Weierstrass Institute for Applied Analysis and Stochastics

SDE based regression for random PDEs

Christian Bayer
Felix Anker, Martin Eigel, Marcel Ladkau, Johannes Neumann, John
Schoenmakers

Outline

1 Introduction

2 Feynman-Kac representations

3 Monte Carlo regression

4 Numerical example

5 Outlook

$$
\begin{gathered}
-\nabla \cdot(\kappa(x) \nabla u(x))=f(x), \quad x \in D \subset \mathbb{R}^{d} \\
u(x)=g(x), \quad x \in \partial D
\end{gathered}
$$

- Assuming κ, f, g are deterministic, the Feynman-Kac formula gives a collection of random variable $\phi^{x}=\phi^{x}(\kappa, f, g), x \in D$, with

$$
\forall x \in D: u(x)=E\left[\phi^{x}\right] .
$$

- If κ, f, g are random, obtain $\Phi^{x}, x \in D$, with

$$
\begin{gathered}
u(x)=E\left[\Phi^{x_{1}}, x, f, g\right], \quad x \in D \\
E[u(x)]=E\left[\Phi^{x}\right], \quad x \in D \\
\operatorname{var}[u(x)] \leq \operatorname{var}\left[\Phi^{x}\right], \quad x \in D
\end{gathered}
$$

- Hence,
- In general, need spatial resolution of $v(x) \equiv E[u(x)], x \in D$. Several possibilities: interpolation or (local or global) Monte Carlo regression.

$$
\begin{gathered}
-\nabla \cdot(\kappa(x) \nabla u(x))=f(x), \quad x \in D \subset \mathbb{R}^{d} \\
u(x)=g(x), \quad x \in \partial D
\end{gathered}
$$

- Assuming κ, f, g are deterministic, the Feynman-Kac formula gives a collection of random variable $\phi^{x}=\phi^{x}(\kappa, f, g), x \in D$, with

$$
\forall x \in D: u(x)=E\left[\phi^{x}\right] .
$$

- If k, f, g are random, obtain $\Phi^{x}, x \in D$, with
- Hence,

$$
\begin{gathered}
u(x)=E\left[\Phi^{x} \mid \kappa, f, g\right], \quad x \in D \\
E[u(x)]=E\left[\Phi^{x}\right], \quad x \in D, \\
\operatorname{var}[u(x)] \leq \operatorname{var}\left[\Phi^{x}\right], \quad x \in D
\end{gathered}
$$

- In general, need spatial resolution of $v(x) \equiv E[u(x)], x \in D$. Several possibilities: interpolation or (local or global) Monte Carlo regression.

$$
\begin{gathered}
-\nabla \cdot(\kappa(x) \nabla u(x))=f(x), \quad x \in D \subset \mathbb{R}^{d} \\
u(x)=g(x), \quad x \in \partial D
\end{gathered}
$$

- Assuming κ, f, g are deterministic, the Feynman-Kac formula gives a collection of random variable $\phi^{x}=\phi^{x}(\kappa, f, g), x \in D$, with

$$
\forall x \in D: u(x)=E\left[\phi^{x}\right] .
$$

- If κ, f, g are random, obtain $\Phi^{x}, x \in D$, with

$$
u(x)=E\left[\Phi^{x} \mid \kappa, f, g\right], \quad x \in D
$$

- Hence,

- In general, need spatial resolution of $v(x) \equiv E[u(x)], x \in D$. Several possibilities: interpolation or (local or alobal) Monte Carlo regression.

$$
\begin{gathered}
-\nabla \cdot(\kappa(x) \nabla u(x))=f(x), \quad x \in D \subset \mathbb{R}^{d} \\
u(x)=g(x), \quad x \in \partial D
\end{gathered}
$$

- Assuming κ, f, g are deterministic, the Feynman-Kac formula gives a collection of random variable $\phi^{x}=\phi^{x}(\kappa, f, g), x \in D$, with

$$
\forall x \in D: u(x)=E\left[\phi^{x}\right] .
$$

- If κ, f, g are random, obtain $\Phi^{x}, x \in D$, with

$$
u(x)=E\left[\Phi^{x} \mid \kappa, f, g\right], \quad x \in D
$$

- Hence,

$$
\begin{gathered}
E[u(x)]=E\left[\Phi^{x}\right], \quad x \in D, \\
\operatorname{var}[u(x)] \leq \operatorname{var}\left[\Phi^{x}\right], \quad x \in D
\end{gathered}
$$

- In general, need spatial resolution of $v(x) \equiv E[u(x)], x \in D$.

$$
\begin{gathered}
-\nabla \cdot(\kappa(x) \nabla u(x))=f(x), \quad x \in D \subset \mathbb{R}^{d} \\
u(x)=g(x), \quad x \in \partial D
\end{gathered}
$$

