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Controlled differential equations

Standard ordinary differential equation

ẏt = V(yt), y0 = ξ ∈ Rd, t ∈ [0, 1]

V : Rd → Rd smooth

Controlled differential equation

dyt = V(yt)dxt, y0 = ξ ∈ Rd, t ∈ [0, 1]

I V : Rd → Rd×e smooth
I xt path taking values in Re

I xt may contain component t, i.e., includes

dyt = V0(yt)dt + V(yt)dxt
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Examples of controlled differential equations

dyt = V(yt)dxt, y0 = ξ ∈ Rd, t ∈ [0, 1]

I xt smooth:
ẏt = V(yt)ẋt

I xt = Wt(ω) is a path of a Brownian motion, i.e., yt = yt(ω) is
pathwise solution of the stochastic differential equation

dyt(ω) = V(yt(ω))dWt(ω)

(Ito, Stratonovich or some other sense?)

I xt = Zt(ω) for some other stochastic process, such as fractional
Brownian motion, yt = yt(ω) is pathwise solution of the
corresponding stochastic differential equation
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Integral form

dyt = V(yt)dxt, y0 = ξ ∈ Rd, t ∈ [0, 1]

Assume that xt is not smooth, say

x ∈ Cα([0, 1];Re) B
{

x ∈ C
(
[0, 1];Re) ∣∣∣∣∣∣ sup

s,t

|xs − xt|

|s − t|α
C ‖x‖α < ∞

}
, α < 1

I While ẋ does not “easily” make sense, maybe the integral form
does:

yt = ξ +

∫ t

0
V(ys)dxs, t ∈ [0, 1]

I Notice: If x ∈ Cα, then generically y ∈ Cα (and no better), as well.
I Need to make sense of expressions of the form∫ t

0
ysdxs, x, y ∈ Cα ([0, 1])
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Young integral ∫ t

0
ysdxs, x, y ∈ Cα ([0, 1])

Recall the Riemann-Stieltjes integral:∫ 1

0
ysdxs B lim

|P|→0

∑
[s,t]∈P

ys (xt − xs)︸   ︷︷   ︸
Cxs,t

(∗)

P a finite partition of [0, 1]

Theorem (Young 1936)

(a) Let y ∈ Cβ([0, 1];R), x ∈ Cα([0, 1];R) with 0 < α, β < 1 and
α + β > 1. Then (∗) converges and the resulting bi-linear map
(x, y) 7→

∫ 1
0 ysdxs is continuous, i.e.,

∣∣∣∣∫ 1
0 ysdxs

∣∣∣∣ ≤ Cα+β(|y0|) ‖y‖β ‖x‖α.

(b) Let α + β ≤ 1. Then there are y ∈ Cβ([0, 1];R), x ∈ Cα([0, 1];R)
such that (∗) does not converge, i.e., such that different sequences of
partitions yield different limits (or none at all).
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Young integral II

dyt = V(yt)dxt, y0 = ξ ∈ Rd, t ∈ [0, 1]

Let x ∈ Cα([0, 1];Re), α > 1
2 and V ∈ C2

b(Rd;Rd×e). Then the usual
Picard iteration scheme converges and the controlled differential
equation has a unique solution.

Example
Let 0 < H < 1. The fractional Brownian motion with Hurst index H is
the Gaussian process (on [0, 1]) with WH

0 = 0, E
[
WH

t

]
= 0 and

E
[
WH

t WH
s

]
=

1
2

(
t2H + s2H − |t − s|2H

)
.

I fBm with H = 1
2 is standard Brownian motion;

I Paths of WH are a.s. α-Hölder for any α < H (but no α ≥ H).

Hence, we can solve fractional SDEs for H > 1
2 .
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Rough drivers as limits of smooth drivers

dyt = V(yt)dxt, y0 = ξ ∈ Rd, t ∈ [0, 1]

I Classical theory works for smooth x, say x ∈ C∞ ([0, 1];Re)

Idea
I Choose sequence xn of smooth paths converging to x

I Assume that corresponding solutions yn converge to some path
y ∈ Cα

(
[0, 1];Rd

)
I Call y solution of the controlled equation
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A counter-example

xn
t =

(
sin(n2t)/n , cos(n2t)/n

)
, t ∈ [0, 2π]

Consider the area function

zn
t

Even though xn → 0 in ‖·‖∞, we have zn
t → −

1
2 t.
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1
2
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0
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(
n2s
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ds +

∫ t

0
cos

(
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Relevance for controlled differential equations: choose

V(y) =


1 0
0 1

1
2 y2 − 1

2 y1

 , y ∈ R3

Then yn
t B

(
xn,1

t , xn,2
t , zn

t

)
solves

dyn
t = V(yn

t )dxn
t , y0 = (0, 1/n, 0) .
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A counter-example
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Remark
I The example is not just an instance of “poor choice of norm”:

replacing ‖·‖∞ by any other reasonable norm is vulnerable to the
same type of example.

