

Weierstrass Institute for Applied Analysis and Stochastics

Rough paths and rough partial differential equations

Christian Bayer

Mohrenstrasse 39 \cdot 10117 Berlin \cdot Germany \cdot Tel. +49 30 20372 0 \cdot www.wias-berlin.de March 18, 2016

Outline

1 Motivation and introduction

- 2 Rough path spaces
- 3 Integration against rough paths
- 4 Integration of controlled rough paths
- **5** Rough differential equations
- 6 Applications of the universal limit theorem
- 7 Rough partial differential equations

Standard ordinary differential equation

$$\dot{y}_t = V(y_t), \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

 $V: \mathbb{R}^d \to \mathbb{R}^d$ smooth

Controlled differential equation

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

- $V : \mathbb{R}^d \to \mathbb{R}^{d \times e}$ smooth
- x_t path taking values in \mathbb{R}^e
- ► *x_t* may contain component *t*, i.e., includes

 $dy_t = V_0(y_t)dt + V(y_t)dx_t$

Standard ordinary differential equation

$$\dot{y}_t = V(y_t), \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

 $V: \mathbb{R}^d \rightarrow \mathbb{R}^d$ smooth

Controlled differential equation

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

- $V : \mathbb{R}^d \to \mathbb{R}^{d \times e}$ smooth
- x_t path taking values in \mathbb{R}^e
- ► *x_t* may contain component *t*, i.e., includes

 $dy_t = V_0(y_t)dt + V(y_t)dx_t$

Standard ordinary differential equation

$$\dot{y}_t = V(y_t), \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

 $V: \mathbb{R}^d \rightarrow \mathbb{R}^d$ smooth

Controlled differential equation

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

- $V : \mathbb{R}^d \to \mathbb{R}^{d \times e}$ smooth
- x_t path taking values in \mathbb{R}^e
- x_t may contain component t, i.e., includes

$$dy_t = V_0(y_t)dt + V(y_t)dx_t$$

Examples of controlled differential equations

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

• x_t smooth:

$$\dot{y}_t = V(y_t) \dot{x}_t$$

• $x_t = W_t(\omega)$ is a path of a Brownian motion, i.e., $y_t = y_t(\omega)$ is pathwise solution of the stochastic differential equation

$$dy_t(\omega) = V(y_t(\omega))dW_t(\omega)$$

(Ito, Stratonovich or some other sense?)

• $x_t = Z_t(\omega)$ for some other stochastic process, such as fractional Brownian motion, $y_t = y_t(\omega)$ is pathwise solution of the corresponding stochastic differential equation

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

• x_t smooth:

$$\dot{y}_t = V(y_t)\dot{x}_t$$

• $x_t = W_t(\omega)$ is a path of a Brownian motion, i.e., $y_t = y_t(\omega)$ is pathwise solution of the stochastic differential equation

$$dy_t(\omega) = V(y_t(\omega))dW_t(\omega)$$

(Ito, Stratonovich or some other sense?)

► $x_t = Z_t(\omega)$ for some other stochastic process, such as fractional Brownian motion, $y_t = y_t(\omega)$ is pathwise solution of the corresponding stochastic differential equation

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

• x_t smooth:

$$\dot{y}_t = V(y_t)\dot{x}_t$$

• $x_t = W_t(\omega)$ is a path of a Brownian motion, i.e., $y_t = y_t(\omega)$ is pathwise solution of the stochastic differential equation

$$dy_t(\omega) = V(y_t(\omega))dW_t(\omega)$$

(Ito, Stratonovich or some other sense?)

 x_t = Z_t(ω) for some other stochastic process, such as fractional Brownian motion, y_t = y_t(ω) is pathwise solution of the corresponding stochastic differential equation

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

Assume that x_t is not smooth, say

$$x \in C^{\alpha}([0,1];\mathbb{R}^e) \coloneqq \left\{ x \in C\left([0,1];\mathbb{R}^e\right) \middle| \sup_{s \neq t} \frac{|x_s - x_t|}{|s - t|^{\alpha}} \eqqcolon ||x||_{\alpha} < \infty \right\}, \ \alpha < 1$$

While x does not "easily" make sense, maybe the integral form does:

$$y_t = \xi + \int_0^t V(y_s) dx_s, \quad t \in [0, 1]$$

- ▶ Notice: If $x \in C^{\alpha}$, then generically $y \in C^{\alpha}$ (and no better), as well.
- Need to make sense of expressions of the form

$$\int_0^t y_s dx_s, \quad x, y \in C^{\alpha} \left([0, 1] \right)$$

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

Assume that x_t is not smooth, say

$$x \in C^{\alpha}([0,1]; \mathbb{R}^{e}) \coloneqq \left\{ x \in C\left([0,1]; \mathbb{R}^{e}\right) \middle| \sup_{s \neq t} \frac{|x_{s} - x_{t}|}{|s - t|^{\alpha}} \eqqcolon ||x||_{\alpha} < \infty \right\}, \ \alpha < 1$$

While x does not "easily" make sense, maybe the integral form does:

$$y_t = \xi + \int_0^t V(y_s) dx_s, \quad t \in [0, 1]$$

▶ Notice: If $x \in C^{\alpha}$, then generically $y \in C^{\alpha}$ (and no better), as well.

Need to make sense of expressions of the form

$$\int_0^t y_s dx_s, \quad x, y \in C^{\alpha} \left([0, 1] \right)$$

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

Assume that x_t is not smooth, say

$$x \in C^{\alpha}([0,1]; \mathbb{R}^{e}) \coloneqq \left\{ x \in C\left([0,1]; \mathbb{R}^{e}\right) \middle| \sup_{s \neq t} \frac{|x_{s} - x_{t}|}{|s - t|^{\alpha}} \eqqcolon ||x||_{\alpha} < \infty \right\}, \ \alpha < 1$$

While x does not "easily" make sense, maybe the integral form does:

$$y_t = \xi + \int_0^t V(y_s) dx_s, \quad t \in [0, 1]$$

- ▶ Notice: If $x \in C^{\alpha}$, then generically $y \in C^{\alpha}$ (and no better), as well.
- Need to make sense of expressions of the form

$$\int_0^t y_s dx_s, \quad x, y \in C^{\alpha} \left([0, 1] \right)$$

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

Assume that x_t is not smooth, say

$$x \in C^{\alpha}([0,1]; \mathbb{R}^{e}) \coloneqq \left\{ x \in C\left([0,1]; \mathbb{R}^{e}\right) \middle| \sup_{s \neq t} \frac{|x_{s} - x_{t}|}{|s - t|^{\alpha}} \eqqcolon ||x||_{\alpha} < \infty \right\}, \ \alpha < 1$$

While x does not "easily" make sense, maybe the integral form does:

$$y_t = \xi + \int_0^t V(y_s) dx_s, \quad t \in [0, 1]$$

- ▶ Notice: If $x \in C^{\alpha}$, then generically $y \in C^{\alpha}$ (and no better), as well.
- Need to make sense of expressions of the form

$$\int_0^t y_s dx_s, \quad x, y \in C^{\alpha}\left([0,1]\right)$$

Young integral

$$\int_0^t y_s dx_s, \quad x, y \in C^{\alpha} \left([0, 1] \right)$$

Recall the Riemann-Stieltjes integral:

$$\int_0^1 y_s dx_s \coloneqq \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} y_s \underbrace{(x_t - x_s)}_{=:x_{s,t}} \tag{(*)}$$

 \mathcal{P} a finite *partition* of [0, 1]

Theorem (Young 1936)

(a) Let $y \in C^{\beta}([0, 1]; \mathbb{R})$, $x \in C^{\alpha}([0, 1]; \mathbb{R})$ with $0 < \alpha, \beta < 1$ and $\alpha + \beta > 1$. Then (*) converges and the resulting bi-linear map $(x, y) \mapsto \int_{0}^{1} y_{s} dx_{s}$ is continuous, i.e., $\left| \int_{0}^{1} y_{s} dx_{s} \right| \le C_{\alpha+\beta}(|y_{0}|) ||y||_{\beta} ||x||_{\alpha}$. (b) Let $\alpha + \beta \le 1$. Then there are $y \in C^{\beta}([0, 1]; \mathbb{R})$, $x \in C^{\alpha}([0, 1]; \mathbb{R})$ such that (*) does not converge, i.e., such that different sequences of partitions yield different limits (or none at all).

Young integral

$$\int_0^t y_s dx_s, \quad x, y \in C^{\alpha}\left([0,1]\right)$$

Recall the Riemann-Stieltjes integral:

٠

$$\int_0^1 y_s dx_s \coloneqq \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} y_s \underbrace{(x_t - x_s)}_{=:x_{s,t}} \tag{(*)}$$

 \mathcal{P} a finite *partition* of [0, 1]

Theorem (Young 1936)

(a) Let $y \in C^{\beta}([0, 1]; \mathbb{R})$, $x \in C^{\alpha}([0, 1]; \mathbb{R})$ with $0 < \alpha, \beta < 1$ and $\alpha + \beta > 1$. Then (*) converges and the resulting bi-linear map $(x, y) \mapsto \int_{0}^{1} y_{s} dx_{s}$ is continuous, i.e., $\left| \int_{0}^{1} y_{s} dx_{s} \right| \leq C_{\alpha+\beta}(|y_{0}|) ||y||_{\beta} ||x||_{\alpha}$. (b) Let $\alpha + \beta \leq 1$. Then there are $y \in C^{\beta}([0, 1]; \mathbb{R})$, $x \in C^{\alpha}([0, 1]; \mathbb{R})$ such that (*) does not converge, i.e., such that different sequences of partitions yield different limits (or none at all).

Young integral

$$\int_0^t y_s dx_s, \quad x, y \in C^{\alpha}\left([0,1]\right)$$

Recall the Riemann-Stieltjes integral:

$$\int_0^1 y_s dx_s \coloneqq \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} y_s \underbrace{(x_t - x_s)}_{=:x_{s,t}} \tag{(*)}$$

 \mathcal{P} a finite *partition* of [0, 1]

Theorem (Young 1936)

(a) Let $y \in C^{\beta}([0, 1]; \mathbb{R})$, $x \in C^{\alpha}([0, 1]; \mathbb{R})$ with $0 < \alpha, \beta < 1$ and $\alpha + \beta > 1$. Then (*) converges and the resulting bi-linear map $(x, y) \mapsto \int_{0}^{1} y_{s} dx_{s}$ is continuous, i.e., $\left| \int_{0}^{1} y_{s} dx_{s} \right| \leq C_{\alpha+\beta}(|y_{0}|) ||y||_{\beta} ||x||_{\alpha}$. (b) Let $\alpha + \beta \leq 1$. Then there are $y \in C^{\beta}([0, 1]; \mathbb{R})$, $x \in C^{\alpha}([0, 1]; \mathbb{R})$ such that (*) does not converge, i.e., such that different sequences of partitions yield different limits (or none at all).

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

Let $x \in C^{\alpha}([0, 1]; \mathbb{R}^{e})$, $\alpha > \frac{1}{2}$ and $V \in C_{b}^{2}(\mathbb{R}^{d}; \mathbb{R}^{d \times e})$. Then the usual Picard iteration scheme converges and the controlled differential equation has a unique solution.

Example

Let 0 < H < 1. The *fractional Brownian motion* with Hurst index *H* is the Gaussian process (on [0, 1]) with $W_0^H = 0$, $E\left[W_t^H\right] = 0$ and

$$E\left[W_{t}^{H}W_{s}^{H}\right] = \frac{1}{2}\left(t^{2H} + s^{2H} - |t - s|^{2H}\right).$$

- Fightharpoonright Fightharpoonright for the field of the
- Paths of W^H are a.s. α -Hölder for any $\alpha < H$ (but no $\alpha \ge H$).

Hence, we can solve fractional SDEs for $H > \frac{1}{2}$.

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

Let $x \in C^{\alpha}([0, 1]; \mathbb{R}^e)$, $\alpha > \frac{1}{2}$ and $V \in C_b^2(\mathbb{R}^d; \mathbb{R}^{d \times e})$. Then the usual Picard iteration scheme converges and the controlled differential equation has a unique solution.

Example

Let 0 < H < 1. The *fractional Brownian motion* with Hurst index *H* is the Gaussian process (on [0, 1]) with $W_0^H = 0$, $E\left[W_t^H\right] = 0$ and

$$E\left[W_{t}^{H}W_{s}^{H}\right] = \frac{1}{2}\left(t^{2H} + s^{2H} - |t - s|^{2H}\right).$$

- fBm with $H = \frac{1}{2}$ is standard Brownian motion;
- ▶ Paths of W^H are a.s. α -Hölder for any $\alpha < H$ (but no $\alpha \ge H$).

Hence, we can solve fractional SDEs for $H > \frac{1}{2}$.

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

Let $x \in C^{\alpha}([0, 1]; \mathbb{R}^e)$, $\alpha > \frac{1}{2}$ and $V \in C_b^2(\mathbb{R}^d; \mathbb{R}^{d \times e})$. Then the usual Picard iteration scheme converges and the controlled differential equation has a unique solution.

Example

Let 0 < H < 1. The *fractional Brownian motion* with Hurst index *H* is the Gaussian process (on [0, 1]) with $W_0^H = 0$, $E\left[W_t^H\right] = 0$ and

$$E\left[W_{t}^{H}W_{s}^{H}\right] = \frac{1}{2}\left(t^{2H} + s^{2H} - |t - s|^{2H}\right).$$

- fBm with $H = \frac{1}{2}$ is standard Brownian motion;
- ▶ Paths of W^H are a.s. α -Hölder for any $\alpha < H$ (but no $\alpha \ge H$).

Hence, we can solve fractional SDEs for $H > \frac{1}{2}$.

Rough drivers as limits of smooth drivers

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

▶ Classical theory works for smooth *x*, say $x \in C^{\infty}([0, 1]; \mathbb{R}^{e})$

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

▶ Classical theory works for smooth *x*, say $x \in C^{\infty}([0, 1]; \mathbb{R}^{e})$

Idea

- Choose sequence xⁿ of smooth paths converging to x
- Assume that corresponding solutions y^n converge to some path $y \in C^{\alpha}([0,1]; \mathbb{R}^d)$
- Call y solution of the controlled equation

$$x_t^n = \left(\sin(n^2 t)/n, \, \cos(n^2 t)/n \right), \quad t \in [0, 2\pi]$$

Consider the area function

$$x_t^n = \left(\sin(n^2 t)/n, \, \cos(n^2 t)/n\right), \quad t \in [0, 2\pi]$$

Consider the area function

$$z_t^n \coloneqq \frac{1}{2} \int_0^t x_s^{n,1} dx_s^{n,2} - \frac{1}{2} \int_0^t x_s^{n,2} dx_s^{n,1}$$

$$x_t^n = \left(\sin(n^2 t)/n, \, \cos(n^2 t)/n\right), \quad t \in [0, 2\pi]$$

Consider the area function

$$z_t^n = -\frac{1}{2} \left(\int_0^t \sin(n^2 s)^2 \, ds + \int_0^t \cos(n^2 s)^2 \, ds \right)$$

$$x_t^n = \left(\sin(n^2 t)/n, \, \cos(n^2 t)/n\right), \quad t \in [0, 2\pi]$$

Consider the area function

$$z_t^n = -\frac{1}{2} \int_0^t 1 ds = -\frac{1}{2}t.$$

Even though $x^n \to 0$ in $\|\cdot\|_{\infty}$, we have $z_t^n \to -\frac{1}{2}t$.

Rough paths and rough partial differential equations · March 18, 2016 · Page 9 (48)

$$x_t^n = \left(\sin(n^2 t)/n, \, \cos(n^2 t)/n\right), \quad t \in [0, 2\pi]$$

Consider the area function

$$z_t^n \coloneqq \frac{1}{2} \int_0^t x_s^{n,1} dx_s^{n,2} - \frac{1}{2} \int_0^t x_s^{n,2} dx_s^{n,1}$$

$$x_t^n = \left(\sin(n^2 t)/n, \, \cos(n^2 t)/n\right), \quad t \in [0, 2\pi]$$

Consider the area function

$$z_t^n \coloneqq \frac{1}{2} \int_0^t x_s^{n,1} dx_s^{n,2} - \frac{1}{2} \int_0^t x_s^{n,2} dx_s^{n,1}$$

Even though $x^n \to 0$ in $\|\cdot\|_{\infty}$, we have $z_t^n \to -\frac{1}{2}t$.

