Weierstrass Institute for Applied Analysis and Stochastics

Rough paths and rough partial differential equations

Christian Bayer

Outline

1 Motivation and introduction

2 Rough path spaces

3 Integration against rough paths

4 Integration of controlled rough paths

5 Rough differential equations

6 Applications of the universal limit theorem

7 Rough partial differential equations

Controlled differential equations

Standard ordinary differential equation

$$
\dot{y}_{t}=V\left(y_{t}\right), \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

$V: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ smooth

Controlled differential equation

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

Controlled differential equations

Standard ordinary differential equation

$$
\dot{y}_{t}=V\left(y_{t}\right), \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

$V: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ smooth
Controlled differential equation

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

- $V: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times e}$ smooth
- x_{t} path taking values in \mathbb{R}^{e}
- x_{t} may contain component t, i.e., includes

$$
d y_{t}=V_{0}\left(y_{t}\right) d t+V\left(y_{t}\right) d x_{t}
$$

Controlled differential equations

Standard ordinary differential equation

$$
\dot{y}_{t}=V\left(y_{t}\right), \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

$V: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ smooth
Controlled differential equation

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

- $V: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times e}$ smooth
- x_{t} path taking values in \mathbb{R}^{e}
- x_{t} may contain component t, i.e., includes

$$
d y_{t}=V_{0}\left(y_{t}\right) d t+V\left(y_{t}\right) d x_{t}
$$

Examples of controlled differential equations

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

- x_{t} smooth:

$$
\dot{y}_{t}=V\left(y_{t}\right) \dot{x}_{t}
$$

$\Rightarrow x_{t}=W_{t}(\omega)$ is a path of a Brownian motion, i.e., $y_{t}=y_{t}(\omega)$ is
pathwise solution of the stochastic differential equation
$d y_{t}(\omega)=V\left(y_{t}(\omega)\right) d W_{t}(\omega)$
(Ito, Stratonovich or some other sense?)

- $x_{l}=Z_{l}(\omega)$ for some other stochastic process, such as fractional

Brownian motion, $y_{t}=y_{t}(\omega)$ is pathwise solution of the
corresponding stochastic differential equation

Examples of controlled differential equations

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

- x_{t} smooth:

$$
\dot{y}_{t}=V\left(y_{t}\right) \dot{x}_{t}
$$

- $x_{t}=W_{t}(\omega)$ is a path of a Brownian motion, i.e., $y_{t}=y_{t}(\omega)$ is pathwise solution of the stochastic differential equation

$$
d y_{t}(\omega)=V\left(y_{t}(\omega)\right) d W_{t}(\omega)
$$

(Ito, Stratonovich or some other sense?)
$\Rightarrow x_{t}=Z_{t}(\omega)$ for some other stochastic process, such as fractional Brownian motion, $y_{t}=y_{t}(\omega)$ is pathwise solution of the corresponding stochastic differential equation

Examples of controlled differential equations

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

- x_{t} smooth:

$$
\dot{y}_{t}=V\left(y_{t}\right) \dot{x}_{t}
$$

- $x_{t}=W_{t}(\omega)$ is a path of a Brownian motion, i.e., $y_{t}=y_{t}(\omega)$ is pathwise solution of the stochastic differential equation

$$
d y_{t}(\omega)=V\left(y_{t}(\omega)\right) d W_{t}(\omega)
$$

(Ito, Stratonovich or some other sense?)

- $x_{t}=Z_{t}(\omega)$ for some other stochastic process, such as fractional Brownian motion, $y_{t}=y_{t}(\omega)$ is pathwise solution of the corresponding stochastic differential equation

Integral form

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

Assume that x_{t} is not smooth, say
$x \in C^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right):=\left\{x \in C\left([0,1] ; \mathbb{R}^{e}\right) \left\lvert\, \sup _{s \neq t} \frac{\left|x_{s}-x_{t}\right|}{|s-t|^{\alpha}}=:\|x\|_{\alpha}<\infty\right.\right\}, \alpha<1$

- While \dot{x} does not "easily" make sense, maybe the integral form

$$
y_{t}=\xi+\int_{0}^{t} V\left(y_{s}\right) d x_{s}, \quad t \in[0,1]
$$

- Notice: If $x \in C^{\alpha}$, then generically $y \in C^{\alpha}$ (and no better), as well.
- Need to make sense of expressions of the form

Integral form

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

Assume that x_{t} is not smooth, say
$x \in C^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right):=\left\{x \in C\left([0,1] ; \mathbb{R}^{e}\right) \left\lvert\, \sup _{s \neq t} \frac{\left|x_{s}-x_{t}\right|}{|s-t|^{\alpha}}=:\|x\|_{\alpha}<\infty\right.\right\}, \alpha<1$

- While \dot{x} does not "easily" make sense, maybe the integral form does:

$$
y_{t}=\xi+\int_{0}^{t} V\left(y_{s}\right) d x_{s}, \quad t \in[0,1]
$$

- Notice: If $x \in C^{\alpha}$, then generically $y \in C^{\alpha}$ (and no better), as well.
- Need to make sense of expressions of the form

Integral form

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

Assume that x_{t} is not smooth, say
$x \in C^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right):=\left\{x \in C\left([0,1] ; \mathbb{R}^{e}\right) \left\lvert\, \sup _{s \neq t} \frac{\left|x_{s}-x_{t}\right|}{|s-t|^{\alpha}}=:\|x\|_{\alpha}<\infty\right.\right\}, \alpha<1$

- While \dot{x} does not "easily" make sense, maybe the integral form does:

$$
y_{t}=\xi+\int_{0}^{t} V\left(y_{s}\right) d x_{s}, \quad t \in[0,1]
$$

- Notice: If $x \in C^{\alpha}$, then generically $y \in C^{\alpha}$ (and no better), as well.
- Need to make sense of expressions of the form

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

Assume that x_{t} is not smooth, say
$x \in C^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right):=\left\{x \in C\left([0,1] ; \mathbb{R}^{e}\right) \left\lvert\, \sup _{s \neq t} \frac{\left|x_{s}-x_{t}\right|}{|s-t|^{\alpha}}=:\|x\|_{\alpha}<\infty\right.\right\}, \alpha<1$

- While \dot{x} does not "easily" make sense, maybe the integral form does:

$$
y_{t}=\xi+\int_{0}^{t} V\left(y_{s}\right) d x_{s}, \quad t \in[0,1]
$$

- Notice: If $x \in C^{\alpha}$, then generically $y \in C^{\alpha}$ (and no better), as well.
- Need to make sense of expressions of the form

$$
\int_{0}^{t} y_{s} d x_{s}, \quad x, y \in C^{\alpha}([0,1])
$$

Young integral

$$
\int_{0}^{t} y_{s} d x_{s}, \quad x, y \in C^{\alpha}([0,1])
$$

Recall the Riemann-Stieltjes integral:

$$
\begin{equation*}
\int_{0}^{1} y_{s} d x_{s}:=\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}} y_{s} \underbrace{\left(x_{t}-x_{s}\right)}_{=: x_{s, t}} \tag{*}
\end{equation*}
$$

\mathcal{P} a finite partition of $[0,1]$

Theorem (Young 1936)

(a) Let $y \in C^{\beta}([0,1] ; \mathbb{R}), x \in C^{\alpha}([0,1] ; \mathbb{R})$ with $0<\alpha, \beta<1$ and
$\alpha+\beta>1$. Then (*) converges and the resulting bi-linear map

(b) Let $\alpha+\beta \leq 1$. Then there are $y \in C^{\beta}([0,1] ; \mathbb{R}), x \in C^{\alpha}([0,1] ; \mathbb{R})$
such that $(*)$ does not converge, i.e., such that different sequences of partitions yield different limits (or none at all).

Young integral

$$
\int_{0}^{t} y_{s} d x_{s}, \quad x, y \in C^{\alpha}([0,1])
$$

Recall the Riemann-Stieltjes integral:

$$
\begin{equation*}
\int_{0}^{1} y_{s} d x_{s}:=\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}} y_{s} \underbrace{\left(x_{t}-x_{s}\right)}_{=: x_{s, t}} \tag{*}
\end{equation*}
$$

\mathcal{P} a finite partition of $[0,1]$

Theorem (Young 1936)

(a) Let $y \in C^{\beta}([0,1] ; \mathbb{R}), x \in C^{\alpha}([0,1] ; \mathbb{R})$ with $0<\alpha, \beta<1$ and $\alpha+\beta>1$. Then (*) converges and the resulting bi-linear map $(x, y) \mapsto \int_{0}^{1} y_{s} d x_{s}$ is continuous, i.e., $\left|\int_{0}^{1} y_{s} d x_{s}\right| \leq C_{\alpha+\beta}\left(\left|y_{0}\right|\right)\|y\|_{\beta}\|x\|_{\alpha}$.

Young integral

$$
\int_{0}^{t} y_{s} d x_{s}, \quad x, y \in C^{\alpha}([0,1])
$$

Recall the Riemann-Stieltjes integral:

$$
\begin{equation*}
\int_{0}^{1} y_{s} d x_{s}:=\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}} y_{s} \underbrace{\left(x_{t}-x_{s}\right)}_{=: x_{s, t}} \tag{*}
\end{equation*}
$$

\mathcal{P} a finite partition of $[0,1]$

Theorem (Young 1936)

(a) Let $y \in C^{\beta}([0,1] ; \mathbb{R}), x \in C^{\alpha}([0,1] ; \mathbb{R})$ with $0<\alpha, \beta<1$ and $\alpha+\beta>1$. Then (*) converges and the resulting bi-linear map $(x, y) \mapsto \int_{0}^{1} y_{s} d x_{s}$ is continuous, i.e., $\left|\int_{0}^{1} y_{s} d x_{s}\right| \leq C_{\alpha+\beta}\left(\left|y_{0}\right|\right)\|y\|_{\beta}\|x\|_{\alpha}$. (b) Let $\alpha+\beta \leq 1$. Then there are $y \in C^{\beta}([0,1] ; \mathbb{R}), x \in C^{\alpha}([0,1] ; \mathbb{R})$ such that $(*)$ does not converge, i.e., such that different sequences of partitions yield different limits (or none at all).

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

Let $x \in C^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \alpha>\frac{1}{2}$ and $V \in C_{b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{d \times e}\right)$. Then the usual Picard iteration scheme converges and the controlled differential equation has a unique solution.

Hence, we can solve fractional SDEs for $H>\frac{1}{2}$.

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

Let $x \in C^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \alpha>\frac{1}{2}$ and $V \in C_{b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{d \times e}\right)$. Then the usual Picard iteration scheme converges and the controlled differential equation has a unique solution.

Example

Let $0<H<1$. The fractional Brownian motion with Hurst index H is the Gaussian process (on $[0,1]$) with $W_{0}^{H}=0, E\left[W_{t}^{H}\right]=0$ and

$$
E\left[W_{t}^{H} W_{s}^{H}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

- fBm with $H=\frac{1}{2}$ is standard Brownian motion;
- Paths of W^{H} are a.s. α-Hölder for any $\alpha<H$ (but no $\alpha \geq H$).

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

Let $x \in C^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \alpha>\frac{1}{2}$ and $V \in C_{b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{d \times e}\right)$. Then the usual Picard iteration scheme converges and the controlled differential equation has a unique solution.

Example

Let $0<H<1$. The fractional Brownian motion with Hurst index H is the Gaussian process (on $[0,1]$) with $W_{0}^{H}=0, E\left[W_{t}^{H}\right]=0$ and

$$
E\left[W_{t}^{H} W_{s}^{H}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

- fBm with $H=\frac{1}{2}$ is standard Brownian motion;
- Paths of W^{H} are a.s. α-Hölder for any $\alpha<H$ (but no $\alpha \geq H$). Hence, we can solve fractional SDEs for $H>\frac{1}{2}$.

Rough drivers as limits of smooth drivers

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

- Classical theory works for smooth x, say $x \in C^{\infty}\left([0,1] ; \mathbb{R}^{e}\right)$

Idea

Rough drivers as limits of smooth drivers

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

- Classical theory works for smooth x, say $x \in C^{\infty}\left([0,1] ; \mathbb{R}^{e}\right)$

Idea

- Choose sequence x^{n} of smooth paths converging to x
- Assume that corresponding solutions y^{n} converge to some path $y \in C^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$
- Call y solution of the controlled equation

A counter-example

$$
x_{t}^{n}=\left(\sin \left(n^{2} t\right) / n, \cos \left(n^{2} t\right) / n\right), \quad t \in[0,2 \pi]
$$

Consider the area function

A counter-example

$$
x_{t}^{n}=\left(\sin \left(n^{2} t\right) / n, \cos \left(n^{2} t\right) / n\right), \quad t \in[0,2 \pi]
$$

Consider the area function

$$
z_{t}^{n}:=\frac{1}{2} \int_{0}^{t} x_{s}^{n, 1} d x_{s}^{n, 2}-\frac{1}{2} \int_{0}^{t} x_{s}^{n, 2} d x_{s}^{n, 1}
$$

A counter-example

$$
x_{t}^{n}=\left(\sin \left(n^{2} t\right) / n, \cos \left(n^{2} t\right) / n\right), \quad t \in[0,2 \pi]
$$

Consider the area function

$$
z_{t}^{n}=-\frac{1}{2}\left(\int_{0}^{t} \sin \left(n^{2} s\right)^{2} d s+\int_{0}^{t} \cos \left(n^{2} s\right)^{2} d s\right)
$$

A counter-example

$$
x_{t}^{n}=\left(\sin \left(n^{2} t\right) / n, \cos \left(n^{2} t\right) / n\right), \quad t \in[0,2 \pi]
$$

Consider the area function

$$
z_{t}^{n}=-\frac{1}{2} \int_{0}^{t} 1 d s=-\frac{1}{2} t .
$$

A counter-example

$$
x_{t}^{n}=\left(\sin \left(n^{2} t\right) / n, \cos \left(n^{2} t\right) / n\right), \quad t \in[0,2 \pi]
$$

Consider the area function

$$
z_{t}^{n}:=\frac{1}{2} \int_{0}^{t} x_{s}^{n, 1} d x_{s}^{n, 2}-\frac{1}{2} \int_{0}^{t} x_{s}^{n, 2} d x_{s}^{n, 1}
$$

Even though $x^{n} \rightarrow 0$ in $\|\cdot\|_{\infty}$, we have $z_{t}^{n} \rightarrow-\frac{1}{2} t$.

A counter-example

$$
x_{t}^{n}=\left(\sin \left(n^{2} t\right) / n, \cos \left(n^{2} t\right) / n\right), \quad t \in[0,2 \pi]
$$

Consider the area function

$$
z_{t}^{n}:=\frac{1}{2} \int_{0}^{t} x_{s}^{n, 1} d x_{s}^{n, 2}-\frac{1}{2} \int_{0}^{t} x_{s}^{n, 2} d x_{s}^{n, 1}
$$

Even though $x^{n} \rightarrow 0$ in $\|\cdot\|_{\infty}$, we have $z_{t}^{n} \rightarrow-\frac{1}{2} t$.
Relevance for controlled differential equations: choose

$$
V(y)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\frac{1}{2} y_{2} & -\frac{1}{2} y_{1}
\end{array}\right), \quad y \in \mathbb{R}^{3}
$$

Then $y_{t}^{n}:=\left(x_{t}^{n, 1}, x_{t}^{n, 2}, z_{t}^{n}\right)$ solves

$$
d y_{t}^{n}=V\left(y_{t}^{n}\right) d x_{t}^{n}, \quad y_{0}=(0,1 / n, 0) .
$$

A counter-example

$$
x_{t}^{n}=\left(\sin \left(n^{2} t\right) / n, \cos \left(n^{2} t\right) / n\right), \quad t \in[0,2 \pi]
$$

Consider the area function

$$
z_{t}^{n}:=\frac{1}{2} \int_{0}^{t} x_{s}^{n, 1} d x_{s}^{n, 2}-\frac{1}{2} \int_{0}^{t} x_{s}^{n, 2} d x_{s}^{n, 1}
$$

Even though $x^{n} \rightarrow 0$ in $\|\cdot\|_{\infty}$, we have $z_{t}^{n} \rightarrow-\frac{1}{2} t$.

Remark

- The example is not just an instance of "poor choice of norm": replacing $\|\cdot\|_{\infty}$ by any other reasonable norm is vulnerable to the same type of example.
"Curing this example will cure all other counter-examples."
- Does not work in dimension $e=1$ (Doss-Sussmann
transformation.)

Rough paths and rough partial differential equations • March 18, 2016 • Page 9 (48)

A counter-example

$$
x_{t}^{n}=\left(\sin \left(n^{2} t\right) / n, \cos \left(n^{2} t\right) / n\right), \quad t \in[0,2 \pi]
$$

Consider the area function

$$
z_{t}^{n}:=\frac{1}{2} \int_{0}^{t} x_{s}^{n, 1} d x_{s}^{n, 2}-\frac{1}{2} \int_{0}^{t} x_{s}^{n, 2} d x_{s}^{n, 1}
$$

Even though $x^{n} \rightarrow 0$ in $\|\cdot\|_{\infty}$, we have $z_{t}^{n} \rightarrow-\frac{1}{2} t$.

