Weierstrass Institute for Applied Analysis and Stochastics

Smoothing the payoff for efficient computation of basket option prices

Christian Bayer

Markus Siebenmorgen, Raul Tempone
MCqMC 2018, Rennes

Outline

1 Introduction

2 Smoothing the payoff

3 Adaptive sparse grid construction

4 Numerical examples in Black-Scholes setting

Consider a basket option on stocks (with $r=0$, under Q)

$$
S_{T}^{i}=S_{0}^{i} \exp \left(\sigma_{i} W_{T}^{i}-\frac{1}{2} \sigma_{i}^{2} T\right), \quad i=1, \ldots, d, \quad T>0
$$

i.e., we want to compute

$$
C_{\mathcal{B}}(T, K):=E\left[\left(\sum_{i=1}^{d} c_{i} S_{T}^{i}-K\right)^{+}\right]
$$

- $\left(W^{1}, \ldots, W^{d}\right)$ is a correlated Brownian motion.
- $\sum_{i=1}^{d} c_{i} S_{T}^{i}$ is not lognormal.
- Solution methods:
- Asymptotic formulae
- Numerical integration

Numerical integration of basket options

$$
\begin{aligned}
C_{\mathcal{B}} & =E\left[\left(\sum_{i=1}^{d} w_{i} \exp \left(\sum_{j=1}^{d} a_{i j} Z_{j}\right)-K\right)^{+}\right] \\
& =\int_{\mathbb{R}^{d}}\left(\sum_{i=1}^{d} w_{i} \exp \left(\sum_{j=1}^{d} a_{i j} z_{j}\right)-K\right)^{+} \frac{1}{(2 \pi)^{d / 2}} \exp \left(-\frac{|z|^{2}}{2}\right) d z \\
& =\int_{[0,1]^{d}}\left(\sum_{i=1}^{d} w_{i} \exp \left(\sum_{j=1}^{d} a_{i j} \Phi^{-1}\left(u_{j}\right)\right)-K\right)^{+} d u
\end{aligned}
$$

where $A A^{\top}=\Sigma, \Sigma_{i j}=\sigma_{i} \rho_{i j} \sigma_{j} T$.

- Cubature
- Tensorized 1-dimensional quadrature
- Sparse grid cubature
- Multivariate cubature
- Quasi Monte Carlo
- Monte Carlo

Nonsmoothness of payoff

Plot of the payoff function $(d=2)$.
Left: $z \mapsto\left(\sum_{i=1}^{d} w_{i} \exp \left(\sum_{j=1}^{d} a_{i j} z_{j}\right)-K\right)^{+}$
Right: $u \mapsto\left(\sum_{i=1}^{d} w_{i} \exp \left(\sum_{j=1}^{d} a_{i j} \Phi^{-1}\left(u_{j}\right)\right)-K\right)^{+}$

Outline

1 Introduction

2 Smoothing the payoff

3 Adaptive sparse grid construction

4 Numerical examples in Black-Scholes setting

Unbiased smoothing by conditional expectation

$$
C_{\mathcal{B}}=E\left[\left(\sum_{i=1}^{d} w_{i} \exp \left(\sum_{j=1}^{d} a_{i j} Z_{j}\right)-K\right)^{+}\right]
$$

- Suppose that $a_{i 1} \equiv \alpha$

- Conditioning on Z_{2}, \ldots, Z_{d}, we obtain

$C_{B S}\left(S_{0}, \sigma, K\right):=E\left[\left(S_{0} e^{\sigma Z_{1}-\sigma^{2} / 2}-K\right)^{+}\right]=S_{0} \Phi\left(d_{1}\right)-K \Phi\left(d_{2}\right)$,
where $d_{1 / 2}:=\frac{1}{\sigma}\left(\log \left(\frac{S_{0}}{K}\right) \pm \frac{\sigma^{2}}{2}\right)$.

Unbiased smoothing by conditional expectation

$$
C_{\mathcal{B}}=E\left[\left(\sum_{i=1}^{d} w_{i} \exp \left(\sum_{j=1}^{d} a_{i j} Z_{j}\right)-K\right)^{+}\right]
$$

- Suppose that $a_{i 1} \equiv \alpha$

$$
C_{\mathcal{B}}=E\left[\left(e^{\alpha Z_{1}} \sum_{i=1}^{d} w_{i} \exp \left(\sum_{j=2}^{d} a_{i j} Z_{j}\right)-K\right)^{+}\right]
$$

\rightarrow Conditioning on Z_{2}, \ldots, Z_{d}, we obtain

where $d_{1 / 2}:=\frac{1}{\sigma}\left(\log \left(\frac{S_{0}}{K}\right) \pm \frac{\sigma^{2}}{2}\right)$.

