Pricing under rough volatility

Christian Bayer
Weierstrass Institute Berlin
Joint work with Peter Friz and Jim Gatheral.
Outline

1 Models for variance swaps and VIX

2 The rough Bergomi model

3 Volatility is rough: the econometric evidence

4 Case studies

5 Towards calibration of the rough Bergomi model
Variance swaps and VIX

- Given a traded asset S_t satisfying
 \[dS_t = \sqrt{v_t} S_t dZ_t \]

- Interest rate $r = 0$; model formulated under Q

- In this talk, S corresponds to the S & P 500 index (SPX).

- Realized variance $w_{t,T} = \int_t^T v_s ds$

- Variance swaps are swaps on realized variances.

- Allow direct trades in volatility, not indirect via options

- For convenience, CBOE introduced an index (VIX) for the square root of (annualized) one month variance swaps.

- $VIX_t \approx \sqrt{\frac{1}{\Delta} E_t w_{t,t+\Delta}}, \Delta = 1/12$
Given a traded asset S_t satisfying

$$dS_t = \sqrt{v_t}S_t dZ_t$$

Interest rate $r = 0$; model formulated under Q

In this talk, S corresponds to the S & P 500 index (SPX).

Realized variance $w_{t,T} = \int_t^T v_s ds$

Variance swaps are swaps on realized variances.

Allow direct trades in volatility, not indirect via options

For convenience, CBOE introduced an index (VIX) for the square root of (annualized) one month variance swaps.

$$\text{VIX}_t \approx \sqrt{\frac{1}{\Delta} E_t w_{t,t+\Delta}}, \Delta = 1/12$$
Variance swaps and VIX

- Given a traded asset S_t satisfying
 \[dS_t = \sqrt{v_t}S_t dZ_t \]

- Interest rate $r = 0$; model formulated under Q

- In this talk, S corresponds to the S & P 500 index (SPX).

- **Realized variance** $w_{t,T} = \int_t^T v_s ds$

- Variance swaps are swaps on realized variances.

- Allow direct trades in volatility, not indirect via options

- For convenience, CBOE introduced an index (VIX) for the square root of (annualized) one month variance swaps.

- $VIX_t \approx \sqrt{\frac{1}{\Delta} E_t w_{t,t+\Delta}}$, $\Delta = 1/12$
Ito’s formula gives for the payoff $\log(S_T)$

$$\log S_T - \log S_t = \int_t^T \frac{dS_u}{S_u} - \frac{1}{2} \int_t^T \nu_u du$$

Breeden-Litzenberger formula: $p(S_T, T, S_t, t) = \frac{\partial^2 C/P(S_t, K, t, T)}{\partial K^2}\bigg|_{K=S_t}$

p ... density, C, P call and put prices

Integration by parts, put-call-parity give for smooth payoff g

$$E[g(S_T)|S_t] = g(S_t) + \int_0^{S_t} P(K)g''(K)dK + \int_{S_t}^\infty C(K)g''(K)dK$$

For $g(S) = -2 \log S$, we have $g''(K) = \frac{2}{K^2}$ and

$$E_t w_{t,T} = -2 \left(\int_0^{S_t} \frac{P(K)}{K^2} dK + \int_{S_t}^\infty \frac{C(K)}{K^2} dK \right)$$
The log-strip

- Ito’s formula gives for the payoff \(\log(S_T)\)

\[
E_t w_{t,T} = E_t \int_t^T v_u du = 2 \log S_t - 2E_t \log S_T
\]

- Breeden-Litzenberger formula:
 \[p(S_T, T, S_t, t) = \left. \frac{\partial^2 C/P(S_t, K, t, T)}{\partial K^2} \right|_{K=S_t}\]

- \(p\) ... density, \(C, P\) call and put prices

- Integration by parts, put-call-parity give for smooth payoff \(g\)

\[
E[g(S_T)|S_t] = g(S_t) + \int_0^{S_t} P(K)g''(K) dK + \int_{S_t}^\infty C(K)g''(K) dK
\]

- For \(g(S) = -2 \log S\), we have \(g''(K) = \frac{2}{K^2}\) and

\[
E_t w_{t,T} = -2 \left(\int_0^{S_t} \frac{P(K)}{K^2} dK + \int_{S_t}^\infty \frac{C(K)}{K^2} dK \right)
\]
The log-strip

- Ito's formula gives for the payoff $\log(S_T)$

$$E_t \omega_{t,T} = E_t \int_t^T v_u du = 2 \log S_t - 2E_t \log S_T$$

- Breeden-Litzenberger formula: $p(S_T, T, S_t, t) = \left. \frac{\partial^2 C/P(S_t, K, T)}{\partial K^2} \right|_{K=S_t}$

- $p \ldots$ density, C, P call and put prices

- Integration by parts, put-call-parity give for smooth payoff g

$$E[g(S_T)|S_t] = g(S_t) + \int_0^{S_t} P(K)g''(K)dK + \int_{S_t}^\infty C(K)g''(K)dK$$

- For $g(S) = -2 \log S$, we have $g''(K) = \frac{2}{K^2}$ and

$$E_t \omega_{t,T} = -2 \left(\int_0^{S_t} \frac{P(K)}{K^2}dK + \int_{S_t}^\infty \frac{C(K)}{K^2}dK \right)$$
Stochastic volatility models

\[dS_t = \sqrt{v_t} S_t dZ_t, \]
\[dv_t = \ldots \]

