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A. We study the weak approximation problem of diffusions, which are reflected at
a subset of the boundary of a domain and stopped at the remaining boundary. First, we de-
rive an error representation for the projected Euler method of Costantini, Pacchiarotti and
Sartoretto [Costantini et al., SIAM J. Appl. Math., 58(1):73–102, 1998], based on which
we introduce two new algorithms. The first one uses a correction term from the representa-
tion in order to obtain a higher order of convergence, but the computation of the correction
term is, in general, not feasible in dimensions d > 1. The second algorithm is adaptive
in the sense of Moon, Szepessy, Tempone and Zouraris [Moon et al., Stoch. Anal. Appl.,
23:511–558, 2005], using stochastic refinement of the time grid based on a computable er-
ror expansion derived from the representation. Regarding the stopped diffusion, it is based
in the adaptive algorithm for purely stopped diffusions presented in Dzougoutov, Moon,
von Schwerin, Szepessy and Tempone [Dzougoutov et al., Lect. Notes Comput. Sci. Eng.,
44, 59–88, 2005]. We give numerical examples underlining the theoretical results.
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1. I

In this report, we present two new algorithms for the approximation of reflected diffu-
sions, which are possibly stopped when hitting a certain part of the boundary of the domain.
From a numerical point of view, these stochastic differential equations are interesting be-
cause they provide stochastic representations for (suitable) parabolic PDEs with Neumann
boundary conditions. Moreover, certain applications in financial mathematics also exist,
e.g., in the context of look-back options.

Since stopped diffusions are more prominent in the literature, let us focus on the re-
flected diffusion first. Let B = (Bt)t∈[0,∞[ be a d-dimensional Brownian motion defined on
the stochastic basis (Ω,F , (Ft)t∈[0,∞[, P). Informally, a reflected diffusion will be the solu-
tion of a stochastic differential equation “reflected” at the boundary of a domain D, i.e., the
reflected diffusions

1
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• (locally) solves the governing SDE in the interior int D,
• stays in D almost surely and
• satisfies “some boundary behavior” at the boundary ∂D of the domain.

Let D ⊂ Rd be an open set. For a given drift vector field V : D → Rd and diffusion vector
fields V1, . . . ,Vd : D→ Rd, we consider the Skorohod equation

(1.1) dXx
t = V(Xt)dt +

d∑
i=1

Vi(Xt)dBi
t + n(t)dZt,

with initial value X0 = x ∈ D, Z0 = 0 ∈ R. Here, n(t) is assumed to be an adapted process
taking values in the set of inward pointing normal vectors of ∂D = D \ D at Xt, provided
that Xt ∈ ∂D.

Definition 1.1. A pair (X,Z) = (Xt,Zt)t∈[0,∞[ of continuous adapted processes with values
in D and [0,∞[, respectively, is a strong solutions of the Skorohod equation (1.1) if X0 = x,
Z0 = 0, Z is an increasing process satisfying

(1.2) Zt =

∫ t

0
1∂D(Xs)dZs

for all t ∈ [0,∞[ and the integrated version of equation (1.1) holds true, where n(t) is a
given adapted process taking values in the set of inward pointing unit normal vectors of
Xt ∈ ∂D.

We will often call Xt the reflected diffusion and the process Zt its local time.

Remark 1.2. The theory and the numerical analysis of reflected diffusions works just as
well in the non-autonomous case, i.e., if the above vector fields V,V1, . . . ,Vd are time-
dependent – sometimes with obvious modifications. For simplicity, we formulate our re-
sults only in the autonomous situation.

Remark 1.3. For general domains, the solution of (1.1) depends on the choice of the pro-
cess n. In most situations, however, the boundary of D will be regular enough such that
there is almost always a unique inward pointing normal vector. Then n(t) = n(Xt) is a
function of the position provided that Xt ∈ ∂D.