Unbiased smoothing by conditional expectation

$$
C_{\mathcal{B}}=E\left[\left(\sum_{i=1}^{d} w_{i} \exp \left(\sum_{j=1}^{d} a_{i j} Z_{j}\right)-K\right)^{+}\right]
$$

- Suppose that $a_{i 1} \equiv \alpha$

$$
C_{\mathcal{B}}=E\left[\left(e^{\alpha Z_{1}} \sum_{i=1}^{d} w_{i} \exp \left(\sum_{j=2}^{d} a_{i j} Z_{j}\right)-K\right)^{+}\right]
$$

- Conditioning on Z_{2}, \ldots, Z_{d}, we obtain

$$
\begin{gathered}
C_{\mathcal{B}}=E\left[C_{B S}\left(e^{\alpha^{2} / 2} \sum_{i=1}^{d} w_{i} \exp \left(\sum_{j=2}^{d} a_{i j} Z_{j}\right), \alpha, K\right)\right], \\
C_{B S}\left(S_{0}, \sigma, K\right):=E\left[\left(S_{0} e^{\sigma Z_{1}-\sigma^{2} / 2}-K\right)^{+}\right]=S_{0} \Phi\left(d_{1}\right)-K \Phi\left(d_{2}\right), \\
\text { where } d_{1 / 2}:=\frac{1}{\sigma}\left(\log \left(\frac{S_{0}}{K}\right) \pm \frac{\sigma^{2}}{2}\right) .
\end{gathered}
$$

Note: $C_{B S}$ is analytic in all its arguments provided $\sigma^{2}>0$.

Existence of smoothing transformation

Lemma

Let $\Sigma \in \mathbb{R}^{d \times d}$ symmetric, positive definite, $v \in \mathbb{R}^{d}$. Then there is a diagonal matrix $D=\operatorname{diag}\left(\lambda_{1}^{2}, \ldots, \lambda_{d}^{2}\right)$ and an invertible matrix V with

- $\Sigma=V D V^{\top}$,
- $V_{i 1}=v_{i}, i=1, \ldots, d$.

Proof.

1. Denote $w:=\Sigma^{-1} v$. The matrix

$$
\widetilde{\Sigma}:=\Sigma-\frac{v \cdot v^{\top}}{v^{\top} \cdot w}
$$

is symmetric, positive semidefinite with rank $d-1$.
2. Denote $\lambda_{i}^{2}>0$ and $v_{i} \in \mathbb{R}^{d}, i=2, \ldots, d$, the positive eigenvalues of $\widetilde{\Sigma}$ and the corresponding eigenvectors and construct

$$
V:=\left(v, v_{2}, \ldots, v_{d}\right), \lambda_{1}^{2}:=\left(v^{\top} \cdot w\right)^{-1} .
$$

Smooth basket formula

Theorem

Let $w_{i}:=c_{i} S_{0}^{i} e^{-\sigma_{i}^{2} T}, \Sigma_{i j}:=\sigma_{i} \sigma_{j} \rho_{i j} T, \Sigma=V D V^{\top}$ the factorization from the lemma with $v=(1, \ldots, 1)^{\top}, Z \sim \mathcal{N}\left(0, I_{d-1}\right), \sqrt{\bar{D}}:=\operatorname{diag}\left(\lambda_{2}, \ldots, \lambda_{d}\right)$.
Then

$$
\begin{gathered}
C_{\mathcal{B}}=E\left[C_{B S}\left(h(\sqrt{\bar{D}} Z) e^{\lambda_{1}^{2} / 2}, K, \lambda_{1}\right)\right], \\
h\left(y_{2}, \ldots, y_{d}\right):=\sum_{i=1}^{d} w_{i} \exp \left(\sum_{j=2}^{d} V_{i j} y_{j}\right) .
\end{gathered}
$$

- Explicit formula available as long as $v \in\{0,1\}^{d} \backslash\{0\}$.
- Mollified payoff available in closed form and no bias introduced.
- Leads to reduced variance.
- Compare with domain transformation approaches (e.g., Achtsis, Cools, Nuyens '13)