I “Curing this example will cure all other counter-examples.”

I Does not work in dimension e = 1 (Doss–Sussmann
transformation.)
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Ito stochastic integration

Suppose you want to cover the case xt = Wt(ω), a standard Brownian
motion.

Brownian motion is a martingale: i.e., the increments are orthogonal
(in L2(Ω)) to the past: for bounded f , we have

Z = f ((Wu)0≤u≤s)⇒ E
[
ZWs,t

]
= 0 for 0 < s < t.

This strong geometric condition allows to define∫ t

0
ZsdWs = lim

|P|→0

∑
[u,v]∈P

ZuWu,v in probability,

provided that Z is adapted (i.e., ∀s : Zs is σ
(
(Wu)0≤u≤s

)
-measurable)

and square integrable w.r.t. dt ⊗ P.

Standard Picard iteration allows to solve stochastic differential
equations.
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The rough path principle

dyt = V(yt)dxt, y0 = ξ ∈ Rd, t ∈ [0, 1]

x rough, i.e., not contained in any Cα([0, 1];Re), α > 1
2 .

Let Φ denote the solution map x 7→ y for x smooth (discontinuous).

Rough path principle

I By continuity of Ψ, can define y as limit of smooth solutions
I Morally, x =

(
x,

∫ ·
0 xs ⊗ dxs

)
I Rough path theory does not help with actual construction of x.
I Use Ito/Stratonovich stochastic integral in case of Brownian

motion. No pathwise construction of x = x(ω), but pathwise
construction of y = y(ω) given a path of x.
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motion. No pathwise construction of x = x(ω), but pathwise
construction of y = y(ω) given a path of x.
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Chen’s relation

Let x : [0, 1]→ Re be a smooth path, xs,t B xt − xs and consider

xs,t B

∫ t

s
xs,u ⊗ dxu B

(∫ t

s
xi

s,udx j
u

)e

i, j=1

How do increments of of x behave? Let s < u < t, then

xs,t =

∫ t

s
xs,v ⊗ dxv

xs,u + xu,t =

Theorem (Chen’s theorem)

xs,t − xs,u − xu,t = xs,u ⊗ xu,t

Remark
Note xs,t → xs,t + ft − fs leaves Chen’s relation invariant.
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Rough path space

Definition

Let 1
3 < α ≤

1
2 . The space of α-Hölder rough paths C α ([0, 1],Re) is the

set of pairs x = (x,x), x : [0, 1]→ Re, x : [0, 1]2 → Re ⊗ Re such that

I Chen’s relation holds;

I ‖x‖α B sup
s,t

∣∣∣xs,t
∣∣∣

|t − s|α
< ∞, ‖x‖2α B sup

s,t

∣∣∣xs,t
∣∣∣

|t − s|2α
< ∞.

Remark
I C α is not a linear space, but a closed subset of a Banach space.

I For α ≤ 1
3 , need to add iterated integrals of order up to

⌊
1
α

⌋
.

I ‖·‖α is a semi-norm; can be turned into a norm by adding |x0|.

I The construction works for paths x with values in a Banach
space V, when choosing an appropriate version of V ⊗ V.
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Rough path metric

Notice that ‖x‖α + ‖x‖2α is not homogeneous under the natural
dilatation λ 7→

(
λx, λ2

x

)
.

Definition
The homogeneous rough path (semi-) norm is defined by

|||x|||α B ‖x‖α +
√
‖x‖2α.

Definition
Given x, y ∈ C α ([0, 1];Re), define the inhomogeneous α-Hölder rough
path metric by

%α(x, y) B sup
s,t

∣∣∣xs,t − ys,t
∣∣∣

|t − s|α
+ sup

s,t

∣∣∣xs,t − ys,t
∣∣∣

|t − s|2α
+ |x0 − y0| .

C α ([0, 1];Re) is a complete metric space under %α.
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Geometric rough paths

Let x be a smooth path. Then

x
i, j
s,t + x

j,i
s,t =

∫ t

s
xi

s,udx j
u +

∫ t

s
x j

s,udxi
u

Definition
A rough path x ∈ C α ([0, 1];Re) is called geometric—symbolically,
x ∈ C α

g ([0, 1];Re))—iff

sym(x) B
1
2

(
x

i, j
·,· + x

j,i
·,·

)e

i, j=1
=

1
2

(
x·,· ⊗ x·,·

)
.

Theorem

For a smooth path x define I2(x) B (x,x) with xi, j
s,t B

∫ t
s xi

s,udx j
u. Then

C α
g contains the closure of the subset of C α obtained as image of

smooth paths under I2.
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Brownian rough path

Given an e-dimensional Brownian motion B = B(ω).
I Is there a rough path B = (B,B)?
I Is it unique, which properties does it have?