- \(Z, W \) Brownian motions with correlation \(\rho \)
- Goal: model consistent with the full SPX implied volatility surface
 - \(\text{VIX}_t \approx \sqrt{v_t} \) (with \(\Delta \approx 0 \))
 - \(\text{VIX} \) itself is not traded, but the following are:
 - \(\text{VIX} \) futures (rate given by \(E_t \text{VIX}_T \); traded on CBOE)
 - \(\text{VIX} \) options (i.e., options on \(\text{VIX} \) futures; traded on CBOE)
 - Variance swaps (swap rate \(E_t \xi_{t,T} \); traded over the counter)
 - Fundamental object: forward variance \(\xi_t(u) = E_t v_u, \, t \leq u \)
 - Variance swap \(E_t \xi_{t,T} = E_t \int_t^T v_s ds = \int_t^T \xi_t(s) ds \)
Stochastic volatility models

\[dS_t = \sqrt{v_t} S_t dZ_t, \]
\[dv_t = \ldots \]

- \(Z, W \) Brownian motions with correlation \(\rho \)
- Goal: model consistent with the full SPX implied volatility surface
- \(\text{VIX}_t \approx \sqrt{v_t} \) (with \(\Delta \approx 0 \))
- VIX itself is not traded, but the following are:
 - VIX futures (rate given by \(E_t \text{VIX}_T \); traded on CBOE)
 - VIX options (i.e., options on VIX futures; traded on CBOE)
 - Variance swaps (swap rate \(E_t w_{t,T} \); traded over the counter)
- Fundamental object: forward variance \(\xi_t(u) = E_t v_u, \ t \leq u \)
- Variance swap \(E_t w_{t,T} = E_t \int_t^T v_s ds = \int_t^T \xi_t(s) ds \)
dS_t = \sqrt{\nu_t} S_t dZ_t,

d\nu_t = \ldots

- Z, W Brownian motions with correlation \(\rho \)
- Goal: model consistent with the full SPX implied volatility surface
- \(\text{VIX}_t \approx \sqrt{\nu_t} \) (with \(\Delta \approx 0 \))
- VIX itself is not traded, but the following are:
 - VIX futures (rate given by \(E_t \text{ VIX}_T \); traded on CBOE)
 - VIX options (i.e., options on VIX futures; traded on CBOE)
 - Variance swaps (swap rate \(E_t w_{t,T} \); traded over the counter)
- Fundamental object: forward variance \(\xi_t(u) = E_t \nu_u, t \leq u \)
- Variance swap \(E_t w_{t,T} = E_t \int_t^T \nu_s ds = \int_t^T \xi_t(s) ds \)
Some SPX implied volatility surfaces

Pricing under rough volatility · November 3, 2015 · Page 6 (35)
Conclusions

▶ Since the rough shape of volatility surfaces seems pretty stable, we look for time-homogeneous models.

▶ Term structure of ATM volatility skew ($k = \log(K/S_t)$)

$$\psi(\tau) = \left| \frac{\partial}{\partial k} \sigma_{BS}(k, \tau) \right|_{k=0} \sim 1/\tau^{\alpha}, \quad \alpha \in [0.3, 0.5]$$

▶ Conventional stochastic volatility models produce ATM skews which are constant for $\tau \ll 1$ and of order $1/\tau$ for $\tau \gg 1$. Hence, conventional stochastic volatility models cannot fit the full volatility surface.

▶ Do we need jumps?

▶ Stochastic variance has log-normal distribution (under P).
Outline

1 Models for variance swaps and VIX

2 The rough Bergomi model

3 Volatility is rough: the econometric evidence

4 Case studies

5 Towards calibration of the rough Bergomi model
Recall $\xi_t(u) = E_t v_u$

$$dS_t = \sqrt{\xi_t(t)} S_t dZ_t,$$

$$\xi_t(u) = \xi_0(u) E \left(\sum_{i=1}^n \eta_i \int_0^t e^{-\kappa_i(u-s)} dW^i_s \right)$$

$E(X) = \exp(X - \frac{1}{2} E[|X|^2])$ for Gaussian r.v. X

Market model

In practice, $n = 2$ needed for good fit, contains seven parameters

$$\psi(\tau) \sim \sum_{i=1}^n \frac{\eta_i}{\kappa_i \tau} \left(1 - \frac{1 - e^{-\kappa_i \tau}}{\kappa_i \tau} \right)$$

Tempting to replace the exponential kernel by a power law kernel!
Bergomi model

- Recall $\xi_t(u) = E_t v_u$

\[
dS_t = \sqrt{\xi(t)} S_t dZ_t,
\]

\[
\xi_t(u) = \xi_0(u) \mathcal{E} \left(\sum_{i=1}^{n} \eta_i \int_{0}^{t} e^{-\kappa_i(u-s)} dW_s^i \right)
\]

- $\mathcal{E}(X) = \exp(X - \frac{1}{2} E[|X|^2])$ for Gaussian r.v. X

- Market model

- In practice, $n = 2$ needed for good fit, contains seven parameters

- $\psi(\tau) \sim \sum_{i=1}^{n} \frac{\eta_i}{\kappa_i \tau} \left(1 - \frac{1 - e^{-\kappa_i \tau}}{\kappa_i \tau} \right)$

- Tempting to replace the exponential kernel by a power law kernel!
Recall $\xi_t(u) = E_t v_u$

$$dS_t = \sqrt{\xi_t(t)} S_t dZ_t,$$

$$\xi_t(u) = \xi_0(u) E\left(\sum_{i=1}^{n} \eta_i \int_0^t e^{-\kappa_i(u-s)} dW_s^i\right)$$