Remark

- The example is not just an instance of "poor choice of norm": replacing $\|\cdot\|_{\infty}$ by any other reasonable norm is vulnerable to the same type of example.
- "Curing this example will cure all other counter-examples."

Rough paths and rough partial differential equations • March 18, 2016 • Page 9 (48)

A counter-example

$$
x_{t}^{n}=\left(\sin \left(n^{2} t\right) / n, \cos \left(n^{2} t\right) / n\right), \quad t \in[0,2 \pi]
$$

Consider the area function

$$
z_{t}^{n}:=\frac{1}{2} \int_{0}^{t} x_{s}^{n, 1} d x_{s}^{n, 2}-\frac{1}{2} \int_{0}^{t} x_{s}^{n, 2} d x_{s}^{n, 1}
$$

Even though $x^{n} \rightarrow 0$ in $\|\cdot\|_{\infty}$, we have $z_{t}^{n} \rightarrow-\frac{1}{2} t$.

Remark

- The example is not just an instance of "poor choice of norm": replacing $\|\cdot\|_{\infty}$ by any other reasonable norm is vulnerable to the same type of example.
- "Curing this example will cure all other counter-examples."
- Does not work in dimension e $=1$ (Doss-Sussmann transformation.)

Ito stochastic integration
Suppose you want to cover the case $x_{t}=W_{t}(\omega)$, a standard Brownian motion.

Brownian motion is a martingale: i.e., the increments are orthogonal (in $L^{2}(\Omega)$) to the past: for bounded f, we have

$$
Z=f\left(\left(W_{u}\right)_{0 \leq u \leq s}\right) \Rightarrow E\left[Z W_{s, t}\right]=0 \text { for } 0<s<t .
$$

This strong geometric condition allows to define

$$
\int_{0}^{t} Z_{S} d W_{s}=\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[u, v] \in \mathcal{P}} Z_{u} W_{u, v} \text { in probability, }
$$

provided that Z is adapted (i.e., $\forall s: Z_{s}$ is $\sigma\left(\left(W_{u}\right)_{0 \leq u \leq s}\right)$-measurable) and square integrable w.r.t. $d t \otimes P$.

Standard Picard iteration allows to solve stochastic differential equations.

Ito stochastic integration

Suppose you want to cover the case $x_{t}=W_{t}(\omega)$, a standard Brownian motion.

Brownian motion is a martingale: i.e., the increments are orthogonal (in $L^{2}(\Omega)$) to the past: for bounded f, we have

$$
Z=f\left(\left(W_{u}\right)_{0 \leq u \leq s}\right) \Rightarrow E\left[Z W_{s, t}\right]=0 \text { for } 0<s<t .
$$

This strong geometric condition allows to define

provided that Z is adapted (i.e., $\forall s: Z_{s}$ is $\sigma\left(\left(W_{u}\right)_{0 \leq u \leq s}\right)$-measurable) and square integrable w.r.t. $d t \otimes P$.

Standard Picard iteration allows to solve stochastic differential
equations.

Ito stochastic integration

Suppose you want to cover the case $x_{t}=W_{t}(\omega)$, a standard Brownian motion.

Brownian motion is a martingale: i.e., the increments are orthogonal (in $L^{2}(\Omega)$) to the past: for bounded f, we have

$$
Z=f\left(\left(W_{u}\right)_{0 \leq u \leq s}\right) \Rightarrow E\left[Z W_{s, t}\right]=0 \text { for } 0<s<t .
$$

This strong geometric condition allows to define

$$
\int_{0}^{t} Z_{s} d W_{s}=\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[u, v] \in \mathcal{P}} Z_{u} W_{u, v} \text { in probability, }
$$

provided that Z is adapted (i.e., $\forall s: Z_{s}$ is $\sigma\left(\left(W_{u}\right)_{0 \leq u \leq s}\right)$-measurable) and square integrable w.r.t. $d t \otimes P$.

Standard Picard iteration allows to solve stochastic differential

Ito stochastic integration

Suppose you want to cover the case $x_{t}=W_{t}(\omega)$, a standard Brownian motion.

Brownian motion is a martingale: i.e., the increments are orthogonal (in $L^{2}(\Omega)$) to the past: for bounded f, we have

$$
Z=f\left(\left(W_{u}\right)_{0 \leq u \leq s}\right) \Rightarrow E\left[Z W_{s, t}\right]=0 \text { for } 0<s<t
$$

This strong geometric condition allows to define

$$
\int_{0}^{t} Z_{s} d W_{s}=\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[u, v] \in \mathcal{P}} Z_{u} W_{u, v} \text { in probability, }
$$

provided that Z is adapted (i.e., $\forall s: Z_{s}$ is $\sigma\left(\left(W_{u}\right)_{0 \leq u \leq s}\right)$-measurable) and square integrable w.r.t. $d t \otimes P$.

Standard Picard iteration allows to solve stochastic differential equations.

The rough path principle

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

x rough, i.e., not contained in any $C^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \alpha>\frac{1}{2}$.
Let Φ denote the solution map $x \mapsto y$ for x smooth (discontinuous).

Rough path principle

The rough path principle

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

x rough, i.e., not contained in any $C^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \alpha>\frac{1}{2}$.
Let Φ denote the solution map $x \mapsto y$ for x smooth (discontinuous).

Rough path principle

- By continuity of Ψ, can define y as limit of smooth solutions
- Morally, $\mathbf{x}=\left(x, \int_{0} x_{s} \otimes d x_{s}\right)$
- Rough path theory does not help with actual construction of \mathbf{x}.
- Use Ito/Stratonovich stochastic integral in case of Brownian motion. No pathwise construction of $\mathbf{x}=\mathbf{x}(\omega)$, but pathwise construction of $y=y(\omega)$ given a path of \mathbf{x}.

The rough path principle

$$
d y_{t}=V\left(y_{t}\right) d x_{t}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad t \in[0,1]
$$

x rough, i.e., not contained in any $C^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \alpha>\frac{1}{2}$.
Let Φ denote the solution map $x \mapsto y$ for x smooth (discontinuous).

Rough path principle

Enhance x to a rough path \mathbf{x}, such that the solution map $\Psi: \mathbf{x} \rightarrow y$ is continuous (in rough path topology).

- By continuity of Ψ, can define y as limit of smooth solutions
- Morally, $\mathbf{x}=\left(x, \int_{0} x_{s} \otimes d x_{s}\right)$
- Rough path theory does not help with actual construction of \mathbf{x}.

The rough path principle

Rough path principle

Enhance x to a rough path \mathbf{x}, such that the solution map $\Psi: \mathbf{x} \rightarrow y$ is continuous (in rough path topology).

- By continuity of Ψ, can define y as limit of smooth solutions
- Morally, $\mathbf{x}=\left(x, \int_{0} x_{s} \otimes d x_{s}\right)$
- Rough path theory does not help with actual construction of \mathbf{x}.
- Use Ito/Stratonovich stochastic integral in case of Brownian motion. No pathwise construction of $\mathbf{x}=\mathbf{x}(\omega)$, but pathwise construction of $y=y(\omega)$ given a path of \mathbf{x}.

The rough path principle

Rough path principle

Enhance x to a rough path \mathbf{x}, such that the solution map $\Psi: \mathbf{x} \rightarrow y$ is continuous (in rough path topology).

- By continuity of Ψ, can define y as limit of smooth solutions
- Morally, $\mathbf{x}=\left(x, \int_{0} x_{s} \otimes d x_{s}\right)$
- Rough path theory does not help with actual construction of \mathbf{x}.
- Use Ito/Stratonovich stochastic integral in case of Brownian motion. No pathwise construction of $\mathbf{x}=\mathbf{x}(\omega)$, but pathwise construction of $y=y(\omega)$ given a path of \mathbf{x}.

Outline

1 Motivation and introduction

2 Rough path spaces

3 Integration against rough paths

4 Integration of controlled rough paths
5 Rough differential equations

6 Applications of the universal limit theorem

7 Rough partial differential equations

Chen's relation

Let $x:[0,1] \rightarrow \mathbb{R}^{e}$ be a smooth path, $x_{s, t}:=x_{t}-x_{s}$ and consider

$$
\mathbb{x}_{s, t}:=\int_{s}^{t} x_{s, u} \otimes d x_{u}:=\left(\int_{s}^{t} x_{s, u}^{i} d x_{u}^{j}\right)_{i, j=1}^{e}
$$

How do increments of of \mathbb{x} behave? Let $s<u<t$, then

$$
\mathbb{x}_{s, t}=\int_{s}^{t} x_{s, v} \otimes d x_{v}
$$

Chen's relation

Let $x:[0,1] \rightarrow \mathbb{R}^{e}$ be a smooth path, $x_{s, t}:=x_{t}-x_{s}$ and consider

$$
\mathbb{x}_{s, t}:=\int_{s}^{t} x_{s, u} \otimes d x_{u}:=\left(\int_{s}^{t} x_{s, u}^{i} d x_{u}^{j}\right)_{i, j=1}^{e}
$$

How do increments of of x behave? Let $s<u<t$, then

$$
\begin{gathered}
\mathbb{x}_{s, t}=\int_{s}^{t} x_{s, v} \otimes d x_{v} \\
\mathbb{x}_{s, u}+\mathbb{x}_{u, t}=\int_{s}^{u} x_{s, v} \otimes d x_{v}+\int_{u}^{t} x_{u, v} \otimes d x_{v}
\end{gathered}
$$

Theorem (Chen's theorem)

Remark

Note $\mathbb{x}_{s, t} \rightarrow \mathbb{X}_{s, t}+f_{t}-f_{s}$ leaves Chen's relation invariant.

Chen's relation

Let $x:[0,1] \rightarrow \mathbb{R}^{e}$ be a smooth path, $x_{s, t}:=x_{t}-x_{s}$ and consider

$$
\mathbb{x}_{s, t}:=\int_{s}^{t} x_{s, u} \otimes d x_{u}:=\left(\int_{s}^{t} x_{s, u}^{i} d x_{u}^{j}\right)_{i, j=1}^{e}
$$

How do increments of of x behave? Let $s<u<t$, then

$$
\begin{gathered}
\mathbb{x}_{s, t}=\int_{s}^{t} x_{s, v} \otimes d x_{v} \\
\mathbb{x}_{s, u}+\mathbb{x}_{u, t}=\int_{s}^{u} x_{s, v} \otimes d x_{v}+\int_{u}^{t}\left(x_{s, v}-x_{s, u}\right) \otimes d x_{v}
\end{gathered}
$$

Theorem (Chen's theorem)

Remark

Note $\mathbb{x}_{c, t} \rightarrow \mathbb{x}_{s, t}+f_{t}-f_{s}$ leaves Chen's relation invariant.

Chen's relation

Let $x:[0,1] \rightarrow \mathbb{R}^{e}$ be a smooth path, $x_{s, t}:=x_{t}-x_{s}$ and consider

$$
\mathbb{x}_{s, t}:=\int_{s}^{t} x_{s, u} \otimes d x_{u}:=\left(\int_{s}^{t} x_{s, u}^{i} d x_{u}^{j}\right)_{i, j=1}^{e}
$$

How do increments of of x behave? Let $s<u<t$, then

$$
\begin{gathered}
\mathbb{x}_{s, t}=\int_{s}^{t} x_{s, v} \otimes d x_{v} \\
\mathbb{x}_{s, u}+\mathbb{X}_{u, t}=\int_{s}^{t} x_{s, v} \otimes d x_{v}-x_{s, u} \otimes x_{u, t}
\end{gathered}
$$

Theorem (Chen's theorem)

Remark

Note $\mathbb{x}_{\mathrm{s}, t} \rightarrow \mathbb{X}_{s, t}+f_{t}-f_{s}$ leaves Chen's relation invariant.

Chen's relation

Let $x:[0,1] \rightarrow \mathbb{R}^{e}$ be a smooth path, $x_{s, t}:=x_{t}-x_{s}$ and consider

$$
\mathbb{x}_{s, t}:=\int_{s}^{t} x_{s, u} \otimes d x_{u}:=\left(\int_{s}^{t} x_{s, u}^{i} d x_{u}^{j}\right)_{i, j=1}^{e}
$$

How do increments of of x behave? Let $s<u<t$, then

$$
\begin{gathered}
\mathbb{x}_{s, t}=\int_{s}^{t} x_{s, v} \otimes d x_{v} \\
\mathbb{x}_{s, u}+\mathbb{x}_{u, t}=\int_{s}^{t} x_{s, v} \otimes d x_{v}-x_{s, u} \otimes x_{u, t}
\end{gathered}
$$

Theorem (Chen's theorem)

$$
\mathbb{x}_{s, t}-\mathbb{x}_{s, u}-\mathbb{x}_{u, t}=x_{s, u} \otimes x_{u, t}
$$

Remark

Note $\mathbb{x}_{s, t} \rightarrow \mathbb{X}_{s, t}+f_{t}-f_{s}$ leaves Chen's relation invariant.

Chen's relation

Let $x:[0,1] \rightarrow \mathbb{R}^{e}$ be a smooth path, $x_{s, t}:=x_{t}-x_{s}$ and consider

$$
\mathbb{x}_{s, t}:=\int_{s}^{t} x_{s, u} \otimes d x_{u}:=\left(\int_{s}^{t} x_{s, u}^{i} d x_{u}^{j}\right)_{i, j=1}^{e}
$$

How do increments of of x behave? Let $s<u<t$, then

$$
\begin{gathered}
\mathbb{x}_{s, t}=\int_{s}^{t} x_{s, v} \otimes d x_{v} \\
\mathbb{x}_{s, u}+\mathbb{x}_{u, t}=\int_{s}^{t} x_{s, v} \otimes d x_{v}-x_{s, u} \otimes x_{u, t}
\end{gathered}
$$

Theorem (Chen's theorem)

$$
\mathbb{x}_{s, t}-\mathbb{x}_{s, u}-\mathbb{x}_{u, t}=x_{s, u} \otimes x_{u, t}
$$

Remark

Note $\mathbb{x}_{s, t} \rightarrow \mathbb{x}_{s, t}+f_{t}-f_{s}$ leaves Chen's relation invariant.

Rough path space

Definition

Let $\frac{1}{3}<\alpha \leq \frac{1}{2}$. The space of α-Hölder rough paths $\mathscr{C}^{\alpha}\left([0,1], \mathbb{R}^{e}\right)$ is the set of pairs $\mathbf{x}=(x, \mathbb{x}), x:[0,1] \rightarrow \mathbb{R}^{e}, \mathbb{x}:[0,1]^{2} \rightarrow \mathbb{R}^{e} \otimes \mathbb{R}^{e}$ such that

- Chen's relation holds;
- $\|x\|_{\alpha}:=\sup _{s \neq t} \frac{\left|x_{s, t}\right|}{|t-s|^{\alpha}}<\infty, \quad\|\mathbb{x}\|_{2 \alpha}:=\sup _{s \neq t} \frac{\left|\mathbb{X}_{s, t}\right|}{|t-s|^{2 \alpha}}<\infty$.

Remark

Rough path space

Definition

Let $\frac{1}{3}<\alpha \leq \frac{1}{2}$. The space of α-Hölder rough paths $\mathscr{C}^{\alpha}\left([0,1], \mathbb{R}^{e}\right)$ is the set of pairs $\mathbf{x}=(x, \mathbb{x}), x:[0,1] \rightarrow \mathbb{R}^{e}, \mathbb{x}:[0,1]^{2} \rightarrow \mathbb{R}^{e} \otimes \mathbb{R}^{e}$ such that

- Chen's relation holds;
- $\|x\|_{\alpha}:=\sup _{s \neq t} \frac{\left|x_{s, t}\right|}{|t-s|^{\alpha}}<\infty, \quad\|\mathbb{x}\|_{2 \alpha}:=\sup _{s \neq t} \frac{\left|\mathbb{X}_{s, t}\right|}{|t-s|^{2 \alpha}}<\infty$.

Remark

- \mathscr{C}^{α} is not a linear space, but a closed subset of a Banach space.
- For $\alpha \leq \frac{1}{3}$, need to add iterated integrals of order up to $\left\lfloor\frac{1}{\alpha}\right\rfloor$.
- $\|\cdot\|_{\alpha}$ is a semi-norm; can be turned into a norm by adding $\left|x_{0}\right|$.
- The construction works for paths x with values in a Banach space V, when choosing an appropriate version of $V \otimes V$.

Rough path metric

Notice that $\|x\|_{\alpha}+\|x\|_{2 \alpha}$ is not homogeneous under the natural dilatation $\lambda \mapsto\left(\lambda x, \lambda^{2} \mathrm{xs}\right)$.

Definition

The homogeneous rough path (semi-) norm is defined by

$$
\|\mathbf{x}\|_{\alpha}:=\|x\|_{\alpha}+\sqrt{\|\mathbb{x}\|_{2 \alpha}} .
$$

Definition

Given $\mathbf{x}, \mathbf{y} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$, define the inhomogeneous α-Hölder rough path metric by

$$
\mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right) \text { is a complete metric space under } \varrho_{\alpha} .
$$

Rough path metric

Notice that $\|x\|_{\alpha}+\|\mathrm{x}\|_{2 \alpha}$ is not homogeneous under the natural dilatation $\lambda \mapsto\left(\lambda x, \lambda^{2} \mathrm{x}\right)$.