- Assuming κ, f, g are deterministic, the Feynman-Kac formula gives a collection of random variable $\phi^{x}=\phi^{x}(\kappa, f, g), x \in D$, with

$$
\forall x \in D: u(x)=E\left[\phi^{x}\right]
$$

- If κ, f, g are random, obtain $\Phi^{x}, x \in D$, with

$$
u(x)=E\left[\Phi^{x} \mid \kappa, f, g\right], \quad x \in D
$$

- Hence,

$$
\begin{gathered}
E[u(x)]=E\left[\Phi^{x}\right], \quad x \in D, \\
\operatorname{var}[u(x)] \leq \operatorname{var}\left[\Phi^{x}\right], \quad x \in D
\end{gathered}
$$

- In general, need spatial resolution of $v(x) \equiv E[u(x)], x \in D$. Several possibilities: interpolation or (local or global) Monte Carlo regression.

Outline

1 Introduction

2 Feynman-Kac representations

3 Monte Carlo regression

4 Numerical example

5 Outlook

Feynman-Kac formula for a parabolic Cauchy problem

$$
\begin{gathered}
\partial_{t} u(t, x)-L u(t, x)=f(x), \quad x \in \mathbb{R}^{d}, t \geq 0, \\
u(0, x)=g(x)
\end{gathered}
$$

all coefficients deterministic,

$$
L f(x)=\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial x_{i}} f(x)+\frac{1}{2} \sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x)
$$

Theorem (Feynman-Kac formula)

Let W be a d-dimensional Brownian motion, $\sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d}$ such that
$a=\sigma^{\top} \sigma$ and let $X=X^{x}$ solve
and $Z_{t}=\int_{0}^{t} f\left(X_{s}\right) d s$. Then

Feynman-Kac formula for a parabolic Cauchy problem

$$
\begin{gathered}
\partial_{t} u(t, x)-L u(t, x)=f(x), \quad x \in \mathbb{R}^{d}, t \geq 0 \\
u(0, x)=g(x)
\end{gathered}
$$

all coefficients deterministic,

$$
L f(x)=\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial x_{i}} f(x)+\frac{1}{2} \sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x)
$$

Theorem (Feynman-Kac formula)

Let W be a d-dimensional Brownian motion, $\sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d}$ such that $a=\sigma^{\top} \sigma$ and let $X=X^{x}$ solve

$$
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad X_{0}=x \in \mathbb{R}^{d}
$$

and $Z_{t}=\int_{0}^{t} f\left(X_{s}\right) d s$. Then

$$
u(t, x)=E\left[g\left(X_{t}^{x}\right)+Z_{t}^{x}\right], \quad x \in \mathbb{R}^{d}, t \geq 0 .
$$

Feynman-Kac formula for an elliptic problem

$$
\begin{gathered}
-L u(x)=f(x), \quad x \in D \\
u(x)=g(x), \quad x \in \partial D
\end{gathered}
$$

Theorem (Feynman-Kac formula)

Let $X=X^{x}$ and $\tau=\tau^{x}$ be defined by

$$
\begin{gathered}
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad X_{0}=x \in \mathbb{R}^{n} \\
\tau:=\inf \left\{t \geq 0 \mid X_{t}^{x} \in D^{c}\right\} .
\end{gathered}
$$

Further, let $Z_{t}^{x}=\int_{0}^{t} f\left(X_{s}^{x}\right) d s$, then

$$
u(x)=E\left[g\left(X_{\tau}^{x}\right)+Z_{\tau}^{x}\right], \quad x \in D .
$$

- Similar representation available for Neumann problem, involving reflected diffusion.

Feynman-Kac formula for an elliptic problem

$$
\begin{gathered}
-L u(x)=f(x), \quad x \in D \\
u(x)=g(x), \quad x \in \partial D
\end{gathered}
$$

Theorem (Feynman-Kac formula)

Let $X=X^{x}$ and $\tau=\tau^{x}$ be defined by

$$
\begin{gathered}
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad X_{0}=x \in \mathbb{R}^{n} \\
\tau:=\inf \left\{t \geq 0 \mid X_{t}^{x} \in D^{c}\right\} .
\end{gathered}
$$

Further, let $Z_{t}^{x}=\int_{0}^{t} f\left(X_{s}^{x}\right) d s$, then

$$
u(x)=E\left[g\left(X_{\tau}^{x}\right)+Z_{\tau}^{x}\right], \quad x \in D .
$$

- Similar representation available for Neumann problem, involving reflected diffusion.

