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SPX implied volatility surface
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SPX ATM volatility skew
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Questions and goals

dS t =
√

vtS tdZt,

dvt = . . .

I We look for time-homogeneous models.

I Term structure of ATM volatility skew (k = log(K/S t))

ψ(τ) =

∣∣∣∣∣ ∂∂k
σBS (k, τ)

∣∣∣∣∣
k=0
∼ 1/τα, α ∈ [0.3, 0.5]

I Conventional stochastic volatility models produce ATM skews
which are constant for τ � 1 and of order 1/τ for τ � 1. Hence,
conventional stochastic volatility models cannot fit the full
volatility surface.

I Do we need jumps?
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Some notations and assumptions

I Given a traded asset S t satisfying

dS t =
√

vtS tdZt

I Interest rate r = 0; model (and expectations) formulated under Q

I In this talk, S corresponds to the S & P 500 index (SPX).

I Realized variance wt,T =
∫ T

t vsds, forward variance ξt(u) = Et[vu]

I Log-strip formula:

Etwt,T = −2
(∫ S t

0

P(K)
K2 dK +

∫ ∞

S t

C(K)
K2 dK

)
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Intraday realized variance
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Bergomi model

I Recall ξt(u) = Etvu

dS t =
√
ξt(t)S tdZt,

ξt(u) = ξ0(u)E

 n∑
i=1

ηi

∫ t

0
e−κi(u−s)dW i

s


I E(X) B exp(X − 1

2 E[|X|2]) for Gaussian r.v. X

I Market model

I In practice, n = 2 needed for good fit, contains seven parameters

I ψ(τ) ∼
n∑

i=1

ηi

κiτ

(
1 −

1 − e−κiτ

κiτ

)
I Tempting to replace the exponential kernel by a power law kernel!
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Rough Fractional Stochastic Volatility

I Gatheral, Jaisson, and Rosenbaum (2014) study time series of
realized variance and find amazing fits of a stochastic volatility
model based on

log vu − log vt = 2ν
(
WH

u −WH
t

)
I Mandelbrot – Van Ness representation of fBm (with γ = 1/2 − H)

WH
t = CH

(∫ t

0

dWP
s

(t − s)γ
+

∫ 0

−∞

[
1

(t − s)γ
−

1
(−s)γ

]
dWP

s

)
I vu is not a Markov process.
I With W̃P

t (u) =
√

2H
∫ u

t
dWP

s
(u−s)γ , we get
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The Rough Bergomi model (under Q)

dS t =
√

vtS tdZt

vt = ξ0(t)E
(
ηW̃t

)
I dWtdZt = ρdt, W̃t =

√
2H

∫ t
0

dWs
(t−s)γ , γ = 1/2 − H

I W̃ is a “Volterra” process (or “Riemann-Liouville fBm”)

I Covariance:

E
[
W̃vW̃u

]
=

2H
1/2 + H

u1/2+H

v1/2−H 2F1 (1, 1/2 − H, 3/2 + H, u/v) , u ≤ v,

E
[
W̃vZu

]
= ρ

√
2H

1/2 + H

(
v1/2+H − [v −min(u, v)]1/2+H

)
I ψ(τ) ∼ 1/τγ

I Typical parameter values: H ≈ 0.05, η ≈ 2.5

Rough volatility models · October 18, 2018 · Page 11 (28)



The Rough Bergomi model (under Q)

dS t =
√

vtS tdZt

vt = ξ0(t)E
(
ηW̃t

)
I dWtdZt = ρdt, W̃t =

√
2H

∫ t
0

dWs
(t−s)γ , γ = 1/2 − H

I W̃ is a “Volterra” process (or “Riemann-Liouville fBm”)

I Covariance:

E
[
W̃vW̃u

]
=

2H
1/2 + H

u1/2+H

v1/2−H 2F1 (1, 1/2 − H, 3/2 + H, u/v) , u ≤ v,

E
[
W̃vZu

]
= ρ

√
2H

1/2 + H

(
v1/2+H − [v −min(u, v)]1/2+H

)
I ψ(τ) ∼ 1/τγ

I Typical parameter values: H ≈ 0.05, η ≈ 2.5

Rough volatility models · October 18, 2018 · Page 11 (28)



The Rough Bergomi model (under Q)

dS t =
√

vtS tdZt

vt = ξ0(t)E
(
ηW̃t

)
I dWtdZt = ρdt, W̃t =

√
2H

∫ t
0

dWs
(t−s)γ , γ = 1/2 − H

I W̃ is a “Volterra” process (or “Riemann-Liouville fBm”)

I Covariance:

E
[
W̃vW̃u

]
=

2H
1/2 + H

u1/2+H

v1/2−H 2F1 (1, 1/2 − H, 3/2 + H, u/v) , u ≤ v,

E
[
W̃vZu

]
= ρ

√
2H

1/2 + H

(
v1/2+H − [v −min(u, v)]1/2+H

)
I ψ(τ) ∼ 1/τγ

I Typical parameter values: H ≈ 0.05, η ≈ 2.5

Rough volatility models · October 18, 2018 · Page 11 (28)



The Rough Bergomi model (under Q)

dS t =
√

vtS tdZt

vt = ξ0(t)E
(
ηW̃t

)
I dWtdZt = ρdt, W̃t =

√
2H

∫ t
0

dWs
(t−s)γ , γ = 1/2 − H

I W̃ is a “Volterra” process (or “Riemann-Liouville fBm”)

I Covariance:

E
[
W̃vW̃u

]
=

2H
1/2 + H

u1/2+H

v1/2−H 2F1 (1, 1/2 − H, 3/2 + H, u/v) , u ≤ v,

E
[
W̃vZu

]
= ρ

√
2H

1/2 + H

(
v1/2+H − [v −min(u, v)]1/2+H

)
I ψ(τ) ∼ 1/τγ

I Typical parameter values: H ≈ 0.05, η ≈ 2.5

Rough volatility models · October 18, 2018 · Page 11 (28)



Outline

1 Implied volatility modeling

2 The rough Bergomi model

3 Case studies

4 Further challenges and developments

Rough volatility models · October 18, 2018 · Page 12 (28)



02/04/2010; SPX Vol surface for H = 0.07, η = 1.9, ρ = −0.9
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02/04/2010; SPX short maturity smile for H = 0.07, η = 1.9, ρ = −0.9
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02/04/2010; SPX volatility skew for H = 0.07, η = 1.9, ρ = −0.9
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02/04/2010; SPX ATM volatility for H = 0.07, η = 1.9, ρ = −0.9
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Variance swap forecast

I Variance v is not a martingale, hence non-trivial forecast.

I Using a result in (Nuzman and Poor, 2000), we have

EP [
log vt+∆|Ft

]
=

cos(Hπ)
π

∆H+1/2
∫ t

−∞

log vs

(t − s + ∆)(t − s)H+1/2 ds

EP [vt+∆|Ft] = exp
(
EP [

log vt+∆|Ft
]
+ 2cν2∆2H

)
I Use realized variance as proxy for v

I Problem: realized variance only available from opening to close,
not from close to close

I Forecasts must be re-scaled by (time-varying) factor; hence
should predict variance swap curve up to a factor
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Variance swap forecasts for the Lehman weekend

Actual and predicted variance swap curves, 09/12/08 (red) and
09/15/08 (blue), after scaling.
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Rough voltility is ubiquitous in equity

(Bennedsen, Lunde and Pakkanen 2017) compare timeseries data
over 10 years of 2000 assets (US equities). They find overwhelming
evidence of rough volatility!