Definition

The homogeneous rough path (semi-) norm is defined by

$$
\|\mathbf{x}\|_{\alpha}:=\|x\|_{\alpha}+\sqrt{\|\mathbb{x}\|_{2 \alpha}} .
$$

Definition

Given $\mathbf{x}, \mathbf{y} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$, define the inhomogeneous α-Hölder rough path metric by

$$
\varrho_{\alpha}(\mathbf{x}, \mathbf{y}):=\sup _{s \neq t} \frac{\left|x_{s, t}-y_{s, t}\right|}{|t-s|^{\alpha}}+\sup _{s \neq t} \frac{\left|\mathbb{x}_{s, t}-\mathbb{y}_{s, t}\right|}{|t-s|^{2 \alpha}}+\left|x_{0}-y_{0}\right| .
$$

$\mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ is a complete metric space under ϱ_{α}.

Geometric rough paths

Let x be a smooth path. Then

$$
\mathbb{x}_{s, t}^{i, j}+\mathbb{x}_{s, t}^{j, i}=\int_{s}^{t} x_{s, u}^{i} d x_{u}^{j}+\int_{s}^{t} x_{s, u}^{j} d x_{u}^{i}
$$

Definition

A rough path $x \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ is called geometric-symbolically,

Theorem

For a smooth path x define $I_{2}(x):=(x, \pi)$ with $\mathbb{X}_{s, t}^{i, j}:=\int_{s}^{t} x_{s, u}^{i} d x_{u}^{j}$. Then \mathscr{C}_{g}^{α} contains the closure of the subset of \mathscr{C}^{α} obtained as image of smooth paths under I_{2}.

Geometric rough paths

Let x be a smooth path. Then

$$
\mathbf{x}_{s, t}^{i, j}+\mathbf{x}_{s, t}^{j, i}=\int_{s}^{t} x_{s, u}^{i} \dot{x}_{u}^{j} d u+\int_{s}^{t} x_{s, u}^{j} \dot{x}_{u}^{i} d u
$$

Definition

A rough path $x \in \mathscr{C}^{a}\left([0,1] ; \mathbb{R}^{e}\right)$ is called geometric-symbolically,

Theorem

For a smooth path x define $I_{2}(x):=(x, \pi)$ with $\pi x_{s, t}^{i, j}:=\int_{s}^{t} x_{s, u}^{i} d x_{U}^{j}$. Then \mathscr{C}_{g}^{α} contains the closure of the subset of \mathscr{C}^{α} obtained as image of smooth paths under I_{2}.

Geometric rough paths

Let x be a smooth path. Then

$$
\mathbb{x}_{s, t}^{i, j}+\mathbb{X}_{s, t}^{j, i}=\int_{s}^{t} \frac{\partial}{\partial u}\left(x_{s, u}^{i} x_{s, u}^{j}\right) d u
$$

Definition

A rough path $x \in \mathscr{C}^{a}\left([0,1] ; \mathbb{R}^{e}\right)$ is called geometric-symbolically,

Theorem

For a smooth path x define $I_{2}(x):=(x, \pi x)$ with $x_{s, t}^{i, j}:=\int_{s}^{t} x_{s, u}^{i} d x_{u}^{j}$. Then \mathscr{C}_{g}^{α} contains the closure of the subset of \mathscr{C}^{α} obtained as image of smooth paths under I_{2}.

Geometric rough paths

Let x be a smooth path. Then

$$
\mathbf{x}_{s, t}^{i, j}+\mathbf{x}_{s, t}^{j, i}=x_{s, t}^{i} x_{s, t}^{j}
$$

Definition

A rough nath $\mathrm{x} \in \mathcal{F}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ is called geometric-symbolically,
$\left.\mathbf{x} \in \mathscr{C}_{g}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)\right)$ —iff

Theorem

For a smooth path x define $I_{2}(x):=(x, \pi x)$ with $\bar{x}_{s, t}^{i, j}:=\int_{s}^{t} x_{s, u}^{i} d x_{u}^{j}$. Then
\mathscr{C}_{g}^{α} contains the closure of the subset of \mathscr{C}^{α} obtained as image of
smooth paths under I_{2}.

Rough paths and rough partial differential equations • March 18, 2016 • Page 16 (48)

Geometric rough paths

Let x be a smooth path. Then

$$
\mathbf{x}_{s, t}^{i, j}+\mathbf{x}_{s, t}^{j, i}=x_{s, t}^{i} x_{s, t}^{j}
$$

Definition

A rough path $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ is called geometric-symbolically, $\left.\mathbf{x} \in \mathscr{C}_{g}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)\right)$ —iff

$$
\operatorname{sym}(\mathbb{x}):=\frac{1}{2}\left(\mathbb{x}_{\cdot, \cdot}^{i, j}+\mathrm{x}_{\cdot, \cdot}^{j, i}\right)_{i, j=1}^{e}=\frac{1}{2}\left(x_{.,} \otimes x_{\cdot, \cdot}\right) .
$$

Theorem

For a smooth path x define $I_{2}(x):=(x, \mathbb{\mathbb { x }})$ with $\mathbb{X}_{s, t}^{i, j}:=\int_{s}^{t} x_{s, u}^{i} d x_{u}^{j}$. Then \mathscr{C}_{g}^{α} contains the closure of the subset of \mathscr{C}^{α} obtained as image of
smooth paths under I_{2}

Geometric rough paths

Let x be a smooth path. Then

$$
\mathbb{x}_{s, t}^{i, j}+\mathbb{x}_{s, t}^{j, i}=x_{s, t}^{i} x_{s, t}^{j}
$$

Definition

A rough path $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ is called geometric-symbolically, $\left.\mathbf{x} \in \mathscr{C}_{g}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)\right)$ —iff

$$
\operatorname{sym}(\mathbb{x}):=\frac{1}{2}\left(x_{[, \cdot}^{i, j}+x_{r, \cdot}^{j, i}\right)_{i, j=1}^{e}=\frac{1}{2}\left(x_{.,} \otimes x_{\cdot, \cdot}\right) .
$$

Theorem

For a smooth path x define $I_{2}(x):=(x, \mathbb{x})$ with $\mathbb{x}_{s, t}^{i, j}:=\int_{s}^{t} x_{s, u}^{i} d x_{u}^{j}$. Then \mathscr{C}_{g}^{α} contains the closure of the subset of \mathscr{C}^{α} obtained as image of smooth paths under I_{2}.

Given an e-dimensional Brownian motion $B=B(\omega)$.

- Is there a rough path $\mathbf{B}=(B, \mathbb{B})$?
- Is it unique, which properties does it have?

Brownian rough path

Given an e-dimensional Brownian motion $B=B(\omega)$.

- Is there a rough path $\mathbf{B}=(B, \mathbb{B})$?
- Is it unique, which properties does it have?

$$
\begin{aligned}
\mathbb{B}_{s, t}^{\text {lto }} & :=\int_{s}^{t} B_{s, u} \otimes d B_{u}=\lim _{\mathcal{P} \subset[s, t],|\mathcal{P}| \rightarrow 0} \sum_{[u, v] \in \mathcal{P}} B_{s, u} \otimes B_{u, v} \\
\mathbb{B}_{s, t}^{\text {Strat }} & :=\int_{s}^{t} B_{s, u} \otimes \circ d B_{u}
\end{aligned}=\lim _{\mathcal{P} \subset[s, t],|\mathcal{P}| \rightarrow 0} \sum_{[u, v] \in \mathcal{P}} B_{s,(u+v) / 2} \otimes B_{u, v} .
$$

Theorem

For any $\alpha<\frac{1}{2}$ we have

- $\mathbf{B}^{\text {Strat }}:=\left(B, \mathbb{B}^{\text {Strat }}\right) \in \mathscr{C}_{g}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right) \subset \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right) P$-a.s.

Brownian rough path

Given an e-dimensional Brownian motion $B=B(\omega)$.

- Is there a rough path $\mathbf{B}=(B, \mathbb{B})$?
- Is it unique, which properties does it have?

$$
\begin{aligned}
\mathbb{B}_{s, t}^{\text {lto }} & :=\int_{s}^{t} B_{s, u} \otimes d B_{u}
\end{aligned}=\lim _{\mathcal{P} \subset[s, t],|\mathcal{P}| \rightarrow 0} \sum_{[u, v] \in \mathcal{P}} B_{s, u} \otimes B_{u, v}, ~\left(\mathbb{B}_{s, t}^{\text {Strat }}:=\int_{s}^{t} B_{s, u} \otimes \circ d B_{u}=\lim _{\mathcal{P} \subset[s, t],|\mathcal{P}| \rightarrow 0} \sum_{[u, v] \in \mathcal{P}} B_{s,(u+v) / 2} \otimes B_{u, v} .\right.
$$

Theorem

For any $\alpha<\frac{1}{2}$ we have

- $\mathbf{B}^{\text {lto }}:=\left(B, \mathbb{B}^{\text {loo }}\right) \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right) P$-a.s.
- $\mathbf{B}^{\text {Strat }}:=\left(B, \mathbb{B}^{\text {Strat }}\right) \in \mathscr{C}_{g}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right) \subset \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right) P$-a.s.
$\mathbf{B}^{\text {Ito }}$ is not geometric: $\operatorname{sym}\left(\mathbb{B}_{s, t}^{\mathrm{Ito}}\right)=\frac{B_{s, t} \otimes B_{s, t}-(t-s) I_{e}}{2}$

Outline

1 Motivation and introduction

2 Rough path spaces

3 Integration against rough paths

4 Integration of controlled rough paths

5 Rough differential equations

6 Applications of the universal limit theorem

7 Rough partial differential equations

Integration of 1-forms - motivation

For $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ and $f: \mathbb{R}^{e} \rightarrow \mathbb{R}^{d \times e}$, we want to construct $\int_{0}^{1} f\left(x_{s}\right) d \mathbf{x}_{s}$ or even $z=\int_{0} f\left(x_{s}\right) d \mathbf{x}_{s} \quad$ or even $\quad \mathbf{z}=\int_{0} f\left(x_{s}\right) d \mathbf{x}_{s}$ Idea of Riemann-Stieltjes integral for x :

Integration of 1-forms - motivation
For $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ and $f: \mathbb{R}^{e} \rightarrow \mathbb{R}^{d \times e}$, we want to construct
$\int_{0}^{1} f\left(x_{s}\right) d \mathbf{x}_{s} \quad$ or even $\quad z=\int_{0} f\left(x_{s}\right) d \mathbf{x}_{s} \quad$ or even $\quad \mathbf{z}=\int_{0} f\left(x_{s}\right) d \mathbf{x}_{s}$
Idea of Riemann-Stieltjes integral for smooth x :

$$
f\left(x_{t}\right)=f\left(x_{s}\right)+O(|t-s|) \Rightarrow \int_{s}^{t} f\left(x_{u}\right) d x_{u}=f\left(x_{s}\right) x_{s, t}+o(|t-s|)
$$

Integration of 1-forms - motivation

For $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ and $f: \mathbb{R}^{e} \rightarrow \mathbb{R}^{d \times e}$, we want to construct
$\int_{0}^{1} f\left(x_{s}\right) d \mathbf{x}_{s} \quad$ or even $\quad z=\int_{0} f\left(x_{s}\right) d \mathbf{x}_{s} \quad$ or even $\quad \mathbf{z}=\int_{0} f\left(x_{s}\right) d \mathbf{x}_{s}$ Idea of Riemann-Stieltjes integral for smooth x :

$$
\begin{aligned}
f\left(x_{t}\right)=f\left(x_{s}\right)+O(|t-s|) & \Rightarrow \int_{s}^{t} f\left(x_{u}\right) d x_{u}=f\left(x_{s}\right) x_{s, t}+o(|t-s|) \\
& \Rightarrow \int_{0}^{1} f\left(x_{u}\right) d x_{u}=\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}} f\left(x_{s}\right) x_{s, t}+o(1)
\end{aligned}
$$

Integration of 1-forms - motivation

For $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ and $f: \mathbb{R}^{e} \rightarrow \mathbb{R}^{d \times e}$, we want to construct
$\int_{0}^{1} f\left(x_{s}\right) d \mathbf{x}_{s} \quad$ or even $\quad z=\int_{0} f\left(x_{s}\right) d \mathbf{x}_{s} \quad$ or even $\quad \mathbf{z}=\int_{0} f\left(x_{s}\right) d \mathbf{x}_{s}$
Idea of Riemann-Stieltjes integral for rough x :

$$
\begin{aligned}
f\left(x_{t}\right)=f\left(x_{s}\right)+O\left(|t-s|^{\alpha}\right) & \Rightarrow \int_{s}^{t} f\left(x_{u}\right) d x_{u}=f\left(x_{s}\right) x_{s, t}+O\left(|t-s|^{2 \alpha}\right) \\
& \Rightarrow \lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}} f\left(x_{s}\right) x_{s, t} \text { does not exist in general }
\end{aligned}
$$

Integration of 1-forms - motivation

For $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ and $f: \mathbb{R}^{e} \rightarrow \mathbb{R}^{d \times e}$, we want to construct
$\int_{0}^{1} f\left(x_{s}\right) d \mathbf{x}_{s} \quad$ or even $\quad z=\int_{0} f\left(x_{s}\right) d \mathbf{x}_{s} \quad$ or even $\quad \mathbf{z}=\int_{0} f\left(x_{s}\right) d \mathbf{x}_{s}$
Idea of Riemann-Stieltjes integral for rough x :

$$
\begin{aligned}
f\left(x_{t}\right)=f\left(x_{s}\right)+O\left(|t-s|^{\alpha}\right) & \Rightarrow \int_{s}^{t} f\left(x_{u}\right) d x_{u}=f\left(x_{s}\right) x_{s, t}+O\left(|t-s|^{2 \alpha}\right) \\
& \Rightarrow \lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}} f\left(x_{s}\right) x_{s, t} \text { does not exist in general }
\end{aligned}
$$

Instead (for $\frac{1}{3}<\alpha \leq \frac{1}{2}$):

$$
\left.f\left(x_{t}\right)=f\left(x_{s}\right)+D f\left(x_{s}\right) x_{s, t}+O\left(|t-s|^{2 \alpha}\right) \quad \text { (for } f \in C_{b}^{2}\right)
$$

Integration of 1-forms - motivation

For $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ and $f: \mathbb{R}^{e} \rightarrow \mathbb{R}^{d \times e}$, we want to construct
$\int_{0}^{1} f\left(x_{s}\right) d \mathbf{x}_{s}$ or even $z=\int_{0} f\left(x_{s}\right) d \mathbf{x}_{s} \quad$ or even $\quad \mathbf{z}=\int_{0} f\left(x_{s}\right) d \mathbf{x}_{s}$ Idea of Riemann-Stieltjes integral for rough x :

$$
\begin{aligned}
f\left(x_{t}\right)=f\left(x_{s}\right)+O\left(|t-s|^{\alpha}\right) & \Rightarrow \int_{s}^{t} f\left(x_{u}\right) d x_{u}=f\left(x_{s}\right) x_{s, t}+O\left(|t-s|^{2 \alpha}\right) \\
& \Rightarrow \lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}} f\left(x_{s}\right) x_{s, t} \text { does not exist in general }
\end{aligned}
$$

Instead (for $\frac{1}{3}<\alpha \leq \frac{1}{2}$):

$$
\begin{aligned}
f\left(x_{t}\right)=f\left(x_{s}\right) & \left.+D f\left(x_{s}\right) x_{s, t}+O\left(|t-s|^{2 \alpha}\right) \quad \text { (for } f \in C_{b}^{2}\right) \\
& \Rightarrow \int_{s}^{t} f\left(x_{u}\right) d x_{u}=f\left(x_{s}\right) x_{s, t}+D f\left(x_{s}\right) \mathbb{x}_{s, t}+O\left(|t-s|^{3 \alpha}\right)
\end{aligned}
$$

Integration of 1-forms - motivation

For $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ and $f: \mathbb{R}^{e} \rightarrow \mathbb{R}^{d \times e}$, we want to construct $\int_{0}^{1} f\left(x_{s}\right) d \mathbf{x}_{s} \quad$ or even $\quad z=\int_{0} f\left(x_{s}\right) d \mathbf{x}_{s} \quad$ or even $\quad \mathbf{z}=\int_{0} f\left(x_{s}\right) d \mathbf{x}_{s}$ Idea of Riemann-Stieltjes integral for rough x :

$$
\begin{aligned}
f\left(x_{t}\right)=f\left(x_{s}\right)+O\left(|t-s|^{\alpha}\right) & \Rightarrow \int_{s}^{t} f\left(x_{u}\right) d x_{u}=f\left(x_{s}\right) x_{s, t}+O\left(|t-s|^{2 \alpha}\right) \\
& \Rightarrow \lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}} f\left(x_{s}\right) x_{s, t} \text { does not exist in general }
\end{aligned}
$$

Instead (for $\frac{1}{3}<\alpha \leq \frac{1}{2}$):

$$
\begin{aligned}
f\left(x_{t}\right)=f\left(x_{s}\right) & +D f\left(x_{s}\right) x_{s, t}+O\left(|t-s|^{2 \alpha}\right) \quad\left(\text { for } f \in C_{b}^{2}\right) \\
& \Rightarrow \int_{s}^{t} f\left(x_{u}\right) d x_{u}=f\left(x_{s}\right) x_{s, t}+D f\left(x_{s}\right) \mathbb{x}_{s, t}+O\left(|t-s|^{3 \alpha}\right) \\
& \Rightarrow \int_{0}^{1} f\left(x_{s}\right) d \mathbf{x}_{s}:=\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}}\left(f\left(x_{s}\right) x_{s, t}+D f\left(x_{s}\right) \mathbb{x}_{s, t}\right)
\end{aligned}
$$