$E(X) = \exp(X - \frac{1}{2} E[|X|^2])$ for Gaussian r.v. X

Market model

In practice, $n = 2$ needed for good fit, contains seven parameters

$$\psi(\tau) \sim \sum_{i=1}^{n} \frac{\eta_i}{\kappa_i \tau} \left(1 - \frac{1 - e^{-\kappa_i \tau}}{\kappa_i \tau}\right)$$

Tempting to replace the exponential kernel by a power law kernel!
Gatheral, Jaisson, and Rosenbaum (2014) study time series of realized variance and find amazing fits of a stochastic volatility model based on

\[\log v_u - \log v_t = 2\nu \left(W_u^H - W_t^H \right) \]

Mandelbrot – Van Ness representation of fBm (with \(\gamma = 1/2 - H \))

\(\nu_u \) is not a Markov process (neither under \(P \) or \(Q \)).

With \(\tilde{W}_t^P(u) = \sqrt{2H} \int_t^u \frac{dW_s^P}{(u-s)^\gamma} \), we get
Gatheral, Jaisson, and Rosenbaum (2014) study time series of realized variance and find amazing fits of a stochastic volatility model based on

\[\log v_u - \log v_t = 2\nu \left(W^H_u - W^H_t \right) \]

Mandelbrot – Van Ness representation of fBm (with \(\gamma = 1/2 - H \))

\[W^H_t = C_H \left(\int_0^t \frac{dW^P_s}{(t-s)^\gamma} + \int_{-\infty}^0 \left[\frac{1}{(t-s)^\gamma} - \frac{1}{(-s)^\gamma} \right] dW^P_s \right) \]

\(v_u \) is not a Markov process (neither under \(P \) or \(Q \)).

With \(\tilde{W}^P_t(u) = \sqrt{2H} \int_t^u \frac{dW^P_s}{(u-s)^\gamma} \), we get
Gatheral, Jaisson, and Rosenbaum (2014) study time series of realized variance and find amazing fits of a stochastic volatility model based on

$$\log v_u - \log v_t = 2\nu \left(W_u^H - W_t^H \right)$$

Mandelbrot – Van Ness representation of fBm (with $\gamma = 1/2 - H$)

$$\log v_u - \log v_t = 2\nu C_H \left(\int_t^u \frac{dW_s^P}{(u-s)^\gamma} + \int_{-\infty}^t \left[\frac{1}{(u-s)^\gamma} - \frac{1}{(t-s)^\gamma} \right] dW_s^P \right)$$

v_u is not a Markov process (neither under P or Q).

With $\tilde{W}_t^P(u) = \sqrt{2H} \int_t^u \frac{dW_s^P}{(u-s)^\gamma}$, we get
Gatheral, Jaisson, and Rosenbaum (2014) study time series of realized variance and find amazing fits of a stochastic volatility model based on

\[\log v_u - \log v_t = 2\nu \left(W_u^H - W_t^H \right) \]

Mandelbrot – Van Ness representation of fBm (with \(\gamma = 1/2 - H \))

\[\log v_u - \log v_t = 2\nu C_H \left(\int_t^u \frac{dW_s^P}{(u - s)^\gamma} + \int_{-\infty}^t \left[\frac{1}{(u - s)^\gamma} - \frac{1}{(t - s)^\gamma} \right] dW_s^P \right) \]

\(v_u \) is not a Markov process (neither under \(P \) or \(Q \)).

With \(\tilde{W}_t^P(u) = \sqrt{2H} \int_t^u \frac{dW_s^P}{(u - s)^\gamma} \), we get

\[v_u = E^P [v_u | \mathcal{F}_t] \mathcal{E} \left(\eta \tilde{W}_t^P(u) \right) \]
Gatheral, Jaisson, and Rosenbaum (2014) study time series of realized variance and find amazing fits of a stochastic volatility model based on

\[\log v_u - \log v_t = 2\nu \left(W^H_u - W^H_t \right) \]

- Mandelbrot – Van Ness representation of fBm (with \(\gamma = 1/2 - H \))

\[\log v_u - \log v_t = 2\nu C_H \left(\int_t^u \frac{dW^P_s}{(u-s)^\gamma} + \int_{-\infty}^t \left[\frac{1}{(u-s)^\gamma} - \frac{1}{(t-s)^\gamma} \right] dW^P_s \right) \]

- \(v_u \) is not a Markov process (neither under \(P \) or \(Q \)).

- With \(\tilde{W}^P_t(u) = \sqrt{2H} \int_t^u \frac{dW^P_s}{(u-s)^\gamma} \), we get

\[\nu_u = E^Q[\nu_u|\mathcal{F}_t] \mathcal{E}\left(\eta \tilde{W}^Q_t(u) \right) \]
Gatheral, Jaisson, and Rosenbaum (2014) study time series of realized variance and find amazing fits of a stochastic volatility model based on

$$\log v_u - \log v_t = 2\nu (W^H_u - W^H_t)$$

Mandelbrot – Van Ness representation of fBm (with $\gamma = 1/2 - H$)

$$\log v_u - \log v_t = 2\nu C_H \left(\int_t^u \frac{dW^P_s}{(u - s)^\gamma} + \int_{-\infty}^t \left[\frac{1}{(u - s)^\gamma} - \frac{1}{(t - s)^\gamma} \right] dW^P_s \right)$$

v_u is not a Markov process (neither under P or Q).