Outline

1 Introduction

2 Smoothing the payoff

3 Adaptive sparse grid construction

4 Numerical examples in Black-Scholes setting

Sparse grid quadrature

$$
\int_{\mathbb{R}^{d}} f(x) \varphi_{d}(x) d x=?, \quad \varphi_{d} \ldots \text { standard normal density }
$$

- $Q_{j}, j \in \mathbb{N}$, sequence of 1-dim. (Gaussian) quadrature formulas:

$$
Q_{j}(g)=\sum_{\ell=1}^{N_{j}} v_{\ell}^{(j)} g\left(x_{\ell}^{(j)}\right), \quad \lim _{j \rightarrow \infty} Q_{j}(g)=\int_{\mathbb{R}} g(x) \varphi_{1}(x) d x
$$

- $\Delta_{j}:=Q_{j}-Q_{j-1}, Q_{-1}:=0$. Hence, $\lim _{j \rightarrow \infty}\left|\Delta_{j} g\right|=0$.

Definition

Given $I \subset \mathbb{N}_{0}^{d}$ (admissible), define

- Example: $I=\left\{\alpha \in \mathbb{N}_{0}^{d}| | \alpha \mid \leq L\right\}$ for some L.

Sparse grid quadrature

$$
\int_{\mathbb{R}^{d}} f(x) \varphi_{d}(x) d x=?, \quad \varphi_{d} \ldots \text { standard normal density }
$$

- $Q_{j}, j \in \mathbb{N}$, sequence of 1-dim. (Gaussian) quadrature formulas:

$$
Q_{j}(g)=\sum_{\ell=1}^{N_{j}} v_{\ell}^{(j)} g\left(x_{\ell}^{(j)}\right), \quad \lim _{j \rightarrow \infty} Q_{j}(g)=\int_{\mathbb{R}} g(x) \varphi_{1}(x) d x
$$

- $\Delta_{j}:=Q_{j}-Q_{j-1}, Q_{-1}:=0$. Hence, $\lim _{j \rightarrow \infty}\left|\Delta_{j} g\right|=0$.

Definition

Given $I \subset \mathbb{N}_{0}^{d}$ (admissible), define

$$
Q_{I}(f):=\sum_{\alpha \in I} \Delta_{\alpha_{1}} \otimes \cdots \otimes \Delta_{\alpha_{d}} f
$$

- Example: $\mathcal{I}=\left\{\alpha \in \mathbb{N}_{0}^{d}| | \alpha \mid \leq L\right\}$ for some L.

0123456
\square Old Index set O

0123456
\square Active Index set \mathcal{H}

- Initial index set $\mathcal{I}=\{(0, \ldots, 0)\}$
- Candidate indices: α neighboring (along all axes) I
- For each candidate α evaluate local error estimator g_{α}, e.g.,

$$
g_{\alpha}=\left|\Delta_{\alpha} f\right|
$$

- Add candidate α with largest error provided that $g_{\alpha} \geq$ TOL
- Use 1-dimensional Genz-Keister or Gauss-Hermite quadrature formulae as building blocks.

An example of a sparse grid

Smoothing payoff • July 3, $2018 \cdot$ Page 13 (23)

Outline

1 Introduction

2 Smoothing the payoff

3 Adaptive sparse grid construction

4 Numerical examples in Black-Scholes setting

Smoothed adaptive sparse grids, $d=3$

Smoothed adaptive sparse grids, $d=25$

Error and computational time

	time	error	points
	SGBS		
$d=3$	0.0057	4.9×10^{-10}	104
$d=8$	0.3675	1.81×10^{-9}	2.46×10^{4}
$d=25$	5.4283	1.04×10^{-6}	1.74×10^{5}
	QMC		
$d=3$	0.0016	1.25×10^{-1}	108
$d=8$	0.0161	5.39×10^{-3}	2.33×10^{4}
$d=25$	0.2406	6.18×10^{-4}	1.40×10^{5}
	MC		
$d=3$	0.0013	1.77×10^{-1}	108
$d=8$	0.0135	1.38×10^{-2}	2.33×10^{4}
$d=25$	0.2188	1.29×10^{-3}	1.40×10^{5}

Example for $d=25: \frac{\text { SGBS-error }}{\text { QMC-error }} \approx \frac{1}{600}$, $\frac{\text { SGBS-time }}{\text { QMC-time }} \approx 23$.