Integration of 1-forms

Theorem (Lyons)

Let $\alpha>\frac{1}{3}$ and $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), f \in C_{b}^{2}\left(\mathbb{R}^{e}, \mathbb{R}^{d \times e}\right)$. Then the rough integral

$$
\int_{0}^{1} f\left(x_{s}\right) d \mathbf{x}_{s}:=\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}}\left(f\left(x_{s}\right) x_{s, t}+D f\left(x_{s}\right) \mathbb{x}_{s, t}\right)
$$

exists and satisfies

$$
\begin{aligned}
& \left|\int_{s}^{t} f\left(x_{u}\right) d \mathbf{x}_{u}-f\left(x_{s}\right) x_{s, t}-D f\left(x_{s}\right) \mathbb{x}_{s, t}\right| \leq \\
& C_{\alpha}\|f\|_{C_{b}^{2}}\left(\|x\|_{\alpha}^{3}+\|x\|_{\alpha}\|\mathbb{x}\|_{2 \alpha}\right)|t-s|^{3 \alpha}
\end{aligned}
$$

Moreover, $\int_{0} f\left(x_{u}\right) d \mathbf{x}_{u}$ is α-Hölder continuous with

$$
\left\|\int_{0}^{\cdot} f\left(x_{u}\right) d \mathbf{x}_{u}\right\|_{\alpha} \leq C_{\alpha}\|f\|_{C_{b}^{2}} \max \left(\|\mathbf{x}\|_{\alpha},\|\mathbf{x}\|_{\alpha}^{1 / \alpha}\right)
$$

Rough paths and rough partial differential equations • March 18, 2016 • Page 20 (48)

Integration of 1-forms - Existence I

First some notation:

$$
\begin{aligned}
y_{s} & :=f\left(x_{s}\right), \\
y_{s}^{\prime} & :=D f\left(x_{s}\right), \\
\Xi_{s, t} & :=y_{s} x_{s, t}+y_{s}^{\prime} \mathbb{x}_{s, t} \\
\delta \Xi_{s, u, t} & :=\Xi_{s, t}-\Xi_{s, u}-\Xi_{u, t}
\end{aligned}
$$

We prove convergence

$$
\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}} \Xi_{s, t}=: \lim _{|\mathcal{P}| \rightarrow 0} \int_{\mathcal{P}} \Xi=: \int \Xi,
$$

i.e., the limit does not depend on the sequence of partitions.

Integration of 1-forms - Existence II

Lemma

$$
\|\Xi\|_{\alpha, 3 \alpha}:=\|\Xi\|_{\alpha}+\|\delta \Xi\|_{3 \alpha}<\infty \text { with }\|\delta \Xi\|_{\beta}:=\sup _{s<u<t}\left|\delta \Xi_{s, u, t}\right| /|t-s|^{\beta}
$$

Proof.

- Clearly, $\|y\|_{\alpha} \leq\|D f\|_{\infty}\|x\|_{\alpha}<\infty, \quad\left\|y^{\prime}\right\|_{\alpha} \leq\left\|D^{2} f\right\|_{\infty}\|x\|_{\alpha}<\infty$.
- Consider $R_{s, t}:=y_{s, t}-y_{s}^{\prime} x_{s, t}$ and $g(\xi):=f\left(x_{s}+\xi x_{s, t}\right), \xi \in[0,1]$.
- By Taylor's formula, there is $\xi \in[0,1]$ s.t.

$$
R_{s, t}=g(1)-g(0)-g^{\prime}(0)=\frac{1}{2} g^{\prime \prime}(\xi)=\frac{1}{2} D^{2} f\left(x_{s}+\xi x_{s, t}\right) \cdot\left(x_{s, t}, x_{s, t}\right)
$$

Integration of 1-forms - Existence II

Lemma

$$
\|\Xi\|_{\alpha, 3 \alpha}:=\|\Xi\|_{\alpha}+\|\delta \Xi\|_{3 \alpha}<\infty \text { with }\|\delta \Xi\|_{\beta}:=\sup _{s<u<t}\left|\delta \Xi \Xi_{s, u, t}\right| /|t-s|^{\beta}
$$

Proof.

- Clearly, $\|y\|_{\alpha} \leq\|D f\|_{\infty}\|x\|_{\alpha}<\infty, \quad\left\|y^{\prime}\right\|_{\alpha} \leq\left\|D^{2} f\right\|_{\infty}\|x\|_{\alpha}<\infty$.
- Consider $R_{s, t}:=y_{s, t}-y_{s}^{\prime} x_{s, t}$ and $g(\xi):=f\left(x_{s}+\xi x_{s, t}\right), \xi \in[0,1]$.
- Hence, $\|R\|_{2 \alpha} \leq \frac{1}{2}\left\|D^{2} f\right\|_{\infty}\|x\|_{\alpha}^{2}$.
- Using Chen's relation $\mathbb{x}_{s, t}=\mathbb{x}_{s, u}+\mathbb{x}_{u, t}+x_{s, u} \otimes x_{u, t}$, we have

Rough paths and rough partial differential equations • March 18, 2016 • Page 22 (48)

Integration of 1-forms - Existence II

Lemma

$$
\|\Xi\|_{\alpha, 3 \alpha}:=\|\Xi\|_{\alpha}+\|\delta \Xi\|_{3 \alpha}<\infty \text { with }\|\delta \Xi\|_{\beta}:=\sup _{s<u<t}\left|\delta \Xi_{s, u, t}\right| /|t-s|^{\beta}
$$

Proof.

- Clearly, $\|y\|_{\alpha} \leq\|D f\|_{\infty}\|x\|_{\alpha}<\infty, \quad\left\|y^{\prime}\right\|_{\alpha} \leq\left\|D^{2} f\right\|_{\infty}\|x\|_{\alpha}<\infty$.
- Consider $R_{s, t}:=y_{s, t}-y_{s}^{\prime} x_{s, t}$ and $g(\xi):=f\left(x_{s}+\xi x_{s, t}\right), \xi \in[0,1]$.
- Hence, $\|R\|_{2 \alpha} \leq \frac{1}{2}\left\|D^{2} f\right\|_{\infty}\|x\|_{\alpha}^{2}$.
- Using Chen's relation $\mathbb{x}_{s, t}=\mathbb{x}_{s, u}+\mathbb{x}_{u, t}+x_{s, u} \otimes x_{u, t}$, we have

$$
\begin{aligned}
\delta \Xi_{s, u, t} & =\left(y_{s} x_{s, t}+y_{s}^{\prime} \mathbb{x}_{s, t}\right)-\left(y_{s} x_{s, u}+y_{s}^{\prime} \mathbb{x}_{s, u}\right)-\left(y_{u} x_{u, t}+y_{u}^{\prime} \mathbb{x}_{u, t}\right) \\
& =-y_{s, u} x_{u, t}+y_{s}^{\prime} x_{s, u} \otimes x_{u, t}-\left(y_{u}^{\prime}-y_{s}^{\prime}\right) \mathbb{x}_{u, t} \\
& =-R_{s, u} \otimes x_{u, t}-\left(y_{u}^{\prime}-y_{s}^{\prime}\right) \mathbb{x}_{u, t}
\end{aligned}
$$

Integration of 1-forms - Existence III

Lemma

$\sup _{\mathcal{P} \subset[s, t]}\left|\Xi_{s, t}-\int_{\mathcal{P}} \Xi\right| \leq 2^{3 \alpha}\|\delta \Xi\|_{3 \alpha} \zeta(3 \alpha)|t-s|^{3 \alpha}(*)$

Integration of 1-forms - Existence III

Lemma

$\sup _{\mathcal{P} \subset[\{, t] \mid}\left|\Xi_{s, t}-\int_{\mathcal{P}} \Xi\right| \leq 2^{3 \alpha}| | \delta \Xi \|_{3 \alpha} \zeta(3 \alpha)|t-s|^{3 \alpha}(*)$

Proof.

Indeed, let $\mathcal{P} \subset[s, t]$ with $r:=\# \mathcal{P}$. If $r \geq 2$, then

$$
\exists u<v<w:[u, v],[v, w] \in \mathcal{P} \text { and }|w-u| \leq \frac{2|t-s|}{r-1}
$$

Hence,

$$
\left|\int_{\mathcal{P} \backslash\{v\}} \Xi-\int_{\mathcal{P}} \Xi\right|=\left|\delta \Xi_{u, v, w}\right| \leq\|\delta \Xi\|_{3 \alpha}\left(\frac{2|t-s|}{r-1}\right)^{3 \alpha}
$$

Iterating the procedure until $\# \mathcal{P}=1$ gives the assertion.

Integration of 1-forms - Existence III

Lemma

$\sup _{\mathcal{P} \subset[s, t]}\left|\Xi_{s, t}-\int_{\mathcal{P}} \Xi\right| \leq 2^{3 \alpha}\|\delta \Xi\|_{3 \alpha} \zeta(3 \alpha)|t-s|^{3 \alpha}(*)$

Lemma

$\lim _{\epsilon \backslash 0} \sup _{\max \left(|\mathcal{P}|,\left|\mathcal{P}^{\prime}\right|\right)<\epsilon}\left|\int_{\mathcal{P}} \Xi-\int_{\mathcal{P}^{\prime}} \Xi\right|=0$

Integration of 1-forms - Existence III

Lemma

$\sup _{\mathcal{P} \subset[s, t]}\left|\Xi_{s, t}-\int_{\mathcal{P}} \Xi\right| \leq 2^{3 \alpha}\|\delta \Xi\|_{3 \alpha} \zeta(3 \alpha)|t-s|^{3 \alpha}$ (*)

Lemma

$\lim _{\epsilon \searrow 0} \sup _{\max \left(|\mathcal{P}|,\left|\mathcal{P}^{\prime}\right|\right)<\epsilon}\left|\int_{\mathcal{P}} \Xi-\int_{\mathcal{P}^{\prime}} \Xi\right|=0$

Proof.

W.I.o.g., $\mathcal{P}^{\prime} \subset \mathcal{P}$. By definition of $\int \Xi$ and $(*)$, we get

$$
\int_{\mathcal{P}} \Xi-\int_{\mathcal{P}^{\prime}} \Xi=\sum_{[u, v] \in \mathcal{P}}\left(\Xi_{u, v}-\int_{\mathcal{P}^{\prime} \cap[u, v]} \Xi\right)
$$

$\left|\int_{\mathcal{P}} \Xi-\int_{\mathcal{P}^{\prime}} \Xi\right| \leq 2^{3 \alpha} \zeta(3 \alpha)\|\delta \Xi\|_{3 \alpha} \sum_{[u, v] \in \mathcal{P}}|v-u|^{3 \alpha}=O\left(|\mathcal{P}|^{3 \alpha-1}\right)=O\left(\epsilon^{3 \alpha-1}\right)$

Integration of 1-forms and rough differential equations

- $\int_{0}^{t} V\left(x_{s}\right) d \mathbf{x}_{s}$
- $\int_{0}^{t} V\left(y_{s}\right) d \mathbf{x}_{s}$?

Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \mathbf{y} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$ with $\alpha \leq \frac{1}{2}$, it is generally not possible to construct

unless there is $\mathbf{z} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e+d}\right)$ with $z=(x, y)$ —and the result will depend on the choice of \mathbf{z}.

Integration of 1-forms and rough differential equations

- $\int_{0}^{t} V\left(x_{s}\right) d \mathbf{x}_{s} \boldsymbol{V}$
- $\int_{0}^{t} V\left(y_{s}\right) d \mathbf{x}_{s}$?

Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \mathbf{y} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$ with $\alpha \leq \frac{1}{2}$, it is generally not possible to construct

$$
\int_{0}^{t} V\left(y_{s}\right) d \mathbf{x}_{s}
$$

unless there is $\mathbf{z} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e+d}\right)$ with $z=(x, y)$-and the result will depend on the choice of \mathbf{z}.

Integration of 1-forms and rough differential equations

- $\int_{0}^{t} V\left(x_{s}\right) d \mathbf{x}_{s} \boldsymbol{V}$
- $\int_{0}^{t} V\left(y_{s}\right) d \mathbf{x}_{s}$?

Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \mathbf{y} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$ with $\alpha \leq \frac{1}{2}$, it is generally not possible to construct

$$
\int_{0}^{t} V\left(y_{s}\right) d \mathbf{x}_{s}
$$

unless there is $\mathbf{z} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e+d}\right)$ with $z=(x, y)$-and the result will depend on the choice of \mathbf{z}.

- Picard iteration for $d y_{s}=V\left(y_{s}\right) d x_{s}, y_{0}=\xi$:

Integration of 1-forms and rough differential equations

- $\int_{0}^{t} V\left(x_{s}\right) d \mathbf{x}_{s}$
- $\int_{0}^{t} V\left(y_{s}\right) d \mathbf{x}_{s}$?

Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \mathbf{y} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$ with $\alpha \leq \frac{1}{2}$, it is generally not possible to construct

$$
\int_{0}^{t} V\left(y_{s}\right) d \mathbf{x}_{s}
$$

unless there is $\mathbf{z} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e+d}\right)$ with $z=(x, y)$-and the result will depend on the choice of \mathbf{z}.

- Picard iteration for $d y_{s}=V\left(y_{s}\right) d x_{s}, y_{0}=\xi$:
$1 y^{(0)} \equiv \xi$, then $y^{(1)}:=\xi+\int_{0}^{r} V\left(y_{s}^{(0)}\right) d \mathbf{x}_{s}$ defined \boldsymbol{V}
$2 y^{(1)} \equiv \xi+V(\xi) x$, then $y^{(2)}:=\xi+\int_{0} V\left(y_{s}^{(1)}\right) d \mathbf{x}_{s}$ defined V
$3 V\left(y_{s}^{(2)}\right) \neq f\left(x_{s}\right)$, but "looks similar"

Integration of 1-forms and rough differential equations

- $\int_{0}^{t} V\left(x_{s}\right) d \mathbf{x}_{s}$
- $\int_{0}^{t} V\left(y_{s}\right) d \mathbf{x}_{s}$?

Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \mathbf{y} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$ with $\alpha \leq \frac{1}{2}$, it is generally not possible to construct

$$
\int_{0}^{t} V\left(y_{s}\right) d \mathbf{x}_{s}
$$

unless there is $\mathbf{z} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e+d}\right)$ with $z=(x, y)$-and the result will depend on the choice of \mathbf{z}.

- Picard iteration for $d y_{s}=V\left(y_{s}\right) d x_{s}, y_{0}=\xi$:
$1 y^{(0)} \equiv \xi$, then $y^{(1)}:=\xi+\int_{0}^{r} V\left(y_{s}^{(0)}\right) d \mathbf{x}_{s}$ defined \boldsymbol{V}
$2 y^{(1)} \equiv \xi+V(\xi) x$, then $y^{(2)}:=\xi+\int_{0} V\left(y_{s}^{(1)}\right) d \mathbf{x}_{s}$ defined \boldsymbol{V}
$3 V\left(y_{s}^{(2)}\right) \neq f\left(x_{s}\right)$, but "looks similar"

Integration of 1-forms and rough differential equations

- $\int_{0}^{t} V\left(x_{s}\right) d \mathbf{x}_{s}$
- $\int_{0}^{t} V\left(y_{s}\right) d \mathbf{x}_{s}$?

Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \mathbf{y} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$ with $\alpha \leq \frac{1}{2}$, it is generally not possible to construct

$$
\int_{0}^{t} V\left(y_{s}\right) d \mathbf{x}_{s}
$$

unless there is $\mathbf{z} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e+d}\right)$ with $z=(x, y)$-and the result will depend on the choice of \mathbf{z}.

- Picard iteration for $d y_{s}=V\left(y_{s}\right) d x_{s}, y_{0}=\xi$:
$1 y^{(0)} \equiv \xi$, then $y^{(1)}:=\xi+\int_{0}^{r} V\left(y_{s}^{(0)}\right) d \mathbf{x}_{s}$ defined \boldsymbol{V}
$2 y^{(1)} \equiv \xi+V(\xi) x$, then $y^{(2)}:=\xi+\int_{0} V\left(y_{s}^{(1)}\right) d \mathbf{x}_{s}$ defined \boldsymbol{V}
$3 V\left(y_{s}^{(2)}\right) \neq f\left(x_{s}\right)$, but "looks similar"

Outline

1 Motivation and introduction

2 Rough path spaces

3 Integration against rough paths

4 Integration of controlled rough paths

5 Rough differential equations

6 Applications of the universal limit theorem

7 Rough partial differential equations

Controlled rough paths

Definition

Given $x \in C^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), y \in C^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$ is called controlled by x, iff there is $y^{\prime} \in C^{\alpha}\left([0,1] ; \mathbb{R}^{d \times e}\right)-\mathbb{R}^{d \times e}=\mathcal{L}\left(\mathbb{R}^{e}, \mathbb{R}^{d}\right)-$ s.t.

$$
R_{s, t}:=y_{s, t}-y_{s}^{\prime} x_{s, t}
$$

satisfies $\|R\|_{2 \alpha}<\infty$. We write $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$.