With $\tilde{W}^P_t(u) = \sqrt{2H} \int_t^u \frac{dW^P_s}{(u - s)^\gamma}$, we get

$$v_u = \xi_t(u) \mathcal{E}(\eta \tilde{W}^Q_t(u))$$
The Rough Bergomi model (under Q)

\begin{align*}
 dS_t &= \sqrt{v_t} S_t dZ_t \\
 v_t &= \xi_0(t) \mathcal{E}(\eta \tilde{W}_t)
\end{align*}

- $dW_t dZ_t = \rho dt, \tilde{W}_t = \sqrt{2H} \int_0^t \frac{dW_s}{(t-s)^\gamma}, \gamma = 1/2 - H$

- \tilde{W} is a “Volterra” process (or “Riemann-Liouville fBm”)

- Covariance:

\begin{align*}
 E\left[\tilde{W}_v \tilde{W}_u\right] &= \frac{2H}{1/2 + H} \frac{u^{1/2+H}}{\nu^{1/2-H}} \binom{1, 1/2 - H, 3/2 + H, u/v}, \ u \leq \nu, \\
 E\left[\tilde{W}_v Z_u\right] &= \rho \frac{\sqrt{2H}}{1/2 + H} \left(\nu^{1/2+H} - [\nu - \min(u, \nu)]^{1/2+H}\right)
\end{align*}

- $\psi(\tau) \sim 1/\tau^\gamma$

- Typical parameter values: $H \approx 0.05, \eta \approx 2.5$
The Rough Bergomi model (under Q)

\[dS_t = \sqrt{v_t}S_t dZ_t \]
\[v_t = \xi_0(t)E\left(\eta \tilde{W}_t\right) \]

\[\begin{align*}
 dW_t dZ_t &= \rho dt, \quad \tilde{W}_t = \sqrt{2H} \int_0^t \frac{dW_s}{(t-s)^{\gamma}}, \quad \gamma = 1/2 - H \\
 \tilde{W} \text{ is a “Volterra” process (or “Riemann-Liouville fBm”)} \\
 \text{Covariance:} \\
 E\left[\tilde{W}_v \tilde{W}_u\right] &= \frac{2H}{1/2 + H} \frac{u^{1/2+H}}{v^{1/2-H}} _2F_1\left(1, 1/2 - H, 3/2 + H, u/v\right), \quad u \leq v, \\
 E\left[\tilde{W}_v Z_u\right] &= \rho \frac{\sqrt{2H}}{1/2 + H} \left(v^{1/2+H} - [v - \min(u, v)]^{1/2+H}\right) \\
 \psi(\tau) &\sim 1/\tau^\gamma \\
 \text{Typical parameter values: } H \approx 0.05, \quad \eta \approx 2.5
\]
The Rough Bergomi model (under Q)

\[ds_t = \sqrt{\nu_t} S_t dZ_t \]
\[\nu_t = \xi_0(t) \mathcal{E}\left(\eta \tilde{W}_t\right) \]

- \[dW_t dZ_t = \rho dt, \tilde{W}_t = \sqrt{2H} \int_0^t \frac{dW_s}{(t-s)^\gamma}, \gamma = 1/2 - H \]
- \(\tilde{W} \) is a “Volterra” process (or “Riemann-Liouville fBm”)
- Covariance:

\[
E\left[\tilde{W}_u \tilde{W}_v\right] = \frac{2H}{\frac{1}{2} + H} \frac{u^{1/2+H}}{v^{1/2-H}} 2F_1\left(1, 1/2 - H, 3/2 + H, u/v\right), \quad u \leq v,
\]

\[
E\left[\tilde{W}_u Z_v\right] = \rho \frac{\sqrt{2H}}{\frac{1}{2} + H} \left(v^{1/2+H} - [v - \min(u, v)]^{1/2+H}\right)
\]

- \(\psi(\tau) \sim 1/\tau^\gamma \)
- Typical parameter values: \(H \approx 0.05, \eta \approx 2.5 \)
The Rough Bergomi model (under Q)

\[dS_t = \sqrt{v_t} S_t dZ_t \]
\[v_t = \xi_0(t) \mathcal{E}(\eta \tilde{W}_t) \]

- \[dW_t dZ_t = \rho dt, \tilde{W}_t = \sqrt{2H} \int_0^t \frac{dW_s}{(t-s)^\gamma}, \gamma = 1/2 - H \]
- \(\tilde{W} \) is a “Volterra” process (or “Riemann-Liouville fBm”)
- Covariance:

\[
E \left[\tilde{W}_v \tilde{W}_u \right] = \frac{2H}{1/2 + H} \frac{u^{1/2+H}}{v^{1/2-H}} 2F_1 \left(1, 1/2 - H, 3/2 + H, u/v \right), u \leq v,
\]

\[
E \left[\tilde{W}_v Z_u \right] = \rho \frac{\sqrt{2H}}{1/2 + H} \left(v^{1/2+H} - [v - \min(u, v)]^{1/2+H} \right)
\]

- \(\psi(\tau) \sim 1/\tau^\gamma \)
- Typical parameter values: \(H \approx 0.05, \eta \approx 2.5 \)
Outline

1 Models for variance swaps and VIX

2 The rough Bergomi model

3 Volatility is rough: the econometric evidence

4 Case studies

5 Towards calibration of the rough Bergomi model
KRV estimates of SPX realized variance from 2000 to 2014
Moments of differences of realized volatility