BIto
s,t B

∫ t

s
Bs,u ⊗ dBu = lim

P⊂[s,t], |P|→0

∑
[u,v]∈P

Bs,u ⊗ Bu,v

BStrat
s,t B

∫ t

s
Bs,u ⊗ ◦dBu = lim

P⊂[s,t], |P|→0

∑
[u,v]∈P

Bs,(u+v)/2 ⊗ Bu,v

Theorem

For any α < 1
2 we have

I BIto B
(
B,BIto

)
∈ C α ([0, 1];Re) P-a.s.

I BStrat B
(
B,BStrat

)
∈ C α

g ([0, 1];Re) ⊂ C α ([0, 1];Re) P-a.s.

BIto is not geometric: sym(BIto
s,t ) =

Bs,t⊗Bs,t−(t−s)Ie
2
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Brownian RDE
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Integration of 1-forms – motivation

For x ∈ C α ([0, 1];Re) and f : Re → Rd×e, we want to construct∫ 1

0
f (xs)dxs or even z =

∫ ·

0
f (xs)dxs or even z =

∫ ·

0
f (xs)dxs

Idea of Riemann-Stieltjes integral for x:
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0
f (xs)dxs or even z =

∫ ·

0
f (xs)dxs or even z =

∫ ·

0
f (xs)dxs

Idea of Riemann-Stieltjes integral for smooth x:

f (xt) = f (xs) + O(|t − s|)⇒
∫ t

s
f (xu)dxu = f (xs)xs,t + o(|t − s|)
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f (xt) = f (xs) + O(|t − s|)⇒
∫ t

s
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∫ 1
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0
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∫ t

s
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⇒ lim
|P|→0
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[s,t]∈P

f (xs)xs,t does not exist in general
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3 < α ≤

1
2 ):

f (xt) = f (xs) + D f (xs)xs,t + O(|t − s|2α) (for f ∈ C2
b)
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3 < α ≤

1
2 ):

f (xt) = f (xs) + D f (xs)xs,t + O(|t − s|2α) (for f ∈ C2
b)

⇒

∫ t

s
f (xu)dxu = f (xs)xs,t + D f (xs)xs,t + O(|t − s|3α)
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Instead (for 1
3 < α ≤

1
2 ):

f (xt) = f (xs) + D f (xs)xs,t + O(|t − s|2α) (for f ∈ C2
b)

⇒

∫ t

s
f (xu)dxu = f (xs)xs,t + D f (xs)xs,t + O(|t − s|3α)

⇒

∫ 1

0
f (xs)dxs B lim

|P|→0

∑
[s,t]∈P

(
f (xs)xs,t + D f (xs)xs,t

)
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Integration of 1-forms

Theorem (Lyons)

Let α > 1
3 and x ∈ C α([0, 1];Re), f ∈ C2

b

(
Re,Rd×e

)
. Then the rough

integral ∫ 1

0
f (xs)dxs B lim

|P|→0

∑
[s,t]∈P

(
f (xs)xs,t + D f (xs)xs,t

)
exists and satisfies∣∣∣∣∣∣

∫ t

s
f (xu)dxu − f (xs)xs,t − D f (xs)xs,t

∣∣∣∣∣∣ ≤
Cα ‖ f ‖C2

b

(
‖x‖3α + ‖x‖α ‖x‖2α

)
|t − s|3α .

Moreover,
∫ ·

0 f (xu)dxu is α-Hölder continuous with∥∥∥∥∥∫ ·

0
f (xu)dxu

∥∥∥∥∥
α

≤ Cα ‖ f ‖C2
b

max
(
|||x|||α, |||x|||

1/α
α

)
.
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Integration of 1-forms – Existence I

First some notation:
ys B f (xs),

y′s B D f (xs),

Ξs,t B ysxs,t + y′sxs,t

δΞs,u,t B Ξs,t − Ξs,u − Ξu,t

We prove convergence

lim
|P|→0

∑
[s,t]∈P

Ξs,t C lim
|P|→0

∫
P

Ξ C

∫
Ξ,

i.e., the limit does not depend on the sequence of partitions.
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Integration of 1-forms – Existence II

Lemma

‖Ξ‖α,3α B ‖Ξ‖α + ‖δΞ‖3α < ∞ with ‖δΞ‖β B sup
s<u<t

∣∣∣δΞs,u,t
∣∣∣ / |t − s|β .

Proof.

I Clearly, ‖y‖α ≤ ‖D f ‖∞ ‖x‖α < ∞, ‖y′‖α ≤
∥∥∥D2 f

∥∥∥
∞
‖x‖α < ∞.

I Consider Rs,t B ys,t − y′sxs,t and g(ξ) B f (xs + ξxs,t), ξ ∈ [0, 1].

I By Taylor’s formula, there is ξ ∈ [0, 1] s.t.