If $f \in C_{b}^{2}\left(\mathbb{R}^{e} ; \mathbb{R}^{d}\right), y:=f(x), y^{\prime}:=D f(x)$, then $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left(\left[0,1 ; \mathbb{R}^{d}\right)\right.$.

Remark

$\mathcal{D}_{x}^{2 \alpha}$ is a Banach space under $\left(y, y^{\prime}\right) \mapsto\left|y_{0}\right|+\left|y_{0}^{\prime}\right|+\left\|\left(y, y^{\prime}\right)\right\|_{x, 2 \alpha}$ with

Rough paths and rough partial differential equations • March 18, 2016 • Page 26 (48)

Controlled rough paths

Definition

Given $x \in C^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), y \in C^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$ is called controlled by x, iff there is $y^{\prime} \in C^{\alpha}\left([0,1] ; \mathbb{R}^{d \times e}\right)-\mathbb{R}^{d \times e}=\mathcal{L}\left(\mathbb{R}^{e}, \mathbb{R}^{d}\right)-$ s.t.

$$
R_{s, t}:=y_{s, t}-y_{s}^{\prime} x_{s, t}
$$

satisfies $\|R\|_{2 \alpha}<\infty$. We write $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$.

Example

If $f \in C_{b}^{2}\left(\mathbb{R}^{e} ; \mathbb{R}^{d}\right), y:=f(x), y^{\prime}:=D f(x)$, then $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left(\left[0,1 ; \mathbb{R}^{d}\right)\right.$.

Remark

$\mathcal{D}_{x}^{2 \alpha}$ is a Banach space under $\left(y, y^{\prime}\right) \mapsto\left|y_{0}\right|+\left|y_{0}^{\prime}\right|+\left\|\left(y, y^{\prime}\right)\right\|_{x, 2 \alpha}$ with

Controlled rough paths

Definition

Given $x \in C^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), y \in C^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$ is called controlled by x, iff there is $y^{\prime} \in C^{\alpha}\left([0,1] ; \mathbb{R}^{d \times e}\right)-\mathbb{R}^{d \times e}=\mathcal{L}\left(\mathbb{R}^{e}, \mathbb{R}^{d}\right)-$ s.t.

$$
R_{s, t}:=y_{s, t}-y_{s}^{\prime} x_{s, t}
$$

satisfies $\|R\|_{2 \alpha}<\infty$. We write $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$.

Example

If $f \in C_{b}^{2}\left(\mathbb{R}^{e} ; \mathbb{R}^{d}\right), y:=f(x), y^{\prime}:=D f(x)$, then $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left(\left[0,1 ; \mathbb{R}^{d}\right)\right.$.

Remark

$\mathcal{D}_{x}^{2 \alpha}$ is a Banach space under $\left(y, y^{\prime}\right) \mapsto\left|y_{0}\right|+\left|y_{0}^{\prime}\right|+\left\|\left(y, y^{\prime}\right)\right\|_{x, 2 \alpha}$ with

$$
\left\|\left(y, y^{\prime}\right)\right\|_{x, 2 \alpha}:=\left\|y^{\prime}\right\|_{\alpha}+\|R\|_{2 \alpha}
$$

Rough paths and rough partial differential equations • March 18, 2016 • Page 26 (48)

Integration of controlled rough paths

Theorem (Gubinelli)

Let $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right),\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1], \mathbb{R}^{d \times e}\right)$.
a)The integral

$$
\int_{0}^{1} y_{s} d \mathbf{x}_{s}:=\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}}\left(y_{s} x_{s, t}+y_{s}^{\prime} \mathbf{x}_{s, t}\right)
$$

exists and satisfies

$$
\left|\int_{s}^{t} y_{u} d \mathbf{x}_{u}-y_{s} x_{s, t}-y_{s}^{\prime} \mathbb{x}_{s, t}\right| \leq C_{\alpha}\left(\|x\|_{\alpha}\|R\|_{2 \alpha}+\|\mathbb{x}\|_{2 \alpha}\left\|y^{\prime}\right\|_{\alpha}\right)|t-s|^{3 \alpha} .
$$

b) $\operatorname{Set}\left(z, z^{\prime}\right):=\left(\int_{0} y_{s} d \mathbf{x}_{s}, y\right)$. Then $\left(z, z^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$ and $\left(y, y^{\prime}\right) \mapsto\left(z, z^{\prime}\right)$ is a continuous linear map with

$$
\left\|\left(z, z^{\prime}\right)\right\|_{x, 2 \alpha} \leq\|y\|_{\alpha}+\left\|y^{\prime}\right\|_{\infty}\|x\|_{2 \alpha}+C_{\alpha}\left(\|x\|_{\alpha}\left\|R^{y}\right\|_{2 \alpha}+\|\mathrm{x}\|_{2 \alpha}\left\|y^{\prime}\right\|_{\alpha}\right) .
$$

Remarks on controlled rough paths

Controlled rough paths are rough paths: Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$, $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$, then we can define $\mathrm{y} \in \mathbb{R}^{d \times d}$ by

$$
\mathbb{Y}_{s, t}=\lim _{|\mathcal{P}| \rightarrow 0} \int_{\mathcal{P}} \Xi, \quad \Xi_{u, y}=y_{u} \otimes y_{u, v}+\left(y_{u}^{\prime} \otimes y_{u}^{\prime}\right) \mathbb{x}_{u, v}
$$

s.t., $\mathbf{y}=(y, \mathbb{y}) \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$. Here, $y^{\prime} \otimes y^{\prime} \in \mathcal{L}\left(\mathbb{R}^{e \times e}, \mathbb{R}^{d \times d}\right)$, $y^{\prime} \otimes y^{\prime}(a \otimes b)=y^{\prime}(a) \otimes y^{\prime}(b)$.

Composition with regular functions: For $\mathbf{x},\left(y, y^{\prime}\right)$ as before, let
$\varphi \in C_{b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{n}\right)$ and define

$$
z_{t}:=\varphi\left(y_{t}\right), \quad z_{t}^{\prime}:=D \varphi\left(y_{t}\right) \otimes y_{t}^{\prime} .
$$

Then $\left(z, z^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{n}\right)$.

Remarks on controlled rough paths

Controlled rough paths are rough paths: Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$, $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$, then we can define $\mathrm{y} \in \mathbb{R}^{d \times d}$ by

$$
\mathbb{y}_{s, t}=\lim _{|\mathcal{P}| \rightarrow 0} \int_{\mathcal{P}} \Xi, \quad \Xi_{u, y}=y_{u} \otimes y_{u, v}+\left(y_{u}^{\prime} \otimes y_{u}^{\prime}\right) \mathbb{x}_{u, v}
$$

s.t., $\mathbf{y}=(y, \mathbb{y}) \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$. Here, $y^{\prime} \otimes y^{\prime} \in \mathcal{L}\left(\mathbb{R}^{e \times e}, \mathbb{R}^{d \times d}\right)$,
$y^{\prime} \otimes y^{\prime}(a \otimes b)=y^{\prime}(a) \otimes y^{\prime}(b)$.

Composition with regular functions: For $\mathbf{x},\left(y, y^{\prime}\right)$ as before, let $\varphi \in C_{b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{n}\right)$ and define

$$
z_{t}:=\varphi\left(y_{t}\right), \quad z_{t}^{\prime}:=D \varphi\left(y_{t}\right) \otimes y_{t}^{\prime}
$$

Then $\left(z, z^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{n}\right)$.

Remarks on controlled rough paths

Controlled rough paths are rough paths: Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$, $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$, then we can define $\mathrm{y} \in \mathbb{R}^{d \times d}$ by

$$
\mathbb{Y}_{s, t}=\lim _{|\mathcal{P}| \rightarrow 0} \int_{\mathcal{P}} \Xi, \quad \Xi_{u, y}=y_{u} \otimes y_{u, v}+\left(y_{u}^{\prime} \otimes y_{u}^{\prime}\right) \mathbb{x}_{u, v}
$$

s.t., $\mathbf{y}=(y, \mathbb{y}) \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$. Here, $y^{\prime} \otimes y^{\prime} \in \mathcal{L}\left(\mathbb{R}^{e \times e}, \mathbb{R}^{d \times d}\right)$,
$y^{\prime} \otimes y^{\prime}(a \otimes b)=y^{\prime}(a) \otimes y^{\prime}(b)$.

Composition with regular functions: For $\mathbf{x},\left(y, y^{\prime}\right)$ as before, let $\varphi \in C_{b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{n}\right)$ and define

$$
z_{t}:=\varphi\left(y_{t}\right), \quad z_{t}^{\prime}:=D \varphi\left(y_{t}\right) \otimes y_{t}^{\prime}
$$

Then $\left(z, z^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{n}\right)$. Indeed,

$$
\|z\|_{\alpha} \leq\|\varphi\|_{C_{b}^{2}}\|y\|_{\alpha}
$$

Remarks on controlled rough paths

Controlled rough paths are rough paths: Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$, $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$, then we can define $\mathrm{y} \in \mathbb{R}^{d \times d}$ by

$$
\mathbb{Y}_{s, t}=\lim _{|\mathcal{P}| \rightarrow 0} \int_{\mathcal{P}} \Xi, \quad \Xi_{u, y}=y_{u} \otimes y_{u, v}+\left(y_{u}^{\prime} \otimes y_{u}^{\prime}\right) \mathbb{x}_{u, v}
$$

s.t., $\mathbf{y}=(y, \mathbb{y}) \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$. Here, $y^{\prime} \otimes y^{\prime} \in \mathcal{L}\left(\mathbb{R}^{e \times e}, \mathbb{R}^{d \times d}\right)$,
$y^{\prime} \otimes y^{\prime}(a \otimes b)=y^{\prime}(a) \otimes y^{\prime}(b)$.

Composition with regular functions: For $\mathbf{x},\left(y, y^{\prime}\right)$ as before, let $\varphi \in C_{b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{n}\right)$ and define

$$
z_{t}:=\varphi\left(y_{t}\right), \quad z_{t}^{\prime}:=D \varphi\left(y_{t}\right) \otimes y_{t}^{\prime}
$$

Then $\left(z, z^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{n}\right)$. Indeed,

$$
\left\|z^{\prime}\right\|_{\alpha} \leq\|D \varphi \circ y\|_{\infty}\left\|y^{\prime}\right\|_{\alpha}+\left\|y^{\prime}\right\|_{\infty}\|D \varphi \circ y\|_{\alpha}
$$

Remarks on controlled rough paths

Controlled rough paths are rough paths: Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$, $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$, then we can define $\mathrm{y} \in \mathbb{R}^{d \times d}$ by

$$
\mathbf{y}_{s, t}=\lim _{|\mathcal{P}| \rightarrow 0} \int_{\mathcal{P}} \Xi, \quad \Xi_{u, y}=y_{u} \otimes y_{u, v}+\left(y_{u}^{\prime} \otimes y_{u}^{\prime}\right) \mathbb{x}_{u, v}
$$

s.t., $\mathbf{y}=(y, \mathbb{y}) \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$. Here, $y^{\prime} \otimes y^{\prime} \in \mathcal{L}\left(\mathbb{R}^{e \times e}, \mathbb{R}^{d \times d}\right)$,
$y^{\prime} \otimes y^{\prime}(a \otimes b)=y^{\prime}(a) \otimes y^{\prime}(b)$.

Composition with regular functions: For $\mathbf{x},\left(y, y^{\prime}\right)$ as before, let $\varphi \in C_{b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{n}\right)$ and define

$$
z_{t}:=\varphi\left(y_{t}\right), \quad z_{t}^{\prime}:=D \varphi\left(y_{t}\right) \otimes y_{t}^{\prime}
$$

Then $\left(z, z^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{n}\right)$. Indeed,

$$
\left\|z^{\prime}\right\|_{\alpha} \leq\|\varphi\|_{C_{b}^{2}}\left\|y^{\prime}\right\|_{\alpha}+\left\|y^{\prime}\right\|_{\infty}\|\varphi\|_{C_{b}^{2}}\|y\|_{\alpha}
$$

Remarks on controlled rough paths

Controlled rough paths are rough paths: Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$, $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$, then we can define $\mathrm{y} \in \mathbb{R}^{d \times d}$ by

$$
\mathbb{Y}_{s, t}=\lim _{|\mathcal{P}| \rightarrow 0} \int_{\mathcal{P}} \Xi, \quad \Xi_{u, y}=y_{u} \otimes y_{u, v}+\left(y_{u}^{\prime} \otimes y_{u}^{\prime}\right) \mathbb{x}_{u, v}
$$

s.t., $\mathbf{y}=(y, \mathbb{y}) \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$. Here, $y^{\prime} \otimes y^{\prime} \in \mathcal{L}\left(\mathbb{R}^{e \times e}, \mathbb{R}^{d \times d}\right)$,
$y^{\prime} \otimes y^{\prime}(a \otimes b)=y^{\prime}(a) \otimes y^{\prime}(b)$.

Composition with regular functions: For $\mathbf{x},\left(y, y^{\prime}\right)$ as before, let $\varphi \in C_{b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{n}\right)$ and define

$$
z_{t}:=\varphi\left(y_{t}\right), \quad z_{t}^{\prime}:=D \varphi\left(y_{t}\right) \otimes y_{t}^{\prime}
$$

Then $\left(z, z^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{n}\right)$. Indeed,

$$
z_{s, t}-z_{s}^{\prime} x_{s, t}=\varphi\left(y_{t}\right)-\varphi\left(y_{s}\right)-D \varphi\left(y_{s}\right) y_{s}^{\prime} x_{s, t}
$$

Remarks on controlled rough paths

Controlled rough paths are rough paths: Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$, $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$, then we can define $\mathrm{y} \in \mathbb{R}^{d \times d}$ by

$$
\mathbb{Y}_{s, t}=\lim _{|\mathcal{P}| \rightarrow 0} \int_{\mathcal{P}} \Xi, \quad \Xi_{u, y}=y_{u} \otimes y_{u, v}+\left(y_{u}^{\prime} \otimes y_{u}^{\prime}\right) \mathbb{x}_{u, v}
$$

s.t., $\mathbf{y}=(y, \mathbb{y}) \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$. Here, $y^{\prime} \otimes y^{\prime} \in \mathcal{L}\left(\mathbb{R}^{e \times e}, \mathbb{R}^{d \times d}\right)$,
$y^{\prime} \otimes y^{\prime}(a \otimes b)=y^{\prime}(a) \otimes y^{\prime}(b)$.

Composition with regular functions: For $\mathbf{x},\left(y, y^{\prime}\right)$ as before, let $\varphi \in C_{b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{n}\right)$ and define

$$
z_{t}:=\varphi\left(y_{t}\right), \quad z_{t}^{\prime}:=D \varphi\left(y_{t}\right) \otimes y_{t}^{\prime}
$$

Then $\left(z, z^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{n}\right)$. Indeed,

$$
z_{s, t}-z_{s}^{\prime} x_{s, t}=\left(\varphi\left(y_{t}\right)-\varphi\left(y_{s}\right)-D \varphi\left(y_{s}\right) y_{s, t}\right)+D \varphi\left(y_{s}\right)\left(y_{s, t}-y_{s}^{\prime} x_{s, t}\right)
$$

Remarks on controlled rough paths

Controlled rough paths are rough paths: Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$, $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$, then we can define $\mathrm{y} \in \mathbb{R}^{d \times d}$ by

$$
\mathbb{Y}_{s, t}=\lim _{|\mathcal{P}| \rightarrow 0} \int_{\mathcal{P}} \Xi, \quad \Xi_{u, y}=y_{u} \otimes y_{u, v}+\left(y_{u}^{\prime} \otimes y_{u}^{\prime}\right) \mathbb{x}_{u, v}
$$

s.t., $\mathbf{y}=(y, \mathbb{y}) \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$. Here, $y^{\prime} \otimes y^{\prime} \in \mathcal{L}\left(\mathbb{R}^{e \times e}, \mathbb{R}^{d \times d}\right)$,
$y^{\prime} \otimes y^{\prime}(a \otimes b)=y^{\prime}(a) \otimes y^{\prime}(b)$.

Composition with regular functions: For $\mathbf{x},\left(y, y^{\prime}\right)$ as before, let $\varphi \in C_{b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{n}\right)$ and define

$$
z_{t}:=\varphi\left(y_{t}\right), \quad z_{t}^{\prime}:=D \varphi\left(y_{t}\right) \otimes y_{t}^{\prime}
$$

Then $\left(z, z^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{n}\right)$. Indeed,

$$
z_{s, t}-z_{s}^{\prime} x_{s, t}=\frac{1}{2} D^{2} \varphi\left(y_{s}+\xi y_{s, t}\right)\left(y_{s, t}, y_{s, t}\right)+D \varphi\left(y_{s}\right)\left(y_{s, t}-y_{s}^{\prime} x_{s, t}\right)
$$

Rough paths and rough partial differential equations • March 18, 2016 • Page 28 (48)

Remarks on controlled rough paths

Controlled rough paths are rough paths: Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$, $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$, then we can define $\mathrm{y} \in \mathbb{R}^{d \times d}$ by

$$
\mathbb{y}_{s, t}=\lim _{|\mathcal{P}| \rightarrow 0} \int_{\mathcal{P}} \Xi, \quad \Xi_{u, y}=y_{u} \otimes y_{u, v}+\left(y_{u}^{\prime} \otimes y_{u}^{\prime}\right) \mathbb{x}_{u, v}
$$

s.t., $\mathbf{y}=(y, \mathbb{y}) \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{d}\right)$. Here, $y^{\prime} \otimes y^{\prime} \in \mathcal{L}\left(\mathbb{R}^{e \times e}, \mathbb{R}^{d \times d}\right)$,
$y^{\prime} \otimes y^{\prime}(a \otimes b)=y^{\prime}(a) \otimes y^{\prime}(b)$.