- The Oxford Man Institute provides estimated realized variances v_t for numerous indices on a daily bases.
- Let $\sigma_t = \sqrt{v_t}$.
- For some lag $\Delta > 0$ fix a corresponding time-grid t_i (with $t_{i+1} - t_i = \Delta$) and define the moment of the log-differences by

$$m(q, \Delta) := \langle |\log \sigma_{t+\Delta} - \log \sigma_t|^q \rangle$$

- $\langle \cdot \rangle$ denotes taking sample average.
- $m(q, \Delta)$ measures smoothness of realized volatility at various lags.
Moments of differences of realized volatility

- The Oxford Man Institute provides estimated realized variances v_t for numerous indices on a daily bases.
- Let $\sigma_t = \sqrt{v_t}$.
- For some lag $\Delta > 0$ fix a corresponding time-grid t_i (with $t_{i+1} - t_i = \Delta$) and define the moment of the log-differences by

$$m(q, \Delta) := \langle |\log \sigma_{t+\Delta} - \log \sigma_t|^q \rangle$$

- $\langle \cdot \rangle$ denotes taking sample average.
- $m(q, \Delta)$ measures smoothness of realized volatility at various lags.
Scaling of m in Δ
Monofractal scaling of $m(q, \Delta)$

- We see fractal behaviour: for each moment order q there is a coefficient ζ_q such that

$$m(q, \Delta) \sim \Delta^{\zeta_q}$$

- Different q show the same fractal behaviour in the sense that for some $H \approx 0.1$, $\zeta_q \approx qH$.
- Log-volatility is also approximately normal.
- These observations hold for all 21 indices in the Oxford Man database.

Log-volatility seems to be described by a fractional Brownian motion with Hurst index $H \approx 0.1$. This suggests models of the form

$$dS_t = S_t \exp\left(\eta W_t^H\right) dZ_t + \cdots$$

for $0 < H < 1/2$.
Monofractal scaling of $m(q, \Delta)$

- We see fractal behaviour: for each moment order q there is a coefficient ζ_q such that

$$m(q, \Delta) \sim \Delta^{\zeta_q}$$

- Different q show the same fractal behaviour in the sense that for some $H \approx 0.1$, $\zeta_q \approx qH$.

- Log-volatility is also approximately normal.

- These observations hold for all 21 indices in the Oxford Man database.

Log-volatility seems to be described by a fractional Brownian motion with Hurst index $H \approx 0.1$. This suggests models of the form

$$dS_t = S_t \exp\left(\eta W_t^H\right) dZ_t + \cdots$$

for $0 < H < 1/2$.
Several fractional stochastic volatility models have been proposed, inevitably with $H > 1/2$.

Fractional Brownian motion with $H > 1/2$ has long memory, i.e., the auto-correlation function $\rho(\Delta)$ (at lag Δ) has power law decay as $\Delta \to \infty$.

It was an accepted stylized fact that volatility has long memory.

In our rough model:

$$\rho(\Delta) \sim \exp\left(-\frac{\eta^2}{2} \Delta^{2H}\right)$$

Hence, no long term memory!

Estimates and comparisons by Gatheral, Jaisson, Rosenbaum suggest that there really is no long term memory in volatility.

Might be an effect of new, better (high-frequency) data.
Fractional models in the literature

- Several fractional stochastic volatility models have been proposed, inevitably with $H > 1/2$.
- Fractional Brownian motion with $H > 1/2$ has long memory, i.e., the auto-correlation function $\rho(\Delta)$ (at lag Δ) has power law decay as $\Delta \to \infty$.
- It was an accepted stylized fact that volatility has long memory.
- In our rough model:
 \[\rho(\Delta) \sim \exp\left(-\frac{\eta^2}{2} \Delta^{2H}\right) \]
 - Hence, no long term memory!
- Estimates and comparisons by Gatheral, Jaisson, Rosenbaum suggest that there really is no long term memory in volatility.
- Might be an effect of new, better (high-frequency) data.
Several fractional stochastic volatility models have been proposed, inevitably with $H > 1/2$.

Fractional Brownian motion with $H > 1/2$ has long memory, i.e., the auto-correlation function $\rho(\Delta)$ (at lag Δ) has power law decay as $\Delta \to \infty$.

It was an accepted stylized fact that volatility has long memory.

In our rough model:

$$\rho(\Delta) \sim \exp \left(-\frac{\eta^2}{2} \Delta^{2H} \right)$$

Hence, no long term memory!

Estimates and comparisons by Gatheral, Jaisson, Rosenbaum suggest that there really is no long term memory in volatility.

Might be an effect of new, better (high-frequency) data.
Several fractional stochastic volatility models have been proposed, inevitably with $H > 1/2$.

Fractional Brownian motion with $H > 1/2$ has long memory, i.e., the auto-correlation function $\rho(\Delta)$ (at lag Δ) has power law decay as $\Delta \to \infty$.

It was an accepted stylized fact that volatility has long memory.

In our rough model:

$$\rho(\Delta) \sim \exp \left(-\frac{\eta^2}{2} \Delta^{2H} \right)$$

Hence, no long term memory!

Estimates and comparisons by Gatheral, Jaisson, Rosenbaum suggest that there really is no long term memory in volatility.

