side of the above formula is already a centered Gaussian random
variable for fixed M . This means that the statistical error Estat is the absolute
value of an N (0, σN (f)2/M)-distributed random variable. Now we can control
the statistical error as follows: assume we want to make sure that the statistical
error satisfies Estat ≤ ε with probability 0.9 for some fixed ε > 0. Note that for a
N (0, 1)-distributed random variable Z we have

P (|Z| ≤ 1.65) ≈ 0.9

and consequently

(5.28) P
(
|Estat| ≤ 1.65

σN (f)√
M

)
≈ 0.9.

Now choose M ≥
(
1.65σN (f)

ε

)2. Then the statistical error is with probability 0.9
smaller than ε. σN (f) is not known and needs to be simulated as well.

Remark 5.20. The above method for approximation of an integral – such as the
integral E(f(X

(N)

N ) – is called Monte-Carlo simulation. As we have seen, the error,
in the statistical sense of equation (5.28), depends on the number M of samples
like 1√

M
, so it is a method of order 1

2 , which is the main disadvantage of Monte-
Carlo simulation. On the other hand, note that the dimension of the problem did
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not enter into our argument at all. Indeed, the error of Monte-Carlo simulation
is independent of the space dimension, which is a distinguished difference to most
other methods and often makes Monte-Carlo simulation – and its variants – the
only applicable method in high dimensions.

We summarize the Euler-Monte-Carlo method:
(1) Fix an error tolerance ε > 0 and a probability 0 < δ < 1. Split the error

tolerance into an error tolerance ε1 for the discretization error and an error
tolerance ε2 for the statistical error. Calculate the (1 − δ

2 )-quantile p0 for
the standard normal distribution, i. e. P (|Z| ≥ p0) = δ for Z ∼ N (0, 1).
Fix N and M .

(2) For m from 1 to M generate random numbers ηm
1 , . . . , η

m
N independent of

each other and distributed according to N (0, T
N Id). Calculate numbers

X
(N,m)

N according to the rule X
(N,m)

0 = x and

X
(N,m)

i+1 = X
(N,m)

i + a
(
X

(N,m)

i

) T
N

+ σ
(
X

(N,m)

i

)
ηm

i ,

for i = 0, . . . , N − 1.
(3) Calculate the estimates for the discretization error and for σN (f) – denoted

by σ̂N (f) – using these numbers. If the estimate for the discretization error
exceeds ε1, increase the number N and go back to (2). If

M <
(
p0
σ̂N (f)
ε2

)2
,

i. e. if P (Estat ≥ ε2) > δ, then increase M and go back to (2).
(4) Calculate and return the approximation value

1
M

M∑
m=1

f
(
X

(N,m)

N

)
.

It is also possible to construct higher order methods for the approximation of
SDEs, in the sense of strong or weak convergence. In the Euler method, the Brown-
ian motion is the only source of randomness: in each step, randomness only appears
in form of the vector ∆Bi = (∆B1

i , . . . ,∆B
d
i ) and it is easy to generate random

numbers according to its distribution for the Monte-Carlo simulation. Already in
the simplest higher order method, the Milstein scheme, a method of strong and
weak order 1, the probabilistic structure is much more complicated. Indeed, in
each step we need the Brownian increment and the increments of the iterated in-
tegrals of order two, i. e. the whole vector Ji = (∆B1

i , . . . ,∆B
d
i , J

11
i , J12

i , . . . , Jdd
i ),

where

Jj,l
i =

∫ ti+1

ti

(Bj
s −Bj

ti
)dBl

s, j, l = 1, . . . , d.

We know that J ll
i = 1

2 ((∆Bl
i)

2−∆ti), l = 1, . . . , d, but there is no such formula for
the mixed terms (j 6= l). In dimension d = 1, generation of the random vector Ji

is just as simple as generation of the random vector ∆Bi, therefore the Milstein-
Monte-Carlo scheme is competitive to the Euler-Maruyama-Monte-Carlo scheme.
In general, however, it is not easy to generate random numbers according to the
distribution of Ji. In fact, one needs to sample the vector ∆Bi first and then one
needs to sample the iterated integrals using Riemannian sums as in the definition
of the Itô integral. This makes the Milstein scheme – and all higher order schemes
– very expensive compared to the Euler scheme.

Remark 5.21. In some sense, the work from the Monte-Carlo simulation dominates
the work from the discretization, and consequently the speed-up of higher order
methods are not so dramatic as in the deterministic case. Indeed, assume we use a
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method of order p > 0, i. e. for each realization ω the number of time steps – which
we identify with the total work – is

N(ε1) = C1ε
−1/p
1 ,

for some positive constant C1 and the time discretization tolerance ε1 as before. In
order to get a statistical error of less than ε2 – at least with high probability – we
need to compute

M(ε2) = C2ε
−2
2

realizations, where C2 is a positive constant. Now let ε > 0 be our tolerance and,
consequently, ε1 = λε, ε2 = (1− λ)ε for some 0 < λ < 1. The total work is

(5.29) A(λ) = N(ε1)M(ε2) = C1C2λ
−1/p(1− λ)−2ε−1/p−2.