Composition with regular functions: For $\mathbf{x},\left(y, y^{\prime}\right)$ as before, let $\varphi \in C_{b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{n}\right)$ and define

$$
z_{t}:=\varphi\left(y_{t}\right), \quad z_{t}^{\prime}:=D \varphi\left(y_{t}\right) \otimes y_{t}^{\prime}
$$

Then $\left(z, z^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{n}\right)$. Indeed,

$$
\left\|z_{s, t}-z_{s}^{\prime} x_{s, t}\right\|_{2 \alpha} \leq \frac{1}{2}\|\varphi\|_{C_{b}^{2}}\|y\|_{\alpha}^{2}+\|\varphi\|_{C_{b}^{2}}\left\|y_{, \cdot,}-y^{\prime} x_{\cdot,}\right\|_{2 \alpha}
$$

The choice of x matters

Let $\mathbf{x}=(x, \mathbb{x}) \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ and $f \in C^{2 \alpha}\left([0,1] ; \mathbb{R}^{e \times e}\right)$. Then

$$
\overline{\mathbf{x}}=(\bar{x}, \overline{\mathbb{x}}) \in \mathscr{C}^{\alpha}\left([0,1], \mathbb{R}^{e}\right), \quad \bar{x}:=x, \quad \overline{\mathbb{x}}_{s, t}:=\mathbb{x}_{s, t}+f(t)-f(s) .
$$

As $\mathcal{D}_{x}^{2 \alpha}=\mathcal{D}_{\bar{x}}^{2 \alpha}$, we may integrate $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d \times e}\right)$ against both.

The choice of x matters

Let $\mathbf{x}=(x, \mathbb{x}) \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ and $f \in C^{2 \alpha}\left([0,1] ; \mathbb{R}^{e \times e}\right)$. Then

$$
\overline{\mathbf{x}}=(\bar{x}, \overline{\mathbb{x}}) \in \mathscr{C}^{\alpha}\left([0,1], \mathbb{R}^{e}\right), \quad \bar{x}:=x, \quad \overline{\mathbb{x}}_{s, t}:=\mathbb{x}_{s, t}+f(t)-f(s) .
$$

As $\mathcal{D}_{x}^{2 \alpha}=\mathcal{D}_{\bar{x}}^{2 \alpha}$, we may integrate $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d \times e}\right)$ against both.

$$
\begin{aligned}
\int_{0}^{1} y_{s} d \overline{\mathbf{x}}_{s} & =\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}}\left(y_{s} x_{s, t}+y_{s}^{\prime}\left(\mathbb{x}_{s, t}+f(t)-f(s)\right)\right) \\
& =\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}}\left(y_{s} x_{s, t}+y_{s}^{\prime} \mathbb{x}_{s, t}\right)+\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}} y_{s}^{\prime}(f(t)-f(s)) \\
& =\int_{0}^{1} y_{s} d \mathbf{x}_{s}+\int_{0}^{1} y_{s}^{\prime} d f(s)
\end{aligned}
$$

$$
\text { As } \alpha+2 \alpha>1, \int y^{\prime} d f \text { is defined in the Young sense. }
$$

The choice of x matters

Let $\mathbf{x}=(x, \mathbb{x}) \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ and $f \in C^{2 \alpha}\left([0,1] ; \mathbb{R}^{e \times e}\right)$. Then

$$
\overline{\mathbf{x}}=(\bar{x}, \overline{\mathbb{x}}) \in \mathscr{C}^{\alpha}\left([0,1], \mathbb{R}^{e}\right), \quad \bar{x}:=x, \quad \overline{\mathbb{x}}_{s, t}:=\mathbb{x}_{s, t}+f(t)-f(s) .
$$

As $\mathcal{D}_{x}^{2 \alpha}=\mathcal{D}_{\bar{x}}^{2 \alpha}$, we may integrate $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d \times e}\right)$ against both.

$$
\begin{aligned}
\int_{0}^{1} y_{s} d \overline{\mathbf{x}}_{s} & =\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}}\left(y_{s} x_{s, t}+y_{s}^{\prime}\left(\mathbb{x}_{s, t}+f(t)-f(s)\right)\right) \\
& =\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}}\left(y_{s} x_{s, t}+y_{s}^{\prime} \mathbb{x}_{s, t}\right)+\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}} y_{s}^{\prime}(f(t)-f(s)) \\
& =\int_{0}^{1} y_{s} d \mathbf{x}_{s}+\int_{0}^{1} y_{s}^{\prime} d f(s)
\end{aligned}
$$

$$
\text { As } \alpha+2 \alpha>1, \int y^{\prime} d f \text { is defined in the Young sense. }
$$

The choice of x matters

Let $\mathbf{x}=(x, \mathbb{x}) \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ and $f \in C^{2 \alpha}\left([0,1] ; \mathbb{R}^{e \times e}\right)$. Then

$$
\overline{\mathbf{x}}=(\bar{x}, \overline{\mathbb{x}}) \in \mathscr{C}^{\alpha}\left([0,1], \mathbb{R}^{e}\right), \quad \bar{x}:=x, \quad \overline{\mathbb{x}}_{s, t}:=\mathbb{x}_{s, t}+f(t)-f(s) .
$$

As $\mathcal{D}_{x}^{2 \alpha}=\mathcal{D}_{\bar{x}}^{2 \alpha}$, we may integrate $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d \times e}\right)$ against both.

$$
\begin{aligned}
\int_{0}^{1} y_{s} d \overline{\mathbf{x}}_{s} & =\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}}\left(y_{s} x_{s, t}+y_{s}^{\prime}\left(\mathbb{x}_{s, t}+f(t)-f(s)\right)\right) \\
& =\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}}\left(y_{s} x_{s, t}+y_{s}^{\prime} \mathbb{x}_{s, t}\right)+\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[s, t] \in \mathcal{P}} y_{s}^{\prime}(f(t)-f(s)) \\
& =\int_{0}^{1} y_{s} d \mathbf{x}_{s}+\int_{0}^{1} y_{s}^{\prime} d f(s)
\end{aligned}
$$

As $\alpha+2 \alpha>1, \int y^{\prime} d f$ is defined in the Young sense.

Outline

1 Motivation and introduction

2 Rough path spaces

3 Integration against rough paths

4 Integration of controlled rough paths

5 Rough differential equations
6 Applications of the universal limit theorem

7 Rough partial differential equations

Let $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), V: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times e}$ smooth, consider

$$
d y_{s}=V\left(y_{s}\right) d x_{s}, \quad y_{0}=\xi \in \mathbb{R}^{d}
$$

Picard iteration revisited

Let $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), V: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times e}$ smooth, consider

$$
d y_{s}=V\left(y_{s}\right) d x_{s}, \quad y_{0}=\xi \in \mathbb{R}^{d}
$$

$1 y^{(0)} \equiv \xi$, then $y^{(1)}:=\xi+\int_{0} V\left(y_{s}^{(0)}\right) d \mathbf{x}_{s}$ defined \boldsymbol{V} Moreover, $\left(y^{(1)}, V\left(y^{(0)}\right)\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$.
$2\left(V\left(y^{(1)}\right), D V\left(y^{(1)}\right) \otimes V\left(y^{(0)}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d \times e}\right)\right.$, hence $y^{(2)}:=\xi+\int_{0} V\left(y_{s}^{(1)}\right) d \mathbf{x}_{s}$ defined
Moreover, $\left(y^{(2)}, V\left(y^{(1)}\right)\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$.
$3\left(V /\left(y^{(2)}\right), D V /\left(y^{(2)}\right) \otimes V / y^{(1)}\right) \in \mathcal{D}_{x}^{2 \alpha}([0,1] \cdot \mathbb{R} d \times e)$, hence $y^{(3)}:=\xi+\int_{0} V\left(y_{s}^{(2)}\right) d \mathbf{x}_{s}$ defined
Moreover, $\left(y^{(3)}, V\left(y^{(2)}\right)\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$.

Picard iteration revisited

Let $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), V: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times e}$ smooth, consider

$$
d y_{s}=V\left(y_{s}\right) d x_{s}, \quad y_{0}=\xi \in \mathbb{R}^{d}
$$

$1 y^{(0)} \equiv \xi$, then $y^{(1)}:=\xi+\int_{0} V\left(y_{s}^{(0)}\right) d \mathbf{x}_{s}$ defined \boldsymbol{V} Moreover, $\left(y^{(1)}, V\left(y^{(0)}\right)\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$.
$2\left(V\left(y^{(1)}\right), D V\left(y^{(1)}\right) \otimes V\left(y^{(0)}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d \times e}\right)\right.$, hence $y^{(2)}:=\xi+\int_{0} V\left(y_{s}^{(1)}\right) d \mathbf{x}_{s}$ defined \boldsymbol{V} Moreover, $\left(y^{(2)}, V\left(y^{(1)}\right)\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$.
$3\left(V\left(y^{(2)}\right), D V\left(y^{(2)}\right) \otimes V\left(y^{(1)}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d x e}\right)\right.$, hence Moreover, $\left(y^{(3)}, V\left(y^{(2)}\right)\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$.

Let $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), V: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times e}$ smooth, consider

$$
d y_{s}=V\left(y_{s}\right) d x_{s}, \quad y_{0}=\xi \in \mathbb{R}^{d}
$$

$1 y^{(0)} \equiv \xi$, then $y^{(1)}:=\xi+\int_{0} V\left(y_{s}^{(0)}\right) d \mathbf{x}_{s}$ defined \boldsymbol{V} Moreover, $\left(y^{(1)}, V\left(y^{(0)}\right)\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$.
$2\left(V\left(y^{(1)}\right), D V\left(y^{(1)}\right) \otimes V\left(y^{(0)}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d \times e}\right)\right.$, hence $y^{(2)}:=\xi+\int_{0} V\left(y_{s}^{(1)}\right) d \mathbf{x}_{s}$ defined \boldsymbol{V} Moreover, $\left(y^{(2)}, V\left(y^{(1)}\right)\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$.
$3\left(V\left(y^{(2)}\right), D V\left(y^{(2)}\right) \otimes V\left(y^{(1)}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d \times e}\right)\right.$, hence $y^{(3)}:=\xi+\int_{0} V\left(y_{s}^{(2)}\right) d \mathbf{x}_{s}$ defined \boldsymbol{V} Moreover, $\left(y^{(3)}, V\left(y^{(2)}\right)\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$. 4

Existence and uniqueness

Theorem (Lyons; Gubinelli)

Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \frac{1}{3}<\alpha<\frac{1}{2}, V \in C_{b}^{3}\left(\mathbb{R}^{d} ; \mathbb{R}^{d \times e}\right), \xi \in \mathbb{R}^{d}$. Then there is a unique $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$ such that

$$
\forall t \in[0,1]: y_{t}=\xi+\int_{0}^{t} V\left(y_{s}\right) d \mathbf{x}_{s}
$$

with $y^{\prime}=V(y)$.

Existence and uniqueness

Theorem (Lyons; Gubinelli)

Given $\mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \frac{1}{3}<\alpha<\frac{1}{2}, V \in C_{b}^{3}\left(\mathbb{R}^{d} ; \mathbb{R}^{d \times e}\right), \xi \in \mathbb{R}^{d}$. Then there is a unique $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$ such that

$$
\forall t \in[0,1]: y_{t}=\xi+\int_{0}^{t} V\left(y_{s}\right) d \mathbf{x}_{s}
$$

with $y^{\prime}=V(y)$.

- If $V \in C^{3}$, obtain a local solution.
- Existence requires $V \in C^{\gamma}$ for some $\gamma>\frac{1}{\alpha}-1$ - i.e., V is $\lfloor\gamma\rfloor$-differentiable with $\lfloor\gamma\rfloor$-derivative in $C^{\gamma-\lfloor\gamma\rfloor}$.
- Uniqueness requires $V \in C^{\gamma}$ for some $\gamma \geq \frac{1}{\alpha}$.
- For the smooth case " $\alpha=1$ ", this essentially recovers standard results from ODE theory.

Sketch of the proof of existence and uniqueness-1

- Given $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}, T \leq 1$, we have
$\left(z, z^{\prime}\right):=\left(V(y), D V(y) y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}$ and we can define
$\mathcal{M}_{T}: \mathcal{D}_{x}^{2 \alpha}\left([0, T] ; \mathbb{R}^{d}\right) \rightarrow \mathcal{D}_{x}^{2 \alpha}\left([0, T] ; \mathbb{R}^{d}\right), \quad\left(y, y^{\prime}\right) \mapsto\left(\xi+\int_{0} z_{s} d \mathbf{x}_{s}, z\right)$.
- For T small enough, one can show that the closed subset
$\mathcal{B}_{T}:=\left\{\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0, T] ; \mathbb{R}^{d}\right) \mid y_{0}=\xi, y_{0}^{\prime}=V(\xi),\left\|\left(y, y^{\prime}\right)\right\|_{x, 2 \alpha} \leq 1\right\}$
is invariant under M_{T}.

Sketch of the proof of existence and uniqueness-1

- Given $\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}, T \leq 1$, we have
$\left(z, z^{\prime}\right):=\left(V(y), D V(y) y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}$ and we can define

$$
\mathcal{M}_{T}: \mathcal{D}_{x}^{2 \alpha}\left([0, T] ; \mathbb{R}^{d}\right) \rightarrow \mathcal{D}_{x}^{2 \alpha}\left([0, T] ; \mathbb{R}^{d}\right), \quad\left(y, y^{\prime}\right) \mapsto\left(\xi+\int_{0} z_{s} d \mathbf{x}_{s}, z\right)
$$

- For T small enough, one can show that the closed subset

$$
\mathcal{B}_{T}:=\left\{\left(y, y^{\prime}\right) \in \mathcal{D}_{x}^{2 \alpha}\left([0, T] ; \mathbb{R}^{d}\right) \mid y_{0}=\xi, y_{0}^{\prime}=V(\xi),\left\|\left(y, y^{\prime}\right)\right\|_{x, 2 \alpha} \leq 1\right\}
$$

is invariant under \mathcal{M}_{T}.

- For T small enough, \mathcal{M}_{T} is a contraction on \mathcal{B}_{T}, i.e., for $\left(y, y^{\prime}\right),(\widetilde{y}, \vec{y}) \in \mathcal{B}_{T}:$

$$
\left\|\mathcal{M}_{T}\left(y, y^{\prime}\right)-\mathcal{M}_{T}(\widetilde{y}, \vec{y})\right\|_{x, 2 \alpha} \leq \frac{1}{2}\left\|\left(y-\widetilde{y}, y^{\prime}-\vec{y}\right)\right\|_{x, 2 \alpha} .
$$

Need to estimate $V\left(y_{s}\right)-V\left(\widetilde{y}_{s}\right)$ by $y_{s}-\widetilde{y}_{s}$, but in rough path sense, i.e.,

$$
\left\|\left(V(y)-V(\widetilde{y}),(V(y)-V(\widetilde{y}))^{\prime}\right)\right\|_{x, 2 \alpha} \leq \operatorname{const}\left\|\left(y-\widetilde{y}, y^{\prime}-\widetilde{y}\right)\right\|_{x, 2 \alpha}
$$

Consider

$$
\begin{aligned}
& V(y)-V(\widetilde{y})=g(y, \widetilde{y})(y-\widetilde{y}), \quad g(a, b):=\int_{0}^{1} D V(t a+(1-t) b) d t \\
& g \in C_{b}^{2} \text { and }\|g\|_{C_{b}^{2}} \leq \mathrm{const}\|V\|_{C_{b}^{3}} .
\end{aligned}
$$

Davie's construction of RDE solutions

$$
d y=V(y) d \mathbf{x}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad \mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \frac{1}{3}<\alpha<\frac{1}{2}
$$

- $\operatorname{From}(y, V(y)) \in \mathcal{D}_{x}^{2 \alpha}$, we know that

$$
y_{s, t}=V\left(y_{s}\right) x_{s, t}+O\left(|t-s|^{2 \alpha}\right) .
$$

As $2 \alpha<1$, this Euler scheme will not converge.

- From integration of controlled rough paths and the RDE, we know

Theorem

The Milstein scheme is converging (with rate $3 \alpha-1-\epsilon$).

- Including iterated integrals of order up to N will give a scheme with rate $(N+1) \alpha-1-\epsilon$, provided V is smooth enough.

Davie's construction of RDE solutions

$$
d y=V(y) d \mathbf{x}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad \mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \frac{1}{3}<\alpha<\frac{1}{2}
$$

- From $(y, V(y)) \in \mathcal{D}_{x}^{2 \alpha}$, we know that

$$
y_{s, t}=V\left(y_{s}\right) x_{s, t}+O\left(|t-s|^{2 \alpha}\right) .
$$

As $2 \alpha<1$, this Euler scheme will not converge.