Might be an effect of new, better (high-frequency) data.
Empirical auto-correlation against exponential decay

![Graph showing empirical auto-correlation against exponential decay. The x-axis represents \(\log(\Delta) \) and the y-axis represents \(\log(\text{Autocovariance}) \). The trendline suggests an exponential decay pattern.]
Comparing with Comte-Renault model

Fractional stochastic volatility model:

\[dS_t = \sigma_t S_t dZ_t, \]
\[d\log \sigma_t = -\alpha (\log \sigma_t - \theta) \, dt + \gamma d\hat{W}_t^H \]

with \(\hat{W}_t^H = \int_0^t \frac{(t-s)^{H-1/2}}{\Gamma(H+1/2)} dW_s, \, \langle Z, W \rangle_t = \rho t, \, 1/2 \leq H < 1. \)

- Related to Hull-White stochastic volatility model
- FSV model equivalent to RFSV model of Gatheral, Jaisson, Rosenbaum (up to choice of \(H \))
- rBergomi: replace fOU-process by fBm
- Get long memory for \(1/2 < H < 1. \)
Comparing with Comte-Renault model

Fractional stochastic volatility model:

\[dS_t = \sigma_t S_t dZ_t, \]
\[d\log \sigma_t = -\alpha (\log \sigma_t - \theta) \, dt + \gamma d\hat{W}_t^H \]

with \(\hat{W}_t^H = \int_0^t \frac{(t-s)^{H-1/2}}{\Gamma(H+1/2)} dW_s, \langle Z, W \rangle_t = \rho t, 1/2 \leq H < 1. \)

- Related to Hull-White stochastic volatility model
- FSV model equivalent to RFSV model of Gatheral, Jaisson, Rosenbaum (up to choice of \(H \))
- rBergomi: replace fOU-process by fBm
- Get long memory for \(1/2 < H < 1. \)
Comparing with Comte-Renault model

Fractional stochastic volatility model:

\[dS_t = \sigma_t S_t dZ_t, \]
\[d\log \sigma_t = -\alpha (\log \sigma_t - \theta) \, dt + \gamma d\hat{W}_t^H \]

with \(\hat{W}_t^H = \int_0^t \frac{(t-s)^{H-1/2}}{\Gamma(H+1/2)} dW_s, \langle Z, W \rangle_t = \rho t, 1/2 < H < 1. \)

- Related to Hull-White stochastic volatility model
- FSV model equivalent to RFSV model of Gatheral, Jaisson, Rosenbaum (up to choice of \(H \))
- rBergomi: replace fOU-process by fBm
- Get long memory for \(1/2 < H < 1. \)
Moment comparison for realized variance

Blue: FSV model with $H = 0.53$, orange: rBergomi, $H = 0.15$
Outline

1. Models for variance swaps and VIX
2. The rough Bergomi model
3. Volatility is rough: the econometric evidence
4. Case studies
5. Towards calibration of the rough Bergomi model
02/04/2010; SPX Vol surface for $H = 0.07$, $\eta = 1.9$, $\rho = -0.9$
02/04/2010; SPX short maturity smile for $H = 0.07$, $\eta = 1.9$, $\rho = -0.9$
02/04/2010; SPX volatility skew for $H = 0.07$, $\eta = 1.9$, $\rho = -0.9$
02/04/2010; SPX ATM volatility for $H = 0.07, \eta = 1.9, \rho = -0.9$
Variance swap forecast

- Variance ν is not a martingale, hence non-trivial forecast.
- Formulate in RFSV model.

\[
E^P \left[\log \nu_{t+\Delta} | \mathcal{F}_t \right] = \frac{\cos(H\pi)}{\pi} \Delta^{H+1/2} \int_{-\infty}^t \frac{\log \nu_s}{(t-s+\Delta)(t-s)^{H+1/2}} ds,
\]

\[
E^P [\nu_{t+\Delta} | \mathcal{F}_t] = \exp \left(E^P \left[\log \nu_{t+\Delta} | \mathcal{F}_t \right] + 2c\nu^2 \Delta^{2H} \right).
\]

- Use realized variance as proxy for ν
- Problem: realized variance only available from opening to close, not from close to close
- Forecasts must be re-scaled by (time-varying) factor; hence should predict variance swap curve up to a factor
Variance swap forecast

- Variance ν is not a martingale, hence non-trivial forecast.
- Formulate in RFSV model.

\[
E^P \left[\log \nu_{t+\Delta} | \mathcal{F}_t \right] = \frac{\cos(H\pi)}{\pi} \Delta^{H+1/2} \int_{-\infty}^{t} \frac{\log \nu_s}{(t - s + \Delta)(t - s)^{H+1/2}} ds,
\]
\[
E^P [\nu_{t+\Delta} | \mathcal{F}_t] = \exp \left(E^P [\log \nu_{t+\Delta} | \mathcal{F}_t] + 2c\nu^2 \Delta^{2H} \right).
\]

- Use realized variance as proxy for ν
- Problem: realized variance only available from opening to close, not from close to close
- Forecasts must be re-scaled by (time-varying) factor; hence should predict variance swap curve up to a factor
Variance swap forecast

- Variance \(v \) is not a martingale, hence non-trivial forecast.
- Formulate in RFSV model.

\[
E^P \left[\log v_{t+\Delta} | \mathcal{F}_t \right] = \frac{\cos(H\pi)}{\pi} \Delta^{H+1/2} \int_{-\infty}^{t} \frac{\log v_s}{(t - s + \Delta)(t - s)^{H+1/2}} ds,
\]

\[
E^P [v_{t+\Delta} | \mathcal{F}_t] = \exp \left(E^P [\log v_{t+\Delta} | \mathcal{F}_t] + 2cv^2 \Delta^{2H} \right).
\]