Stochastic representation for random coefficients

$$
\begin{gathered}
-L u(x)=f(x), \quad x \in D \\
u(x)=g(x), \quad x \in \partial D
\end{gathered}
$$

Theorem (Feynman-Kac formula)

Consider again a standard Brownian motion W independent of L, g, f and define $X=X^{x}, \tau=\tau^{x}$ by

$$
\begin{gathered}
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad X_{0}=x \in D \\
\tau:=\inf \left\{t \geq 0 \mid X_{t}^{x} \in D^{c}\right\} .
\end{gathered}
$$

Further, let $Z_{t}^{x}=\int_{0}^{t} f\left(X_{s}^{x}\right) d s$, then

Stochastic representation for random coefficients

$$
\begin{gathered}
-L u(x)=f(x), \quad x \in D \\
u(x)=g(x), \quad x \in \partial D
\end{gathered}
$$

Theorem (Feynman-Kac formula)

Consider again a standard Brownian motion W independent of L, g, f and define $X=X^{x}, \tau=\tau^{x}$ by

$$
\begin{gathered}
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad X_{0}=x \in D \\
\tau:=\inf \left\{t \geq 0 \mid X_{t}^{x} \in D^{c}\right\} .
\end{gathered}
$$

Further, let $Z_{t}^{x}=\int_{0}^{t} f\left(X_{s}^{x}\right) d s$, then

$$
\begin{gathered}
u(x)=E\left[g\left(X_{\tau}^{x}\right)+Z_{\tau}^{x} \mid L, f, g\right], \quad x \in D \\
E[u(x)]=E\left[g\left(X_{\tau}^{x}\right)+Z_{\tau}^{x}\right], \quad x \in D .
\end{gathered}
$$

Stochastic representation for random coefficients

$$
\begin{gathered}
-L u(x)=f(x), \quad x \in D \\
u(x)=g(x), \quad x \in \partial D
\end{gathered}
$$

Theorem (Feynman-Kac formula)

Consider again a standard Brownian motion W independent of L, g, f and define $X=X^{x}, \tau=\tau^{x}$ by

$$
\begin{gathered}
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad X_{0}=x \in D \\
\tau:=\inf \left\{t \geq 0 \mid X_{t}^{x} \in D^{c}\right\} .
\end{gathered}
$$

Further, let $Z_{t}^{x}=\int_{0}^{t} f\left(X_{s}^{x}\right) d s$, then

$$
\begin{gathered}
u(x)=E\left[g\left(X_{\tau}^{x}\right)+Z_{\tau}^{x} \mid L, f, g\right], \quad x \in D \\
E[u(x)]=E\left[g\left(X_{\tau}^{x}\right)+Z_{\tau}^{x}\right], \quad x \in D .
\end{gathered}
$$

- $\operatorname{var}\left[g\left(X_{\tau}^{x}\right)+Z_{\tau}^{x}\right]=\operatorname{var}[u(x)]+E\left[\operatorname{var}\left[g\left(X_{\tau}^{x}\right)+Z_{\tau}^{x} \mid L, f, g\right]\right]$

Implementation

$$
-\nabla \cdot(\kappa(x) \nabla u(x))=f(x)
$$

corresponds to

$$
d X_{t}=\nabla \kappa\left(X_{t}\right) d t+\sqrt{2 \kappa\left(X_{t}\right)} d W_{t}
$$

- Numerical solution by the Euler-Maruyama method:

- Weak error generally $O(\Delta t)$, however for stopped diffusion X_{τ} only $O(\sqrt{\Delta t})$
- Adaptive time-stepping based on distance to the boundary ∂D improves error to $O(\Delta t)$ again
- Fully parallel computations.

$$
-\nabla \cdot(\kappa(x) \nabla u(x))=f(x)
$$

corresponds to

$$
d X_{t}=\nabla \kappa\left(X_{t}\right) d t+\sqrt{2 \kappa\left(X_{t}\right)} d W_{t}
$$

- Numerical solution by the Euler-Maruyama method:

$$
\bar{X}_{t+\Delta t}=\bar{X}_{t}+\nabla \kappa\left(\bar{X}_{t}\right) \Delta t+\sqrt{2 \kappa\left(\bar{X}_{t}\right)} \Delta W, \quad \Delta W_{t} \sim \mathcal{N}\left(0, \Delta t I_{n}\right)
$$

- Weak error generally $O(\Delta t)$, however for stopped diffusion X_{τ} only $O(\sqrt{\Delta t})$
- Adaptive time-stepping based on distance to the boundary ∂D improves error to $O(\Delta t)$ again
- Fully parallel computations.

Outline

1 Introduction

2 Feynman-Kac representations

3 Monte Carlo regression

4 Numerical example

5 Outlook

The regression problem
Goal
Compute $x \mapsto v(x) \equiv E\left[\Phi^{x}\right], x \in D, \Phi^{x}=g\left(X_{\tau}^{x}\right)+Z_{\tau}^{x}$.

1. Deterministic techniques: Given a grid of $x_{i} \in D$ and approximate
values $\bar{v}\left(x_{i}\right), i=1, \ldots, N$, compute $x \mapsto v(x)$ by
2. Stochastic techniques: Given random points $x_{i} \in D$ and corresponding samples $\Phi_{i}{ }^{x_{i}}, i=1, \ldots, N$, compute $x \mapsto v(x)$ by

The regression problem
Goal
Compute $x \mapsto v(x) \equiv E\left[\Phi^{x}\right], x \in D, \Phi^{x}=g\left(X_{\tau}^{x}\right)+Z_{\tau}^{x}$.