Rs,t = g(1) − g(0) − g′(0) =
1
2

g′′(ξ) =
1
2

D2 f (xs + ξxs,t) ·
(
xs,t, xs,t

)
I Using Chen’s relation xs,t = xs,u + xu,t + xs,u ⊗ xu,t, we have

δΞs,u,t =
(
ysxs,t + y′sxs,t

)
−

(
ysxs,u + y′sxs,u

)
−

(
yuxu,t + y′uxu,t

)
= −ys,uxu,t + y′sxs,u ⊗ xu,t −

(
y′u − y′s

)
xu,t

= −Rs,u ⊗ xu,t −
(
y′u − y′s

)
xu,t �
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Integration of 1-forms – Existence III

Lemma

sup
P⊂[s,t]

∣∣∣∣∣∣Ξs,t −

∫
P

Ξ

∣∣∣∣∣∣ ≤ 23α ‖δΞ‖3α ζ(3α) |t − s|3α (∗)
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Integration of 1-forms – Existence III

Lemma

sup
P⊂[s,t]

∣∣∣∣∣∣Ξs,t −

∫
P

Ξ

∣∣∣∣∣∣ ≤ 23α ‖δΞ‖3α ζ(3α) |t − s|3α (∗)

Proof.
Indeed, let P ⊂ [s, t] with r B #P. If r ≥ 2, then

∃u < v < w : [u, v], [v,w] ∈ P and |w − u| ≤
2 |t − s|
r − 1

.

Hence, ∣∣∣∣∣∣
∫
P\{ v }

Ξ −

∫
P

Ξ

∣∣∣∣∣∣ =
∣∣∣δΞu,v,w

∣∣∣ ≤ ‖δΞ‖3α (
2 |t − s|
r − 1

)3α

.

Iterating the procedure until #P = 1 gives the assertion. �
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Lemma

sup
P⊂[s,t]

∣∣∣∣∣∣Ξs,t −

∫
P

Ξ

∣∣∣∣∣∣ ≤ 23α ‖δΞ‖3α ζ(3α) |t − s|3α (∗)

Lemma

lim
ε↘0

sup
max(|P|,|P′ |)<ε

∣∣∣∣∣∣
∫
P

Ξ −

∫
P′

Ξ

∣∣∣∣∣∣ = 0
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∫
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Ξ −

∫
P′

Ξ

∣∣∣∣∣∣ = 0

Proof.

W.l.o.g., P′ ⊂ P. By definition of
∫

Ξ and (∗), we get∫
P

Ξ −

∫
P′

Ξ =
∑

[u,v]∈P

(
Ξu,v −

∫
P′∩[u,v]

Ξ

)
∣∣∣∣∣∣
∫
P

Ξ −

∫
P′

Ξ

∣∣∣∣∣∣ ≤ 23αζ(3α) ‖δΞ‖3α
∑

[u,v]∈P

|v − u|3α = O
(
|P|3α−1

)
= O(ε3α−1).
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Integration of 1-forms and rough differential equations

I
∫ t

0 V(xs)dxs "

I
∫ t

0 V(ys)dxs ?

Given x ∈ C α ([0, 1];Re), y ∈ C α
(
[0, 1];Rd

)
with α ≤ 1

2 , it is generally
not possible to construct ∫ t

0
V(ys)dxs

unless there is z ∈ C α
(
[0, 1];Re+d

)
with z = (x, y)—and the result will

depend on the choice of z.

I Picard iteration for dys = V(ys)dxs, y0 = ξ:

1 y(0) ≡ ξ, then y(1) B ξ +
∫ ·

0 V(y(0)
s )dxs defined"

2 y(1) ≡ ξ + V(ξ)x, then y(2) B ξ +
∫ ·

0 V(y(1)
s )dxs defined"

3 V(y(2)
s ) , f (xs), but “looks similar”
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Controlled rough paths

Definition

Given x ∈ Cα ([0, 1];Re), y ∈ Cα
(
[0, 1];Rd

)
is called controlled by x, iff

there is y′ ∈ Cα
(
[0, 1];Rd×e

)
– Rd×e = L(Re,Rd) – s.t.

Rs,t B ys,t − y′sxs,t

satisfies ‖R‖2α < ∞. We write (y, y′) ∈ D2α
x

(
[0, 1];Rd

)
.

Example

If f ∈ C2
b

(
Re;Rd

)
, y B f (x), y′ B D f (x), then (y, y′) ∈ D2α

x

(
[0, 1;Rd

)
.