This shows that the total work is proportional to ε−(2+ 1
p ). At least for p > 1, the

gain of using a higher order method becomes increasingly insignificant for the total
work. A simple optimization shows that one should choose λ = 1

2p+1 . For example,
if one uses a method of order one, than one third of the total tolerance should be
reserved for the discretization error, the rest for the statistical error. A more serious
analysis would require taking the dependence of the constants C1 and C2 on p into
account.

5.5. An Example: The Black-Scholes Model. The Black-Scholes model is a
model for a financial market with one stock and a constant interest rate. Its main
advantage is that explicit pricing rules for several important options and hedging
strategies are available. The model goes back to Fischer Black and Myron Scholes,
using previous work by Paul Samuelson and Robert Merton. Scholes and Merton
received the Nobel price for Economy in 1997, Black had died 2 years earlier while
Samuelson had already got the Nobel prize earlier.

We are given a constant interest rate r > 0. We use continuous compounding,
therefore the bank account – with r as interest rate – evolves such that one euro at
time 0 becomes ert euros at time t. The stock is modeled as a geometric Brownian
motion, see Example (5.7), i. e.

(5.30) dSt = µStdt+ σStdBt,

where µ and σ are constants called drift and volatility, respectively. B is a Brownian
motion on the probability space (Ω,F , P ). The starting value is S0 > 0. The
explicit formula (5.8) shows that St > 0 for all t, as should be the case for the price
of a stock.

In financial mathematics – especially in the case of constant or deterministic
interest rates – one often studies the discounted variables, i. e. S̃t = e−rtSt. In
some sense, this can be understood as a change of currency – the technical term
is change of numeraire – in which the financial market is traded. Indeed, in our
example we change the currency from euros to “discounted euros”, which have the
same value as euros today and change their values in the future in such a way that
the interest rate – in discounted euros – is 0. The SDE for S̃ is easily seen to be

(5.31) dS̃t = (µ− r)S̃tdt+ σS̃tdBt.

This shows that it is no loss of generality to assume r = 0, which means starting
with the discounted equation.

We want to calculate the price of a European call option, i. e. a contract giving
the owner (of the option) at the prescribed time T the right to buy one stock for
the prescribed price K. T is called maturity and K is the strike price. At time T ,
the owner takes a look at the quotes for the stock. If ST (ω) > K, then he or she
exercises the option and buys the stock, since he only has to pay K euros instead
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of ST (ω) euros, and immediately sells it, giving her ST (ω) euros. If the price of the
stock is smaller than K, then exercising the option does not make sense. In any
case, the owner makes a profit of (ST − K)+ euros at time T . This is called the
payoff of the option.

The European put option is similar, instead of giving the right to buy the option
for the strike price, it gives the right to sell it. The payoff of the European put
option consequently is (K − ST )+.

Put and call options are the most basic derivatives on stocks. There are much
more complicated ones depending on the average of the stock price in some period
of time, its maximum or minimum prices and so on. A European option is an
option which can only be exercised at one prescribed date. An option which can be
exercised at any time prior to a prescribed date is called American option. Pricing
of American options is much more complicated since it contains a (stochastic)
optimization problem. Therefore, we will concentrate on the European call and
put options.

It seems natural to determine the current price (at time 0) of a European call
option with maturity T and strike price K by

C(0, S0) = E(e−rT (ST −K)+).

More general, C(t, x) denotes the price of the option at time t subject to the
condition that St = x (note that this is a real number, not a random variable!)
This is, however, not the correct formula for the price, because we may not use
the measure P here – P is often called the physical measure. Instead, we need
to use the so-called risk-neutral measure or martingale measure. If we used the
physical measure P for pricing options and introduce the options as new assets in
the market, then the market would contain arbitrage opportunities, i. e. it would be
possible to construct a (self-financing) portfolio with value Vt(ω) at time t such that
P (V0 = 0) = 1 and P (VT ≥ 0) = 1 but P (VT > 0) > 0. It is the most fundamental
assumption of financial mathematics that there are no arbitrage opportunities: it
is not possible to make riskless profit!