1. Deterministic techniques: Given a grid of $x_{i} \in D$ and approximate values $\bar{v}\left(x_{i}\right), i=1, \ldots, N$, compute $x \mapsto v(x)$ by

- interpolation \quad regression

2. Stochastic techniques: Given random points $x_{i} \in D$ and corresponding samples $\Phi_{i}{ }^{x_{i}}, i=1, \ldots, N$, compute $x \mapsto v(x)$ by

Goal

Compute $x \mapsto v(x) \equiv E\left[\Phi^{x}\right], x \in D, \Phi^{x}=g\left(X_{\tau}^{x}\right)+Z_{\tau}^{x}$.

1. Deterministic techniques: Given a grid of $x_{i} \in D$ and approximate values $\bar{v}\left(x_{i}\right), i=1, \ldots, N$, compute $x \mapsto v(x)$ by

- interpolation \quad regression

2. Stochastic techniques: Given random points $x_{i} \in D$ and corresponding samples $\Phi_{i}^{x_{i}}, i=1, \ldots, N$, compute $x \mapsto v(x)$ by

- global regression: minimize $\frac{1}{N} \sum_{i=1}^{N}\left(\Phi_{i}^{x_{i}}-\bar{v}(x)\right)^{2}$ over a finite-dimensional space $\bar{v} \in V$
- local regression: $v(x)$ approximated by a weighted average-weighted by distance of x to x_{i}-of $\Phi_{i}^{x_{i}}$

The regression problem

Goal

Compute $x \mapsto v(x) \equiv E\left[\Phi^{x}\right], x \in D, \Phi^{x}=g\left(X_{\tau}^{x}\right)+Z_{\tau}^{x}$.

1. Deterministic techniques: Given a grid of $x_{i} \in D$ and approximate values $\bar{v}\left(x_{i}\right), i=1, \ldots, N$, compute $x \mapsto v(x)$ by

- interpolation \quad regression

2. Stochastic techniques: Given random points $x_{i} \in D$ and corresponding samples $\Phi_{i}^{x_{i}}, i=1, \ldots, N$, compute $x \mapsto v(x)$ by

- global regression: minimize $\frac{1}{N} \sum_{i=1}^{N}\left(\Phi_{i}^{x_{i}}-\bar{v}(x)\right)^{2}$ over a finite-dimensional space $\bar{v} \in V$
- local regression: $v(x)$ approximated by a weighted average-weighted by distance of x to x_{i}-of $\Phi_{i}^{x_{i}}$

The regression problem

Goal

Compute $x \mapsto v(x) \equiv E\left[\Phi^{x}\right], x \in D, \Phi^{x}=g\left(X_{\tau}^{x}\right)+Z_{\tau}^{x}$.

1. Deterministic techniques: Given a grid of $x_{i} \in D$ and approximate values $\bar{v}\left(x_{i}\right), i=1, \ldots, N$, compute $x \mapsto v(x)$ by

- interpolation
- regression

2. Stochastic techniques: Given random points $x_{i} \in D$ and corresponding samples $\Phi_{i}^{x_{i}}, i=1, \ldots, N$, compute $x \mapsto v(x)$ by

- global regression: minimize $\frac{1}{N} \sum_{i=1}^{N}\left(\Phi_{i}^{x_{i}}-\bar{v}(x)\right)^{2}$ over a finite-dimensional space $\bar{v} \in V$
- local regression: $v(x)$ approximated by a weighted average-weighted by distance of x to x_{i}-of $\Phi_{i}^{x_{i}}$

Remark

Stochastic techniques can be used with approximate values $\bar{v}\left(x_{i}\right)$, too.

Global Monte Carlo regression

Goal

Compute $x \mapsto v(x) \equiv E\left[\Phi^{x}\right], x \in D$.

- Basis functions $\psi_{1}, \ldots, \psi_{K}: D \rightarrow \mathbb{R}$ (orthonormal w.r.t. μ)
- A probability measure μ on D
- Generate ind. samples x_{1}, \ldots, x_{N} from μ, and $\Phi_{1}^{x_{1}}$
- Here, x_{i} are independent of κ, f, g and W

Global Monte Carlo regression

Goal

Compute $x \mapsto v(x) \equiv E\left[\Phi^{x}\right], x \in D$.

- Basis functions $\psi_{1}, \ldots, \psi_{K}: D \rightarrow \mathbb{R}$ (orthonormal w.r.t. μ)
- A probability measure μ on D
- Generate ind. samples x_{1}, \ldots, x_{N} from μ, and $\Phi_{1}^{x_{1}}, \ldots, \Phi_{N}^{x_{N}}$
- Here, x_{i} are independent of κ, f, g and W.

Remark

Global Monte Carlo regression

Goal

Compute $x \mapsto v(x) \equiv E\left[\Phi^{x}\right], x \in D$.