Remark

D2α
x is a Banach space under (y, y′) 7→ |y0| +

∣∣∣y′0∣∣∣ + ‖(y, y′)‖x,2α with∥∥∥(y, y′)
∥∥∥

x,2α B
∥∥∥y′

∥∥∥
α

+ ‖R‖2α .
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Integration of controlled rough paths

Theorem (Gubinelli)

Let x ∈ C α ([0, 1];Re), (y, y′) ∈ D2α
x

(
[0, 1],Rd×e

)
.

a)The integral ∫ 1

0
ysdxs B lim

|P|→0

∑
[s,t]∈P

(
ysxs,t + y′sxs,t

)
exists and satisfies∣∣∣∣∣∣

∫ t

s
yudxu − ysxs,t − y′sxs,t

∣∣∣∣∣∣ ≤ Cα

(
‖x‖α ‖R‖2α + ‖x‖2α

∥∥∥y′
∥∥∥
α

)
|t − s|3α .

b) Set (z, z′) B
(∫ ·

0 ysdxs, y
)
. Then (z, z′) ∈ D2α

x

(
[0, 1];Rd

)
and

(y, y′) 7→ (z, z′) is a continuous linear map with∥∥∥(z, z′)
∥∥∥

x,2α ≤ ‖y‖α +
∥∥∥y′

∥∥∥
∞
‖x‖2α + Cα

(
‖x‖α

∥∥∥Ry
∥∥∥

2α + ‖x‖2α
∥∥∥y′

∥∥∥
α

)
.
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Remarks on controlled rough paths

Controlled rough paths are rough paths: Given x ∈ C α ([0, 1];Re),
(y, y′) ∈ D2α

x

(
[0, 1];Rd

)
, then we can define y ∈ Rd×d by

ys,t = lim
|P|→0

∫
P

Ξ, Ξu,y = yu ⊗ yu,v + (y′u ⊗ y′u)xu,v,

s.t., y = (y,y) ∈ C α
(
[0, 1];Rd

)
. Here, y′ ⊗ y′ ∈ L(Re×e,Rd×d),

y′ ⊗ y′(a ⊗ b) = y′(a) ⊗ y′(b).

Composition with regular functions: For x, (y, y′) as before, let
ϕ ∈ C2

b(Rd;Rn) and define

zt B ϕ(yt), z′t B Dϕ(yt) ⊗ y′t .

Then (z, z′) ∈ D2α
x ([0, 1];Rn). Indeed,
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Then (z, z′) ∈ D2α
x ([0, 1];Rn). Indeed,

‖z‖α ≤ ‖ϕ‖C2
b
‖y‖α
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zt B ϕ(yt), z′t B Dϕ(yt) ⊗ y′t .

Then (z, z′) ∈ D2α
x ([0, 1];Rn). Indeed,∥∥∥z′

∥∥∥
α
≤ ‖Dϕ ◦ y‖∞

∥∥∥y′
∥∥∥
α

+
∥∥∥y′

∥∥∥
∞
‖Dϕ ◦ y‖α
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Remarks on controlled rough paths

Controlled rough paths are rough paths: Given x ∈ C α ([0, 1];Re),
(y, y′) ∈ D2α

x

(
[0, 1];Rd

)
, then we can define y ∈ Rd×d by

ys,t = lim
|P|→0

∫
P

Ξ, Ξu,y = yu ⊗ yu,v + (y′u ⊗ y′u)xu,v,

s.t., y = (y,y) ∈ C α
(
[0, 1];Rd

)
. Here, y′ ⊗ y′ ∈ L(Re×e,Rd×d),

y′ ⊗ y′(a ⊗ b) = y′(a) ⊗ y′(b).

Composition with regular functions: For x, (y, y′) as before, let
ϕ ∈ C2

b(Rd;Rn) and define

zt B ϕ(yt), z′t B Dϕ(yt) ⊗ y′t .

Then (z, z′) ∈ D2α
x ([0, 1];Rn). Indeed,

zs,t − z′sxs,t = ϕ(yt) − ϕ(ys) − Dϕ(ys)y′sxs,t
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ys,t − y′sxs,t
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2α ≤

1
2
‖ϕ‖C2

b
‖y‖2α + ‖ϕ‖C2

b

∥∥∥y·,· − y′x·,·
∥∥∥

2α
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The choice of x matters

Let x = (x,x) ∈ C α ([0, 1];Re) and f ∈ C2α (
[0, 1];Re×e). Then

x = (x, x) ∈ C α (
[0, 1],Re) , x B x, xs,t B xs,t + f (t) − f (s).

As D2α
x = D2α

x , we may integrate (y, y′) ∈ D2α
x

(
[0, 1];Rd×e

)
against

both.∫ 1

0
ysdxs = lim

|P|→0

∑
[s,t]∈P

(
ysxs,t + y′s

(
xs,t + f (t) − f (s)

))
= lim
|P|→0

∑
[s,t]∈P

(
ysxs,t + y′sxs,t

)
+ lim
|P|→0

∑
[s,t]∈P

y′s( f (t) − f (s))

=

∫ 1

0
ysdxs +

∫ 1

0
y′sd f (s)

As α + 2α > 1,
∫

y′d f is defined in the Young sense.
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Picard iteration revisited

Let x ∈ C α ([0, 1];Re), V : Rd → Rd×e smooth, consider

dys = V(ys)dxs, y0 = ξ ∈ Rd

1 y(0) ≡ ξ, then y(1) B ξ +
∫ ·

0 V(y(0)
s )dxs defined"

Moreover, (y(1),V(y(0))) ∈ D2α
x

(
[0, 1];Rd

)
.