Remark 1.4. Equation (1.1) defines a reflected diffusion with normal reflection. It is also
possible to consider oblique reflections.

Remark 1.5. Equation (1.2) means that the random measure induced by the increasing
process Z is concentrated on { t | Xt ∈ ∂D }. Therefore, we informally call Z local time.
Notice, however, that this practice is incorrect because Zt is not the local time in the sense
of stochastic analysis. Indeed, let d = 1 and consider V ≡ 0 and V1 ≡ 1 and the domain
D =]0,∞[. If we start at x = 0, we have

Xt = Bt + Zt,

noting that the inward pointing normal vector is given by n ≡ 1. Given a Brownian motion
W and its Lévy transform βt =

∫ t
0 sign(Ws)dWs, the reflected Brownian motion satisfies

|Wt | = βt + Lt

by Tanaka’s formula, where Lt denotes the local time of Wt at 0. Comparing these two
equations, we see that Zt is not the local time of B, but it is the local time of a Brownian
motion W such that

Bt =

∫ t

0
sign(Ws)dWs,

Moreover, Xt = |Wt |. Of course, we have the equalities in law

Xt ∼ |Bt | and Zt ∼ Lt(B).
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Recall that the local time Lt of W is defined by

Lt = lim
ε→0

1
2ε

∫ t

0
1[0,ε](|Ws|)ds,

see, for instance, [17].

For the existence and uniqueness result given by Saisho [18], we have to impose some
regularity conditions on the domain. Let D ⊂ Rd be an open set and consider, for x ∈ ∂D =

D \ int D, the set of inward normal unit vectors Nx defined by

Nx =
⋃
r>0

Nx,r, Nx,r =
{

y ∈ Rd
∣∣∣ ‖y‖ = 1, B(x − ry, r) ∩ D = ∅

}
,

where B(x, r) denotes the sphere with radius r centered at x. We impose the following
uniform condition on D.

Assumption 1.6. There exists a constant r > 0 such that Nx = Nx,r , ∅ for every
x ∈ ∂D. Moreover, we require the vector fields V,V1, . . . ,Vd to be bounded and Lipschitz
continuous.

Remark 1.7. Note that Assumption 1.6 does not require uniqueness of the inward normal
unit vector, in particular, non-differentiable domains are not excluded. In [18], an alterna-
tive local assumption is provided. We choose the above uniform condition because it will
be satisfied by our numerical examples.

Proposition 1.8. Under the above assumptions, the Skorohod equation (1.1) has a unique
strong solution.

Proof. This is [18, Theorem 5.1]. �

Reflected diffusions give stochastic representations of parabolic PDEs with Neumann
boundary conditions. We refer to Freidlin [8] for more details. Let L denote the infinitesi-
mal generator of the SDE (1.1), i.e.,

L f (x) = V0 f (x) +
1
2

d∑
i=1

V2
i f (x), x ∈ Rd,

where V0 is the Stratonovich corrected drift vector field

V0(x) = V(x) −
1
2

d∑
i=1

DVi(x) · Vi(x).

Here, we denote the Jacobian of a vector-field W : Rd → Rd by DW, and we identify
vector fields with first order differential operators via

W f (x) = ∇ f (x) ·W(x).

Note that W f : Rd → R is a function of the same type as f , therefore we can apply the
vector field W to the function W f as before and denote the result by W2 f .

We consider a heat equation with Neumann and Dirichlet boundary conditions. Assume
that the boundary ∂D of the domain is subdivided into two disjoint sub-domains, ∂D =

∂DR ∪ ∂DS . We consider the following boundary value problem.