- Basis functions $\psi_{1}, \ldots, \psi_{K}: D \rightarrow \mathbb{R}$ (orthonormal w.r.t. μ)
- A probability measure μ on D
- Generate ind. samples x_{1}, \ldots, x_{N} from μ, and $\Phi_{1}^{x_{1}}, \ldots, \Phi_{N}^{x_{N}}$
- Here, x_{i} are independent of κ, f, g and W.

$$
\widehat{\gamma}:=\underset{\gamma \in \mathbb{R}^{K}}{\arg \min } \frac{1}{N} \sum_{i=1}^{N}\left(\Phi_{i}^{x_{i}}-\sum_{k=1}^{K} \gamma_{k} \psi_{k}\left(x_{i}\right)\right)^{2}, \quad \widehat{v}(x):=\sum_{k=1}^{K} \widehat{\gamma}_{k} \psi_{k}(x)
$$

Remark

Global Monte Carlo regression

Goal

Compute $x \mapsto v(x) \equiv E\left[\Phi^{x}\right], x \in D$.

- Basis functions $\psi_{1}, \ldots, \psi_{K}: D \rightarrow \mathbb{R}$ (orthonormal w.r.t. μ)
- A probability measure μ on D
- Generate ind. samples x_{1}, \ldots, x_{N} from μ, and $\Phi_{1}^{x_{1}}, \ldots, \Phi_{N}^{x_{N}}$
- Here, x_{i} are independent of κ, f, g and W.

$$
\widehat{\gamma}:=\underset{\gamma \in \mathbb{R}^{K}}{\arg \min } \frac{1}{N} \sum_{i=1}^{N}\left(\Phi_{i}^{x_{i}}-\sum_{k=1}^{K} \gamma_{k} \psi_{k}\left(x_{i}\right)\right)^{2}, \quad \widehat{v}(x):=\sum_{k=1}^{K} \widehat{\gamma}_{k} \psi_{k}(x)
$$

Remark

$$
\widehat{v}(x) \xrightarrow{N \rightarrow \infty} \sum_{k=1}^{K}\left\langle v, \psi_{k}\right\rangle_{L^{2}(D, \mu)} \psi_{k}(x) \text { in } L^{2}(\Omega \times D, P \otimes \mu) .
$$

Semi-stochastic regression

- Let $\mathcal{Y}:=\left(\Phi_{1}^{x_{1}}, \ldots, \Phi_{N}^{x_{N}}\right) \in \mathbb{R}^{N}, \mathcal{M}:=\left(\psi_{k}\left(x_{i}\right)\right)_{i=1, \ldots, N, k=1, \ldots, K} \in \mathbb{R}^{N \times K}$, $\widehat{\gamma}=\left(\mathcal{M}^{\top} \mathcal{M}\right)^{-1} \mathcal{M}^{\top} \boldsymbol{y}$
- Inversion of the matrix $\mathcal{M}^{\top} \mathcal{M}$-rather solving the linear system—may be ill-conditioned. But

- $\mathcal{G} \in \mathbb{R}^{K \times K}$ computed efficiently. Orthonormal case: $\mathcal{G}=I_{K}$.

Definition (Semi-stochastic regression coefficients)

- $\bar{\gamma}$ is no solution of the regression problem!

Semi-stochastic regression

- Let $\mathcal{Y}:=\left(\Phi_{1}^{x_{1}}, \ldots, \Phi_{N}^{x_{N}}\right) \in \mathbb{R}^{N}, \mathcal{M}:=\left(\psi_{k}\left(x_{i}\right)\right)_{i=1, \ldots, N, k=1, \ldots, K} \in \mathbb{R}^{N \times K}$,

$$
\widehat{\gamma}=\left(\mathcal{M}^{\top} \mathcal{M}\right)^{-1} \mathcal{M}^{\top} \boldsymbol{y}
$$

- Inversion of the matrix $\mathcal{M}^{\top} \mathcal{M}$-rather solving the linear system—may be ill-conditioned. But

$$
\frac{1}{N}\left(\mathcal{M}^{\top} \mathcal{M}\right)_{k, l}=\frac{1}{N} \sum_{i=1}^{N} \psi_{k}\left(x_{i}\right) \psi_{l}\left(x_{i}\right)
$$

$$
\xrightarrow{N \rightarrow \infty} \int_{D} \psi_{k}(x) \psi_{l}(x) \mu(d x)=:(\mathcal{G})_{k . l}
$$

- $\mathcal{G} \in \mathbb{R}^{K \times K}$ computed efficiently. Orthonormal case: $\mathcal{G}=I_{K}$.