In the case of the Black-Scholes model, the SDE of the stock under the martingale
probability measure Q is

(5.32) dSt = rStdt+ σStdWt,

where W denotes a Brownian motion on (Ω,F , Q). Note the surprising fact that
equation (5.32) – and consequently the option prices – does not depend on the drift
µ any longer. Instead, the risk-free interest rate plays the rôle of the stock. This
gives an intuitive explanation for the term risk-neutral measure: under the physical
measure, one typically has µ > r, since the investor in the stock takes more risk
than the investor on the bank account, thus he gets – on average – a higher profit.
The difference µ− r is called risk premium. Under the risk-neutral measure Q, the
investor is no longer risk avers, she only looks at the expected profit and disregards
the risk. Therefore, the risk premium is 0 and the drift coincides with the interest
rate.

Under Q, the stock price satisfies

St = S0 exp
((
r − σ2

2
)
t+ σWt

)
and the price of the European call is given by

C(0, S0) = e−rTEQ

(
(ST −K)+

)
,
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where EQ denotes the integral with respect to Q. By elementary transformations
we get the celebrated Black-Scholes formula

(5.33) C(0, S0) = S0Φ(d1)−Ke−rT Φ(d2),

where Φ(x) = P (Z ≤ x) for Z ∼ N (0, 1) denotes the distribution function of the
standard normal measure and

d1 =
log

(
S0
K

)
+

(
r + 1

2σ
2
)
T

σ
√
T

d2 =
log

(
S0
K

)
+

(
r − 1

2σ
2
)
T

σ
√
T

.

The value of the option at time t is found by replacing S0 by the stock price St at
time t and T by T − t.

On the other hand, the Feynman-Kac formula implies that C = C(t, x) is solution
to the PDE

(5.34)
1
2
σ2x2 ∂

2C

∂x2
(t, x) + rx

∂C

∂x
(t, x) +

∂C

∂t
(t, x)− rC(t, x) = 0,

t ∈ [0, T ], x > 0. The boundary condition is given by C(T, x) = (x −K)+, which
also makes sense from the economic point of view. The PDE (5.34) is known as
Black-Scholes PDE. Black and Scholes originally derived their PDE out of econom-
ical considerations and found their formula by solving the PDE using the Fourier
transform method.

References

[1] Heinz Bauer, Wahrscheinlichkeitstheorie, de Gruyter, Berlin, 2002.

[2] Patrick Billingsley, Convergence of Probability Measures, Wiley Series in Probability and
Mathematical Statistics, John Wiley & Sons, New York, 1968.

[3] Patrick Billingsley, Probability and Measure, Wiley Series in Probability and Mathematical

Statistics, John Wiley & Sons, New York, 1995.
[4] Fima C. Klebaner, Introduction to Stochastic Calculus with Applications, Imperial College

Press, London, 2001.

[5] Peter E. Kloeden and Eckhard Platen, Numerical Solutions of Stochastic Differential Equa-
tions, Stochastic Modelling and Applied Probability 23, Springer-Verlag, Berlin, 1999.

[6] Bernt Øksendal, Stochastic Differential Equations. An Introduction with Applications., Uni-
versitext, Springer-Verlag, Berlin, 2000.

[7] Philip E. Protter, Stochastic Integration and Differential Equations, Stochastic Modelling

and Applied Probability 21, Springer-Verlag, Berlin, 2005.
[8] Daniel Revuz and Marc Yor, Continuous Martingales and Brownian Motion, Grundlehren

der mathematischen Wissenschaften 293, Springer-Verlag, Berlin, 2005.

[9] Jordan Stoyanov, Counterexamples in Probability, Wiley Series in Probability and Mathe-
matical Statistics, John Wiley & Sons, Chichester, 1997.

[10] Josef Teichmann, Stochastic Analysis with Applications to Financial and Actuarial Mathe-

matics, Lecture Notes, 2003.


	1. Preliminaries from Probability Theory
	1.1. Independence
	1.2. Conditional Expectations
	1.3. Central Limit Theorem and Law of Large Numbers
	1.4. Gaussian Random Variables

	2. Stochastic Processes
	2.1. Kolmogorov's Extension Theorem
	2.2. Equality of Stochastic processes
	2.3. Regularity of Stochastic Processes
	2.4. Stochastic Processes as Measures on Path Space
	2.5. Martingales

	3. Brownian Motion
	3.1. Construction of Brownian Motion
	3.2. Regularity of Brownian Motion
	3.3. The Law of Iterated Logarithms
	3.4. Markov Processes
	3.5. Brownian Motion as a Markov Process
	3.6. Reflection Principle
	3.7. Multidimensional Brownian Motion

	4. Stochastic Integration
	4.1. Stochastic Integral for Simple Processes
	4.2. Extension of the Stochastic Integral
	4.3. Itô's Formula

	5. Stochastic Differential Equations
	5.1. Existence of Solutions
	5.2. Markov Property and Infinitesimal Generators
	5.3. Feynman Kac Formula
	5.4. Numerics for Stochastic Differential Equations
	5.5. An Example: The Black-Scholes Model

	References