(1.3)



∂

∂t
u(t, x) + Lu(t, x) = 0, x ∈ D,

u(T, x) = f (x), x ∈ D,

u(t, x) = g(x), x ∈ ∂D ∩ ∂DS ,

∂

∂n
u(t, x) = h(x), x ∈ ∂D ∩ ∂DR,
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where t ∈ [0,T ], f : D → R, g : DS → R and h : ∂DR → R are sufficiently regular
functions, n(x) is assumed to be the unique inward normal vector at x ∈ ∂D and we denote

∂

∂n
u(t, x) = 〈∇u(t, x) , n(x)〉 ,

the normal derivative of u(t, x) at x ∈ ∂D. By a solution of (1.3) we understand a function
u ∈ C1,2([0,T ] × D) satisfying the above PDE.

Remark 1.9. We could additionally let the data, i.e., the driving vector fields and the bound-
ary conditions g and h, depend on time. We refrain from doing so for ease of notation.

Proposition 1.10. Assume that the solution u of problem (1.3) has bounded time-derivative,
gradient and Hessian matrix for all (t, x) ∈ [0,T ] × D. Then we have the stochastic repre-
sentation

u(t, x) = E
[

f (XT )1τ≥T + g(Xτ)1τ<T −

∫ τ∧T

t
h(Xs)dZs

∣∣∣∣∣Xt = x
]
,

where τ = inf { s ≥ t | Xs ∈ ∂DS } and x ∧ y B min(x, y).

Proof. The proposition is a special case of [8, Theorem II.5.1] (which only contains the
purely reflecting part). Nevertheless, we repeat the simple and instructive proof in the case
of a purely reflecting diffusion. Fixing T > t > 0 and the stopping time τ as above. We
apply Itô’s formula to u(s, Xs) and obtain

u(T ∧ τ, XT∧τ) = u(t, Xt) +

∫ T∧τ

t

(
Lu(s, Xs) +

∂u
∂t

(s, Xs)
)

ds

+

d∑
i=1

∫ T∧τ

t
〈∇u(s, Xs) ,Vi(Xs)〉 dBi

s

+

∫ T∧τ

t
〈∇u(s, Xs) , n(Xs)〉 dZs.

Note that dZs is concentrated on {Xs ∈ ∂DR}, consequently we may replace the integrand
in the last term by ∂

∂n u(s, Xs) = h(Xs). Furthermore, Lu + ∂
∂t u = 0 by the PDE. Taking

expectations (conditional on Xt = x) concludes the proof since

E [u(T ∧ τ, XT∧τ)| Xt = x] = E
[

f (XT )1τ≥T + g(Xτ)1τ<T

∣∣∣∣∣Xt = x
]

by the boundary conditions. �

2. A    

We give a review of some approximation methods for a diffusion reflected and stopped
at the boundary found in the literature. Again, we concentrate mostly on the reflecting case.
We first present the standard projected Euler approach to stopped reflected diffusions, see
Costantini, Pacchiarotti and Sartoretto [6]. This approach yields a method with weak order
of convergence 1/2 – in particular, they give a simple example, where this convergence rate
is precise. Gobet [13] has constructed an algorithm for weak approximation of purely re-
flecting or purely stopped diffusions based on a half-space approximation of the the bound-
ary of the domain. In certain cases, he can prove a convergence with rate 1. Finally, Bossy,
Gobet and Talay [3] have found a method with order one based on symmetrization valid
for purely reflecting diffusions, provided that the boundary condition satisfies h ≡ 0 (also
for oblique reflections). For references to alternative approaches to weak approximation of
reflected diffusions we again refer to Gobet [13]. Regarding adaptive approximations of
one-dimensional reflected Brownian motions, Asmussen, Glynn and Pitman [2] indicate a
simple method using two fixed step sizes chosen according to the distance to the boundary.
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For the stopped diffusion, in the same paper [13], Gobet has introduced a similar half-
space based approach to weak approximation of stopped diffusions. In this case, there is
also the adaptive algorithm developed by Dzougoutov et al. [7].

Of course, there are also several papers on strong approximation of stopped and reflected
diffusion. As a representative work we cite [19], where the projected Euler method is
shown to have strong order of convergence 1/4 for general convex domains and 1/2 for
convex polyhedrons in the case of reflected diffusions.