Relevance for controlled differential equations: choose

$$V(y) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{1}{2}y_2 & -\frac{1}{2}y_1 \end{pmatrix}, \quad y \in \mathbb{R}^3$$

Then $y_t^n \coloneqq (x_t^{n,1}, x_t^{n,2}, z_t^n)$ solves $dy_t^n = V(y_t^n)dx_t^n$, $y_0 = (0, 1/n, 0)$.

$$x_t^n = \left(\sin(n^2 t)/n, \, \cos(n^2 t)/n\right), \quad t \in [0, 2\pi]$$

Consider the area function

$$z_t^n \coloneqq \frac{1}{2} \int_0^t x_s^{n,1} dx_s^{n,2} - \frac{1}{2} \int_0^t x_s^{n,2} dx_s^{n,1}$$

Even though $x^n \to 0$ in $\|\cdot\|_{\infty}$, we have $z_t^n \to -\frac{1}{2}t$.

Remark

- ► The example is not just an instance of "poor choice of norm": replacing ||·||_∞ by any other reasonable norm is vulnerable to the same type of example.
- "Curing this example will cure all other counter-examples."
- Does not work in dimension e = 1 (Doss–Sussmann transformation.)

$$x_t^n = \left(\sin(n^2 t)/n, \, \cos(n^2 t)/n\right), \quad t \in [0, 2\pi]$$

Consider the area function

$$z_t^n \coloneqq \frac{1}{2} \int_0^t x_s^{n,1} dx_s^{n,2} - \frac{1}{2} \int_0^t x_s^{n,2} dx_s^{n,1}$$

Even though $x^n \to 0$ in $\|\cdot\|_{\infty}$, we have $z_t^n \to -\frac{1}{2}t$.

Remark

- ► The example is not just an instance of "poor choice of norm": replacing ||·||_∞ by any other reasonable norm is vulnerable to the same type of example.
- "Curing this example will cure all other counter-examples."
- Does not work in dimension e = 1 (Doss–Sussmann transformation.)

$$x_t^n = \left(\sin(n^2 t)/n, \, \cos(n^2 t)/n\right), \quad t \in [0, 2\pi]$$

Consider the area function

$$z_t^n \coloneqq \frac{1}{2} \int_0^t x_s^{n,1} dx_s^{n,2} - \frac{1}{2} \int_0^t x_s^{n,2} dx_s^{n,1}$$

Even though $x^n \to 0$ in $\|\cdot\|_{\infty}$, we have $z_t^n \to -\frac{1}{2}t$.

Remark

- ► The example is not just an instance of "poor choice of norm": replacing ||·||_∞ by any other reasonable norm is vulnerable to the same type of example.
- Curing this example will cure all other counter-examples."
- Does not work in dimension e = 1 (Doss–Sussmann transformation.)

Suppose you want to cover the case $x_t = W_t(\omega)$, a standard Brownian motion.

Brownian motion is a *martingale*: i.e., the increments are orthogonal (in $L^2(\Omega)$) to the past: for bounded *f*, we have

$$Z = f\left((W_u)_{0 \le u \le s}\right) \Rightarrow E\left[ZW_{s,t}\right] = 0 \text{ for } 0 < s < t.$$

This strong geometric condition allows to define

$$\int_0^t Z_s dW_s = \lim_{|\mathcal{P}| \to 0} \sum_{[u,v] \in \mathcal{P}} Z_u W_{u,v} \text{ in probability,}$$

provided that *Z* is adapted (i.e., $\forall s : Z_s$ is $\sigma((W_u)_{0 \le u \le s})$ -measurable) and square integrable w.r.t. $dt \otimes P$.

Standard Picard iteration allows to solve stochastic differential equations.

Rough paths and rough partial differential equations · March 18, 2016 · Page 10 (48)

Suppose you want to cover the case $x_t = W_t(\omega)$, a standard Brownian motion.

Brownian motion is a *martingale*: i.e., the increments are orthogonal (in $L^2(\Omega)$) to the past: for bounded *f*, we have

$$Z = f((W_u)_{0 \le u \le s}) \Rightarrow E[ZW_{s,t}] = 0 \text{ for } 0 < s < t.$$

This strong geometric condition allows to define

$$\int_0^t Z_s dW_s = \lim_{|\mathcal{P}| \to 0} \sum_{[u,v] \in \mathcal{P}} Z_u W_{u,v} \text{ in probability,}$$

provided that *Z* is adapted (i.e., $\forall s : Z_s$ is $\sigma((W_u)_{0 \le u \le s})$ -measurable) and square integrable w.r.t. $dt \otimes P$.

Standard Picard iteration allows to solve stochastic differential equations.

Suppose you want to cover the case $x_t = W_t(\omega)$, a standard Brownian motion.

Brownian motion is a *martingale*: i.e., the increments are orthogonal (in $L^2(\Omega)$) to the past: for bounded *f*, we have

$$Z = f((W_u)_{0 \le u \le s}) \Rightarrow E[ZW_{s,t}] = 0 \text{ for } 0 < s < t.$$

This strong geometric condition allows to define

$$\int_0^t Z_s dW_s = \lim_{|\mathcal{P}| \to 0} \sum_{[u,v] \in \mathcal{P}} Z_u W_{u,v} \text{ in probability,}$$

provided that Z is adapted (i.e., $\forall s : Z_s$ is $\sigma((W_u)_{0 \le u \le s})$ -measurable) and square integrable w.r.t. $dt \otimes P$.

Standard Picard iteration allows to solve stochastic differential equations.

Suppose you want to cover the case $x_t = W_t(\omega)$, a standard Brownian motion.

Brownian motion is a *martingale*: i.e., the increments are orthogonal (in $L^2(\Omega)$) to the past: for bounded *f*, we have

$$Z = f((W_u)_{0 \le u \le s}) \Rightarrow E[ZW_{s,t}] = 0 \text{ for } 0 < s < t.$$

This strong geometric condition allows to define

$$\int_0^t Z_s dW_s = \lim_{|\mathcal{P}| \to 0} \sum_{[u,v] \in \mathcal{P}} Z_u W_{u,v} \text{ in probability,}$$

provided that *Z* is adapted (i.e., $\forall s : Z_s$ is $\sigma((W_u)_{0 \le u \le s})$ -measurable) and square integrable w.r.t. $dt \otimes P$.

Standard Picard iteration allows to solve stochastic differential equations.

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0,1]$$

x rough, i.e., not contained in any $C^{\alpha}([0, 1]; \mathbb{R}^{e}), \alpha > \frac{1}{2}$.

Let Φ denote the solution map $x \mapsto y$ for x smooth (discontinuous).

Rough path principle

- ▶ By continuity of Ψ, can define y as limit of smooth solutions
- Morally, $\mathbf{x} = (x, \int_0^x x_s \otimes dx_s)$
- Rough path theory does not help with actual construction of x.
- Use Ito/Stratonovich stochastic integral in case of Brownian motion. No pathwise construction of x = x(ω), but pathwise construction of y = y(ω) given a path of x.

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

x rough, i.e., not contained in any $C^{\alpha}([0, 1]; \mathbb{R}^{e}), \alpha > \frac{1}{2}$.

Let Φ denote the solution map $x \mapsto y$ for x smooth (discontinuous).

- By continuity of Ψ , can define y as limit of smooth solutions
- Morally, $\mathbf{x} = (x, \int_0^{\cdot} x_s \otimes dx_s)$
- Rough path theory does not help with actual construction of x.
- ► Use Ito/Stratonovich stochastic integral in case of Brownian motion. No pathwise construction of x = x(ω), but pathwise construction of y = y(ω) given a path of x.

$$dy_t = V(y_t)dx_t, \quad y_0 = \xi \in \mathbb{R}^d, \quad t \in [0, 1]$$

x rough, i.e., not contained in any $C^{\alpha}([0,1]; \mathbb{R}^e)$, $\alpha > \frac{1}{2}$.

Let Φ denote the solution map $x \mapsto y$ for x smooth (discontinuous).

Rough path principle $x \xrightarrow{\Phi} y$ y ψ ψ ψ yxEnhance x to a rough path x, such that the solution map $\Psi : \mathbf{x} \to y$ iscontinuous (in rough path topology).

- By continuity of Ψ , can define y as limit of smooth solutions
- Morally, $\mathbf{x} = (x, \int_0^{\cdot} x_s \otimes dx_s)$
- ► Rough path theory does not help with actual construction of **x**.

Rough paths and rough partial differential equations March 18, 2016 Page 11 (48) Ownian

The rough path principle

Rough path principle

Enhance *x* to a rough path **x**, such that the solution map $\Psi : \mathbf{x} \to y$ is *continuous* (in rough path topology).

- By continuity of Ψ , can define *y* as limit of smooth solutions
- Morally, $\mathbf{x} = (x, \int_0^{\cdot} x_s \otimes dx_s)$
- Rough path theory does not help with actual construction of x.
- Use Ito/Stratonovich stochastic integral in case of Brownian motion. No pathwise construction of x = x(ω), but pathwise construction of y = y(ω) given a path of x.

The rough path principle

Enhance *x* to a rough path **x**, such that the solution map $\Psi : \mathbf{x} \to y$ is *continuous* (in rough path topology).

- By continuity of Ψ , can define *y* as limit of smooth solutions
- Morally, $\mathbf{x} = \left(x, \int_0^{\cdot} x_s \otimes dx_s\right)$
- Rough path theory does not help with actual construction of x.
- Use Ito/Stratonovich stochastic integral in case of Brownian motion. No pathwise construction of x = x(ω), but pathwise construction of y = y(ω) given a path of x.

Outline

1 Motivation and introduction

2 Rough path spaces

- 3 Integration against rough paths
- 4 Integration of controlled rough paths
- 5 Rough differential equations
- 6 Applications of the universal limit theorem
- 7 Rough partial differential equations

Let $x : [0,1] \to \mathbb{R}^e$ be a smooth path, $x_{s,t} \coloneqq x_t - x_s$ and consider

$$\mathbf{x}_{s,t} \coloneqq \int_{s}^{t} x_{s,u} \otimes dx_{u} \coloneqq \left(\int_{s}^{t} x_{s,u}^{i} dx_{u}^{j} \right)_{i,j=1}^{e}$$

How do increments of of x behave? Let s < u < t, then

$$\mathbf{x}_{s,t} = \int_{s}^{t} x_{s,v} \otimes dx_{v}$$
$$\mathbf{x}_{s,u} + \mathbf{x}_{u,t} =$$

Theorem (Chen's theorem)

$$\mathbf{x}_{s,t} - \mathbf{x}_{s,u} - \mathbf{x}_{u,t} = x_{s,u} \otimes x_{u,t}$$

Remark

Note $\mathbf{x}_{s,t} \to \mathbf{x}_{s,t} + f_t - f_s$ leaves Chen's relation invariant.

Let $x : [0, 1] \rightarrow \mathbb{R}^e$ be a smooth path, $x_{s,t} \coloneqq x_t - x_s$ and consider

$$\mathbf{x}_{s,t} \coloneqq \int_{s}^{t} x_{s,u} \otimes dx_{u} \coloneqq \left(\int_{s}^{t} x_{s,u}^{i} dx_{u}^{j} \right)_{i,j=1}^{e}$$

How do increments of of x behave? Let s < u < t, then

$$\mathbb{x}_{s,t} = \int_{s}^{t} x_{s,v} \otimes dx_{v}$$
$$\mathbb{x}_{s,u} + \mathbb{x}_{u,t} = \int_{s}^{u} x_{s,v} \otimes dx_{v} + \int_{u}^{t} x_{u,v} \otimes dx_{v}$$

Theorem (Chen's theorem)

$$\mathbf{x}_{s,t} - \mathbf{x}_{s,u} - \mathbf{x}_{u,t} = x_{s,u} \otimes x_{u,t}$$

Remark

Note $x_{s,t} \rightarrow x_{s,t} + f_t - f_s$ leaves Chen's relation invariant.

Let $x : [0, 1] \rightarrow \mathbb{R}^e$ be a smooth path, $x_{s,t} \coloneqq x_t - x_s$ and consider

$$\mathbf{x}_{s,t} \coloneqq \int_{s}^{t} x_{s,u} \otimes dx_{u} \coloneqq \left(\int_{s}^{t} x_{s,u}^{i} dx_{u}^{j} \right)_{i,j=1}^{e}$$

How do increments of of x behave? Let s < u < t, then

$$\mathbb{x}_{s,t} = \int_{s}^{t} x_{s,v} \otimes dx_{v}$$
$$\mathbb{x}_{s,u} + \mathbb{x}_{u,t} = \int_{s}^{u} x_{s,v} \otimes dx_{v} + \int_{u}^{t} (x_{s,v} - x_{s,u}) \otimes dx_{v}$$

Theorem (Chen's theorem)

$$\mathbf{x}_{s,t} - \mathbf{x}_{s,u} - \mathbf{x}_{u,t} = x_{s,u} \otimes x_{u,t}$$

Remark

Note $x_{s,t} \rightarrow x_{s,t} + f_t - f_s$ leaves Chen's relation invariant.

Let $x : [0, 1] \rightarrow \mathbb{R}^e$ be a smooth path, $x_{s,t} \coloneqq x_t - x_s$ and consider

$$\mathbf{x}_{s,t} \coloneqq \int_{s}^{t} x_{s,u} \otimes dx_{u} \coloneqq \left(\int_{s}^{t} x_{s,u}^{i} dx_{u}^{j} \right)_{i,j=1}^{e}$$

How do increments of of x behave? Let s < u < t, then

$$\mathbb{x}_{s,t} = \int_{s}^{t} x_{s,v} \otimes dx_{v}$$
$$\mathbb{x}_{s,u} + \mathbb{x}_{u,t} = \int_{s}^{t} x_{s,v} \otimes dx_{v} - x_{s,u} \otimes x_{u,t}$$

Theorem (Chen's theorem)

$$\mathbf{x}_{s,t} - \mathbf{x}_{s,u} - \mathbf{x}_{u,t} = x_{s,u} \otimes x_{u,t}$$

Remark

Note $x_{s,t} \rightarrow x_{s,t} + f_t - f_s$ leaves Chen's relation invariant.

Let $x : [0,1] \to \mathbb{R}^e$ be a smooth path, $x_{s,t} \coloneqq x_t - x_s$ and consider

$$\mathbf{x}_{s,t} \coloneqq \int_{s}^{t} x_{s,u} \otimes dx_{u} \coloneqq \left(\int_{s}^{t} x_{s,u}^{i} dx_{u}^{j} \right)_{i,j=1}^{e}$$

How do increments of of x behave? Let s < u < t, then

$$\begin{aligned} \mathbb{x}_{s,t} &= \int_{s}^{t} x_{s,v} \otimes dx_{v} \\ \mathbb{x}_{s,u} + \mathbb{x}_{u,t} &= \int_{s}^{t} x_{s,v} \otimes dx_{v} - x_{s,u} \otimes x_{u,t} \end{aligned}$$

Theorem (Chen's theorem)

$$\mathbb{x}_{s,t} - \mathbb{x}_{s,u} - \mathbb{x}_{u,t} = x_{s,u} \otimes x_{u,t}$$

Remark

Note $x_{s,t} \rightarrow x_{s,t} + f_t - f_s$ leaves Chen's relation invariant.

Let $x : [0,1] \rightarrow \mathbb{R}^e$ be a smooth path, $x_{s,t} \coloneqq x_t - x_s$ and consider

$$\mathbf{x}_{s,t} \coloneqq \int_{s}^{t} x_{s,u} \otimes dx_{u} \coloneqq \left(\int_{s}^{t} x_{s,u}^{i} dx_{u}^{j} \right)_{i,j=1}^{e}$$

How do increments of of x behave? Let s < u < t, then

$$\begin{aligned} \mathbb{x}_{s,t} &= \int_{s}^{t} x_{s,v} \otimes dx_{v} \\ \mathbb{x}_{s,u} + \mathbb{x}_{u,t} &= \int_{s}^{t} x_{s,v} \otimes dx_{v} - x_{s,u} \otimes x_{u,t} \end{aligned}$$

Theorem (Chen's theorem)

$$\mathbb{X}_{s,t} - \mathbb{X}_{s,u} - \mathbb{X}_{u,t} = x_{s,u} \otimes x_{u,t}$$

Remark

Note $x_{s,t} \rightarrow x_{s,t} + f_t - f_s$ leaves Chen's relation invariant.

Definition

Let $\frac{1}{3} < \alpha \leq \frac{1}{2}$. The space of α -Hölder rough paths $\mathscr{C}^{\alpha}([0, 1], \mathbb{R}^e)$ is the set of pairs $\mathbf{x} = (x, \mathbf{x}), x : [0, 1] \to \mathbb{R}^e, \mathbf{x} : [0, 1]^2 \to \mathbb{R}^e \otimes \mathbb{R}^e$ such that

Chen's relation holds;

$$||x||_{\alpha} \coloneqq \sup_{s \neq t} \frac{|x_{s,t}|}{|t-s|^{\alpha}} < \infty, \quad ||\mathbf{x}||_{2\alpha} \coloneqq \sup_{s \neq t} \frac{|\mathbf{x}_{s,t}|}{|t-s|^{2\alpha}} < \infty.$$

Remark

- C^a is not a linear space, but a closed subset of a Banach space.
- For $\alpha \leq \frac{1}{3}$, need to add iterated integrals of order up to $\left|\frac{1}{\alpha}\right|$.
- ► $\|\cdot\|_{\alpha}$ is a semi-norm; can be turned into a norm by adding $|x_0|$.
- The construction works for paths x with values in a Banach space V, when choosing an appropriate version of V & V.