Definition (Semi-stochastic regression coefficients)

Semi-stochastic regression

- Let $\mathcal{y}:=\left(\Phi_{1}^{x_{1}}, \ldots, \Phi_{N}^{x_{N}}\right) \in \mathbb{R}^{N}, \mathcal{M}:=\left(\psi_{k}\left(x_{i}\right)\right)_{i=1, \ldots, N, k=1, \ldots, K} \in \mathbb{R}^{N \times K}$,

$$
\widehat{\gamma}=\left(\mathcal{M}^{\top} \mathcal{M}\right)^{-1} \mathcal{M}^{\top} \boldsymbol{y}
$$

- Inversion of the matrix $\mathcal{M}^{\top} \mathcal{M}$-rather solving the linear system—may be ill-conditioned. But

$$
\begin{aligned}
& \frac{1}{N}\left(\mathcal{M}^{\top} \mathcal{M}\right)_{k, l}=\frac{1}{N} \sum_{i=1}^{N} \psi_{k}\left(x_{i}\right) \psi_{l}\left(x_{i}\right) \\
& \xrightarrow{N \rightarrow \infty} \int_{D} \psi_{k}(x) \psi_{l}(x) \mu(d x)=:(\mathcal{G})_{k . l}
\end{aligned}
$$

- $\mathcal{G} \in \mathbb{R}^{K \times K}$ computed efficiently. Orthonormal case: $\mathcal{G}=I_{K}$.

Definition (Semi-stochastic regression coefficients)

Semi-stochastic regression

- Let $\mathcal{Y}:=\left(\Phi_{1}^{x_{1}}, \ldots, \Phi_{N}^{x_{N}}\right) \in \mathbb{R}^{N}, \mathcal{M}:=\left(\psi_{k}\left(x_{i}\right)\right)_{i=1, \ldots, N, k=1, \ldots, K} \in \mathbb{R}^{N \times K}$,

$$
\widehat{\gamma}=\left(\mathcal{M}^{\top} \mathcal{M}\right)^{-1} \mathcal{M}^{\top} \boldsymbol{y}
$$

- Inversion of the matrix $\mathcal{M}^{\top} \mathcal{M}$ —rather solving the linear system—may be ill-conditioned. But

$$
\begin{aligned}
& \frac{1}{N}\left(\mathcal{M}^{\top} \mathcal{M}\right)_{k, l}=\frac{1}{N} \sum_{i=1}^{N} \psi_{k}\left(x_{i}\right) \psi_{l}\left(x_{i}\right) \\
& \xrightarrow{N \rightarrow \infty} \int_{D} \psi_{k}(x) \psi_{l}(x) \mu(d x)=:(\mathcal{G})_{k . l}
\end{aligned}
$$

- $\mathcal{G} \in \mathbb{R}^{K \times K}$ computed efficiently. Orthonormal case: $\mathcal{G}=I_{K}$.

Definition (Semi-stochastic regression coefficients)

$$
\bar{\gamma}:=\frac{1}{N} \mathcal{G}^{-1} \mathcal{M}^{\top} \boldsymbol{y}
$$

Semi-stochastic regression

- Let $\mathcal{Y}:=\left(\Phi_{1}^{x_{1}}, \ldots, \Phi_{N}^{x_{N}}\right) \in \mathbb{R}^{N}, \mathcal{M}:=\left(\psi_{k}\left(x_{i}\right)\right)_{i=1, \ldots, N, k=1, \ldots, K} \in \mathbb{R}^{N \times K}$,

$$
\widehat{\gamma}=\left(\mathcal{M}^{\top} \mathcal{M}\right)^{-1} \mathcal{M}^{\top} \boldsymbol{y}
$$

- Inversion of the matrix $\mathcal{M}^{\top} \mathcal{M}$ —rather solving the linear system—may be ill-conditioned. But

$$
\begin{aligned}
& \frac{1}{N}\left(\mathcal{M}^{\top} \mathcal{M}\right)_{k, l}=\frac{1}{N} \sum_{i=1}^{N} \psi_{k}\left(x_{i}\right) \psi_{l}\left(x_{i}\right) \\
& \xrightarrow{N \rightarrow \infty} \int_{D} \psi_{k}(x) \psi_{l}(x) \mu(d x)=:(\mathcal{G})_{k . l}
\end{aligned}
$$

- $\mathcal{G} \in \mathbb{R}^{K \times K}$ computed efficiently. Orthonormal case: $\mathcal{G}=I_{K}$.

Definition (Semi-stochastic regression coefficients)

$$
\bar{\gamma}:=\frac{1}{N} \mathcal{G}^{-1} \mathcal{M}^{\top} \boldsymbol{y}
$$

- $\bar{\gamma}$ is no solution of the regression problem!

Convergence of the semi-stochastic regression algorithm

We are interested in the convergence of \bar{v} to v_{K} with

$$
\bar{v}(x):=\sum_{k=1}^{K} \bar{\gamma}_{k} \psi_{k}(x), \quad v_{K}(x):=\sum_{k=1}^{K}\left\langle v, \psi_{k}\right\rangle_{L^{2}(D, \mu)} \psi_{k}(x)
$$

Theorem

Let $\lambda_{\min }>0\left(e . g . \lambda_{\min }=1\right)$ be the smallest eigenvalue of \mathcal{G} and let $\mathcal{V}>0$ s.t.