Since the algorithm in [6] is the basis of our algorithms, as well as of the two other algo-
rithms mentioned above, we shall give a rather detailed description. Let us first introduce
some general notation: given a partition 0 = t0 < t1 < · · · < tN = T , we denote ∆ti = ti+1,
∆Bi = Bti+1 − Bti and ∆Zi = Zti+1 − Zti , i = 0, . . . ,N − 1. The same convention will also be
applied to the approximations to the above quantities, which are denoted by X, Z, . . .

For simplicity, assume that #Nx = 1 for each x ∈ ∂D. Furthermore, assume that we can
find a unique projection Π(x) ∈ ∂D for each x < D. Fix T > 0 and an initial condition
x ∈ D. Algorithm 2.1 is, in fact, a straight-forward discretization of the Skorohod equa-
tion (1.1). Indeed, applying the simplest possible stochastic Taylor expansion (see [15,
Chapter 5]) to the reflected diffusion (1.1) on the interval [ti, ti+1] yields the approximation

Xti+1 ≈ Xti + V
(
Xti

)
∆ti +

d∑
j=1

V j
(
Xti

)
∆B j

i + n
(
Xti

)
∆Zti .

Defining

X̂i+1 B Xti + V
(
Xti

)
∆ti +

d∑
j=1

V j
(
Xti

)
∆B j

i ,

we get
Xti+1 − X̂i+1 ≈ n

(
Xti

)
∆Zi+1,

or
∆Zi+1 ≈

∥∥∥Xti+1 − X̂i+1
∥∥∥ .

This motivates the following algorithm for weak approximation of a reflected and stopped
diffusion.

Algorithm 2.1. Fix a uniform time discretization 0 = t0 < t1 < · · · < tN = T, i.e.,
∆ti = ti+1 − ti = T

N , i = 0, . . . ,N − 1. Moreover, fix an i. i. d. sequence of random variables
(∆Bi)N−1

i=0 such that the moments of order up to three of ∆B0 (and hence of all ∆Bi) coincide
with those of an n-dimensional normal random variable with covariance matrix T

N idn.

(1) Set X
N
0 = x, Z

N
0 = 0, Nτ = N + 1, and i = 0.

(2) Compute

X̂N
i+1 = X

N
i + V

(
X

N
i
)
∆ti +

d∑
j=1

V j
(
X

N
i
)
∆B

j
i .

(3) Project to the domain, i.e., set

X
N
i+1 =

X̂N
i+1, X̂N

i+1 ∈ D,
Π(X̂N

i+1), X̂N
i+1 < D,

Z
N
i+1 =

Z
N
i , X̂N

i+1 ∈ D or X
N
i+1 ∈ ∂DS ,

Z
N
i +

∥∥∥Π(X̂N
i+1) − X̂N

i+1

∥∥∥ , else.

(4) If X
N
i+1 ∈ ∂DS , set Nτ = i + 1 and go to (5). Otherwise, increase i by one. If i < N,

go back to (2), else go to (5).
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(5) Calculate

F
N

= f
(
X

N
N
)
1Nτ≥N + g

(
X

N
Nτ

)
1Nτ<N −

N∧Nτ−1∑
i=0

h
(
X

N
i+1

)
∆Z

N
i .