Figure: Estimates for α B H − 1/2 according to sector.
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Mathematical challenges of rough volatility models

Theory:
I Lack of general fractional stochastic calculus (for instance, no

rough path framework for H ≤ 1/4)
I Difficult to generalize dynamics (needed to capture higher order

effects)
I Difficult to analyze even very simple models such as rough

Bergomi

Computations:
I No Markov structure, hence no (tractable) pricing PDE or tree

approximations
I Large deviations depend on truly infinite dimensional variational

problems, making asymptotic analysis more difficult
I Simulation expensive but doable relying on the Gaussian

structure
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Rough Heston model [Rosenbaum and El Euch, 2017, . . . ]

dS t =
√

vtS tdZt

vt = v0 +
1

Γ(α)

∫ t

0
(t − s)α−1λ(θ − vs)ds

+
1

Γ(α)

∫ t

0
(t − s)α−1λν

√
vsdWs

Fractional Riccati ODE
E

[
exp

(
iu log(S t)

)]
= exp (g1(u, t) + v0g2(u, t)), with

g1(u, t) B θλ

∫ t

0
h(u, s)ds, g2(u, t) B I1−αh(u, t),

Dαh(u, t) =
1
2

(−u2 − iu) + λ(iuρν − 1)h(u, t) +
(λν)2

2
h2(u, t), I1−αh(u, 0) = 0.

Ir f (t) B
1

Γ(r)

∫ t

0
(t−s)r−1 f (s)ds, Dr f (t) B

1
Γ(1 − r)

d
dt

∫ t

0
(t−s)r f (s)ds.
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Microstructural foundation

Assumption

I Market orders are indep. Hawkes processes Na/b, with intensities

λa/b
t = µ +

∫ t

0
φ(t − s)dNa/b

s

I Market impact exists and has a non-vanishing transient
component.

I The market is highly endogenous.

Under some additional assumptions, we obtain a rough Heston type
model as scaling limit of price changes obtained from the market
orders. ([El Euch, Fukasawa, Rosenbaum, 2016], [Jusselin,
Rosenbaum 2018])
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Simulation

Recall that (Ŵ,Z) is a Gaussian process. Hence, we can simulate
samples on a grid 0 = t0 < t1 < · · · < tN = T by

I Cholesky factorization of the covariance (exact, but cost O(N2)
per sample);

I Hybrid scheme by [Bennedsen, Lunde, Pakkanen, 2017]
(inexact, but cost O(N log N)).

Leads to Riemann approximation∫ T

0
f
(
t, Ŵt

)
dZt ≈

N−1∑
i=0

f
(
ti, Ŵti

) (
Zti+1 − Zti

)
.

Theorem (Neuenkirch and Shalaiko ’16)
The strong rate of convergence is H — and no better.
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Weak error of the Euler scheme in the rough Bergomi model

ATM-call with ξ ≡ 0.04, H = 0.06, η = 2.5, ρ = −0.8, T = 0.8

2 5 10 20 50 100 200 500 2000

5e
−

06
5e

−
05

5e
−

04
5e

−
03

steps

er
ro

r
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Weak error

The weak rate of convergence seems unknown even for

Y ≡
∫ 1

0
f (s, Ŵs)dWs.

I Standard methods for SDEs rely on PDE arguments.
I Using metrics for weak convergence such as Wasserstein

distance seems difficult.
I Techniques based on Malliavin calculus work in principle.
I For Y as above, one can get weak rate 2H, but numerical

experiments suggest much better rates.
I Partial result: for Euler approximation Y, f “nice”

E
[
Y2 − Y

2
]
≤ C h.
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Fractional Brownian motion

Definition
Fractional Brownian motion is a continuous time Gaussian process
BH (with Hurst index 0 < H < 1) with BH

0 = 0, E[BH
t ] = 0 and

E[BH
t BH

s ] =
1
2

(
t2H + s2H − |t − s|2H

)
.

I BH with H = 1
2 is classical Brownian motion.

I Increments are neg. corr. for H < 1
2 and pos. corr. for H > 1

2 .

fBm with H = 0.1 (left) H = 1/2 (middle) and H = 0.9 (right)
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