Definition

Let $\frac{1}{3} < \alpha \leq \frac{1}{2}$. The space of α -Hölder rough paths $\mathscr{C}^{\alpha}([0, 1], \mathbb{R}^e)$ is the set of pairs $\mathbf{x} = (x, \mathbf{x}), x : [0, 1] \to \mathbb{R}^e, \mathbf{x} : [0, 1]^2 \to \mathbb{R}^e \otimes \mathbb{R}^e$ such that

Chen's relation holds;

$$||x||_{\alpha} \coloneqq \sup_{s \neq t} \frac{|x_{s,t}|}{|t-s|^{\alpha}} < \infty, \quad ||\mathbf{x}||_{2\alpha} \coloneqq \sup_{s \neq t} \frac{|\mathbf{x}_{s,t}|}{|t-s|^{2\alpha}} < \infty.$$

Remark

- \mathscr{C}^{α} is not a linear space, but a closed subset of a Banach space.
- For $\alpha \leq \frac{1}{3}$, need to add iterated integrals of order up to $\left|\frac{1}{\alpha}\right|$.
- $\|\cdot\|_{\alpha}$ is a semi-norm; can be turned into a norm by adding $|x_0|$.
- ► The construction works for paths x with values in a Banach space V, when choosing an appropriate version of V ⊗ V.

Rough path metric

Notice that $||x||_{\alpha} + ||\mathbf{x}||_{2\alpha}$ is not homogeneous under the natural dilatation $\lambda \mapsto (\lambda x, \lambda^2 \mathbf{x})$.

Definition

The homogeneous rough path (semi-) norm is defined by

$$\|\mathbf{x}\|_{\alpha} \coloneqq \|x\|_{\alpha} + \sqrt{\|\mathbf{x}\|_{2\alpha}}.$$

Definition

Given $\mathbf{x}, \mathbf{y} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e})$, define the *inhomogeneous* α -Hölder rough path metric by

$$\varrho_{\alpha}(\mathbf{x}, \mathbf{y}) \coloneqq \sup_{s \neq t} \frac{\left| x_{s,t} - y_{s,t} \right|}{\left| t - s \right|^{\alpha}} + \sup_{s \neq t} \frac{\left| \mathbf{x}_{s,t} - \mathbf{y}_{s,t} \right|}{\left| t - s \right|^{2\alpha}} + \left| x_0 - y_0 \right|.$$

 $\mathscr{C}^{\alpha}([0,1];\mathbb{R}^{e})$ is a complete metric space under ϱ_{α} .

Rough path metric

Notice that $||x||_{\alpha} + ||\mathbf{x}||_{2\alpha}$ is not homogeneous under the natural dilatation $\lambda \mapsto (\lambda x, \lambda^2 \mathbf{x})$.

Definition

The homogeneous rough path (semi-) norm is defined by

$$\|\mathbf{x}\|_{\alpha} \coloneqq \|x\|_{\alpha} + \sqrt{\|\mathbf{x}\|_{2\alpha}}.$$

Definition

Given $\mathbf{x}, \mathbf{y} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e})$, define the *inhomogeneous* α -Hölder rough path metric by

$$\varrho_{\alpha}(\mathbf{x},\mathbf{y}) \coloneqq \sup_{s\neq t} \frac{\left|x_{s,t} - y_{s,t}\right|}{|t-s|^{\alpha}} + \sup_{s\neq t} \frac{\left|\mathbf{x}_{s,t} - \mathbf{y}_{s,t}\right|}{|t-s|^{2\alpha}} + |x_0 - y_0|.$$

 $\mathscr{C}^{\alpha}([0,1];\mathbb{R}^{e})$ is a complete metric space under ϱ_{α} .

$$\mathbf{x}_{s,t}^{i,j} + \mathbf{x}_{s,t}^{j,i} = \int_{s}^{t} x_{s,u}^{i} dx_{u}^{j} + \int_{s}^{t} x_{s,u}^{j} dx_{u}^{i}$$

Definition

A rough path $\mathbf{x} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e})$ is called geometric—symbolically, $\mathbf{x} \in \mathscr{C}_{g}^{\alpha}([0, 1]; \mathbb{R}^{e}))$ —iff

$$\operatorname{sym}(\mathbf{x}) \coloneqq \frac{1}{2} \left(\mathbf{x}_{:,:}^{i,j} + \mathbf{x}_{:,:}^{j,i} \right)_{i,j=1}^{e} = \frac{1}{2} \left(x_{:,:} \otimes x_{:,:} \right).$$

Theorem

For a smooth path x define $I_2(x) \coloneqq (x, \mathbf{x})$ with $\mathbf{x}_{s,t}^{i,j} \coloneqq \int_s^t x_{s,u}^i dx_u^j$. Then \mathscr{C}_g^{α} contains the closure of the subset of \mathscr{C}^{α} obtained as image of smooth paths under I_2 .

Geometric rough paths

Let *x* be a smooth path. Then

$$\mathbf{x}_{s,t}^{i,j} + \mathbf{x}_{s,t}^{j,i} = \int_{s}^{t} x_{s,u}^{i} \dot{x}_{u}^{j} du + \int_{s}^{t} x_{s,u}^{j} \dot{x}_{u}^{i} du$$

Definition

A rough path $\mathbf{x} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e})$ is called geometric—symbolically, $\mathbf{x} \in \mathscr{C}_{g}^{\alpha}([0, 1]; \mathbb{R}^{e}))$ —iff

$$\operatorname{sym}(\mathbf{x}) \coloneqq \frac{1}{2} \left(\mathbf{x}_{:,:}^{i,j} + \mathbf{x}_{:,:}^{j,i} \right)_{i,j=1}^{e} = \frac{1}{2} \left(x_{:,:} \otimes x_{:,:} \right).$$

Theorem

For a smooth path x define $I_2(x) \coloneqq (x, x)$ with $x_{s,t}^{i,j} \coloneqq \int_s^t x_{s,u}^i dx_u^j$. Then \mathscr{C}_g^{α} contains the closure of the subset of \mathscr{C}^{α} obtained as image of smooth paths under I_2 .

$$\mathbf{x}_{s,t}^{i,j} + \mathbf{x}_{s,t}^{j,i} = \int_{s}^{t} \frac{\partial}{\partial u} \left(x_{s,u}^{i} x_{s,u}^{j} \right) du$$

Definition

A rough path $\mathbf{x} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e})$ is called geometric—symbolically, $\mathbf{x} \in \mathscr{C}_{g}^{\alpha}([0, 1]; \mathbb{R}^{e}))$ —iff

$$\operatorname{sym}(\mathbf{x}) \coloneqq \frac{1}{2} \left(\mathbf{x}_{\cdot,\cdot}^{i,j} + \mathbf{x}_{\cdot,\cdot}^{j,i} \right)_{i,j=1}^{e} = \frac{1}{2} \left(x_{\cdot,\cdot} \otimes x_{\cdot,\cdot} \right).$$

Theorem

For a smooth path x define $I_2(x) \coloneqq (x, x)$ with $x_{s,t}^{i,j} \coloneqq \int_s^t x_{s,u}^i dx_u^j$. Then \mathscr{C}_g^{α} contains the closure of the subset of \mathscr{C}^{α} obtained as image of smooth paths under I_2 .

$$\mathbf{x}_{s,t}^{i,j} + \mathbf{x}_{s,t}^{j,i} = x_{s,t}^i x_{s,t}^j$$

Definition

A rough path $\mathbf{x} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e})$ is called geometric—symbolically, $\mathbf{x} \in \mathscr{C}_{g}^{\alpha}([0, 1]; \mathbb{R}^{e}))$ —iff

$$\operatorname{sym}(\mathbf{x}) \coloneqq \frac{1}{2} \left(\mathbf{x}_{\cdot,\cdot}^{i,j} + \mathbf{x}_{\cdot,\cdot}^{j,i} \right)_{i,j=1}^{e} = \frac{1}{2} \left(x_{\cdot,\cdot} \otimes x_{\cdot,\cdot} \right).$$

Theorem

For a smooth path *x* define $I_2(x) \coloneqq (x, \mathbb{x})$ with $\mathbb{x}_{s,t}^{i,j} \coloneqq \int_s^t x_{s,u}^i dx_u^j$. Then \mathscr{C}_g^{α} contains the closure of the subset of \mathscr{C}^{α} obtained as image of smooth paths under I_2 .

$$\mathbf{x}_{s,t}^{i,j} + \mathbf{x}_{s,t}^{j,i} = x_{s,t}^i x_{s,t}^j$$

Definition

A rough path $\mathbf{x} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e})$ is called geometric—symbolically, $\mathbf{x} \in \mathscr{C}^{\alpha}_{g}([0, 1]; \mathbb{R}^{e}))$ —iff

$$\operatorname{sym}(\mathbb{x}) \coloneqq \frac{1}{2} \left(\mathbb{x}_{:,:}^{i,j} + \mathbb{x}_{:,:}^{j,i} \right)_{i,j=1}^{e} = \frac{1}{2} \left(x_{:,:} \otimes x_{:,:} \right).$$

Theorem

For a smooth path *x* define $I_2(x) := (x, x)$ with $x_{s,t}^{i,j} := \int_s^t x_{s,u}^i dx_u^j$. Then \mathscr{C}_g^{α} contains the closure of the subset of \mathscr{C}^{α} obtained as image of smooth paths under I_2 .

$$\mathbf{x}_{s,t}^{i,j} + \mathbf{x}_{s,t}^{j,i} = x_{s,t}^i x_{s,t}^j$$

Definition

A rough path $\mathbf{x} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e})$ is called geometric—symbolically, $\mathbf{x} \in \mathscr{C}^{\alpha}_{g}([0, 1]; \mathbb{R}^{e}))$ —iff

$$\operatorname{sym}(\mathbb{x}) \coloneqq \frac{1}{2} \left(\mathbb{x}_{:,:}^{i,j} + \mathbb{x}_{:,:}^{j,i} \right)_{i,j=1}^{e} = \frac{1}{2} \left(x_{:,:} \otimes x_{:,:} \right).$$

Theorem

For a smooth path *x* define $I_2(x) \coloneqq (x, x)$ with $x_{s,t}^{i,j} \coloneqq \int_s^t x_{s,u}^i dx_u^j$. Then \mathscr{C}_g^{α} contains the closure of the subset of \mathscr{C}^{α} obtained as image of smooth paths under I_2 .

Brownian rough path

Given an *e*-dimensional Brownian motion $B = B(\omega)$.

- Is there a rough path $\mathbf{B} = (B, \mathbb{B})$?
- Is it unique, which properties does it have?

$$\mathbb{B}_{s,t}^{\mathsf{lto}} \coloneqq \int_{s}^{t} B_{s,u} \otimes dB_{u} = \lim_{\mathcal{P} \subset [s,t], |\mathcal{P}| \to 0} \sum_{[u,v] \in \mathcal{P}} B_{s,u} \otimes B_{u,v}$$
$$\mathbb{B}_{s,t}^{\mathsf{Strat}} \coloneqq \int_{s}^{t} B_{s,u} \otimes \circ dB_{u} = \lim_{\mathcal{P} \subset [s,t], |\mathcal{P}| \to 0} \sum_{[u,v] \in \mathcal{P}} B_{s,(u+v)/2} \otimes B_{u,v}$$

Theorem

For any $\alpha < \frac{1}{2}$ we have

► $\mathbf{B}^{llo} \coloneqq (B, \mathbb{B}^{llo}) \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{c})$ *P*-a.s.

► $\mathbf{B}^{Strat} := (B, \mathbf{B}^{Strat}) \in \mathscr{C}_{g}^{\alpha} ([0, 1]; \mathbb{R}^{e}) \subset \mathscr{C}^{\alpha} ([0, 1]; \mathbb{R}^{e}) P$ -a.s.

B^{lto} is not geometric: sym($\mathbb{B}_{s,t}^{\text{lto}}$) = $\frac{B_{s,t} \otimes B_{s,t} - (t-s)I_e}{2}$

Brownian rough path

Given an *e*-dimensional Brownian motion $B = B(\omega)$.

- Is there a rough path $\mathbf{B} = (B, \mathbb{B})$?
- Is it unique, which properties does it have?

$$\mathbb{B}_{s,t}^{\mathsf{lto}} \coloneqq \int_{s}^{t} B_{s,u} \otimes dB_{u} = \lim_{\mathcal{P} \subset [s,t], |\mathcal{P}| \to 0} \sum_{[u,v] \in \mathcal{P}} B_{s,u} \otimes B_{u,v}$$
$$\mathbb{B}_{s,t}^{\mathsf{Strat}} \coloneqq \int_{s}^{t} B_{s,u} \otimes \circ dB_{u} = \lim_{\mathcal{P} \subset [s,t], |\mathcal{P}| \to 0} \sum_{[u,v] \in \mathcal{P}} B_{s,(u+v)/2} \otimes B_{u,v}$$

Theorem

For any $\alpha < \frac{1}{2}$ we have

- ► $\mathbf{B}^{ho} := (B, \mathbb{B}^{ho}) \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e}) P$ -a.s.
- ► $\mathbf{B}^{Strat} := (B, \mathbb{B}^{Strat}) \in \mathscr{C}_g^{\alpha}([0, 1]; \mathbb{R}^e) \subset \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^e) P$ -a.s.

B^{lto} is not geometric: sym($\mathbb{B}_{s,t}^{lto}$) = $\frac{B_{s,t} \otimes B_{s,t} - (t-s)I_e}{2}$

Brownian rough path

Given an *e*-dimensional Brownian motion $B = B(\omega)$.

- Is there a rough path $\mathbf{B} = (B, \mathbb{B})$?
- Is it unique, which properties does it have?

$$\mathbb{B}_{s,t}^{\mathsf{lto}} \coloneqq \int_{s}^{t} B_{s,u} \otimes dB_{u} = \lim_{\mathcal{P} \subset [s,t], |\mathcal{P}| \to 0} \sum_{[u,v] \in \mathcal{P}} B_{s,u} \otimes B_{u,v}$$
$$\mathbb{B}_{s,t}^{\mathsf{Strat}} \coloneqq \int_{s}^{t} B_{s,u} \otimes \circ dB_{u} = \lim_{\mathcal{P} \subset [s,t], |\mathcal{P}| \to 0} \sum_{[u,v] \in \mathcal{P}} B_{s,(u+v)/2} \otimes B_{u,v}$$

Theorem

For any
$$\alpha < \frac{1}{2}$$
 we have

$$\mathbf{B}^{lto} := (B, \mathbb{B}^{lto}) \in \mathscr{C}^{\alpha} ([0, 1]; \mathbb{R}^{e}) P\text{-a.s.}$$

$$\mathbf{B}^{Strat} := (B, \mathbb{B}^{Strat}) \in \mathscr{C}_{g}^{\alpha} ([0, 1]; \mathbb{R}^{e}) \subset \mathscr{C}^{\alpha} ([0, 1]; \mathbb{R}^{e}) P\text{-a.s.}$$

 \mathbf{B}^{lto} is not geometric: $\operatorname{sym}(\mathbb{B}_{s,t}^{\text{lto}}) = \frac{B_{s,t} \otimes B_{s,t} - (t-s)I_e}{2}$ (Brownian RDE

Outline

- **1** Motivation and introduction
- 2 Rough path spaces
- 3 Integration against rough paths
- 4 Integration of controlled rough paths
- 5 Rough differential equations
- 6 Applications of the universal limit theorem
- 7 Rough partial differential equations

For $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^e)$ and $f : \mathbb{R}^e \to \mathbb{R}^{d \times e}$, we want to construct

$$\int_0^1 f(x_s) d\mathbf{x}_s \quad \text{or even} \quad z = \int_0^\infty f(x_s) d\mathbf{x}_s \quad \text{or even} \quad \mathbf{z} = \int_0^\infty f(x_s) d\mathbf{x}_s$$

For $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^e)$ and $f : \mathbb{R}^e \to \mathbb{R}^{d \times e}$, we want to construct

$$\int_0^1 f(x_s) d\mathbf{x}_s \quad \text{or even} \quad z = \int_0^\infty f(x_s) d\mathbf{x}_s \quad \text{or even} \quad \mathbf{z} = \int_0^\infty f(x_s) d\mathbf{x}_s$$

$$f(x_t) = f(x_s) + O(|t - s|) \Rightarrow \int_s^t f(x_u) dx_u = f(x_s) x_{s,t} + o(|t - s|)$$