The solution u(T, x) ≈ E
(
F

N)
is then calculated by Monte Carlo simulation from the

distribution F
N

given in Algorithm 2.1 above.
If u is sufficiently regular (e.g., u ∈ C3

b([0,T ] × D)) and the random variables ∆Bi are
either bounded or Gaussian, then we have

(2.1)
∣∣∣∣u(T, x) − E

(
F

N)∣∣∣∣ ≤ C
N1/2 ,

where ∆Z
N
i = Z

N
i+1 − Z

N
i , i = 0, . . . ,N − 1. This result is [6, Theorem 3.4, Theorem 3.6],

together with a remark in [13].
The basic idea of the half-space approach of Gobet [13] is that the solution of the Sko-

rohod equation (1.1) with constant coefficients can be given explicitly, if D is a half-space.
More precisely, assume that we have already constructed X

N
l and Z

N
l , l = 0, . . . , i. In order

to construct X
N
i+1 and Z

N
i+1, we project X

N
i to the boundary (along the normal direction),

finding the point X̃. Now we calculate the exact solution (X̂N
i+1, Ẑ

N
i+1) at time ti+1 of the

reflected diffusion problem with constant coefficients V
(
X

N
i
)

and V1
(
X

N
i
)
, . . . ,Vn

(
X

N
i
)

and
for the domain given by the half-space bounded by the tangent hyperplane on D at X̃. If
the new point X̂N

i+1 ∈ D, then we set X
N
i+1 = X̂N

i+1 and Z
N
i+1 = Z

N
i + ẐN

i+1. Otherwise, we

project X̂N
i+1 back to D, X

N
i+1 = Π(X̂N

i+1), and add an additional increment to the local time.
The quantity of interest u(T, x) is now similarly approximated as in (2.1), with one differ-
ence: now the approximation of the local time may increase in a sub-interval [ti, ti+1], i.e.,
∆Z

N
i > 0, even though X

N
i+1 ∈ int D. Consequently, we need to replace the term h

(
X

N
i+1

)
by

h
(
Π
(
X

N
i+1

))
this time.

Under some regularity conditions, Gobet [13] proves weak convergence of this method
to the solution of the pure Neumann boundary problem (1.3), with ∂DR = ∂D. The proven
rate of convergence is 1

2 , but it is 1 in case of co-normal reflection, i.e., if the reflection is
along the (normalized) direction

γ(x) = 〈V1(x) , n(x)〉V1(x) + · · · + 〈Vd(x) , n(x)〉Vd(x).

Based on numerical evidence, Gobet, however, conjectures that this order of convergence
holds for more general situations.

Remark 2.2. Up to our knowledge, there is no explicit construction to the problem of a
Brownian motion in a half-space domain D such that the process is reflected on, say, a
(d − 1)-dimensional half-space of ∂D and stopped at the rest of ∂D. Therefore, the idea of
the Gobet algorithm is difficult to realize when one has both reflection and stopping.

Finally, Bossy, Gobet and Talay [3] have constructed a symmetrized Euler scheme. But
for one difference, the scheme is equal to Algorithm 2.1. This difference is the calculation
of X

N
i+1 from X̂N

i+1 in the case X̂N
i+1 < D: instead of merely projecting X̂N

i+1 to ∂D as in Al-

gorithm 2.1, the new point X
N
i+1 ∈ int D is found by projecting onto ∂D and then following

the direction γ of reflection further into the interior of the domain, such that X
N
i+1 and X̂N

i+1
have the same distance to ∂D along the direction γ. The algorithm converges with order 1
provided that h ≡ 0 even for oblique reflection.

The aforementioned adaptive algorithm for one-dimensional reflected Brownian mo-
tions (reflected at 0) of [2] works as follows. Given a computer budget c, the authors
propose to take a step size h(1)

c if the current position X < xc and h(2)
c otherwise. They



ADAPTIVE WEAK APPROXIMATION OF REFLECTED AND STOPPED DIFFUSIONS 7

propose to choose

xc ≈ c−1/5, h(1)
c ≈ c−3/5, h(2)

c ≈ c−2/5.

Thus, the adaptivity only consists in a switch between two fixed step-sizes depending on
the current position.

3. A  

Both our algorithms are based on the Algorithm 2.1 of Costantini et al. [6]. In this
section, we give an error expansion for this method, which is based on the proof of Propo-
sition 1.10.