2 (V(y(1)),DV(y(1)) ⊗ V(y(0)) ∈ D2α
x

(
[0, 1];Rd×e

)
, hence

y(2) B ξ +
∫ ·

0 V(y(1)
s )dxs defined"

Moreover, (y(2),V(y(1))) ∈ D2α
x

(
[0, 1];Rd

)
.

3 (V(y(2)),DV(y(2)) ⊗ V(y(1)) ∈ D2α
x

(
[0, 1];Rd×e

)
, hence

y(3) B ξ +
∫ ·

0 V(y(2)
s )dxs defined"

Moreover, (y(3),V(y(2))) ∈ D2α
x

(
[0, 1];Rd

)
.

4 . . .
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Existence and uniqueness

Theorem (Lyons; Gubinelli)

Given x ∈ C α ([0, 1];Re), 1
3 < α <

1
2 , V ∈ C3

b

(
Rd;Rd×e

)
, ξ ∈ Rd. Then

there is a unique (y, y′) ∈ D2α
x

(
[0, 1];Rd

)
such that

∀t ∈ [0, 1] : yt = ξ +

∫ t

0
V(ys)dxs,

with y′ = V(y).

I If V ∈ C3, obtain a local solution.
I Existence requires V ∈ Cγ for some γ > 1

α − 1 — i.e., V is
bγc-differentiable with bγc-derivative in Cγ−bγc.

I Uniqueness requires V ∈ Cγ for some γ ≥ 1
α .

I For the smooth case “α = 1”, this essentially recovers standard
results from ODE theory.
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Sketch of the proof of existence and uniqueness–1

I Given (y, y′) ∈ D2α
x , T ≤ 1, we have

(z, z′) B (V(y),DV(y)y′) ∈ D2α
x and we can define

MT : D2α
x ([0,T ];Rd)→ D2α

x ([0,T ];Rd), (y, y′) 7→
(
ξ +

∫ ·

0
zsdxs, z

)
.

I For T small enough, one can show that the closed subset

BT B
{

(y, y′) ∈ D2α
x

(
[0,T ];Rd

) ∣∣∣∣ y0 = ξ, y′0 = V(ξ),
∥∥∥(y, y′)

∥∥∥
x,2α ≤ 1

}
is invariant underMT .
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Sketch of the proof of existence and uniqueness–2

I For T small enough,MT is a contraction on BT , i.e., for
(y, y′), (̃y, ỹ′) ∈ BT :∥∥∥MT (y, y′) −MT (̃y, ỹ′)

∥∥∥
x,2α ≤

1
2

∥∥∥(y − ỹ, y′ − ỹ′
)∥∥∥

x,2α .

Need to estimate V(ys) − V (̃ys) by ys − ỹs, but in rough path
sense, i.e.,∥∥∥(V(y) − V (̃y), (V(y) − V (̃y))′

)∥∥∥
x,2α ≤ const

∥∥∥(y − ỹ, y′ − ỹ′
)∥∥∥

x,2α .

Consider

V(y) − V (̃y) = g(y, ỹ)(y − ỹ), g(a, b) B
∫ 1

0
DV(ta + (1 − t)b)dt

g ∈ C2
b and ‖g‖C2

b
≤ const ‖V‖C3

b
.
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Davie’s construction of RDE solutions

dy = V(y)dx, y0 = ξ ∈ Rd, x ∈ C α (
[0, 1];Re) , 1

3
< α <

1
2

I From (y,V(y)) ∈ D2α
x , we know that

ys,t = V(ys)xs,t + O
(
|t − s|2α

)
.

As 2α < 1, this Euler scheme will not converge.
I From integration of controlled rough paths and the RDE, we know

ys,t =

Theorem
The Milstein scheme is converging (with rate 3α − 1 − ε).

I Including iterated integrals of order up to N will give a scheme
with rate (N + 1)α − 1 − ε, provided V is smooth enough.
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Universal limit theorem

Theorem (Lyons)

Let x, x̃ ∈ C α ([0, 1];Re), 1
3 < α <

1
2 , ξ, ξ̃ ∈ Rd and

(y,V(y)), (̃y,V (̃y)) ∈ D2α
x

(
[0, 1];Rd

)
the unique solutions to

dy = V(y)dx, y0 = ξ,

dỹ = V (̃y)dx̃, ỹ0 = ξ̃.