Smoothed QMC, $d=25$

- Control variates: $E[f(X)]=E[f(X)-g(X)]+E[g(X)]$
- Assumption: $\operatorname{var}(f(X)-g(X))<\operatorname{var}(f(X)), E[g(X)]$ known
- Choose $g(x)$ as interpolation of f based on sparse grid points
- Hence, $E[g(X)]=Q_{I} g=Q_{I} f$
- Improve the intearation error by applying (Q)MC on $f(X)-g(X)$
- Note: theoretical justification for control variates with QMC is unclear, but it often works in practice!
- Control variates: $E[f(X)]=E[f(X)-g(X)]+E[g(X)]$
- Assumption: $\operatorname{var}(f(X)-g(X))<\operatorname{var}(f(X)), E[g(X)]$ known
- Choose $g(x)$ as interpolation of f based on sparse grid points
- Hence, $E[g(X)]=Q_{I} g=Q_{I} f$
- Improve the integration error by applying (Q)MC on $f(X)-g(X)$
- Note: theoretical justification for control variates with QMC is unclear, but it often works in practice!

Smoothed adaptive sparse grids as variance reduction, $d=25$

Outlook

- Construct optimal sparse grid (i.e., replace error estimate by precise error expansions)
- Limitations: e.g., best of call option with payoff $\left(\max _{i=1, \ldots, d} c_{i} S_{T}^{i}-K\right)^{+}$. Smoothing only removes $(\cdot)^{+}$, not the max.
- Apply for models based on stochastic differential equations:
- Inherent smoothing available in stochastic volatility models:

$$
\begin{gathered}
d S_{t}=\sqrt{v_{t}} S_{t}\left(\rho d W_{t}+\sqrt{1-\rho^{2}} d W_{t}^{\top}\right), \quad d v_{t}=\mu\left(v_{t}\right) d t+\xi\left(v_{t}\right) d W_{t} \\
E\left[\left(S_{T}-K\right)^{+}\right]=E\left[C _ { B S } \left(\text { spot }=S_{0} e^{\rho} \int_{0}^{T} \sqrt{v_{t}} d W_{t}-\frac{\rho^{2}}{2} \int_{0}^{T} v_{t} d t,\right.\right. \\
\text { strike } \left.\left.=K, \text { vol }=\frac{1-\rho^{2}}{2} \int_{0}^{T} v_{t} d t\right)\right]
\end{gathered}
$$

- Use highly efficient 1D quadrature coupled with regression when no explicit formulas available

Given a random variable F, we try to compute $E[F]$. (Idea: F is solution of random PDE or SDE)

- $F^{\alpha} \approx F, \alpha \in \mathbb{N}^{d}$ ("discretization")
- Apply quadrature Q^{β} and obtain $F_{\alpha, \beta}:=Q^{\beta}\left(F^{\alpha}\right) \approx E[F]$ based on polynomial approximation, $\beta \in \mathbb{N}^{l}$

Multi-index stochastic collocation (MISC) [Haji-Ali, Nobile, Tamellini, Tempone '16]

$$
\mathcal{M}_{I}(F):=\sum_{(\alpha, \beta) \in I} \Delta F_{\alpha, \beta}, \quad I \subset \mathbb{N}^{d \cdot l}
$$

- "Sparsify" grid jointly in the discretization and the integration space
- Fast library by R. Tempone's group available, leads to similar performance as reported above in the Black-Scholes basket case

References

N. Achtsis, R. Cools, D. Nuyens: Conditional sampling for barrier option pricing under the LT method, SIFIN, 2013.
C. B., P. Laurence: Asymptotics beats Monte Carlo: The case of correlated local vol baskets, CPAM, 2014.
H.J. Bungartz, M. Griebel: Sparse grids, Acta Numerica, 2004.

回 R. Cools: An encyclopaedia of cubature formulas, J. Comp., 2003.
連 A. Genz, B. D. Keister: Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weights, J. Com. Appl. Math., 1996.
(M. Griebel, F. Kuo, I. Sloan: The smoothing effect of integration in \mathbb{R}^{d} and the ANOVA decomposition, Math. Comp., 2013.
A.-L. Haji-Ali, F. Nobile, L. Tamellini, R. Tempone: Multi-index stoch. collocation for random PDEs, C. M. A. Mech. Eng., 2016.
(M. Holtz: Sparse grid quadrature in high dimensions with applications in finance and insurance, Springer, 2014.