For $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^e)$ and $f : \mathbb{R}^e \to \mathbb{R}^{d \times e}$, we want to construct

$$\int_0^1 f(x_s) d\mathbf{x}_s \quad \text{or even} \quad z = \int_0^\infty f(x_s) d\mathbf{x}_s \quad \text{or even} \quad \mathbf{z} = \int_0^\infty f(x_s) d\mathbf{x}_s$$

$$f(x_t) = f(x_s) + O(|t - s|) \Rightarrow \int_s^t f(x_u) dx_u = f(x_s) x_{s,t} + o(|t - s|)$$
$$\Rightarrow \int_0^1 f(x_u) dx_u = \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} f(x_s) x_{s,t} + o(1)$$

For $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^e)$ and $f : \mathbb{R}^e \to \mathbb{R}^{d \times e}$, we want to construct

$$\int_0^1 f(x_s) d\mathbf{x}_s \quad \text{or even} \quad z = \int_0^\infty f(x_s) d\mathbf{x}_s \quad \text{or even} \quad \mathbf{z} = \int_0^\infty f(x_s) d\mathbf{x}_s$$

$$f(x_t) = f(x_s) + O(|t - s|^{\alpha}) \Rightarrow \int_s^t f(x_u) dx_u = f(x_s) x_{s,t} + O(|t - s|^{2\alpha})$$
$$\Rightarrow \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} f(x_s) x_{s,t} \text{ does not exist in general}$$

For $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^e)$ and $f : \mathbb{R}^e \to \mathbb{R}^{d \times e}$, we want to construct

$$\int_0^1 f(x_s) d\mathbf{x}_s \quad \text{or even} \quad z = \int_0^\infty f(x_s) d\mathbf{x}_s \quad \text{or even} \quad \mathbf{z} = \int_0^\infty f(x_s) d\mathbf{x}_s$$

$$f(x_t) = f(x_s) + O(|t - s|^{\alpha}) \Rightarrow \int_s^t f(x_u) dx_u = f(x_s) x_{s,t} + O(|t - s|^{2\alpha})$$
$$\Rightarrow \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} f(x_s) x_{s,t} \text{ does not exist in general}$$

Instead (for
$$\frac{1}{3} < \alpha \le \frac{1}{2}$$
):

$$f(x_t) = f(x_s) + Df(x_s)x_{s,t} + O(|t-s|^{2\alpha}) \quad \text{(for } f \in C_b^2)$$

For $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^e)$ and $f : \mathbb{R}^e \to \mathbb{R}^{d \times e}$, we want to construct

$$\int_0^1 f(x_s) d\mathbf{x}_s \quad \text{or even} \quad z = \int_0^\infty f(x_s) d\mathbf{x}_s \quad \text{or even} \quad \mathbf{z} = \int_0^\infty f(x_s) d\mathbf{x}_s$$

$$f(x_t) = f(x_s) + O(|t - s|^{\alpha}) \Rightarrow \int_s^t f(x_u) dx_u = f(x_s) x_{s,t} + O(|t - s|^{2\alpha})$$
$$\Rightarrow \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} f(x_s) x_{s,t} \text{ does not exist in general}$$

Instead (for
$$\frac{1}{3} < \alpha \le \frac{1}{2}$$
):
 $f(x_t) = f(x_s) + Df(x_s)x_{s,t} + O(|t - s|^{2\alpha})$ (for $f \in C_b^2$)
 $\Rightarrow \int_s^t f(x_u)dx_u = f(x_s)x_{s,t} + Df(x_s)x_{s,t} + O(|t - s|^{3\alpha})$

For $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^e)$ and $f : \mathbb{R}^e \to \mathbb{R}^{d \times e}$, we want to construct $\int_0^1 f(x_s) d\mathbf{x}_s$ or even $z = \int_0^{\cdot} f(x_s) d\mathbf{x}_s$ or even $\mathbf{z} = \int_0^{\cdot} f(x_s) d\mathbf{x}_s$

$$f(x_t) = f(x_s) + O(|t - s|^{\alpha}) \Rightarrow \int_s^t f(x_u) dx_u = f(x_s) x_{s,t} + O(|t - s|^{2\alpha})$$
$$\Rightarrow \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} f(x_s) x_{s,t} \text{ does not exist in general}$$

Instead (for
$$\frac{1}{3} < \alpha \leq \frac{1}{2}$$
):
 $f(x_t) = f(x_s) + Df(x_s)x_{s,t} + O(|t-s|^{2\alpha})$ (for $f \in C_b^2$)
 $\Rightarrow \int_s^t f(x_u)dx_u = f(x_s)x_{s,t} + Df(x_s)\mathbb{X}_{s,t} + O(|t-s|^{3\alpha})$
 $\Rightarrow \int_0^1 f(x_s)d\mathbf{x}_s \coloneqq \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} (f(x_s)x_{s,t} + Df(x_s)\mathbb{X}_{s,t})$

Theorem (Lyons)

Let $\alpha > \frac{1}{3}$ and $\mathbf{x} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^e)$, $f \in C_b^2(\mathbb{R}^e, \mathbb{R}^{d \times e})$. Then the rough integral

$$\int_0^1 f(x_s) d\mathbf{x}_s \coloneqq \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} (f(x_s) x_{s,t} + Df(x_s) \mathbf{x}_{s,t})$$

exists and satisfies

$$\left| \int_{s}^{t} f(x_{u}) d\mathbf{x}_{u} - f(x_{s}) x_{s,t} - Df(x_{s}) \mathbf{x}_{s,t} \right| \leq C_{\alpha} \left| |f| \right|_{C_{b}^{2}} \left(||x||_{\alpha}^{3} + ||x||_{\alpha} \left| |\mathbf{x}| \right|_{2\alpha} \right) |t - s|^{3\alpha}.$$

Moreover,
$$\int_0^{\cdot} f(x_u) d\mathbf{x}_u$$
 is α -Hölder continuous with
 $\left\| \int_0^{\cdot} f(x_u) d\mathbf{x}_u \right\|_{\alpha} \le C_{\alpha} \|f\|_{C_b^2} \max\left(\|\|\mathbf{x}\|\|_{\alpha}, \|\|\mathbf{x}\|\|_{\alpha}^{1/\alpha} \right).$

First some notation:

$$y_s \coloneqq f(x_s),$$

$$y'_s \coloneqq Df(x_s),$$

$$\Xi_{s,t} \coloneqq y_s x_{s,t} + y'_s \mathbb{X}_{s,t}$$

$$\delta \Xi_{s,u,t} \coloneqq \Xi_{s,t} - \Xi_{s,u} - \Xi_{u,t}$$

We prove convergence

$$\lim_{|\mathcal{P}|\to 0}\sum_{[s,t]\in\mathcal{P}}\Xi_{s,t}=:\lim_{|\mathcal{P}|\to 0}\int_{\mathcal{P}}\Xi=:\int\Xi,$$

i.e., the limit does not depend on the sequence of partitions.

Lemma

$$\|\Xi\|_{\alpha,3\alpha} \coloneqq \|\Xi\|_{\alpha} + \|\delta\Xi\|_{3\alpha} < \infty \text{ with } \|\delta\Xi\|_{\beta} \coloneqq \sup_{s < u < t} \left|\delta\Xi_{s,u,t}\right| / |t - s|^{\beta}.$$

Proof.

- $\textbf{ Clearly}, \|y\|_{\alpha} \leq \|Df\|_{\infty} \|x\|_{\alpha} < \infty, \quad \|y'\|_{\alpha} \leq \left\|D^2f\right\|_{\infty} \|x\|_{\alpha} < \infty.$
- Consider $R_{s,t} \coloneqq y_{s,t} y'_s x_{s,t}$ and $g(\xi) \coloneqq f(x_s + \xi x_{s,t}), \xi \in [0, 1].$
- ▶ By Taylor's formula, there is $\xi \in [0, 1]$ s.t.

$$R_{s,t} = g(1) - g(0) - g'(0) = \frac{1}{2}g''(\xi) = \frac{1}{2}D^2 f(x_s + \xi x_{s,t}) \cdot (x_{s,t}, x_{s,t})$$

▶ Using Chen's relation $x_{s,t} = x_{s,u} + x_{u,t} + x_{s,u} \otimes x_{u,t}$, we have

 $\delta \Xi_{s,u,t} = (y_s x_{s,t} + y'_s \mathbb{x}_{s,t}) - (y_s x_{s,u} + y'_s \mathbb{x}_{s,u}) - (y_u x_{u,t} + y'_u \mathbb{x}_{u,t})$

Lemma

$$\|\Xi\|_{\alpha,3\alpha} \coloneqq \|\Xi\|_{\alpha} + \|\delta\Xi\|_{3\alpha} < \infty \text{ with } \|\delta\Xi\|_{\beta} \coloneqq \sup_{s < u < t} \left|\delta\Xi_{s,u,t}\right| / |t - s|^{\beta}.$$

Proof.

- $\blacktriangleright \text{ Clearly, } \|y\|_{\alpha} \leq \|Df\|_{\infty} \|x\|_{\alpha} < \infty, \quad \|y'\|_{\alpha} \leq \left\|D^2f\right\|_{\infty} \|x\|_{\alpha} < \infty.$
- Consider $R_{s,t} \coloneqq y_{s,t} y'_s x_{s,t}$ and $g(\xi) \coloneqq f(x_s + \xi x_{s,t}), \xi \in [0, 1].$
- Hence, $||R||_{2\alpha} \le \frac{1}{2} \left\| D^2 f \right\|_{\infty} ||x||_{\alpha}^2$.
- ► Using Chen's relation $x_{s,t} = x_{s,u} + x_{u,t} + x_{s,u} \otimes x_{u,t}$, we have

$$\delta \Xi_{s,u,t} = (y_s x_{s,t} + y'_s \mathbb{x}_{s,t}) - (y_s x_{s,u} + y'_s \mathbb{x}_{s,u}) - (y_u x_{u,t} + y'_u \mathbb{x}_{u,t})$$

= $-y_{s,u} x_{u,t} + y'_s x_{s,u} \otimes x_{u,t} - (y'_u - y'_s) \mathbb{x}_{u,t}$
= $-R_{s,u} \otimes x_{u,t} - (y'_u - y'_s) \mathbb{x}_{u,t}$

Lemma

$$\|\Xi\|_{\alpha,3\alpha} := \|\Xi\|_{\alpha} + \|\delta\Xi\|_{3\alpha} < \infty \text{ with } \|\delta\Xi\|_{\beta} := \sup_{s < u < t} \left|\delta\Xi_{s,u,t}\right| / |t - s|^{\beta}.$$

Proof.

- $\textbf{ Clearly, } \|y\|_{\alpha} \leq \|Df\|_{\infty} \|x\|_{\alpha} < \infty, \quad \|y'\|_{\alpha} \leq \left\|D^2f\right\|_{\infty} \|x\|_{\alpha} < \infty.$
- Consider $R_{s,t} \coloneqq y_{s,t} y'_s x_{s,t}$ and $g(\xi) \coloneqq f(x_s + \xi x_{s,t}), \xi \in [0, 1].$
- Hence, $||R||_{2\alpha} \le \frac{1}{2} \left\| D^2 f \right\|_{\infty} ||x||_{\alpha}^2$.
- ▶ Using Chen's relation $x_{s,t} = x_{s,u} + x_{u,t} + x_{s,u} \otimes x_{u,t}$, we have

$$\begin{split} \delta \Xi_{s,u,t} &= (y_s x_{s,t} + y'_s \mathbb{x}_{s,t}) - (y_s x_{s,u} + y'_s \mathbb{x}_{s,u}) - (y_u x_{u,t} + y'_u \mathbb{x}_{u,t}) \\ &= -y_{s,u} x_{u,t} + y'_s x_{s,u} \otimes x_{u,t} - (y'_u - y'_s) \mathbb{x}_{u,t} \\ &= -R_{s,u} \otimes x_{u,t} - (y'_u - y'_s) \mathbb{x}_{u,t} \end{split}$$

Integration of 1-forms – Existence III

Lemma

$$\sup_{\mathcal{P} \subset [s,t]} \left| \Xi_{s,t} - \int_{\mathcal{P}} \Xi \right| \le 2^{3\alpha} \left\| \delta \Xi \right\|_{3\alpha} \zeta(3\alpha) \left| t - s \right|^{3\alpha} (*)$$

Integration of 1-forms – Existence III

Lemma

$$\sup_{\mathcal{P}\subset[s,t]} \left| \Xi_{s,t} - \int_{\mathcal{P}} \Xi \right| \le 2^{3\alpha} \left| \left| \delta \Xi \right| \right|_{3\alpha} \zeta(3\alpha) \left| t - s \right|^{3\alpha} (*)$$

Proof.

Indeed, let
$$\mathcal{P} \subset [s, t]$$
 with $r \coloneqq #\mathcal{P}$. If $r \ge 2$, then
 $\exists u < v < w : [u, v], [v, w] \in \mathcal{P}$ and $|w - u| \le \frac{2|t - 1|}{r - 1}$

Hence,

$$\left| \int_{\mathcal{P} \setminus \{v\}} \Xi - \int_{\mathcal{P}} \Xi \right| = \left| \delta \Xi_{u,v,w} \right| \le ||\delta \Xi||_{3\alpha} \left(\frac{2|t-s|}{r-1} \right)^{3\alpha}$$

Iterating the procedure until #P = 1 gives the assertion.

Integration of 1-forms – Existence III

Lemma

$$\sup_{\mathcal{P}\subset[s,t]} \left| \Xi_{s,t} - \int_{\mathcal{P}} \Xi \right| \le 2^{3\alpha} \left| \left| \delta \Xi \right| \right|_{3\alpha} \zeta(3\alpha) \left| t - s \right|^{3\alpha} (*)$$

Lemma

$$\lim_{\epsilon \searrow 0} \sup_{\max(|\mathcal{P}|,|\mathcal{P}'|) < \epsilon} \left| \int_{\mathcal{P}} \Xi - \int_{\mathcal{P}'} \Xi \right| = 0$$

Integration of 1-forms – Existence III

Lemma

$$\sup_{\mathcal{P} \subset [s,t]} \left| \Xi_{s,t} - \int_{\mathcal{P}} \Xi \right| \le 2^{3\alpha} \, \|\delta \Xi\|_{3\alpha} \, \zeta(3\alpha) \, |t-s|^{3\alpha} \quad (*)$$

Lemma

$$\lim_{\epsilon \searrow 0} \sup_{\max(|\mathcal{P}|,|\mathcal{P}'|) < \epsilon} \left| \int_{\mathcal{P}} \Xi - \int_{\mathcal{P}'} \Xi \right| = 0$$

Proof.

W.I.o.g., $\mathcal{P}' \subset \mathcal{P}$. By definition of $\int \Xi$ and (*), we get

$$\int_{\mathcal{P}} \Xi - \int_{\mathcal{P}'} \Xi = \sum_{[u,v] \in \mathcal{P}} \left(\Xi_{u,v} - \int_{\mathcal{P}' \cap [u,v]} \Xi \right)$$
$$\left| \int_{\mathcal{P}} \Xi - \int_{\mathcal{P}'} \Xi \right| \le 2^{3\alpha} \zeta(3\alpha) \, \|\delta \Xi\|_{3\alpha} \sum_{[u,v] \in \mathcal{P}} |v - u|^{3\alpha} = O\left(|\mathcal{P}|^{3\alpha - 1}\right) = O(\epsilon^{3\alpha - 1}).$$

Rough paths and rough partial differential equations · March 18, 2016 · Page 23 (48)

Integration of 1-forms and rough differential equations

$$\int_0^t V(x_s) d\mathbf{x}_s \checkmark$$
$$\int_0^t V(y_s) d\mathbf{x}_s ?$$

Given $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1];\mathbb{R}^{e})$, $\mathbf{y} \in \mathscr{C}^{\alpha}([0,1];\mathbb{R}^{d})$ with $\alpha \leq \frac{1}{2}$, it is generated by the possible to construct

unless there is $\mathbf{z} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e+d})$ with z = (x, y)—and the result will depend on the choice of \mathbf{z} .

- Picard iteration for $dy_s = V(y_s)dx_s$, $y_0 = \xi$:
- 1 $y^{(0)} \equiv \xi$, then $y^{(1)} \coloneqq \xi + \int_0^1 V(y_s^{(0)}) d\mathbf{x}_s$ defined \mathbf{I}
- **2** $y^{(1)} \equiv \xi + V(\xi)x$, then $y^{(2)} := \xi + \int_0^{\infty} V(y_s^{(1)}) dx_s$ defined \checkmark
- **3** $V(y_s^{(2)}) \neq f(x_s)$, but "looks similar"

$$\int_0^t V(x_s) d\mathbf{x}_s \checkmark$$

Given $\mathbf{x} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e}), \mathbf{y} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{d})$ with $\alpha \leq \frac{1}{2}$, it is generally not possible to construct $\int_{0}^{t} V(y_{s}) d\mathbf{x}_{s}$

unless there is $\mathbf{z} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e+d})$ with z = (x, y)—and the result will depend on the choice of \mathbf{z} .