Let |||x|||α, |||̃x|||α ≤ M < ∞. Then there is a constant C = C(M, α, ‖V‖C3
b
)

such that
‖y − ỹ‖α ≤ C

(∣∣∣ξ − ξ̃∣∣∣ + %α
(
x, x̃

))
.

This result can be extended to the full rough path y and ỹ.
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Stochastic differential equations

For V ∈ C3
b(Rd;Rd×e), V0 : Rd → Rd Lipschitz, consider

dYt = V0(Yt)dt + V(Yt)dBt, Y0 = ξ.

Recall the Ito and Stratonovich Brownian rough paths BIto and BStrat.

Theorem

a) For any ω such that BIto(ω) ∈ C α, denote by Y = Y(ω) the unique
solution of the RDE

dYt(ω) = V0(Yt(ω))dt + V(Yt(ω))dBIto
t (ω), Y0(ω) = ξ.

Then Y is a strong solution of the above Ito SDE.
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Wong-Zakai theorem

Bn . . . piece-wise linear approximations of a Brownian motion B

dYn
t = V(Yn

t )dBn
t , Y0 = ξ, V ∈ C3

b(Re,Rd×e).

Theorem
Yn converges a.s. to the Stratonovich solution

dYt = V(Yt) ◦ dBt, Y0 = ξ.

More precisely, we have ‖Y − Yn‖α → 0 a.s. for α < 1
2 .
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Proof.

I Consider Bn
s,t B

∫ t
s Bn

s,udBn
u, show that

∥∥∥Bn − BStrat
∥∥∥

2α → 0 a.s.

I Apply the universal limit theorem:∥∥∥Y − Yn
∥∥∥
α
≤ const %α

(
Bn,BStrat

)
.

�
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I Non dyadic pice-wise linear approximations possible, lead to
convergence rate 1

2 − α − ε—in Cα. By working in spaces with
lower regularity, one can get to 1

2 − ε.
I The result also holds—mutatis mutandis—for fractional Brownian
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4 .
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A class of stochastic partial differential equations

du = F[u]dt +

d∑
i=1

Hi[u] ◦ dW i
t (ω), u(0, x) = g(x), x ∈ Rn,

F[u] = F(x, u,Du,D2u),

Hi[u] = Hi(x, u,Du), i = 1, . . . , e.

We assume
Transport noise: Hi[u] = 〈βi(x), Du〉
Semilinear noise: Hi[u] = Hi(x, u)
Linear noise: Hi[u] = 〈βi(x), Du〉 + γi(x)u

Idea
1. Solve the equation with mollified noise

2. Show that limiting solution only depends on rough path W

3. Use flow-transformation method as technical tool

Rough paths and rough partial differential equations · March 18, 2016 · Page 41 (48)



A class of stochastic partial differential equations

du = F[u]dt +

d∑
i=1

Hi[u] ◦ dW i
t (ω), u(0, x) = g(x), x ∈ Rn,

F[u] = F(x, u,Du,D2u),

Hi[u] = Hi(x, u,Du), i = 1, . . . , e.

We assume
Transport noise: Hi[u] = 〈βi(x), Du〉
Semilinear noise: Hi[u] = Hi(x, u)
Linear noise: Hi[u] = 〈βi(x), Du〉 + γi(x)u

Idea
1. Solve the equation with mollified noise

2. Show that limiting solution only depends on rough path W

3. Use flow-transformation method as technical tool

Rough paths and rough partial differential equations · March 18, 2016 · Page 41 (48)



A class of stochastic partial differential equations

du = F[u]dt +

d∑
i=1

Hi[u] ◦ dW i
t (ω), u(0, x) = g(x), x ∈ Rn,

F[u] = F(x, u,Du,D2u),

Hi[u] = Hi(x, u,Du), i = 1, . . . , e.

We assume
Transport noise: Hi[u] = 〈βi(x), Du〉
Semilinear noise: Hi[u] = Hi(x, u)
Linear noise: Hi[u] = 〈βi(x), Du〉 + γi(x)u

Idea
1. Solve the equation with mollified noise

2. Show that limiting solution only depends on rough path W

3. Use flow-transformation method as technical tool

Rough paths and rough partial differential equations · March 18, 2016 · Page 41 (48)



Flow transformation method

du = F(x, u,Du,D2u)dt + 〈β(x), Du〉 ◦ dWt, u(0, x) = g(x) (∗)

Apply a (W-dependent) transformation turning (∗) into a deterministic
“classical” PDE, provided that W is smooth.

Let yt = ϕt(ξ) denote the flow of the ODE ẏt = −β(yt)Ẇt, y0 = ξ ∈ Rn.