- Use realized variance as proxy for \(v \)
- Problem: realized variance only available from opening to close, not from close to close
- Forecasts must be re-scaled by (time-varying) factor; hence should predict variance swap curve up to a factor
Variance swap forecast

- Variance ν is not a martingale, hence non-trivial forecast.
- Formulate in RFSV model.

\[
E^P \left[\log \nu_{t+\Delta} | \mathcal{F}_t \right] = \frac{\cos(H\pi)}{\pi} \Delta^{H+1/2} \int_{-\infty}^{t} \frac{\log \nu_s}{(t-s+\Delta)(t-s)^{H+1/2}} ds,
\]

\[
E^P \left[\nu_{t+\Delta} | \mathcal{F}_t \right] = \exp \left(E^P \left[\log \nu_{t+\Delta} | \mathcal{F}_t \right] + 2cv^2\Delta^{2H} \right).
\]

- Use realized variance as proxy for ν
- Problem: realized variance only available from opening to close, not from close to close
- Forecasts must be re-scaled by (time-varying) factor; hence should predict variance swap curve up to a factor
Forecasts for the Lehman weekend

Actual and predicted variance swap curves, 09/12/08 (red) and 09/15/08 (blue), after scaling.
Outline

1. Models for variance swaps and VIX
2. The rough Bergomi model
3. Volatility is rough: the econometric evidence
4. Case studies
5. Towards calibration of the rough Bergomi model
Bergomi-Guyon implied volatility expansion

- Expansion is based on auto-covariance \(C = E [\langle \log S \cdot \xi(u) \rangle_t] \)

- We derived the formula for the rBergomi model. In the special case \(\xi_0(\cdot) \equiv \bar{\sigma} \), we obtain

\[
\psi(\tau) = \rho \eta F_H \frac{1}{\tau^\gamma} + \rho^2 \eta^2 \bar{\sigma} \tau^{2H} G_H + o(\eta^3 \tau^{3H})
\]

- Very high accuracy for \(\lambda = \eta \tau^H \ll 1 \).

- Unsurprisingly, poor accuracy for \(\lambda = \eta \tau^H \) not sufficiently small, as typically the case for real-life situations.

Expansion is based on auto-covariance $C = E \left[\langle \log S \cdot \xi(u) \rangle_t \right]$

We derived the formula for the rBergomi model. In the special case $\xi_0(\cdot) \equiv \sigma$, we obtain

$$\psi(\tau) = \rho \eta F_H \frac{1}{\tau^\gamma} + \rho^2 \eta^2 \sigma \tau^{2H} G_H + o(\eta^3 \tau^{3H})$$

Very high accuracy for $\lambda = \eta \tau^H \ll 1$.

Unsurprisingly, poor accuracy for $\lambda = \eta \tau^H$ not sufficiently small, as typically the case for real-life situations.
Bergomi-Guyon implied volatility expansion

- Expansion is based on auto-covariance $C = E \left[\langle \log S \cdot \xi(u) \rangle_t \right]$
- We derived the formula for the rBergomi model. In the special case $\xi_0(\cdot) \equiv \sigma$, we obtain

$$
\psi(\tau) = \rho \eta F_H \frac{1}{\tau^\gamma} + \rho^2 \eta^2 \overline{\sigma} \tau^{2H} G_H + o\left(\eta^3 \tau^{3H}\right)
$$

- Very high accuracy for $\lambda = \eta \tau^H \ll 1$.
- Unsurprisingly, poor accuracy for $\lambda = \eta \tau^H$ not sufficiently small, as typically the case for real-life situations.
Bergomi-Guyon formula for $H = 0.1, \eta = 0.4, \rho = -0.85, \bar{\sigma} = 0.235$
VIX options and VVIX

- Maybe we can calibrate against VIX options, in particular VIX variance swaps / VVIX?
- Let $\sqrt{\zeta(T)}$ be the terminal value of VIX futures, i.e.,

$$\zeta(T) = \frac{1}{\Delta} \int_T^{T+\Delta} E_T \nu_u du$$

- Similar to the construction of VIX, we use the log-strip to construct VVIX (based on VIX options)

$$\text{VVIX}^2_{t,T}(T - t) = -2E_t \left[\log \sqrt{\zeta(T)} - \log \sqrt{\zeta(t)} \right]$$

- Heuristic approximation gives

$$\text{VVIX}^2_{t,T} \tau \approx \frac{1}{4} \eta^2 \tau^{2H} f_H \left(\frac{\Delta}{\tau} \right),$$

$$f_H(\theta) = \frac{D_H^2}{\theta^2} \int_0^1 \left((1 + \theta + x)^{1/2+H} - (1 - x)^{1/2+H} \right) dx$$
VIX options and VVIX

- Maybe we can calibrate against VIX options, in particular VIX variance swaps / VVIX?
- Let $\sqrt{\zeta(T)}$ be the terminal value of VIX futures, i.e.,
 \[
 \zeta(T) = \frac{1}{\Delta} \int_T^{T+\Delta} E_T \nu_u du
 \]
- Similar to the construction of VIX, we use the log-strip to construct VVIX (based on VIX options)
 \[
 \text{VVIX}^2_{t,T}(T - t) = -2E_t \left[\log \sqrt{\zeta(T)} - \log \sqrt{\zeta(t)} \right]
 \]
- Heuristic approximation gives
 \[
 \text{VVIX}^2_{t,T} \tau \approx \frac{1}{4} \eta^2 \tau^{2H} f_H \left(\frac{\Delta}{\tau} \right),
 \]
 \[
 f_H(\theta) = \frac{D_H^2}{\theta^2} \int_0^1 \left((1 + \theta + x)^{1/2+H} - (1 - x)^{1/2+H} \right) dx
 \]
Maybe we can calibrate against VIX options, in particular VIX variance swaps / VVIX?