- $\int_{D} \psi_{k}(x)^{2} v(x)^{2} \mu(d x) \leq \mathcal{V}$,
- $\int_{D} \psi_{k}(x)^{2} \operatorname{var}\left[\Phi^{x}\right] \mu(d x) \leq \mathcal{V}$,
$k=1, \ldots, K$. Then

$$
\int_{D} E\left[\left|\bar{v}(x)-v_{K}(x)\right|^{2}\right] \mu(d x) \leq \frac{4 \mathcal{V}}{\lambda_{\min }} \frac{K}{N}
$$

Error decomposition

- Projection error to the set of basis functions: $\left\|v-v_{K}\right\| \sim e(K)$
- Regression error:

$$
\left\|v_{K}-\bar{v}\right\| \leq \varepsilon \text { at cost } \sim N \times K \text { with } N \sim K \varepsilon^{-2}
$$

- Time discretization error of the SDE: Given a (possibly random) time grid t_{i}, approximate X, Z, τ by $\widetilde{X}, \widetilde{Z}, \widetilde{\tau}$. Using adaptive algorithms:

$$
\|\bar{v}-\overline{\bar{v}}\| \leq \varepsilon \text { at cost } \sim \varepsilon^{-1},
$$

$\widetilde{\bar{v}}$: result of regression based on $\widetilde{\Phi^{x}}:=g\left(\widetilde{X}_{\widetilde{\tau}}^{x}\right)+\widetilde{Z}_{\widetilde{\tau}}^{x}$

Total cost for error tolerance s

This is independent of d-unless via e.

Error decomposition

- Projection error to the set of basis functions: $\left\|v-v_{K}\right\| \sim e(K)$
- Regression error:

$$
\left\|v_{K}-\bar{v}\right\| \leq \varepsilon \text { at cost } \sim N \times K \text { with } N \sim K \varepsilon^{-2}
$$

- Time discretization error of the SDE: Given a (possibly random) time grid t_{i}, approximate X, Z, τ by $\widetilde{X}, \widetilde{Z}, \widetilde{\tau}$. Using adaptive algorithms:

$$
\|\bar{v}-\overline{\bar{v}}\| \leq \varepsilon \text { at cost } \sim \varepsilon^{-1},
$$

$\widetilde{\bar{v}}$: result of regression based on $\widetilde{\Phi^{x}}:=g\left(\widetilde{X}_{\widetilde{\tau}}^{x}\right)+\widetilde{Z}_{\widetilde{\tau}}^{x}$

Total cost for error toterance \&

This is independent of d-unless via e.

Error decomposition

- Projection error to the set of basis functions: $\left\|v-v_{K}\right\| \sim e(K)$
- Regression error:

$$
\left\|v_{K}-\bar{v}\right\| \leq \varepsilon \text { at cost } \sim N \times K \text { with } N \sim K \varepsilon^{-2}
$$

- Time discretization error of the SDE: Given a (possibly random) time grid t_{i}, approximate X, Z, τ by $\widetilde{X}, \widetilde{Z}, \widetilde{\tau}$. Using adaptive algorithms:

$$
\|\bar{v}-\widetilde{\bar{v}}\| \leq \varepsilon \text { at cost } \sim \varepsilon^{-1},
$$

$\widetilde{\bar{v}}$: result of regression based on $\widetilde{\Phi^{x}}:=g\left(\widetilde{X}_{\widetilde{\tau}}^{x}\right)+\widetilde{Z}_{\widetilde{\tau}}^{x}$
Total cost for error tolerance ε

This is independent of d-unless via e.

Error decomposition

- Projection error to the set of basis functions: $\left\|v-v_{K}\right\| \sim e(K)$
- Regression error:

$$
\left\|v_{K}-\bar{v}\right\| \leq \varepsilon \text { at cost } \sim N \times K \text { with } N \sim K \varepsilon^{-2}
$$

- Time discretization error of the SDE: Given a (possibly random) time grid t_{i}, approximate X, Z, τ by $\widetilde{X}, \widetilde{Z}, \widetilde{\tau}$. Using adaptive algorithms:

$$
\|\bar{v}-\overline{\bar{v}}\| \leq \varepsilon \text { at cost } \sim \varepsilon^{-1},
$$

$\widetilde{\bar{v}}$: result of regression based on $\widetilde{\Phi^{x}}:=g\left(\widetilde{X}_{\widetilde{\tau}}^{x}\right)+\widetilde{Z}_{\widetilde{\tau}}^{x}$

Total cost for error tolerance ε

$$
C_{1}\left(e^{-1}(\varepsilon)\right)^{2} \varepsilon^{-2}+C_{2} e^{-1}(\varepsilon) \varepsilon^{-3}, \quad C_{2} \gg C_{1}
$$

This is independent of d-unless via e.