- From integration of controlled rough paths and the RDE, we know

$$
y_{s, t}=V\left(y_{s}\right) x_{s, t}+(V(y))_{s}^{\prime} \mathbb{x}_{s, t}+O\left(|t-s|^{3 \alpha}\right)
$$

Theorem

The Milstein scheme is converging (with rate $3 \alpha-1-\epsilon$).

- Including iterated integrals of order up to N will give a scheme with rate $(N+1) \alpha-1-\epsilon$, provided V is smooth enough.

Davie's construction of RDE solutions

$$
d y=V(y) d \mathbf{x}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad \mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \frac{1}{3}<\alpha<\frac{1}{2}
$$

- From $(y, V(y)) \in \mathcal{D}_{x}^{2 \alpha}$, we know that

$$
y_{s, t}=V\left(y_{s}\right) x_{s, t}+O\left(|t-s|^{2 \alpha}\right) .
$$

As $2 \alpha<1$, this Euler scheme will not converge.

- From integration of controlled rough paths and the RDE, we know

$$
y_{s, t}=V\left(y_{s}\right) x_{s, t}+D V\left(y_{s}\right) V\left(y_{s}\right) \mathbb{x}_{s, t}+o(|t-s|)
$$

Theorem

The Milstein scheme is converging (with rate $3 \alpha-1-\epsilon$).

- Including iterated integrals of order up to N will give a scheme with rate $(N+1) \alpha-1-\epsilon$, provided V is smooth enough.

Davie's construction of RDE solutions

$$
d y=V(y) d \mathbf{x}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad \mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \frac{1}{3}<\alpha<\frac{1}{2}
$$

- From $(y, V(y)) \in \mathcal{D}_{x}^{2 \alpha}$, we know that

$$
y_{s, t}=V\left(y_{s}\right) x_{s, t}+O\left(|t-s|^{2 \alpha}\right) .
$$

As $2 \alpha<1$, this Euler scheme will not converge.

- From integration of controlled rough paths and the RDE, we know

$$
y_{s, t}=V\left(y_{s}\right) x_{s, t}+D V\left(y_{s}\right) V\left(y_{s}\right) \mathbb{x}_{s, t}+o(|t-s|)
$$

Theorem

The Milstein scheme is converging (with rate $3 \alpha-1-\epsilon$).

- Including iterated integrals of order up to N will give a scheme with rate $(N+1) \alpha-1-\epsilon$, provided V is smooth enough.

Davie's construction of RDE solutions

$$
d y=V(y) d \mathbf{x}, \quad y_{0}=\xi \in \mathbb{R}^{d}, \quad \mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \frac{1}{3}<\alpha<\frac{1}{2}
$$

- From $(y, V(y)) \in \mathcal{D}_{x}^{2 \alpha}$, we know that

$$
y_{s, t}=V\left(y_{s}\right) x_{s, t}+O\left(|t-s|^{2 \alpha}\right) .
$$

As $2 \alpha<1$, this Euler scheme will not converge.

- From integration of controlled rough paths and the RDE, we know

$$
y_{s, t}=V\left(y_{s}\right) x_{s, t}+D V\left(y_{s}\right) V\left(y_{s}\right) \mathbb{x}_{s, t}+o(|t-s|)
$$

Theorem

The Milstein scheme is converging (with rate $3 \alpha-1-\epsilon$).

- Including iterated integrals of order up to N will give a scheme with rate $(N+1) \alpha-1-\epsilon$, provided V is smooth enough.

Universal limit theorem

Theorem (Lyons)

Let $\mathbf{x}, \widetilde{\mathbf{x}} \in \mathscr{C}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right), \frac{1}{3}<\alpha<\frac{1}{2}, \xi, \widetilde{\xi} \in \mathbb{R}^{d}$ and
$(y, V(y)),(\widetilde{y}, V(\widetilde{y})) \in \mathcal{D}_{x}^{2 \alpha}\left([0,1] ; \mathbb{R}^{d}\right)$ the unique solutions to

$$
\begin{array}{ll}
d y=V(y) d \mathbf{x}, & y_{0}=\xi \\
d \bar{y}=V(\widetilde{y}) d \widetilde{\mathbf{x}}, & \widetilde{y}_{0}=\widetilde{\xi} .
\end{array}
$$

Let $\|\mathbf{x}\|_{\alpha},\|\widetilde{\mathbf{x}}\|_{\alpha} \leq M<\infty$. Then there is a constant $C=C\left(M, \alpha,\|V\|_{C_{b}^{3}}\right)$ such that

$$
\|y-\widetilde{y}\|_{\alpha} \leq C\left(|\xi-\widetilde{\xi}|+\varrho_{\alpha}(\mathbf{x}, \widetilde{\mathbf{x}})\right) .
$$

This result can be extended to the full rough path \mathbf{y} and $\widetilde{\mathbf{y}}$.

Outline

1 Motivation and introduction

2 Rough path spaces

3 Integration against rough paths

4 Integration of controlled rough paths

5 Rough differential equations

6 Applications of the universal limit theorem

7 Rough partial differential equations

Stochastic differential equations

For $V \in C_{b}^{3}\left(\mathbb{R}^{d} ; \mathbb{R}^{d \times e}\right)$, $V_{0}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ Lipschitz, consider

$$
d Y_{t}=V_{0}\left(Y_{t}\right) d t+V\left(Y_{t}\right) d B_{t}, \quad Y_{0}=\xi .
$$

Recall the Ito and Stratonovich Brownian rough paths $\mathbf{B}^{\text {lto }}$ and $\mathbf{B}^{\text {Strat }}$.
Theorem
a) For any ω such that $\mathbf{B}^{\text {lto }}(\omega) \in \mathscr{C}^{\alpha}$, denote by $Y=Y(\omega)$ the unique solution of the RDE

Then Y is a strong solution of the above Ito SDE.

Stochastic differential equations

For $V \in C_{b}^{3}\left(\mathbb{R}^{d} ; \mathbb{R}^{d \times e}\right)$, $V_{0}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ Lipschitz, consider

$$
d Y_{t}=V_{0}\left(Y_{t}\right) d t+V\left(Y_{t}\right) d B_{t}, \quad Y_{0}=\xi .
$$

Recall the Ito and Stratonovich Brownian rough paths $\mathbf{B}^{\text {lto }}$ and $\mathbf{B}^{\text {Strat }}$.

Theorem

a) For any ω such that $\mathbf{B}^{\text {Ito }}(\omega) \in \mathscr{C}^{\alpha}$, denote by $Y=Y(\omega)$ the unique solution of the RDE

$$
d Y_{t}(\omega)=V_{0}\left(Y_{t}(\omega)\right) d t+V\left(Y_{t}(\omega)\right) d \mathbf{B}_{t}^{\text {Ito }}(\omega), \quad Y_{0}(\omega)=\xi
$$

Then Y is a strong solution of the above Ito SDE.
\square

Stochastic differential equations

For $V \in C_{b}^{3}\left(\mathbb{R}^{d} ; \mathbb{R}^{d \times e}\right), V_{0}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ Lipschitz, consider

$$
d Y_{t}=V_{0}\left(Y_{t}\right) d t+V\left(Y_{t}\right) \circ d B_{t}, \quad Y_{0}=\xi .
$$

Recall the Ito and Stratonovich Brownian rough paths $\mathbf{B}^{\text {lto }}$ and $\mathbf{B}^{\text {Strat }}$.

Theorem

a) For any ω such that $\mathbf{B}^{\text {too }}(\omega) \in \mathscr{C}^{\alpha}$, denote by $Y=Y(\omega)$ the unique solution of the RDE

$$
d Y_{t}(\omega)=V_{0}\left(Y_{t}(\omega)\right) d t+V\left(Y_{t}(\omega)\right) d \mathbf{B}_{t}^{\text {lto }}(\omega), \quad Y_{0}(\omega)=\xi
$$

Then Y is a strong solution of the above Ito SDE.
b) For any ω such that $\mathbf{B}^{\text {Strat }}(\omega) \in \mathscr{C}_{g}^{\alpha}$, denote by $Y=Y(\omega)$ the unique solution of the RDE

$$
d Y_{t}(\omega)=V_{0}\left(Y_{t}(\omega)\right) d t+V\left(Y_{t}(\omega)\right) d \mathbf{B}_{t}^{\text {Strat }}(\omega), \quad Y_{0}(\omega)=\xi
$$

Then Y is a strong solution of the above Stratonovich SDE.

Wong-Zakai theorem
$B^{n} \ldots$ piece-wise linear approximations of a Brownian motion B

$$
d Y_{t}^{n}=V\left(Y_{t}^{n}\right) d B_{t}^{n}, \quad Y_{0}=\xi, V \in C_{b}^{3}\left(\mathbb{R}^{e}, \mathbb{R}^{d \times e}\right)
$$

Theorem

Y^{n} converges a.s. to the Stratonovich solution

$$
d Y_{t}=V\left(Y_{t}\right) \circ d B_{t}, \quad Y_{0}=\xi
$$

More precisely, we have $\left\|Y-Y^{n}\right\|_{\alpha} \rightarrow 0$ a.s. for $\alpha<\frac{1}{2}$.

Wong-Zakai theorem

$B^{n} \ldots$ piece-wise linear approximations of a Brownian motion B

$$
d Y_{t}^{n}=V\left(Y_{t}^{n}\right) d B_{t}^{n}, \quad Y_{0}=\xi, V \in C_{b}^{3}\left(\mathbb{R}^{e}, \mathbb{R}^{d \times e}\right)
$$

Theorem

Y^{n} converges a.s. to the Stratonovich solution

$$
d Y_{t}=V\left(Y_{t}\right) \circ d B_{t}, \quad Y_{0}=\xi
$$

More precisely, we have $\left\|Y-Y^{n}\right\|_{\alpha} \rightarrow 0$ a.s. for $\alpha<\frac{1}{2}$.

Proof.

- Consider $\mathbb{B}_{s, t}^{n}:=\int_{s}^{t} B_{s, u}^{n} d B_{u}^{n}$, show that $\left\|\mathbb{B}^{n}-\mathbb{B}^{\text {Strat }}\right\|_{2 \alpha} \rightarrow 0$ a.s.
- Apply the universal limit theorem:

$$
\left\|Y-Y^{n}\right\|_{\alpha} \leq \text { const } \varrho_{\alpha}\left(\mathbb{B}^{n}, \mathbb{B}^{\text {Strat }}\right) .
$$

Wong-Zakai theorem

$B^{n} \ldots$ piece-wise linear approximations of a Brownian motion B

$$
d Y_{t}^{n}=V\left(Y_{t}^{n}\right) d B_{t}^{n}, \quad Y_{0}=\xi, V \in C_{b}^{3}\left(\mathbb{R}^{e}, \mathbb{R}^{d \times e}\right)
$$

Theorem

Y^{n} converges a.s. to the Stratonovich solution

$$
d Y_{t}=V\left(Y_{t}\right) \circ d B_{t}, \quad Y_{0}=\xi
$$

More precisely, we have $\left\|Y-Y^{n}\right\|_{\alpha} \rightarrow 0$ a.s. for $\alpha<\frac{1}{2}$.

- Non dyadic pice-wise linear approximations possible, lead to convergence rate $\frac{1}{2}-\alpha-\epsilon$-in C^{α}. By working in spaces with lower regularity, one can get to $\frac{1}{2}-\epsilon$.
- The result also holds-mutatis mutandis-for fractional Brownian motion with $H>\frac{1}{4}$.

Outline

1 Motivation and introduction

2 Rough path spaces

3 Integration against rough paths

4 Integration of controlled rough paths

5 Rough differential equations

6 Applications of the universal limit theorem

7 Rough partial differential equations

A class of stochastic partial differential equations

$$
\begin{gathered}
d u=F[u] d t+\sum_{i=1}^{d} H_{i}[u] \circ d W_{t}^{i}(\omega), \quad u(0, x)=g(x), \quad x \in \mathbb{R}^{n}, \\
F[u]=F\left(x, u, D u, D^{2} u\right), \\
H_{i}[u]=H_{i}(x, u, D u), \quad i=1, \ldots, e
\end{gathered}
$$

We assume
Transport noise: $H_{i}[u]=\left\langle\beta_{i}(x), D u\right\rangle$
Semilinear noise: $H_{i}[u]=H_{i}(x, u)$
Linear noise: $H_{i}[u]=\left\langle\beta_{i}(x), D u\right\rangle+\gamma_{i}(x) u$

Idea

A class of stochastic partial differential equations

$$
\begin{gathered}
d u=F[u] d t+\sum_{i=1}^{d} H_{i}[u] \circ d W_{t}^{i}(\omega), \quad u(0, x)=g(x), \quad x \in \mathbb{R}^{n}, \\
F[u]=F\left(x, u, D u, D^{2} u\right), \\
H_{i}[u]=H_{i}(x, u, D u), \quad i=1, \ldots, e
\end{gathered}
$$

We assume
Transport noise: $H_{i}[u]=\left\langle\beta_{i}(x), D u\right\rangle$
Semilinear noise: $H_{i}[u]=H_{i}(x, u)$
Linear noise: $H_{i}[u]=\left\langle\beta_{i}(x), D u\right\rangle+\gamma_{i}(x) u$

Idea

1. Solve the equation with mollified noise
2. Show that limiting solution only depends on rough path \mathbf{W}
3. Use flow-transformation method as technical tool

A class of stochastic partial differential equations

$$
\begin{gathered}
d u=F[u] d t+\sum_{i=1}^{d} H_{i}[u] \circ d W_{t}^{i}(\omega), \quad u(0, x)=g(x), \quad x \in \mathbb{R}^{n}, \\
F[u]=F\left(x, u, D u, D^{2} u\right), \\
H_{i}[u]=H_{i}(x, u, D u), \quad i=1, \ldots, e
\end{gathered}
$$

We assume
Transport noise: $H_{i}[u]=\left\langle\beta_{i}(x), D u\right\rangle$
Semilinear noise: $H_{i}[u]=H_{i}(x, u)$
Linear noise: $H_{i}[u]=\left\langle\beta_{i}(x), D u\right\rangle+\gamma_{i}(x) u$

Idea

1. Solve the equation with mollified noise
2. Show that limiting solution only depends on rough path \mathbf{W}
3. Use flow-transformation method as technical tool

Flow transformation method

$$
\begin{equation*}
d u=F\left(x, u, D u, D^{2} u\right) d t+\langle\beta(x), D u\rangle \circ d W_{t}, \quad u(0, x)=g(x) \tag{*}
\end{equation*}
$$

Apply a (W-dependent) transformation turning (*) into a deterministic "classical" PDE, provided that W is smooth.

Flow transformation method

$$
\begin{equation*}
d u=F\left(x, u, D u, D^{2} u\right) d t+\langle\beta(x), D u\rangle \circ d W_{t}, \quad u(0, x)=g(x) \tag{*}
\end{equation*}
$$

Apply a (W-dependent) transformation turning (*) into a deterministic "classical" PDE, provided that W is smooth.

Let $y_{t}=\varphi_{t}(\xi)$ denote the flow of the ODE $\dot{y}_{t}=-\beta\left(y_{t}\right) \dot{W}_{t}, y_{0}=\xi \in \mathbb{R}^{n}$.

Theorem

u is a classical solution of
if and only if $v(t, x):=u\left(t, \varphi_{t}(x)\right)$ is a classical solution to
with

Flow transformation method

$$
\begin{equation*}
d u=F\left(x, u, D u, D^{2} u\right) d t+\langle\beta(x), D u\rangle \circ d W_{t}, \quad u(0, x)=g(x) \tag{*}
\end{equation*}
$$

Apply a (W-dependent) transformation turning (*) into a deterministic "classical" PDE, provided that W is smooth.

Let $y_{t}=\varphi_{t}(\xi)$ denote the flow of the ODE $\dot{y}_{t}=-\beta\left(y_{t}\right) \dot{W}_{t}, y_{0}=\xi \in \mathbb{R}^{n}$.