Let $\sqrt{\zeta(T)}$ be the terminal value of VIX futures, i.e.,

$$\zeta(T) = \frac{1}{\Delta} \int_{T}^{T+\Delta} E_T v_u du$$

Similar to the construction of VIX, we use the log-strip to construct VVIX (based on VIX options)

$$\text{VVIX}^2_{t,T} (T-t) = -2E_t \left[\log \sqrt{\zeta(T)} - \log \sqrt{\zeta(t)} \right]$$

Heuristic approximation gives

$$\text{VVIX}^2_{t,T} \tau \approx \frac{1}{4} \eta^2 \tau^{2H} f_H \left(\frac{\Delta}{\tau} \right)$$

$$f_H(\theta) = \frac{D^2_H}{\theta^2} \int_0^1 \left((1 + \theta + x)^{1/2+H} - (1 - x)^{1/2+H} \right) dx$$
Comparison to market VVIX term structure

04-Feb-2010

Variance of VIX

Time to expiry τ

Pricing under rough volatility · November 3, 2015 · Page 33 (35)
Conclusions and outlook

- *Rough* fractional stochastic volatility models (with $H < 1/2$) provide excellent fits with time series of realized variance for essentially all major stock indices and a variety of other indices.

- The rBergomi model, in particular, can fit the full implied volatility surface of SPX with only three free parameters (H, η, ρ).

- So far, we use trivial market price of volatility risk, hence we cannot get a realistic smile for VIX options.

- We can price SPX and VIX options using MC simulation, but accurate asymptotic formulas for calibration are missing.

- There is a clear mis-fit to volatility of volatility (VVIX).

- Model can be obtained as scaling limit from a micro-structure model based on Hawkes processes for order flows.
Conclusions and outlook

- Rough fractional stochastic volatility models (with $H < 1/2$) provide excellent fits with time series of realized variance for essentially all major stock indices and a variety of other indices.
- The rBergomi model, in particular, can fit the full implied volatility surface of SPX with only three free parameters (H, η, ρ).
- So far, we use trivial market price of volatility risk, hence we cannot get a realistic smile for VIX options.
- We can price SPX and VIX options using MC simulation, but accurate asymptotic formulas for calibration are missing.
- There is a clear mis-fit to volatility of volatility (VVIX).
- Model can be obtained as scaling limit from a micro-structure model based on Hawkes processes for order flows.
Conclusions and outlook

- *Rough* fractional stochastic volatility models (with $H < 1/2$) provide excellent fits with time series of realized variance for essentially all major stock indices and a variety of other indices.
- The rBergomi model, in particular, can fit the full implied volatility surface of SPX with only three free parameters (H, η, ρ).
- So far, we use trivial market price of volatility risk, hence we cannot get a realistic smile for VIX options.
- We can price SPX and VIX options using MC simulation, but accurate asymptotic formulas for calibration are missing.
- There is a clear mis-fit to volatility of volatility (VVIX).
- Model can be obtained as scaling limit from a micro-structure model based on Hawkes processes for order flows.
Conclusions and outlook

- *Rough* fractional stochastic volatility models (with $H < 1/2$) provide excellent fits with time series of realized variance for essentially all major stock indices and a variety of other indices.

- The rBergomi model, in particular, can fit the full implied volatility surface of SPX with only three free parameters (H, η, ρ).

- So far, we use trivial market price of volatility risk, hence we cannot get a realistic smile for VIX options.

- We can price SPX and VIX options using MC simulation, but accurate asymptotic formulas for calibration are missing.

- There is a clear mis-fit to volatility of volatility (VVIX).

- Model can be obtained as scaling limit from a micro-structure model based on Hawkes processes for order flows.
Conclusions and outlook

- *Rough* fractional stochastic volatility models (with $H < 1/2$) provide excellent fits with time series of realized variance for essentially all major stock indices and a variety of other indices.
- The rBergomi model, in particular, can fit the full implied volatility surface of SPX with only three free parameters (H, η, ρ).
- So far, we use trivial market price of volatility risk, hence we cannot get a realistic smile for VIX options.
- We can price SPX and VIX options using MC simulation, but accurate asymptotic formulas for calibration are missing.
- There is a clear mis-fit to volatility of volatility (VVIX).
- Model can be obtained as scaling limit from a micro-structure model based on Hawkes processes for order flows.
Conclusions and outlook

- *Rough* fractional stochastic volatility models (with $H < 1/2$) provide excellent fits with time series of realized variance for essentially all major stock indices and a variety of other indices.

- The rBergomi model, in particular, can fit the full implied volatility surface of SPX with only three free parameters (H, η, ρ).

- So far, we use trivial market price of volatility risk, hence we cannot get a realistic smile for VIX options.

- We can price SPX and VIX options using MC simulation, but accurate asymptotic formulas for calibration are missing.

- There is a clear mis-fit to volatility of volatility (VVIX).

- Model can be obtained as scaling limit from a micro-structure model based on Hawkes processes for order flows.