• Picard iteration for $dy_s = V(y_s)dx_s$, $y_0 = \xi$: 1 $y^{(0)} \equiv \xi$, then $y^{(1)} := \xi + \int_0^{\infty} V(y_s^{(0)})dx_s$ defined \checkmark

- **2** $y^{(1)} \equiv \xi + V(\xi)x$, then $y^{(2)} := \xi + \int_0^{\infty} V(y_s^{(1)}) dx_s$ defined \checkmark
- **3** $V(y_s^{(2)}) \neq f(x_s)$, but "looks similar"

$$\int_0^t V(x_s) d\mathbf{x}_s \checkmark$$

Given $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^{e}), \mathbf{y} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^{d})$ with $\alpha \leq \frac{1}{2}$, it is generally not possible to construct $\int_{0}^{t} V(y_{s}) d\mathbf{x}_{s}$

unless there is $\mathbf{z} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e+d})$ with z = (x, y)—and the result will depend on the choice of \mathbf{z} .

• Picard iteration for $dy_s = V(y_s)dx_s$, $y_0 = \xi$:

1
$$y^{(0)} \equiv \xi$$
, then $y^{(1)} := \xi + \int_0^{\cdot} V(y_s^{(0)}) d\mathbf{x}_s$ defined \mathbf{V}

- **2** $y^{(1)} \equiv \xi + V(\xi)x$, then $y^{(2)} := \xi + \int_0^{\infty} V(y_s^{(1)}) d\mathbf{x}_s$ defined \checkmark
- **3** $V(y_s^{(2)}) \neq f(x_s)$, but "looks similar"

$$\int_0^t V(x_s) d\mathbf{x}_s \checkmark$$

Given $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^{e}), \mathbf{y} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^{d})$ with $\alpha \leq \frac{1}{2}$, it is generally not possible to construct $\int_{0}^{t} V(y_{s}) d\mathbf{x}_{s}$

unless there is $\mathbf{z} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e+d})$ with z = (x, y)—and the result will depend on the choice of \mathbf{z} .

• Picard iteration for $dy_s = V(y_s)dx_s$, $y_0 = \xi$:

1
$$y^{(0)} \equiv \xi$$
, then $y^{(1)} := \xi + \int_0^{\infty} V(y_s^{(0)}) d\mathbf{x}_s$ defined \checkmark

- **2** $y^{(1)} \equiv \xi + V(\xi)x$, then $y^{(2)} := \xi + \int_0^{\infty} V(y_s^{(1)}) dx_s$ defined \checkmark
- **3** $V(y_s^{(2)}) \neq f(x_s)$, but "looks similar"

$$\int_0^t V(x_s) d\mathbf{x}_s \checkmark$$

Given $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^{e}), \mathbf{y} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^{d})$ with $\alpha \leq \frac{1}{2}$, it is generally not possible to construct $\int_{0}^{t} V(y_{s}) d\mathbf{x}_{s}$

unless there is $\mathbf{z} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e+d})$ with z = (x, y)—and the result will depend on the choice of \mathbf{z} .

• Picard iteration for $dy_s = V(y_s)dx_s$, $y_0 = \xi$:

1
$$y^{(0)} \equiv \xi$$
, then $y^{(1)} := \xi + \int_0^{\infty} V(y_s^{(0)}) d\mathbf{x}_s$ defined \checkmark

2
$$y^{(1)} \equiv \xi + V(\xi)x$$
, then $y^{(2)} := \xi + \int_0^{\infty} V(y_s^{(1)}) d\mathbf{x}_s$ defined \checkmark

3 $V(y_s^{(2)}) \neq f(x_s)$, but "looks similar"

$$\int_0^t V(x_s) d\mathbf{x}_s \checkmark$$

Given $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^{e}), \mathbf{y} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^{d})$ with $\alpha \leq \frac{1}{2}$, it is generally not possible to construct $\int_{0}^{t} V(y_{s}) d\mathbf{x}_{s}$

unless there is $\mathbf{z} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^{e+d})$ with z = (x, y)—and the result will depend on the choice of \mathbf{z} .

▶ Picard iteration for
$$dy_s = V(y_s)dx_s$$
, $y_0 = \xi$:
1 $y^{(0)} \equiv \xi$, then $y^{(1)} \coloneqq \xi + \int_0^{\cdot} V(y_s^{(0)})d\mathbf{x}_s$ defined ✓
2 $y^{(1)} \equiv \xi + V(\xi)x$, then $y^{(2)} \coloneqq \xi + \int_0^{\cdot} V(y_s^{(1)})d\mathbf{x}_s$ defined ✓
3 $V(y_s^{(2)}) \neq f(x_s)$, but "looks similar"

Outline

- **1** Motivation and introduction
- 2 Rough path spaces
- 3 Integration against rough paths
- 4 Integration of controlled rough paths
- 5 Rough differential equations
- 6 Applications of the universal limit theorem
- 7 Rough partial differential equations

Definition

Given $x \in C^{\alpha}([0,1]; \mathbb{R}^{e}), y \in C^{\alpha}([0,1]; \mathbb{R}^{d})$ is called controlled by x, iff there is $y' \in C^{\alpha}([0,1]; \mathbb{R}^{d \times e}) - \mathbb{R}^{d \times e} = \mathcal{L}(\mathbb{R}^{e}, \mathbb{R}^{d}) - \text{s.t.}$ $R_{s,t} \coloneqq y_{s,t} - y'_{s} x_{s,t}$

satisfies $||R||_{2\alpha} < \infty$. We write $(y, y') \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^d)$.

Example

If
$$f \in C_b^2(\mathbb{R}^e; \mathbb{R}^d)$$
, $y \coloneqq f(x)$, $y' \coloneqq Df(x)$, then $(y, y') \in \mathcal{D}_x^{2\alpha}([0, 1; \mathbb{R}^d))$.

Remark

 $\mathcal{D}_x^{2\alpha}$ is a Banach space under $(y, y') \mapsto |y_0| + |y'_0| + ||(y, y')||_{x, 2\alpha}$ with

$$\left\| (y, y') \right\|_{x, 2\alpha} \coloneqq \left\| y' \right\|_{\alpha} + \left\| R \right\|_{2\alpha}.$$

Rough paths and rough partial differential equations · March 18, 2016 · Page 26 (48)

Definition

Given $x \in C^{\alpha}([0, 1]; \mathbb{R}^{e}), y \in C^{\alpha}([0, 1]; \mathbb{R}^{d})$ is called controlled by x, iff there is $y' \in C^{\alpha}([0, 1]; \mathbb{R}^{d \times e}) - \mathbb{R}^{d \times e} = \mathcal{L}(\mathbb{R}^{e}, \mathbb{R}^{d}) - \text{s.t.}$ $R_{s,t} \coloneqq y_{s,t} - y'_{s} x_{s,t}$

satisfies $||R||_{2\alpha} < \infty$. We write $(y, y') \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^d)$.

Example

If
$$f \in C_b^2(\mathbb{R}^e; \mathbb{R}^d)$$
, $y \coloneqq f(x)$, $y' \coloneqq Df(x)$, then $(y, y') \in \mathcal{D}_x^{2\alpha}([0, 1; \mathbb{R}^d)$.

Remark

$$\mathcal{D}_x^{2\alpha}$$
 is a Banach space under $(y, y') \mapsto |y_0| + |y'_0| + ||(y, y')||_{x, 2\alpha}$ with

$$\left\| (y, y') \right\|_{x, 2\alpha} \coloneqq \left\| y' \right\|_{\alpha} + \left\| R \right\|_{2\alpha}.$$

Rough paths and rough partial differential equations · March 18, 2016 · Page 26 (48)

Definition

Given $x \in C^{\alpha}([0, 1]; \mathbb{R}^{e}), y \in C^{\alpha}([0, 1]; \mathbb{R}^{d})$ is called controlled by x, iff there is $y' \in C^{\alpha}([0, 1]; \mathbb{R}^{d \times e}) - \mathbb{R}^{d \times e} = \mathcal{L}(\mathbb{R}^{e}, \mathbb{R}^{d}) - \text{s.t.}$ $R_{s,t} \coloneqq y_{s,t} - y'_{s} x_{s,t}$

satisfies $||R||_{2\alpha} < \infty$. We write $(y, y') \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^d)$.

Example

If
$$f \in C_b^2(\mathbb{R}^e; \mathbb{R}^d)$$
, $y \coloneqq f(x)$, $y' \coloneqq Df(x)$, then $(y, y') \in \mathcal{D}_x^{2\alpha}([0, 1; \mathbb{R}^d)$.

Remark

$$\mathcal{D}_x^{2\alpha}$$
 is a Banach space under $(y, y') \mapsto |y_0| + |y'_0| + ||(y, y')||_{x, 2\alpha}$ with

$$\left\|(y,y')\right\|_{x,2\alpha}\coloneqq \left\|y'\right\|_{\alpha}+\|R\|_{2\alpha}\,.$$

Rough paths and rough partial differential equations · March 18, 2016 · Page 26 (48)

Theorem (Gubinelli)

Let $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^e)$, $(y, y') \in \mathcal{D}_x^{2\alpha}([0,1], \mathbb{R}^{d \times e})$. a)The integral

$$\int_0^1 y_s d\mathbf{x}_s \coloneqq \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} (y_s x_{s,t} + y'_s \mathbf{x}_{s,t})$$

exists and satisfies

$$\left|\int_{s}^{t} y_{u} d\mathbf{x}_{u} - y_{s} x_{s,t} - y_{s}' \mathbf{x}_{s,t}\right| \leq C_{\alpha} \left(||x||_{\alpha} ||R||_{2\alpha} + ||\mathbf{x}||_{2\alpha} \left\| y' \right\|_{\alpha} \right) |t - s|^{3\alpha}$$

b) Set $(z, z') \coloneqq \left(\int_0^{\cdot} y_s d\mathbf{x}_s, y\right)$. Then $(z, z') \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^d)$ and $(y, y') \mapsto (z, z')$ is a continuous linear map with

$$\left\|(z,z')\right\|_{x,2\alpha} \leq \|y\|_{\alpha} + \left\|y'\right\|_{\infty} \|\mathbf{x}\|_{2\alpha} + C_{\alpha}\left(\|x\|_{\alpha} \left\|R^{y}\right\|_{2\alpha} + \|\mathbf{x}\|_{2\alpha} \left\|y'\right\|_{\alpha}\right).$$

Composition with regular functions: For **x**, (y, y') as before, let $\varphi \in C_b^2(\mathbb{R}^d; \mathbb{R}^n)$ and define

$$z_t \coloneqq \varphi(y_t), \quad z'_t \coloneqq D\varphi(y_t) \otimes y'_t.$$

Composition with regular functions: For **x**, (y, y') as before, let $\varphi \in C_b^2(\mathbb{R}^d; \mathbb{R}^n)$ and define

$$z_t \coloneqq \varphi(y_t), \quad z'_t \coloneqq D\varphi(y_t) \otimes y'_t.$$

Composition with regular functions: For **x**, (y, y') as before, let $\varphi \in C_b^2(\mathbb{R}^d; \mathbb{R}^n)$ and define

$$z_t \coloneqq \varphi(y_t), \quad z'_t \coloneqq D\varphi(y_t) \otimes y'_t.$$

$$||z||_{\alpha} \le ||\varphi||_{C_b^2} ||y||_{\alpha}$$

Composition with regular functions: For **x**, (y, y') as before, let $\varphi \in C_b^2(\mathbb{R}^d; \mathbb{R}^n)$ and define

$$z_t \coloneqq \varphi(y_t), \quad z'_t \coloneqq D\varphi(y_t) \otimes y'_t.$$

$$\left\|z'\right\|_{\alpha} \leq \left\|D\varphi \circ y\right\|_{\infty} \left\|y'\right\|_{\alpha} + \left\|y'\right\|_{\infty} \left\|D\varphi \circ y\right\|_{\alpha}$$

Composition with regular functions: For **x**, (y, y') as before, let $\varphi \in C_b^2(\mathbb{R}^d; \mathbb{R}^n)$ and define

$$z_t \coloneqq \varphi(y_t), \quad z'_t \coloneqq D\varphi(y_t) \otimes y'_t.$$

$$\left\|z'\right\|_{\alpha} \leq \left\|\varphi\right\|_{C_b^2} \left\|y'\right\|_{\alpha} + \left\|y'\right\|_{\infty} \left\|\varphi\right\|_{C_b^2} \left\|y\right\|_{\alpha}$$

Composition with regular functions: For **x**, (y, y') as before, let $\varphi \in C_b^2(\mathbb{R}^d; \mathbb{R}^n)$ and define

$$z_t \coloneqq \varphi(y_t), \quad z'_t \coloneqq D\varphi(y_t) \otimes y'_t.$$

$$z_{s,t} - z'_s x_{s,t} = \varphi(y_t) - \varphi(y_s) - D\varphi(y_s) y'_s x_{s,t}$$

Composition with regular functions: For **x**, (y, y') as before, let $\varphi \in C_b^2(\mathbb{R}^d; \mathbb{R}^n)$ and define

$$z_t \coloneqq \varphi(y_t), \quad z'_t \coloneqq D\varphi(y_t) \otimes y'_t.$$

$$z_{s,t} - z'_s x_{s,t} = \left(\varphi(y_t) - \varphi(y_s) - D\varphi(y_s)y_{s,t}\right) + D\varphi(y_s)\left(y_{s,t} - y'_s x_{s,t}\right)$$

Composition with regular functions: For **x**, (y, y') as before, let $\varphi \in C_b^2(\mathbb{R}^d; \mathbb{R}^n)$ and define

$$z_t \coloneqq \varphi(y_t), \quad z'_t \coloneqq D\varphi(y_t) \otimes y'_t.$$

$$z_{s,t} - z'_{s} x_{s,t} = \frac{1}{2} D^{2} \varphi \left(y_{s} + \xi y_{s,t} \right) \left(y_{s,t}, y_{s,t} \right) + D \varphi(y_{s}) \left(y_{s,t} - y'_{s} x_{s,t} \right)$$

Composition with regular functions: For **x**, (y, y') as before, let $\varphi \in C_b^2(\mathbb{R}^d; \mathbb{R}^n)$ and define

$$z_t \coloneqq \varphi(y_t), \quad z'_t \coloneqq D\varphi(y_t) \otimes y'_t.$$

$$\left\|z_{s,t} - z'_{s} x_{s,t}\right\|_{2\alpha} \le \frac{1}{2} \left\|\varphi\right\|_{C_{b}^{2}} \left\|y\right\|_{\alpha}^{2} + \left\|\varphi\right\|_{C_{b}^{2}} \left\|y_{\cdot,\cdot} - y' x_{\cdot,\cdot}\right\|_{2\alpha}$$

 $\overline{\mathbf{x}} = (\overline{x}, \overline{\mathbf{x}}) \in \mathscr{C}^{\alpha} \left([0, 1], \mathbb{R}^{e} \right), \quad \overline{x} \coloneqq x, \quad \overline{\mathbf{x}}_{s,t} \coloneqq \mathbf{x}_{s,t} + f(t) - f(s).$

As $\mathcal{D}_x^{2\alpha} = \mathcal{D}_{\overline{x}}^{2\alpha}$, we may integrate $(y, y') \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^{d \times e})$ against both.

$$\int_0^1 y_s d\overline{\mathbf{x}}_s = \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} (y_s x_{s,t} + y'_s (\overline{\mathbf{x}}_{s,t} + f(t) - f(s)))$$
$$= \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} (y_s x_{s,t} + y'_s \overline{\mathbf{x}}_{s,t}) + \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} y'_s (f(t) - f(s))$$
$$= \int_0^1 y_s d\mathbf{x}_s + \int_0^1 y'_s df(s)$$

 $\overline{\mathbf{x}} = (\overline{x}, \overline{\mathbf{x}}) \in \mathscr{C}^{\alpha} \left([0, 1], \mathbb{R}^{e} \right), \quad \overline{x} \coloneqq x, \quad \overline{\mathbf{x}}_{s,t} \coloneqq \mathbf{x}_{s,t} + f(t) - f(s).$

As $\mathcal{D}_x^{2\alpha} = \mathcal{D}_{\overline{x}}^{2\alpha}$, we may integrate $(y, y') \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^{d \times e})$ against both.

$$\begin{split} \int_0^1 y_s d\overline{\mathbf{x}}_s &= \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} \left(y_s x_{s,t} + y'_s \left(\mathbf{x}_{s,t} + f(t) - f(s) \right) \right) \\ &= \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} \left(y_s x_{s,t} + y'_s \mathbf{x}_{s,t} \right) + \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} y'_s (f(t) - f(s)) \\ &= \int_0^1 y_s d\mathbf{x}_s + \int_0^1 y'_s df(s) \end{split}$$