Theorem
u is a classical solution of

∂tu = F(x, u,Du,D2u) + 〈β(x), Du〉 Ẇ

if and only if v(t, x) B u(t, ϕt(x)) is a classical solution to

∂tv = Fϕ(t, x, v,Dv,D2v)

with

Fϕ (t, ϕt(x), r, p, X) ≡ F
(
x, r,

〈
p, Dϕ−1

t

〉
,
〈
X, Dϕ−1

t ⊗ Dϕ−1
t

〉
+

〈
p, D2ϕ−1

t

〉)
.
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Rough path analysis and PDE theory I

du = F(x, u,Du,D2u)dt + 〈β(x), Du〉 ◦ dWt, u(0, x) = g(x) (∗)

1. Pick W ∈ C α
g ([0, 1];Re) together with a sequence Wε of smooth

paths approximating W.

2. By the universal limit theorem for RDEs, we have

Fε B Fϕε ε→0
−−−→ Fϕ

ϕε and ϕ denoting the flows of

dy = −β(y)dWε , dy = −β(y)dW, respectively.

3. Define the rough path solution

du = F(x, u,Du,D2u)dt + 〈β(x), Du〉 dW, u(0, ·) = g

as limit uε for ε → 0.
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Rough path analysis and PDE theory II

For the third step we need a (deterministic) PDE framework for
solutions u ∈ U and initial conditions g ∈ G such that

(i) For gε ∈ G, the approximate problem

∂tuε = F
(
x, uε ,Duε ,D2uε

)
+

〈
β(x), Duε

〉
Ẇε (∗)

admits a unique solution uε ∈ U.

(ii) uε ∈ U solves (∗) if and only if vε(t, x) B u(t, ϕεt (x)) ∈ U solves

∂tvε = Fε(t, x, vε ,Dvε ,D2vε)

(iii) When gε → g ∈ G and Fε → F0—as seen for F0 = Fϕ—then
vε → v0, the unique solution to ∂tv0 = F0(t, x, v0,Dv0.D2v0).

(iv) vε → v0 inU implies that uε → u0, with v0(t, x) = u0(t, ϕt(x)).
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Rough viscosity solutions

For our model problem, the concept of viscosity solutions satisfies the
requirements forU = BC([0, 1] × Rn), G = BUC(Rn) provided that
I F is degenerate elliptic and satisfies some technical conditions;
I For all C3

b-diffeomorphisms ϕ, comparison holds for Fϕ.

Theorem

Given 1
3 < α ≤

1
2 , W ∈ C α

g and a Wε ∈ C1 ([0, 1];Re) such that

Wε B
(
Wε ,Wε) ε→0

−−−−→
in C α

W, Wε
s,t B

∫ t

0
Wε

s,u ⊗ dWε
u .

Consider the unique viscosity solution uε ∈ BC to

∂tuε = F(x, uε ,Duε ,D2uε) +
〈
β(x), Duε

〉
Ẇε , uε(0, ·) = g.

I ∃u = limε→0 uε ∈ BC (locally uniformly). u only depends on W.

I The transformation v of u is the unique solution of
∂tv = Fϕ(t, x, v,Dv,D2v) in BC, ϕ being the flow of dy = −β(y)dW.

I The solution map (W, g) 7→ u is continuous.
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Levy area is not a continuous map

Theorem (Lyons ’91)
There is no separable Banach space B ⊂ C ([0, 1]), such that

1.
⋂

0<α< 1
2

Cα ([0, 1]) ⊂ B;

2. the bi-linear map

( f , g) 7→
∫ ·

0
f (s)ġ(s)ds

defined on C∞ ([0, 1]) ×C∞ ([0, 1]) extends to a continuous map

B × B → C ([0, 1]) .

Back
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Viscosity solutions

Consider G : Rm × R × Rm × Rm×m → R continuous and degenerate
elliptic, i.e.,

B ≥ 0⇒ G(x, u, p, A) ≤ G(x, u, p, A + B).

A continuous function u is a viscosity supersolution of

−G(x, u,Du,D2u) ≥ 0

iff for every smooth test-function φ touching u from below in some
point x0, we have

−G(x0, φ,Dφ,D2φ) ≥ 0.

u is a viscosity subsolution iff for every smooth test-function φ
touching u from above in some point x0, we have

−G(x0, φ,Dφ,D2φ) ≤ 0.

Finally, u is a viscosity solution if it is both a viscosity super- and
subsolution. Back
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Comparison

Consider viscosity solutions to the problem

(∂tu − F) = 0.

Assume that u is a subsolution of the problem with initial condition
u(0, ·) = u0 and v is a supersolution with initial condition v(0, ·) = v0.
The problem satisfies comparison iff

u0 ≤ v0 ⇒ u ≤ v on [0,T ] × Rn.

Back

Rough paths and rough partial differential equations · March 18, 2016 · Page 48 (48)


	Motivation and introduction
	Rough path spaces
	Integration against rough paths
	Integration of controlled rough paths
	Rough differential equations
	Applications of the universal limit theorem
	Rough partial differential equations