Theorem

u is a classical solution of

$$
\partial_{t} u=F\left(x, u, D u, D^{2} u\right)+\langle\beta(x), D u\rangle \dot{W}
$$

if and only if $v(t, x):=u\left(t, \varphi_{t}(x)\right)$ is a classical solution to

$$
\partial_{t} v=F^{\varphi}\left(t, x, v, D v, D^{2} v\right)
$$

with

$$
F^{\varphi}\left(t, \varphi_{t}(x), r, p, X\right) \equiv F\left(x, r,\left\langle p, D \varphi_{t}^{-1}\right\rangle,\left\langle X, D \varphi_{t}^{-1} \otimes D \varphi_{t}^{-1}\right\rangle+\left\langle p, D^{2} \varphi_{t}^{-1}\right\rangle\right) .
$$

$$
\begin{equation*}
d u=F\left(x, u, D u, D^{2} u\right) d t+\langle\beta(x), D u\rangle \circ d W_{t}, \quad u(0, x)=g(x) \tag{*}
\end{equation*}
$$

1. Pick $\mathbf{W} \in \mathscr{C}_{g}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ together with a sequence W^{ϵ} of smooth paths approximating \mathbf{W}.
2. By the universal limit theorem for RDEs, we have

$$
F^{\epsilon}:=F^{\varphi^{\epsilon}} \xrightarrow{\epsilon \rightarrow 0} F^{\varphi}
$$

φ^{ϵ} and φ denoting the flows of

$$
d y=-\beta(y) d W^{\epsilon}, \quad d y=-\beta(y) d \mathbf{W}, \text { respectively. }
$$

3. Define the rough path solution

$$
d u=F\left(x, u, D u, D^{2} u\right) d t+\langle\beta(x), D u\rangle d \mathbf{W}, \quad u(0, \cdot)=g
$$

\square

$$
\begin{equation*}
d u=F\left(x, u, D u, D^{2} u\right) d t+\langle\beta(x), D u\rangle \circ d W_{t}, \quad u(0, x)=g(x) \tag{*}
\end{equation*}
$$

1. Pick $\mathbf{W} \in \mathscr{C}_{g}^{\alpha}\left([0,1] ; \mathbb{R}^{e}\right)$ together with a sequence W^{ϵ} of smooth paths approximating \mathbf{W}.
2. By the universal limit theorem for RDEs, we have

$$
F^{\epsilon}:=F^{\varphi^{\epsilon}} \xrightarrow{\epsilon \rightarrow 0} F^{\varphi}
$$

φ^{ϵ} and φ denoting the flows of

$$
d y=-\beta(y) d W^{\epsilon}, \quad d y=-\beta(y) d \mathbf{W}, \text { respectively. }
$$

3. Define the rough path solution

$$
d u=F\left(x, u, D u, D^{2} u\right) d t+\langle\beta(x), D u\rangle d \mathbf{W}, \quad u(0, \cdot)=g
$$

as limit u^{ϵ} for $\epsilon \rightarrow 0$.

For the third step we need a (deterministic) PDE framework for solutions $u \in \mathcal{U}$ and initial conditions $g \in \mathcal{G}$ such that
(i) For $g^{\epsilon} \in \mathcal{G}$, the approximate problem

$$
\begin{equation*}
\partial_{t} u^{\epsilon}=F\left(x, u^{\epsilon}, D u^{\epsilon}, D^{2} u^{\epsilon}\right)+\left\langle\beta(x), D u^{\epsilon}\right\rangle \dot{W}^{\epsilon} \tag{*}
\end{equation*}
$$

admits a unique solution $u^{\epsilon} \in \mathcal{U}$.
(ii) $u^{\epsilon} \in \mathcal{U}$ solves (*) if and only if $v^{\epsilon}(t, x):=u\left(t, \varphi_{t}^{\epsilon}(x)\right) \in \mathcal{U}$ solves
 (iv) $v^{\epsilon} \rightarrow v^{0}$ in \mathcal{U} implies that $u^{\epsilon} \rightarrow u^{0}$, with $v^{0}(t, x)=u^{0}\left(t, \varphi_{t}(x)\right)$.

For the third step we need a (deterministic) PDE framework for solutions $u \in \mathcal{U}$ and initial conditions $g \in \mathcal{G}$ such that
(i) For $g^{\epsilon} \in \mathcal{G}$, the approximate problem

$$
\begin{equation*}
\partial_{t} u^{\epsilon}=F\left(x, u^{\epsilon}, D u^{\epsilon}, D^{2} u^{\epsilon}\right)+\left\langle\beta(x), D u^{\epsilon}\right\rangle \dot{W}^{\epsilon} \tag{*}
\end{equation*}
$$

admits a unique solution $u^{\epsilon} \in \mathcal{U}$.
(ii) $u^{\epsilon} \in \mathcal{U}$ solves $(*)$ if and only if $\nu^{\epsilon}(t, x):=u\left(t, \varphi_{t}^{\epsilon}(x)\right) \in \mathcal{U}$ solves

$$
\partial_{t} v^{\epsilon}=F^{\epsilon}\left(t, x, v^{\epsilon}, D v^{\epsilon}, D^{2} v^{\epsilon}\right)
$$

(iii) When $g^{\epsilon} \rightarrow g \in \mathcal{G}$ and $F^{\epsilon} \rightarrow F^{0}$ —as seen for $F^{0}=F^{\varphi}$ —-then
$v^{\epsilon} \rightarrow v^{0}$, the unique solution to $\partial_{t} v^{0}=F^{0}\left(t, x, v^{0}, D v^{0} \cdot D^{2} v^{0}\right)$.
(iv) $v^{\epsilon} \rightarrow v^{0}$ in \mathcal{U} implies that $u^{\epsilon} \rightarrow u^{0}$, with $v^{0}(t, x)=u^{0}\left(t, \varphi_{t}(x)\right)$.

For the third step we need a (deterministic) PDE framework for solutions $u \in \mathcal{U}$ and initial conditions $g \in \mathcal{G}$ such that
(i) For $g^{\epsilon} \in \mathcal{G}$, the approximate problem

$$
\begin{equation*}
\partial_{t} u^{\epsilon}=F\left(x, u^{\epsilon}, D u^{\epsilon}, D^{2} u^{\epsilon}\right)+\left\langle\beta(x), D u^{\epsilon}\right\rangle \dot{W}^{\epsilon} \tag{*}
\end{equation*}
$$

admits a unique solution $u^{\epsilon} \in \mathcal{U}$.
(ii) $u^{\epsilon} \in \mathcal{U}$ solves $(*)$ if and only if $v^{\epsilon}(t, x):=u\left(t, \varphi_{t}^{\epsilon}(x)\right) \in \mathcal{U}$ solves

$$
\partial_{t} v^{\epsilon}=F^{\epsilon}\left(t, x, v^{\epsilon}, D v^{\epsilon}, D^{2} v^{\epsilon}\right)
$$

(iii) When $g^{\epsilon} \rightarrow g \in \mathcal{G}$ and $F^{\epsilon} \rightarrow F^{0}$ —as seen for $F^{0}=F^{\varphi}$ —then $v^{\epsilon} \rightarrow v^{0}$, the unique solution to $\partial_{t} v^{0}=F^{0}\left(t, x, v^{0}, D v^{0} . D^{2} v^{0}\right)$.

For the third step we need a (deterministic) PDE framework for solutions $u \in \mathcal{U}$ and initial conditions $g \in \mathcal{G}$ such that
(i) For $g^{\epsilon} \in \mathcal{G}$, the approximate problem

$$
\begin{equation*}
\partial_{t} u^{\epsilon}=F\left(x, u^{\epsilon}, D u^{\epsilon}, D^{2} u^{\epsilon}\right)+\left\langle\beta(x), D u^{\epsilon}\right\rangle \dot{W}^{\epsilon} \tag{*}
\end{equation*}
$$

admits a unique solution $u^{\epsilon} \in \mathcal{U}$.
(ii) $u^{\epsilon} \in \mathcal{U}$ solves $(*)$ if and only if $v^{\epsilon}(t, x):=u\left(t, \varphi_{t}^{\epsilon}(x)\right) \in \mathcal{U}$ solves

$$
\partial_{t} v^{\epsilon}=F^{\epsilon}\left(t, x, v^{\epsilon}, D v^{\epsilon}, D^{2} v^{\epsilon}\right)
$$

(iii) When $g^{\epsilon} \rightarrow g \in \mathcal{G}$ and $F^{\epsilon} \rightarrow F^{0}$ —as seen for $F^{0}=F^{\varphi}$ —then $v^{\epsilon} \rightarrow v^{0}$, the unique solution to $\partial_{t} \nu^{0}=F^{0}\left(t, x, v^{0}, D v^{0} \cdot D^{2} v^{0}\right)$.
(iv) $v^{\epsilon} \rightarrow v^{0}$ in \mathcal{U} implies that $u^{\epsilon} \rightarrow u^{0}$, with $v^{0}(t, x)=u^{0}\left(t, \varphi_{t}(x)\right)$.

Rough viscosity solutions
For our model problem, the concept of viscosity solutions satisfies the requirements for $\mathcal{U}=B C\left([0,1] \times \mathbb{R}^{n}\right), \mathcal{G}=B U C\left(\mathbb{R}^{n}\right)$ provided that

- F is degenerate elliptic and satisfies some technical conditions;
- For all C_{b}^{3}-diffeomorphisms φ, comparison holds for F^{φ}.

Theorem

Consider the unique viscosity solution $u^{\epsilon} \in B C$ to

Rough viscosity solutions

For our model problem, the concept of viscosity solutions satisfies the requirements for $\mathcal{U}=B C\left([0,1] \times \mathbb{R}^{n}\right), \mathcal{G}=B U C\left(\mathbb{R}^{n}\right)$ provided that

- F is degenerate elliptic and satisfies some technical conditions;
- For all C_{b}^{3}-diffeomorphisms φ, comparison holds for F^{φ}.

Theorem

Given $\frac{1}{3}<\alpha \leq \frac{1}{2}, \mathbf{W} \in \mathscr{C}_{g}^{\alpha}$ and a $W^{\epsilon} \in C^{1}\left([0,1] ; \mathbb{R}^{e}\right)$ such that

$$
\mathbf{W}^{\epsilon}:=\left(W^{\epsilon}, \mathbb{W}^{\epsilon}\right) \xrightarrow[\text { in } \mathscr{C}^{\alpha}]{\epsilon \rightarrow 0} \mathbf{W}, \quad \mathbb{W}_{s, t}^{\epsilon}:=\int_{0}^{t} W_{s, u}^{\epsilon} \otimes d W_{u}^{\epsilon}
$$

Consider the unique viscosity solution $u^{\epsilon} \in B C$ to

$$
\partial_{t} u^{\epsilon}=F\left(x, u^{\epsilon}, D u^{\epsilon}, D^{2} u^{\epsilon}\right)+\left\langle\beta(x), D u^{\epsilon}\right\rangle \dot{W}^{\epsilon}, \quad u^{\epsilon}(0, \cdot)=g .
$$

Rough viscosity solutions

For our model problem, the concept of viscosity solutions satisfies the requirements for $\mathcal{U}=B C\left([0,1] \times \mathbb{R}^{n}\right), \mathcal{G}=B U C\left(\mathbb{R}^{n}\right)$ provided that

- F is degenerate elliptic and satisfies some technical conditions;
- For all C_{b}^{3}-diffeomorphisms φ, comparison holds for F^{φ}.

Theorem

Given $\frac{1}{3}<\alpha \leq \frac{1}{2}, \mathbf{W} \in \mathscr{C}_{g}^{\alpha}$ and a $W^{\epsilon} \in C^{1}\left([0,1] ; \mathbb{R}^{e}\right)$ such that

$$
\mathbf{W}^{\epsilon}:=\left(W^{\epsilon}, \mathbb{W}^{\epsilon}\right) \xrightarrow[\text { in } \mathscr{C}^{a}]{\epsilon \rightarrow 0} \mathbf{W}, \quad \mathbb{W}_{s, t}^{\epsilon}:=\int_{0}^{t} W_{s, u}^{\epsilon} \otimes d W_{u}^{\epsilon}
$$

Consider the unique viscosity solution $u^{\epsilon} \in B C$ to

$$
\partial_{t} u^{\epsilon}=F\left(x, u^{\epsilon}, D u^{\epsilon}, D^{2} u^{\epsilon}\right)+\left\langle\beta(x), D u^{\epsilon}\right\rangle \dot{W}^{\epsilon}, \quad u^{\epsilon}(0, \cdot)=g .
$$

- $\exists u=\lim _{\epsilon \rightarrow 0} u^{\epsilon} \in B C$ (locally uniformly). u only depends on \mathbf{W}.

Rough viscosity solutions

For our model problem, the concept of viscosity solutions satisfies the requirements for $\mathcal{U}=B C\left([0,1] \times \mathbb{R}^{n}\right), \mathcal{G}=B U C\left(\mathbb{R}^{n}\right)$ provided that

- F is degenerate elliptic and satisfies some technical conditions;
- For all C_{b}^{3}-diffeomorphisms φ, comparison holds for F^{φ}.

Theorem

Given $\frac{1}{3}<\alpha \leq \frac{1}{2}, \mathbf{W} \in \mathscr{C}_{g}^{\alpha}$ and a $W^{\epsilon} \in C^{1}\left([0,1] ; \mathbb{R}^{e}\right)$ such that

$$
\mathbf{W}^{\epsilon}:=\left(W^{\epsilon}, \mathbb{W}^{\epsilon}\right) \xrightarrow[\text { in } \mathscr{C}^{a}]{\epsilon \rightarrow 0} \mathbf{W}, \quad \mathbb{W}_{s, t}^{\epsilon}:=\int_{0}^{t} W_{s, u}^{\epsilon} \otimes d W_{u}^{\epsilon}
$$

Consider the unique viscosity solution $u^{\epsilon} \in B C$ to

$$
\partial_{t} u^{\epsilon}=F\left(x, u^{\epsilon}, D u^{\epsilon}, D^{2} u^{\epsilon}\right)+\left\langle\beta(x), D u^{\epsilon}\right\rangle \dot{W}^{\epsilon}, \quad u^{\epsilon}(0, \cdot)=g .
$$

- $\exists u=\lim _{\epsilon \rightarrow 0} u^{\epsilon} \in B C$ (locally uniformly). u only depends on \mathbf{W}.
- The transformation v of u is the unique solution of $\partial_{t} v=F^{\varphi}\left(t, x, v, D v, D^{2} v\right)$ in $B C, \varphi$ being the flow of $d y=-\beta(y) d \mathbf{W}$.

Rough viscosity solutions

For our model problem, the concept of viscosity solutions satisfies the requirements for $\mathcal{U}=B C\left([0,1] \times \mathbb{R}^{n}\right), \mathcal{G}=B U C\left(\mathbb{R}^{n}\right)$ provided that

- F is degenerate elliptic and satisfies some technical conditions;
- For all C_{b}^{3}-diffeomorphisms φ, comparison holds for F^{φ}.

Theorem

Given $\frac{1}{3}<\alpha \leq \frac{1}{2}, \mathbf{W} \in \mathscr{C}_{g}^{\alpha}$ and a $W^{\epsilon} \in C^{1}\left([0,1] ; \mathbb{R}^{e}\right)$ such that

$$
\mathbf{W}^{\epsilon}:=\left(W^{\epsilon}, \mathbb{W}^{\epsilon}\right) \xrightarrow[\text { in } \mathscr{C}^{\alpha}]{\epsilon \rightarrow 0} \mathbf{W}, \quad \mathbb{W}_{s, t}^{\epsilon}:=\int_{0}^{t} W_{s, u}^{\epsilon} \otimes d W_{u}^{\epsilon}
$$

Consider the unique viscosity solution $u^{\epsilon} \in B C$ to

$$
\partial_{t} u^{\epsilon}=F\left(x, u^{\epsilon}, D u^{\epsilon}, D^{2} u^{\epsilon}\right)+\left\langle\beta(x), D u^{\epsilon}\right\rangle \dot{W}^{\epsilon}, \quad u^{\epsilon}(0, \cdot)=g .
$$

- $\exists u=\lim _{\epsilon \rightarrow 0} u^{\epsilon} \in B C$ (locally uniformly). u only depends on \mathbf{W}.
- The transformation v of u is the unique solution of $\partial_{t} v=F^{\varphi}\left(t, x, v, D v, D^{2} v\right)$ in $B C, \varphi$ being the flow of $d y=-\beta(y) d \mathbf{W}$.
- The solution map $(\mathbf{W}, g) \mapsto u$ is continuous.

Levy area is not a continuous map

Theorem (Lyons '91)

There is no separable Banach space $\mathcal{B} \subset C([0,1])$, such that

1. $\bigcap_{0<\alpha<\frac{1}{2}} C^{\alpha}([0,1]) \subset \mathcal{B}$;
2. the bi-linear map

$$
(f, g) \mapsto \int_{0} f(s) \dot{g}(s) d s
$$

defined on $C^{\infty}([0,1]) \times C^{\infty}([0,1])$ extends to a continuous map

$$
\mathcal{B} \times \mathcal{B} \rightarrow C([0,1]) .
$$

Viscosity solutions

Consider $G: \mathbb{R}^{m} \times \mathbb{R} \times \mathbb{R}^{m} \times \mathbb{R}^{m \times m} \rightarrow \mathbb{R}$ continuous and degenerate elliptic, i.e.,

$$
B \geq 0 \Rightarrow G(x, u, p, A) \leq G(x, u, p, A+B)
$$

A continuous function u is a viscosity supersolution of

$$
-G\left(x, u, D u, D^{2} u\right) \geq 0
$$

iff for every smooth test-function ϕ touching u from below in some point x_{0}, we have

$$
-G\left(x_{0}, \phi, D \phi, D^{2} \phi\right) \geq 0
$$

u is a viscosity subsolution iff for every smooth test-function ϕ touching u from above in some point x_{0}, we have

$$
-G\left(x_{0}, \phi, D \phi, D^{2} \phi\right) \leq 0
$$

Finally, u is a viscosity solution if it is both a viscosity super- and subsolution.

```
- Back
```


Comparison

Consider viscosity solutions to the problem

$$
\left(\partial_{t} u-F\right)=0 .
$$

Assume that u is a subsolution of the problem with initial condition $u(0, \cdot)=u_{0}$ and v is a supersolution with initial condition $v(0, \cdot)=v_{0}$. The problem satisfies comparison iff

$$
u_{0} \leq v_{0} \Rightarrow u \leq v \text { on }[0, T] \times \mathbb{R}^{n}
$$