 $\overline{\mathbf{x}} = (\overline{x}, \overline{\mathbf{x}}) \in \mathscr{C}^{\alpha} \left([0, 1], \mathbb{R}^{e} \right), \quad \overline{x} \coloneqq x, \quad \overline{\mathbf{x}}_{s,t} \coloneqq \mathbf{x}_{s,t} + f(t) - f(s).$

As $\mathcal{D}_x^{2\alpha} = \mathcal{D}_{\overline{x}}^{2\alpha}$, we may integrate $(y, y') \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^{d \times e})$ against both.

$$\begin{split} \int_0^1 y_s d\overline{\mathbf{x}}_s &= \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} \left(y_s x_{s,t} + y'_s \left(\mathbf{x}_{s,t} + f(t) - f(s) \right) \right) \\ &= \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} \left(y_s x_{s,t} + y'_s \mathbf{x}_{s,t} \right) + \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} y'_s (f(t) - f(s)) \\ &= \int_0^1 y_s d\mathbf{x}_s + \int_0^1 y'_s df(s) \end{split}$$

 $\overline{\mathbf{x}} = (\overline{x}, \overline{\mathbf{x}}) \in \mathscr{C}^{\alpha} \left([0, 1], \mathbb{R}^{e} \right), \quad \overline{x} \coloneqq x, \quad \overline{\mathbf{x}}_{s,t} \coloneqq \mathbf{x}_{s,t} + f(t) - f(s).$

As $\mathcal{D}_x^{2\alpha} = \mathcal{D}_{\overline{x}}^{2\alpha}$, we may integrate $(y, y') \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^{d \times e})$ against both.

$$\begin{split} \int_0^1 y_s d\overline{\mathbf{x}}_s &= \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} \left(y_s x_{s,t} + y'_s \left(\mathbf{x}_{s,t} + f(t) - f(s) \right) \right) \\ &= \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} \left(y_s x_{s,t} + y'_s \mathbf{x}_{s,t} \right) + \lim_{|\mathcal{P}| \to 0} \sum_{[s,t] \in \mathcal{P}} y'_s (f(t) - f(s)) \\ &= \int_0^1 y_s d\mathbf{x}_s + \int_0^1 y'_s df(s) \end{split}$$

Outline

- **1** Motivation and introduction
- 2 Rough path spaces
- 3 Integration against rough paths
- 4 Integration of controlled rough paths
- 5 Rough differential equations
- 6 Applications of the universal limit theorem
- 7 Rough partial differential equations

Let $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^e), V : \mathbb{R}^d \to \mathbb{R}^{d \times e}$ smooth, consider $dy_s = V(y_s)dx_s, \quad y_0 = \xi \in \mathbb{R}^d$

1 $y^{(0)} \equiv \xi$, then $y^{(1)} := \xi + \int_0^{\cdot} V(y_s^{(0)}) d\mathbf{x}_s$ defined \mathbf{V} Moreover, $(y^{(1)}, V(y^{(0)})) \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^d)$.

- 2 $(V(y^{(1)}), DV(y^{(1)}) \otimes V(y^{(0)}) \in \mathcal{D}_x^{2\alpha}([0,1]; \mathbb{R}^{d \times e})$, hence $y^{(2)} := \xi + \int_0^{\cdot} V(y_s^{(1)}) d\mathbf{x}_s$ defined ✓ Moreover, $(y^{(2)}, V(y^{(1)})) \in \mathcal{D}_x^{2\alpha}([0,1]; \mathbb{R}^d)$.
- **3** $(V(y^{(2)}), DV(y^{(2)}) \otimes V(y^{(1)}) \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^{d \times e})$, hence $y^{(3)} := \xi + \int_0^{\cdot} V(y_s^{(2)}) d\mathbf{x}_s$ defined \checkmark Moreover, $(y^{(3)}, V(y^{(2)})) \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^d)$.

Let $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^e), V : \mathbb{R}^d \to \mathbb{R}^{d \times e}$ smooth, consider

$$dy_s = V(y_s)dx_s, \quad y_0 = \xi \in \mathbb{R}^d$$

1 $y^{(0)} ≡ ξ$, then $y^{(1)} := ξ + \int_0^{\cdot} V(y_s^{(0)}) dx_s$ defined Moreover, $(y^{(1)}, V(y^{(0)})) ∈ D_x^{2α} ([0, 1]; ℝ^d).$

2
$$(V(y^{(1)}), DV(y^{(1)}) \otimes V(y^{(0)}) \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^{d \times e})$$
, hence
 $y^{(2)} := \xi + \int_0^{\cdot} V(y_s^{(1)}) d\mathbf{x}_s$ defined ✓
Moreover, $(y^{(2)}, V(y^{(1)})) \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^d)$.

3 $(V(y^{(2)}), DV(y^{(2)}) \otimes V(y^{(1)}) \in \mathcal{D}_x^{2\alpha}([0,1]; \mathbb{R}^{d \times e})$, hence $y^{(3)} := \xi + \int_0^{\cdot} V(y_s^{(2)}) d\mathbf{x}_s$ defined \checkmark Moreover, $(y^{(3)}, V(y^{(2)})) \in \mathcal{D}_x^{2\alpha}([0,1]; \mathbb{R}^d)$.

Let $\mathbf{x} \in \mathscr{C}^{\alpha}([0, 1]; \mathbb{R}^e), V : \mathbb{R}^d \to \mathbb{R}^{d \times e}$ smooth, consider $dy_s = V(y_s)dx_s, \quad y_0 = \xi \in \mathbb{R}^d$

1 $y^{(0)} ≡ ξ$, then $y^{(1)} := ξ + \int_0^{\cdot} V(y_s^{(0)}) dx_s$ defined **∨** Moreover, $(y^{(1)}, V(y^{(0)})) ∈ D_x^{2α} ([0, 1]; ℝ^d).$

- 2 $(V(y^{(1)}), DV(y^{(1)}) \otimes V(y^{(0)}) \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^{d \times e})$, hence $y^{(2)} := \xi + \int_0^{\cdot} V(y_s^{(1)}) d\mathbf{x}_s$ defined ✓ Moreover, $(y^{(2)}, V(y^{(1)})) \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^d)$.
- **3** $(V(y^{(2)}), DV(y^{(2)}) \otimes V(y^{(1)}) \in \mathcal{D}_x^{2\alpha}([0,1]; \mathbb{R}^{d \times e})$, hence $y^{(3)} := \xi + \int_0^{\cdot} V(y_s^{(2)}) d\mathbf{x}_s$ defined \checkmark Moreover, $(y^{(3)}, V(y^{(2)})) \in \mathcal{D}_x^{2\alpha}([0,1]; \mathbb{R}^d)$.

Let $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^e), V : \mathbb{R}^d \to \mathbb{R}^{d \times e}$ smooth, consider $dy_s = V(y_s)dx_s, \quad y_0 = \xi \in \mathbb{R}^d$ 1 $y^{(0)} \equiv \xi$, then $y^{(1)} \coloneqq \xi + \int_0^{\cdot} V(y_s^{(0)})d\mathbf{x}_s$ defined \checkmark Moreover, $(y^{(1)}, V(y^{(0)})) \in \mathcal{D}_x^{2\alpha}([0,1]; \mathbb{R}^d).$

2
$$(V(y^{(1)}), DV(y^{(1)}) \otimes V(y^{(0)}) \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^{d \times e})$$
, hence
 $y^{(2)} := \xi + \int_0^{\cdot} V(y^{(1)}_s) d\mathbf{x}_s$ defined ✓
Moreover, $(y^{(2)}, V(y^{(1)})) \in \mathcal{D}_x^{2\alpha}([0, 1]; \mathbb{R}^d)$.

3
$$(V(y^{(2)}), DV(y^{(2)}) \otimes V(y^{(1)}) \in \mathcal{D}_x^{2\alpha}([0,1]; \mathbb{R}^{d \times e})$$
, hence
 $y^{(3)} := \xi + \int_0^{\cdot} V(y_s^{(2)}) d\mathbf{x}_s$ defined ✓
Moreover, $(y^{(3)}, V(y^{(2)})) \in \mathcal{D}_x^{2\alpha}([0,1]; \mathbb{R}^d)$.

Theorem (Lyons; Gubinelli)

Given $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^e)$, $\frac{1}{3} < \alpha < \frac{1}{2}$, $V \in C_b^3(\mathbb{R}^d; \mathbb{R}^{d \times e})$, $\xi \in \mathbb{R}^d$. Then there is a unique $(y, y') \in \mathcal{D}_x^{2\alpha}([0,1]; \mathbb{R}^d)$ such that

$$\forall t \in [0,1]: y_t = \xi + \int_0^t V(y_s) d\mathbf{x}_s,$$

with y' = V(y).

- ▶ If $V \in C^3$, obtain a local solution.
- Existence requires $V \in C^{\gamma}$ for some $\gamma > \frac{1}{\alpha} 1$ i.e., *V* is $\lfloor \gamma \rfloor$ -differentiable with $\lfloor \gamma \rfloor$ -derivative in $C^{\gamma \lfloor \gamma \rfloor}$.
- Uniqueness requires $V \in C^{\gamma}$ for some $\gamma \geq \frac{1}{\alpha}$.
- For the smooth case "a = 1", this essentially recovers standard results from ODE theory.

Theorem (Lyons; Gubinelli)

Given $\mathbf{x} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^e)$, $\frac{1}{3} < \alpha < \frac{1}{2}$, $V \in C_b^3(\mathbb{R}^d; \mathbb{R}^{d \times e})$, $\xi \in \mathbb{R}^d$. Then there is a unique $(y, y') \in \mathcal{D}_x^{2\alpha}([0,1]; \mathbb{R}^d)$ such that

$$\forall t \in [0,1]: y_t = \xi + \int_0^t V(y_s) d\mathbf{x}_s,$$

with y' = V(y).

- If $V \in C^3$, obtain a local solution.
- Existence requires $V \in C^{\gamma}$ for some $\gamma > \frac{1}{\alpha} 1$ i.e., *V* is $\lfloor \gamma \rfloor$ -differentiable with $\lfloor \gamma \rfloor$ -derivative in $C^{\gamma \lfloor \gamma \rfloor}$.
- Uniqueness requires $V \in C^{\gamma}$ for some $\gamma \geq \frac{1}{\alpha}$.
- For the smooth case " $\alpha = 1$ ", this essentially recovers standard results from ODE theory.

Sketch of the proof of existence and uniqueness-1

• Given
$$(y, y') \in \mathcal{D}_x^{2\alpha}$$
, $T \le 1$, we have $(z, z') \coloneqq (V(y), DV(y)y') \in \mathcal{D}_x^{2\alpha}$ and we can define

$$\mathcal{M}_T: \mathcal{D}^{2\alpha}_x([0,T];\mathbb{R}^d) \to \mathcal{D}^{2\alpha}_x([0,T];\mathbb{R}^d), \quad (y,y') \mapsto \left(\xi + \int_0^{\cdot} z_s d\mathbf{x}_s, z\right).$$

▶ For *T* small enough, one can show that the closed subset

$$\mathcal{B}_{T} := \left\{ (y, y') \in \mathcal{D}_{x}^{2\alpha} \left([0, T]; \mathbb{R}^{d} \right) \middle| y_{0} = \xi, y_{0}' = V(\xi), \left\| (y, y') \right\|_{x, 2\alpha} \le 1 \right\}$$

is invariant under \mathcal{M}_T .

Sketch of the proof of existence and uniqueness-1

• Given
$$(y, y') \in \mathcal{D}_x^{2\alpha}$$
, $T \le 1$, we have $(z, z') \coloneqq (V(y), DV(y)y') \in \mathcal{D}_x^{2\alpha}$ and we can define

$$\mathcal{M}_T: \mathcal{D}_x^{2\alpha}([0,T];\mathbb{R}^d) \to \mathcal{D}_x^{2\alpha}([0,T];\mathbb{R}^d), \quad (y,y') \mapsto \left(\xi + \int_0^{\cdot} z_s d\mathbf{x}_s, z\right).$$

▶ For *T* small enough, one can show that the closed subset

$$\mathcal{B}_{T} := \left\{ (y, y') \in \mathcal{D}_{x}^{2\alpha} \left([0, T]; \mathbb{R}^{d} \right) \middle| y_{0} = \xi, y_{0}' = V(\xi), \left\| (y, y') \right\|_{x, 2\alpha} \le 1 \right\}$$

is invariant under \mathcal{M}_T .

Sketch of the proof of existence and uniqueness-2

► For *T* small enough, \mathcal{M}_T is a contraction on \mathcal{B}_T , i.e., for $(y, y'), (\overline{y}, \overline{y'}) \in \mathcal{B}_T$:

$$\left\|\mathcal{M}_{T}(y, y') - \mathcal{M}_{T}(\widetilde{y}, \widetilde{y}')\right\|_{x, 2\alpha} \leq \frac{1}{2} \left\|\left(y - \widetilde{y}, y' - \widetilde{y}'\right)\right\|_{x, 2\alpha}.$$

Need to estimate $V(y_s) - V(\tilde{y}_s)$ by $y_s - \tilde{y}_s$, but in rough path sense, i.e.,

$$\left\| \left(V(y) - V(\widetilde{y}), \left(V(y) - V(\widetilde{y}) \right)' \right) \right\|_{x, 2\alpha} \le \operatorname{const} \left\| \left(y - \widetilde{y}, y' - \widetilde{y}' \right) \right\|_{x, 2\alpha}.$$

Consider

$$V(y) - V(\widetilde{y}) = g(y, \widetilde{y})(y - \widetilde{y}), \quad g(a, b) \coloneqq \int_0^1 DV(ta + (1 - t)b)dt$$

$$g \in C_b^2$$
 and $||g||_{C_b^2} \le \text{const} \, ||V||_{C_b^3}$.

Davie's construction of RDE solutions

$$dy = V(y)d\mathbf{x}, \quad y_0 = \xi \in \mathbb{R}^d, \quad \mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1]; \mathbb{R}^e\right), \quad \frac{1}{3} < \alpha < \frac{1}{2}$$

From $(y, V(y)) \in \mathcal{D}_x^{2\alpha}$, we know that

$$y_{s,t} = V(y_s)x_{s,t} + O\left(|t-s|^{2\alpha}\right).$$

As $2\alpha < 1$, this Euler scheme will not converge.

From integration of controlled rough paths and the RDE, we know

 $y_{s,t} =$

Theorem

The Milstein scheme is converging (with rate $3\alpha - 1 - \epsilon$).

▶ Including iterated integrals of order up to *N* will give a scheme with rate $(N + 1)\alpha - 1 - \epsilon$, provided *V* is smooth enough.

$$dy = V(y)d\mathbf{x}, \quad y_0 = \xi \in \mathbb{R}^d, \quad \mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1]; \mathbb{R}^e\right), \quad \frac{1}{3} < \alpha < \frac{1}{2}$$

$$y_{s,t} = V(y_s)x_{s,t} + O\left(|t-s|^{2\alpha}\right).$$

As $2\alpha < 1$, this Euler scheme will not converge.

From integration of controlled rough paths and the RDE, we know

$$y_{s,t} = V(y_s)x_{s,t} + (V(y))'_s x_{s,t} + O(|t-s|^{3\alpha})$$

Theorem

The Milstein scheme is converging (with rate $3\alpha - 1 - \epsilon$).

▶ Including iterated integrals of order up to *N* will give a scheme with rate $(N + 1)\alpha - 1 - \epsilon$, provided *V* is smooth enough.

$$dy = V(y)d\mathbf{x}, \quad y_0 = \xi \in \mathbb{R}^d, \quad \mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1]; \mathbb{R}^e\right), \quad \frac{1}{3} < \alpha < \frac{1}{2}$$

$$y_{s,t} = V(y_s)x_{s,t} + O\left(|t-s|^{2\alpha}\right).$$

As $2\alpha < 1$, this Euler scheme will not converge.

From integration of controlled rough paths and the RDE, we know

$$y_{s,t} = V(y_s)x_{s,t} + DV(y_s)V(y_s)x_{s,t} + o(|t - s|)$$

Theorem

The Milstein scheme is converging (with rate $3\alpha - 1 - \epsilon$).

► Including iterated integrals of order up to *N* will give a scheme with rate $(N + 1)\alpha - 1 - \epsilon$, provided *V* is smooth enough.

$$dy = V(y)d\mathbf{x}, \quad y_0 = \xi \in \mathbb{R}^d, \quad \mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1]; \mathbb{R}^e\right), \quad \frac{1}{3} < \alpha < \frac{1}{2}$$

$$y_{s,t} = V(y_s)x_{s,t} + O\left(|t-s|^{2\alpha}\right).$$

As $2\alpha < 1$, this Euler scheme will not converge.

From integration of controlled rough paths and the RDE, we know

$$y_{s,t} = V(y_s)x_{s,t} + DV(y_s)V(y_s)x_{s,t} + o(|t - s|)$$

Theorem

The Milstein scheme is converging (with rate $3\alpha - 1 - \epsilon$).