Outline

1 Introduction

2 Feynman-Kac representations

3 Monte Carlo regression

4 Numerical example

5 Outlook

$$
\begin{gathered}
-\nabla \cdot(\kappa(x) \nabla u(x))=1, \quad x \in D:=[0,1]^{2} \\
u(x)=\sin \left(\pi x_{1}\right)+\sin \left(\pi x_{2}\right), \quad x \in \partial D
\end{gathered}
$$

Noise: finite-dimensional, based on uniform random variables

$$
\begin{aligned}
& \kappa(x)=\kappa_{m}(x)=A \sum_{m=0}^{M} U_{m} m^{-\sigma} \cos \left(2 \pi \beta_{1}(m) x_{1}\right) \cos \left(2 \pi \beta_{2}(m) x_{2}\right)+\varepsilon, \\
& U_{m} \sim \mathcal{U}([0,1]), \\
& \beta_{1}(m)=m-k(m)(k(m)+1) / 2, \\
& \beta_{2}(m)=k(m)-\beta_{1}(m) \\
& k(m)=\lfloor-1 / 2+\sqrt{1 / 4+2 m}\rfloor
\end{aligned}
$$

Basis functions: global polynomials of degree 4 on $D, \mu=\left.d x\right|_{D}$.

Figure: Sample from smooth κ

Figure: Sample from rough κ

Regression for random PDEs • January 6, 2016 • Page 18 (23)

Regression and time discretization error

Regression for random PDEs • January 6, 2016 • Page 19 (23)

Outline

1 Introduction

2 Feynman-Kac representations

3 Monte Carlo regression

4 Numerical example

5 Outlook

Regression for random PDEs • January 6, 2016 • Page 20 (23)

Extending the method

- Time dependent problems: compute $E[u(T, x)]$ for

$$
\begin{gathered}
\partial_{t} u(t, x)-\nabla \cdot(\kappa(t, x) \nabla u(t, x))+\gamma(x) u(t, x) \xi_{t}=f(x), \quad x \in D \\
u(t, x)=g(t, x), \quad x \in \partial D \\
u(0, x)=h(x), \quad x \in \bar{D}
\end{gathered}
$$

- Either Dirichlet or Neumann or mixed problems
- Nonlinear random PDEs: stochastic representations by forward-backward SDEs
- Non-local problems: - Lu(x) $=f(x)$

Extending the method

- Time dependent problems: compute $E[u(T, x)]$ for

$$
\begin{gathered}
\partial_{t} u(t, x)-\nabla \cdot(\kappa(t, x) \nabla u(t, x))+\gamma(x) u(t, x) \xi_{t}=f(x), \quad x \in D \\
u(t, x)=g(t, x), \quad x \in \partial D \\
u(0, x)=h(x), \quad x \in \bar{D}
\end{gathered}
$$

- Either Dirichlet or Neumann or mixed problems
- Nonlinear random PDEs: stochastic representations by forward-backward SDEs
- Non-local problems: $-\operatorname{Lu}(x)=f(x)$

Extending the method

- Time dependent problems: compute $E[u(T, x)]$ for

$$
\begin{gathered}
\partial_{t} u(t, x)-\nabla \cdot(\kappa(t, x) \nabla u(t, x))+\gamma(x) u(t, x) \xi_{t}=f(x), \quad x \in D \\
u(t, x)=g(t, x), \quad x \in \partial D \\
u(0, x)=h(x), \quad x \in \bar{D}
\end{gathered}
$$

- Either Dirichlet or Neumann or mixed problems
- Nonlinear random PDEs: stochastic representations by forward-backward SDEs
- Non-local problems: $-L u(x)=f(x)$

$$
\begin{aligned}
L & =b_{i} \frac{\partial}{\partial x_{i}}+\frac{1}{2} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \Longleftrightarrow d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t} \\
L & =-(-\Delta)^{\alpha / 2} \Longleftrightarrow X_{t} \text { is } \alpha \text {-stable process }(0<\alpha<2)
\end{aligned}
$$

L"fractional Laplacian with random coefficients" $\Longleftrightarrow X$ solves SDE driven by stable process.

- Multilevel Monte Carlo: special care is needed for determining the hitting time at the boundary.
- Adaptivity possible for time-stepping and sampling

Figure: $E[u(x)]$
Figure: Density of points

- Multilevel Monte Carlo: special care is needed for determining the hitting time at the boundary.
- Adaptivity possible for time-stepping and sampling

Figure: $E[u(x)]$

Figure: Density of points

References

围 F．Anker，C．B．，M．Eigel，M．Ladkau，J．Neumann，
J．Schoenmakers：SDE based regression for random PDEs， preprint， 2016.

嗇 C．B．，A．Szepessy，R．Tempone：Adaptive week approximation of stopped and reflected diffusion，MCMA， 2010.
G．Milstein，M．Tretyakov：Stochastic numerics for mathematical physics，Springer， 2004.
围 G．Migliorati：Analysis of the stability and accuracy of the discrete least－squares approximation on multivariate polynomial spaces， presentation at UQAW 2016.