► Including iterated integrals of order up to *N* will give a scheme with rate $(N + 1)\alpha - 1 - \epsilon$, provided *V* is smooth enough.

$$dy = V(y)d\mathbf{x}, \quad y_0 = \xi \in \mathbb{R}^d, \quad \mathbf{x} \in \mathscr{C}^{\alpha}\left([0,1]; \mathbb{R}^e\right), \quad \frac{1}{3} < \alpha < \frac{1}{2}$$

$$y_{s,t} = V(y_s)x_{s,t} + O\left(|t-s|^{2\alpha}\right).$$

As $2\alpha < 1$, this Euler scheme will not converge.

From integration of controlled rough paths and the RDE, we know

$$y_{s,t} = V(y_s)x_{s,t} + DV(y_s)V(y_s)x_{s,t} + o(|t - s|)$$

Theorem

The Milstein scheme is converging (with rate $3\alpha - 1 - \epsilon$).

► Including iterated integrals of order up to *N* will give a scheme with rate $(N + 1)\alpha - 1 - \epsilon$, provided *V* is smooth enough.

Theorem (Lyons)

Let $\mathbf{x}, \widetilde{\mathbf{x}} \in \mathscr{C}^{\alpha}([0,1]; \mathbb{R}^{e}), \frac{1}{3} < \alpha < \frac{1}{2}, \xi, \widetilde{\xi} \in \mathbb{R}^{d}$ and $(y, V(y)), (\widetilde{y}, V(\widetilde{y})) \in \mathcal{D}_{x}^{2\alpha}([0,1]; \mathbb{R}^{d})$ the unique solutions to

$$dy = V(y)d\mathbf{x}, \quad y_0 = \xi,$$

$$d\widetilde{y} = V(\widetilde{y})d\widetilde{\mathbf{x}}, \quad \widetilde{y}_0 = \widetilde{\xi}.$$

Let $\|\|\mathbf{x}\|\|_{\alpha}, \|\|\mathbf{\widetilde{x}}\|\|_{\alpha} \le M < \infty$. Then there is a constant $C = C(M, \alpha, \|V\|_{C_b^3})$ such that

$$\|y - \widetilde{y}\|_{\alpha} \le C\left(\left|\xi - \widetilde{\xi}\right| + \varrho_{\alpha}\left(\mathbf{x}, \widetilde{\mathbf{x}}\right)\right).$$

This result can be extended to the full rough path y and \tilde{y} .

Outline

- **1** Motivation and introduction
- 2 Rough path spaces
- 3 Integration against rough paths
- 4 Integration of controlled rough paths
- 5 Rough differential equations
- 6 Applications of the universal limit theorem
- 7 Rough partial differential equations

Stochastic differential equations

For $V \in C_b^3(\mathbb{R}^d; \mathbb{R}^{d \times e})$, $V_0 : \mathbb{R}^d \to \mathbb{R}^d$ Lipschitz, consider

 $dY_t = V_0(Y_t)dt + V(Y_t)dB_t, \quad Y_0 = \xi.$

Recall the Ito and Stratonovich Brownian rough paths B^{Ito} and B^{Strat} .

Theorem

a) For any ω such that $\mathbf{B}^{\mathsf{Ito}}(\omega) \in \mathscr{C}^{\alpha}$, denote by $Y = Y(\omega)$ the unique solution of the RDE

 $dY_t(\omega) = V_0(Y_t(\omega))dt + V(Y_t(\omega))d\mathbf{B}_t^{ho}(\omega), \quad Y_0(\omega) = \xi.$

Then *Y* is a strong solution of the above Ito SDE.

b) For any ω such that $\mathbf{B}^{Strat}(\omega) \in \mathscr{C}_g^{\alpha}$, denote by $Y = Y(\omega)$ the unique solution of the RDE

 $dY_t(\omega) = V_0(Y_t(\omega))dt + V(Y_t(\omega))d\mathbf{B}_t^{Strat}(\omega), \quad Y_0(\omega) = \xi.$

Then Y is a strong solution of the above Stratonovich SDE.

Stochastic differential equations

For $V \in C_b^3(\mathbb{R}^d; \mathbb{R}^{d \times e})$, $V_0 : \mathbb{R}^d \to \mathbb{R}^d$ Lipschitz, consider $dY_t = V_0(Y_t)dt + V(Y_t)dB_t, \quad Y_0 = \xi.$

Recall the Ito and Stratonovich Brownian rough paths B^{Ito} and B^{Strat} .

Theorem

a) For any ω such that $\mathbf{B}^{lto}(\omega) \in \mathscr{C}^{\alpha}$, denote by $Y = Y(\omega)$ the unique solution of the RDE

 $dY_t(\omega) = V_0(Y_t(\omega))dt + V(Y_t(\omega))d\mathbf{B}_t^{ho}(\omega), \quad Y_0(\omega) = \xi.$

Then Y is a strong solution of the above Ito SDE.

b) For any ω such that $\mathbf{B}^{Strat}(\omega) \in \mathscr{C}_g^{\alpha}$, denote by $Y = Y(\omega)$ the unique solution of the RDE

 $dY_t(\omega) = V_0(Y_t(\omega))dt + V(Y_t(\omega))d\mathbf{B}_t^{Strat}(\omega), \quad Y_0(\omega) = \xi.$

Then Y is a strong solution of the above Stratonovich SDE.

Stochastic differential equations

For $V \in C_b^3(\mathbb{R}^d; \mathbb{R}^{d \times e})$, $V_0 : \mathbb{R}^d \to \mathbb{R}^d$ Lipschitz, consider $dY_t = V_0(Y_t)dt + V(Y_t) \circ dB_t, \quad Y_0 = \xi.$

Recall the Ito and Stratonovich Brownian rough paths B^{Ito} and B^{Strat} .

Theorem

a) For any ω such that $\mathbf{B}^{lto}(\omega) \in \mathscr{C}^{\alpha}$, denote by $Y = Y(\omega)$ the unique solution of the RDE

 $dY_t(\omega) = V_0(Y_t(\omega))dt + V(Y_t(\omega))d\mathbf{B}_t^{ho}(\omega), \quad Y_0(\omega) = \xi.$

Then Y is a strong solution of the above Ito SDE.

b) For any ω such that $\mathbf{B}^{Strat}(\omega) \in \mathscr{C}_{g}^{\alpha}$, denote by $Y = Y(\omega)$ the unique solution of the RDE

$$dY_t(\omega) = V_0(Y_t(\omega))dt + V(Y_t(\omega))d\mathbf{B}_t^{\text{Strat}}(\omega), \quad Y_0(\omega) = \xi.$$

Then Y is a strong solution of the above Stratonovich SDE.

 B^n ... piece-wise linear approximations of a Brownian motion B

$$dY_t^n=V(Y_t^n)dB_t^n,\quad Y_0=\xi,\ V\in C_b^3(\mathbb{R}^e,\mathbb{R}^{d\times e}).$$

Theorem

 Y^n converges a.s. to the Stratonovich solution

$$dY_t = V(Y_t) \circ dB_t, \quad Y_0 = \xi.$$

More precisely, we have $||Y - Y^n||_{\alpha} \to 0$ a.s. for $\alpha < \frac{1}{2}$.

 B^n ... piece-wise linear approximations of a Brownian motion B

$$dY_t^n = V(Y_t^n) dB_t^n, \quad Y_0 = \xi, \ V \in C_b^3(\mathbb{R}^e, \mathbb{R}^{d \times e}).$$

Theorem

 Y^n converges a.s. to the Stratonovich solution

$$dY_t = V(Y_t) \circ dB_t, \quad Y_0 = \xi.$$

More precisely, we have $||Y - Y^n||_{\alpha} \rightarrow 0$ a.s. for $\alpha < \frac{1}{2}$.

Proof.

- Consider $\mathbb{B}_{s,t}^n \coloneqq \int_s^t B_{s,u}^n dB_u^n$, show that $\left\|\mathbb{B}^n \mathbb{B}^{\text{Strat}}\right\|_{2\alpha} \to 0$ a.s.
- Apply the universal limit theorem:

$$\left\|Y - Y^{n}\right\|_{\alpha} \leq \text{const} \, \varrho_{\alpha}\left(\mathbb{B}^{n}, \mathbb{B}^{\text{Strat}}\right)$$

 B^n ... piece-wise linear approximations of a Brownian motion B

$$dY_t^n = V(Y_t^n) dB_t^n, \quad Y_0 = \xi, \ V \in C_b^3(\mathbb{R}^e, \mathbb{R}^{d \times e}).$$

Theorem

 Y^n converges a.s. to the Stratonovich solution

$$dY_t = V(Y_t) \circ dB_t, \quad Y_0 = \xi.$$

More precisely, we have $||Y - Y^n||_{\alpha} \to 0$ a.s. for $\alpha < \frac{1}{2}$.

- Non dyadic pice-wise linear approximations possible, lead to convergence rate ¹/₂ − α − ε—in C^α. By working in spaces with lower regularity, one can get to ¹/₂ − ε.
- ► The result also holds—mutatis mutandis—for fractional Brownian motion with $H > \frac{1}{4}$.

Outline

- **1** Motivation and introduction
- 2 Rough path spaces
- 3 Integration against rough paths
- 4 Integration of controlled rough paths
- 5 Rough differential equations
- 6 Applications of the universal limit theorem

7 Rough partial differential equations

$$du = F[u]dt + \sum_{i=1}^{d} H_i[u] \circ dW_t^i(\omega), \quad u(0, x) = g(x), \quad x \in \mathbb{R}^n,$$

$$F[u] = F(x, u, Du, D^2u),$$

$$H_i[u] = H_i(x, u, Du), \quad i = 1, \dots, e.$$

We assume

Transport noise: $H_i[u] = \langle \beta_i(x), Du \rangle$ **Semilinear noise:** $H_i[u] = H_i(x, u)$ **Linear noise:** $H_i[u] = \langle \beta_i(x), Du \rangle + \gamma_i(x)u$

ldea

Solve the equation with mollified noise

2. Show that limiting solution only depends on rough path W

3. Use flow-transformation method as technical tool

Rough paths and rough partial differential equations · March 18, 2016 · Page 41 (48)

$$du = F[u]dt + \sum_{i=1}^{d} H_i[u] \circ dW_t^i(\omega), \quad u(0, x) = g(x), \quad x \in \mathbb{R}^n,$$

$$F[u] = F(x, u, Du, D^2u),$$

$$H_i[u] = H_i(x, u, Du), \quad i = 1, \dots, e.$$

We assume

Transport noise: $H_i[u] = \langle \beta_i(x), Du \rangle$ **Semilinear noise:** $H_i[u] = H_i(x, u)$ **Linear noise:** $H_i[u] = \langle \beta_i(x), Du \rangle + \gamma_i(x)u$

Idea

- 1. Solve the equation with mollified noise
- 2. Show that limiting solution only depends on rough path W
- 3. Use flow-transformation method as technical tool

$$du = F[u]dt + \sum_{i=1}^{d} H_i[u] \circ dW_t^i(\omega), \quad u(0, x) = g(x), \quad x \in \mathbb{R}^n,$$

$$F[u] = F(x, u, Du, D^2u),$$

$$H_i[u] = H_i(x, u, Du), \quad i = 1, \dots, e.$$

We assume

Transport noise: $H_i[u] = \langle \beta_i(x), Du \rangle$ **Semilinear noise:** $H_i[u] = H_i(x, u)$ **Linear noise:** $H_i[u] = \langle \beta_i(x), Du \rangle + \gamma_i(x)u$

Idea

- 1. Solve the equation with mollified noise
- 2. Show that limiting solution only depends on rough path W
- 3. Use flow-transformation method as technical tool

$$du = F(x, u, Du, D^2u)dt + \langle \beta(x), Du \rangle \circ dW_t, \quad u(0, x) = g(x) \quad (*)$$

Apply a (*W*-dependent) transformation turning (*) into a deterministic "classical" PDE, provided that *W* is smooth.

Let $y_t = \varphi_t(\xi)$ denote the flow of the ODE $\dot{y}_t = -\beta(y_t)\dot{W}_t$, $y_0 = \xi \in \mathbb{R}^n$.

Theorem

u is a classical solution of

 $\partial_t u = F(x, u, Du, D^2 u) + \langle \beta(x), Du \rangle \dot{W}$

if and only if $v(t, x) := u(t, \varphi_t(x))$ is a classical solution to

$$\partial_t v = F^{\varphi}(t, x, v, Dv, D^2 v)$$

with

 $F^{\varphi}(t,\varphi_{t}(x),r,p,X) \equiv F\left(x,r,\left\langle p, D\varphi_{t}^{-1}\right\rangle,\left\langle X, D\varphi_{t}^{-1} \otimes D\varphi_{t}^{-1}\right\rangle + \left\langle p, D^{2}\varphi_{t}^{-1}\right\rangle\right)$

Rough paths and rough partial differential equations · March 18, 2016 · Page 42 (48)

$$du = F(x, u, Du, D^2u)dt + \langle \beta(x), Du \rangle \circ dW_t, \quad u(0, x) = g(x) \quad (*)$$

Apply a (*W*-dependent) transformation turning (*) into a deterministic "classical" PDE, provided that *W* is smooth.

Let $y_t = \varphi_t(\xi)$ denote the flow of the ODE $\dot{y}_t = -\beta(y_t)\dot{W}_t$, $y_0 = \xi \in \mathbb{R}^n$.

Theorem

u is a classical solution of

$$\partial_t u = F(x, u, Du, D^2 u) + \langle \beta(x), Du \rangle \dot{W}$$

if and only if $v(t, x) := u(t, \varphi_t(x))$ is a classical solution to

$$\partial_t v = F^{\varphi}(t, x, v, Dv, D^2 v)$$

with

 $F^{\varphi}\left(t,\varphi_{t}(x),r,p,X\right) \equiv F\left(x,r,\left\langle p,\ D\varphi_{t}^{-1}\right\rangle,\left\langle X,\ D\varphi_{t}^{-1}\otimes D\varphi_{t}^{-1}\right\rangle + \left\langle p,\ D^{2}\varphi_{t}^{-1}\right\rangle\right)$

Rough paths and rough partial differential equations · March 18, 2016 · Page 42 (48)

$$du = F(x, u, Du, D^2u)dt + \langle \beta(x), Du \rangle \circ dW_t, \quad u(0, x) = g(x) \quad (*)$$

Apply a (*W*-dependent) transformation turning (*) into a deterministic "classical" PDE, provided that *W* is smooth.

Let $y_t = \varphi_t(\xi)$ denote the flow of the ODE $\dot{y}_t = -\beta(y_t)\dot{W}_t$, $y_0 = \xi \in \mathbb{R}^n$.

Theorem

u is a classical solution of

$$\partial_t u = F(x, u, Du, D^2 u) + \langle \beta(x), Du \rangle \dot{W}$$

if and only if $v(t, x) := u(t, \varphi_t(x))$ is a classical solution to

$$\partial_t v = F^{\varphi}(t, x, v, Dv, D^2 v)$$

with

$$F^{\varphi}\left(t,\varphi_{t}(x),r,p,X\right)\equiv F\left(x,r,\left\langle p,\ D\varphi_{t}^{-1}\right\rangle,\left\langle X,\ D\varphi_{t}^{-1}\otimes D\varphi_{t}^{-1}\right\rangle+\left\langle p,\ D^{2}\varphi_{t}^{-1}\right\rangle\right)$$

$$du = F(x, u, Du, D^2u)dt + \langle \beta(x), Du \rangle \circ dW_t, \quad u(0, x) = g(x) \quad (*)$$

- **1.** Pick $\mathbf{W} \in \mathscr{C}_{g}^{\alpha}([0,1]; \mathbb{R}^{e})$ together with a sequence W^{ϵ} of smooth paths approximating \mathbf{W} .
- 2. By the universal limit theorem for RDEs, we have

$$F^{\epsilon} \coloneqq F^{\varphi^{\epsilon}} \xrightarrow{\epsilon \to 0} F^{\varphi}$$

 φ^ϵ and φ denoting the flows of

 $dy = -\beta(y)dW^{\epsilon}$, $dy = -\beta(y)dW$, respectively.

3. Define the rough path solution

 $du = F(x, u, Du, D^2u)dt + \langle \beta(x), Du \rangle d\mathbf{W}, \quad u(0, \cdot) = g$

as limit u^{ϵ} for $\epsilon \to 0$.

$$du = F(x, u, Du, D^2u)dt + \langle \beta(x), Du \rangle \circ dW_t, \quad u(0, x) = g(x) \quad (*)$$

- **1.** Pick $\mathbf{W} \in \mathscr{C}_{g}^{\alpha}([0,1]; \mathbb{R}^{e})$ together with a sequence W^{ϵ} of smooth paths approximating \mathbf{W} .
- 2. By the universal limit theorem for RDEs, we have

$$F^{\epsilon} \coloneqq F^{\varphi^{\epsilon}} \xrightarrow{\epsilon \to 0} F^{\varphi}$$

 φ^ϵ and φ denoting the flows of

$$dy = -\beta(y)dW^{\epsilon}$$
, $dy = -\beta(y)dW$, respectively.

3. Define the rough path solution

$$du = F(x, u, Du, D^2u)dt + \langle \beta(x), Du \rangle d\mathbf{W}, \quad u(0, \cdot) = g$$

as limit u^{ϵ} for $\epsilon \to 0$.

Rough path analysis and PDE theory II

For the third step we need a (deterministic) PDE framework for solutions $u \in \mathcal{U}$ and initial conditions $g \in \mathcal{G}$ such that

(i) For $g^{\epsilon} \in \mathcal{G}$, the approximate problem

$$\partial_t u^{\epsilon} = F\left(x, u^{\epsilon}, Du^{\epsilon}, D^2 u^{\epsilon}\right) + \langle \beta(x), Du^{\epsilon} \rangle \dot{W}^{\epsilon} \qquad (*)$$

admits a unique solution $u^{\epsilon} \in \mathcal{U}$.

(ii) $u^{\epsilon} \in \mathcal{U}$ solves (*) if and only if $v^{\epsilon}(t, x) := u(t, \varphi_t^{\epsilon}(x)) \in \mathcal{U}$ solves

$$\partial_t v^{\epsilon} = F^{\epsilon}(t, x, v^{\epsilon}, Dv^{\epsilon}, D^2 v^{\epsilon})$$

(iii) When g^ε → g ∈ G and F^ε → F⁰—as seen for F⁰ = F^φ—then v^ε → v⁰, the unique solution to ∂_tv⁰ = F⁰(t, x, v⁰, Dv⁰.D²v⁰).
(iv) v^ε → v⁰ in U implies that u^ε → u⁰, with v⁰(t, x) = u⁰(t, φ_t(x)).

Rough path analysis and PDE theory II

For the third step we need a (deterministic) PDE framework for solutions $u \in \mathcal{U}$ and initial conditions $g \in \mathcal{G}$ such that

(i) For $g^{\epsilon} \in \mathcal{G}$, the approximate problem

$$\partial_t u^{\epsilon} = F\left(x, u^{\epsilon}, Du^{\epsilon}, D^2 u^{\epsilon}\right) + \langle \beta(x), Du^{\epsilon} \rangle \dot{W}^{\epsilon} \qquad (*)$$

admits a unique solution $u^{\epsilon} \in \mathcal{U}$.

(ii) $u^{\epsilon} \in \mathcal{U}$ solves (*) if and only if $v^{\epsilon}(t, x) := u(t, \varphi_t^{\epsilon}(x)) \in \mathcal{U}$ solves

$$\partial_t v^\epsilon = F^\epsilon(t,x,v^\epsilon,Dv^\epsilon,D^2v^\epsilon)$$

(iii) When g^ε → g ∈ G and F^ε → F⁰—as seen for F⁰ = F^φ—then v^ε → v⁰, the unique solution to ∂_tv⁰ = F⁰(t, x, v⁰, Dv⁰.D²v⁰).
(iv) v^ε → v⁰ in U implies that u^ε → u⁰, with v⁰(t, x) = u⁰(t, φ_t(x)).

For the third step we need a (deterministic) PDE framework for solutions $u \in \mathcal{U}$ and initial conditions $g \in \mathcal{G}$ such that

(i) For $g^{\epsilon} \in \mathcal{G}$, the approximate problem

$$\partial_t u^{\epsilon} = F\left(x, u^{\epsilon}, Du^{\epsilon}, D^2 u^{\epsilon}\right) + \langle \beta(x), Du^{\epsilon} \rangle \dot{W}^{\epsilon} \qquad (*)$$

admits a unique solution $u^{\epsilon} \in \mathcal{U}$.

(ii) $u^{\epsilon} \in \mathcal{U}$ solves (*) if and only if $v^{\epsilon}(t, x) \coloneqq u(t, \varphi_t^{\epsilon}(x)) \in \mathcal{U}$ solves

$$\partial_t v^\epsilon = F^\epsilon(t,x,v^\epsilon,Dv^\epsilon,D^2v^\epsilon)$$

(iii) When $g^{\epsilon} \to g \in \mathcal{G}$ and $F^{\epsilon} \to F^0$ —as seen for $F^0 = F^{\varphi}$ —then $v^{\epsilon} \to v^0$, the unique solution to $\partial_t v^0 = F^0(t, x, v^0, Dv^0.D^2v^0)$.

(iv) $v^{\epsilon} \to v^0$ in \mathcal{U} implies that $u^{\epsilon} \to u^0$, with $v^0(t, x) = u^0(t, \varphi_t(x))$.

For the third step we need a (deterministic) PDE framework for solutions $u \in \mathcal{U}$ and initial conditions $g \in \mathcal{G}$ such that

(i) For $g^{\epsilon} \in \mathcal{G}$, the approximate problem

$$\partial_t u^{\epsilon} = F\left(x, u^{\epsilon}, Du^{\epsilon}, D^2 u^{\epsilon}\right) + \langle \beta(x), Du^{\epsilon} \rangle \dot{W}^{\epsilon} \qquad (*)$$

admits a unique solution $u^{\epsilon} \in \mathcal{U}$.

(ii) $u^{\epsilon} \in \mathcal{U}$ solves (*) if and only if $v^{\epsilon}(t, x) \coloneqq u(t, \varphi_t^{\epsilon}(x)) \in \mathcal{U}$ solves

$$\partial_t v^\epsilon = F^\epsilon(t,x,v^\epsilon,Dv^\epsilon,D^2v^\epsilon)$$

(iii) When g^ϵ → g ∈ G and F^ϵ → F⁰—as seen for F⁰ = F^φ—then v^ϵ → v⁰, the unique solution to ∂_tv⁰ = F⁰(t, x, v⁰, Dv⁰.D²v⁰).
(iv) v^ϵ → v⁰ in U implies that u^ϵ → u⁰, with v⁰(t, x) = u⁰(t, φ_t(x)).

For our model problem, the concept of viscosity solutions satisfies the requirements for $\mathcal{U} = BC([0, 1] \times \mathbb{R}^n)$, $\mathcal{G} = BUC(\mathbb{R}^n)$ provided that

- ► *F* is degenerate elliptic and satisfies some technical conditions;
- For all C_b^3 -diffeomorphisms φ , comparison holds for F^{φ} .

Theorem

Given
$$\frac{1}{3} < \alpha \leq \frac{1}{2}$$
, $\mathbf{W} \in \mathscr{C}_{g}^{\alpha}$ and a $W^{\epsilon} \in C^{1}([0,1]; \mathbb{R}^{e})$ such that
 $\mathbf{W}^{\epsilon} := (W^{\epsilon}, \mathbb{W}^{\epsilon}) \xrightarrow[in \mathscr{C}^{\alpha}]{} \mathbf{W}, \quad \mathbb{W}_{s,t}^{\epsilon} := \int_{0}^{t} W_{s,u}^{\epsilon} \otimes dW_{u}^{\epsilon}.$
Consider the unique viscosity solution $u^{\epsilon} \in BC$ to
 $\partial u^{\epsilon} = F(x, u^{\epsilon}, Du^{\epsilon}, D^{2}u^{\epsilon}) + /\beta(x), \quad Du^{\epsilon} \setminus \dot{W}^{\epsilon}, \quad u^{\epsilon}(0, \epsilon) = \alpha$

• $\exists u = \lim_{n \to \infty} u^{\epsilon} \in BC$ (locally uniformly) u only depends on W

▶ The transformation *v* of *u* is the unique solution of $\partial_t v = F^{\varphi}(t, x, v, Dv, D^2 v)$ in BC, *φ* being the flow of $dy = -\beta(y)dW$.

• The solution map $(\mathbf{W}, g) \mapsto u$ is continuous.

For our model problem, the concept of viscosity solutions satisfies the requirements for $\mathcal{U} = BC([0, 1] \times \mathbb{R}^n)$, $\mathcal{G} = BUC(\mathbb{R}^n)$ provided that

- ► *F* is degenerate elliptic and satisfies some technical conditions;
- For all C_b^3 -diffeomorphisms φ , comparison holds for F^{φ} .

Theorem

Given
$$\frac{1}{3} < \alpha \leq \frac{1}{2}$$
, $\mathbf{W} \in \mathscr{C}_{g}^{\alpha}$ and a $W^{\epsilon} \in C^{1}([0,1]; \mathbb{R}^{e})$ such that
 $\mathbf{W}^{\epsilon} := (W^{\epsilon}, \mathbb{W}^{\epsilon}) \xrightarrow[in \mathscr{C}^{\alpha}]{\epsilon \to 0} \mathbf{W}, \quad \mathbb{W}_{s,t}^{\epsilon} := \int_{0}^{t} W_{s,u}^{\epsilon} \otimes dW_{u}^{\epsilon}.$

$$\partial_t u^\epsilon = F(x, u^\epsilon, Du^\epsilon, D^2 u^\epsilon) + \left<\beta(x), \ Du^\epsilon\right> \dot{W}^\epsilon, \quad u^\epsilon(0, \cdot) = g.$$

- ► $\exists u = \lim_{\epsilon \to 0} u^{\epsilon} \in BC$ (locally uniformly). *u* only depends on **W**.
- The transformation v of u is the unique solution of $\partial_t v = F^{\varphi}(t, x, v, Dv, D^2 v)$ in BC, φ being the flow of $dy = -\beta(y)d\mathbf{W}$.
- The solution map $(\mathbf{W}, g) \mapsto u$ is continuous.

For our model problem, the concept of viscosity solutions satisfies the requirements for $\mathcal{U} = BC([0, 1] \times \mathbb{R}^n)$, $\mathcal{G} = BUC(\mathbb{R}^n)$ provided that

- ► *F* is degenerate elliptic and satisfies some technical conditions;
- For all C_b^3 -diffeomorphisms φ , comparison holds for F^{φ} .

Theorem

Given
$$\frac{1}{3} < \alpha \leq \frac{1}{2}$$
, $\mathbf{W} \in \mathscr{C}_{g}^{\alpha}$ and a $W^{\epsilon} \in C^{1}([0,1]; \mathbb{R}^{e})$ such that
 $\mathbf{W}^{\epsilon} \coloneqq (W^{\epsilon}, \mathbb{W}^{\epsilon}) \xrightarrow[in \mathscr{C}^{\alpha}]{\epsilon \to 0} \mathbf{W}, \quad \mathbb{W}_{s,t}^{\epsilon} \coloneqq \int_{0}^{t} W_{s,u}^{\epsilon} \otimes dW_{u}^{\epsilon}.$

$$\partial_t u^\epsilon = F(x,u^\epsilon,Du^\epsilon,D^2u^\epsilon) + \left<\beta(x),\,Du^\epsilon\right> \dot{W}^\epsilon,\quad u^\epsilon(0,\cdot) = g.$$

- ► $\exists u = \lim_{\epsilon \to 0} u^{\epsilon} \in BC$ (locally uniformly). *u* only depends on **W**.
- The transformation v of u is the unique solution of $\partial_t v = F^{\varphi}(t, x, v, Dv, D^2 v)$ in BC, φ being the flow of $dy = -\beta(y)d\mathbf{W}$.
- The solution map $(\mathbf{W}, g) \mapsto u$ is continuous.

For our model problem, the concept of viscosity solutions satisfies the requirements for $\mathcal{U} = BC([0, 1] \times \mathbb{R}^n)$, $\mathcal{G} = BUC(\mathbb{R}^n)$ provided that

- ► *F* is degenerate elliptic and satisfies some technical conditions;
- For all C_b^3 -diffeomorphisms φ , comparison holds for F^{φ} .

Theorem

Given
$$\frac{1}{3} < \alpha \leq \frac{1}{2}$$
, $\mathbf{W} \in \mathscr{C}_{g}^{\alpha}$ and a $W^{\epsilon} \in C^{1}([0,1]; \mathbb{R}^{e})$ such that
 $\mathbf{W}^{\epsilon} \coloneqq (W^{\epsilon}, \mathbb{W}^{\epsilon}) \xrightarrow[in \mathscr{C}^{\alpha}]{\epsilon \to 0} \mathbf{W}, \quad \mathbb{W}_{s,t}^{\epsilon} \coloneqq \int_{0}^{t} W_{s,u}^{\epsilon} \otimes dW_{u}^{\epsilon}.$

$$\partial_t u^\epsilon = F(x,u^\epsilon,Du^\epsilon,D^2u^\epsilon) + \left<\beta(x),\,Du^\epsilon\right> \dot{W}^\epsilon, \quad u^\epsilon(0,\cdot) = g.$$

- ► $\exists u = \lim_{\epsilon \to 0} u^{\epsilon} \in BC$ (locally uniformly). *u* only depends on **W**.
- The transformation *v* of *u* is the unique solution of $\partial_t v = F^{\varphi}(t, x, v, Dv, D^2 v)$ in *BC*, φ being the flow of $dy = -\beta(y)d\mathbf{W}$.
- The solution map $(\mathbf{W}, g) \mapsto u$ is continuous.

For our model problem, the concept of viscosity solutions satisfies the requirements for $\mathcal{U} = BC([0, 1] \times \mathbb{R}^n)$, $\mathcal{G} = BUC(\mathbb{R}^n)$ provided that

- ► *F* is degenerate elliptic and satisfies some technical conditions;
- For all C_b^3 -diffeomorphisms φ , comparison holds for F^{φ} .

Theorem

Given
$$\frac{1}{3} < \alpha \leq \frac{1}{2}$$
, $\mathbf{W} \in \mathscr{C}_{g}^{\alpha}$ and a $W^{\epsilon} \in C^{1}([0,1]; \mathbb{R}^{e})$ such that
 $\mathbf{W}^{\epsilon} \coloneqq (W^{\epsilon}, \mathbb{W}^{\epsilon}) \xrightarrow[in \mathscr{C}^{\alpha}]{\epsilon \to 0} \mathbf{W}, \quad \mathbb{W}_{s,t}^{\epsilon} \coloneqq \int_{0}^{t} W_{s,u}^{\epsilon} \otimes dW_{u}^{\epsilon}.$

$$\partial_t u^\epsilon = F(x,u^\epsilon,Du^\epsilon,D^2u^\epsilon) + \left<\beta(x),\,Du^\epsilon\right> \dot{W}^\epsilon, \quad u^\epsilon(0,\cdot) = g.$$

- ► $\exists u = \lim_{\epsilon \to 0} u^{\epsilon} \in BC$ (locally uniformly). *u* only depends on **W**.
- The transformation *v* of *u* is the unique solution of $\partial_t v = F^{\varphi}(t, x, v, Dv, D^2 v)$ in *BC*, φ being the flow of $dy = -\beta(y)d\mathbf{W}$.
- The solution map $(\mathbf{W}, g) \mapsto u$ is continuous.

Theorem (Lyons '91)

There is no separable Banach space $\mathcal{B} \subset C([0, 1])$, such that

1.
$$\bigcap_{0 < \alpha < \frac{1}{2}} C^{\alpha}([0, 1]) \subset \mathcal{B};$$

2. the bi-linear map

$$(f,g)\mapsto \int_0^{\cdot} f(s)\dot{g}(s)ds$$

defined on $C^{\infty}([0,1]) \times C^{\infty}([0,1])$ extends to a continuous map

 $\mathcal{B} \times \mathcal{B} \to C\left([0,1]\right).$

Back]

Viscosity solutions

Consider $G : \mathbb{R}^m \times \mathbb{R} \times \mathbb{R}^m \times \mathbb{R}^{m \times m} \to \mathbb{R}$ continuous and degenerate elliptic, i.e.,

$$B \ge 0 \Rightarrow G(x, u, p, A) \le G(x, u, p, A + B).$$

A continuous function *u* is a viscosity supersolution of

$$-G(x, u, Du, D^2u) \ge 0$$

iff for every smooth test-function ϕ touching *u* from below in some point x_0 , we have

$$-G(x_0,\phi,D\phi,D^2\phi) \ge 0.$$

u is a viscosity subsolution iff for every smooth test-function ϕ touching *u* from above in some point x_0 , we have

$$-G(x_0,\phi,D\phi,D^2\phi) \le 0.$$

Finally, u is a viscosity solution if it is both a viscosity super- and subsolution. • Back

Consider viscosity solutions to the problem

$$(\partial_t u - F) = 0.$$

Assume that *u* is a subsolution of the problem with initial condition $u(0, \cdot) = u_0$ and *v* is a supersolution with initial condition $v(0, \cdot) = v_0$. The problem satisfies comparison iff

$$u_0 \leq v_0 \Rightarrow u \leq v \text{ on } [0, T] \times \mathbb{R}^n.$$