First we explicitly introduce the splitting hinted upon in the proof of Proposition 1.10,
namely g u = uS + uR, which respectively solve

(3.1)



∂

∂t
uS (t, x) + LuS (t, x) = 0, x ∈ D,

uS (T, x) = f (x), x ∈ D,

uS (t, x) = g(x), x ∈ ∂D ∩ ∂DS ,

∂

∂n
uS (t, x) = 0, x ∈ ∂D ∩ ∂DR,

and

(3.2)



∂

∂t
uR(t, x) + LuR(t, x) = 0, x ∈ D,

uR(T, x) = 0, x ∈ D,

uR(t, x) = 0, x ∈ ∂D ∩ ∂DS ,

∂

∂n
uR(t, x) = h(x), x ∈ ∂D ∩ ∂DR.

These functions obviously have the stochastic representations

(3.3) uS (t, x) = Et,x [
f (XT )1τ≥T + g(Xτ)1τ<T

]
, uR(t, x) = Et,x

[
−

∫ T∧τ

t
h(Xs)dZs

]
,

where Et,x denotes the conditional expectation given Xt = x. For the numerical analysis,
we will use the following conventions. Given a grid 0 = t0 < t1 < · · · < tN = T , let us
denote the discrete Euler process by Xi, i = 0, . . . ,N, i.e.,

(3.4) Xi+1 = Π

(
Xi + V(Xi)∆ti +

d∑
j=1

V j(Xi)∆B j
i

)
with X0 = X0. Here, Π denotes the projection operator onto D. Moreover, we do not
restrict ourselves to a deterministic grid in the current discussion. Indeed, N and the step-
sizes ∆ti = ti+1 − ti can very well be random, as long as ∆ti is Fti -measurable for every i.
(Note that ti is a stopping time in that case.) If Xi+1 ∈ ∂DR, we also define the increment
of the approximate local time as

∆Zi =

∥∥∥∥∥∥∥∥Xi + V(Xi)∆ti +

d∑
j=1

V j(Xi)∆B j
i − Xi+1

∥∥∥∥∥∥∥∥ ,
compare to Algorithm 2.1. Moreover, we set

τ = inf
{

t = ti
∣∣∣ Xi ∈ ∂DS

}
, tNτ

= τ ∧ T.
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Definition 3.1. The continuous, discretely reflected Euler process X̂t is defined by X̂0 =

X̂0+ = X0 and

X̂t = X̂ti+ +

∫ t

ti
V(X̂ti+)ds +

d∑
j=1

∫ t

ti
V j(X̂ti+)dB j

s, ti < t ≤ ti+1.

At ti+1, we project X̂ to the boundary of the domain D, but only if the projection is in ∂DR

and if the discrete Euler process has not been stopped yet, i.e.,

X̂ti+1+ =

Π(X̂ti+1 ), X̂ti+1 < D and Π(X̂ti+1 ) ∈ ∂DR and ti+1 ≤ τ,

X̂ti+1 , else.

Moreover, we consider the first hitting time τ̂ of X̂ at the set ∂DS and set

Nτ̂ = inf { 0 ≤ i ≤ N | ti+1 > τ̂ } ∧ N.

Remark 3.2. The word “continuous” in the name of X̂ only refers to the time variable. In
fact, X̂ is piecewise continuous.

Remark 3.3. Different to ordinary and to the purely stopped diffusion in [7]), the process
X̂ defined above cannot be regarded as a simple interpolation of the discrete process X.
Indeed, notice that both τ̂ < τ and τ < τ̂ are possible cases. The second happens, for
instance, if Xi = X̂ti , X̂t leaves D through ∂DR and stays outside D until ti+1 such that
Π(X̂ti+1 ) ∈ ∂DS . In this case, Xi+1 ∈ ∂DS and τ = ti+1, whereas τ̂ > ti+1 and X̂ti+1+ , Xi+1.
For a sketch of τ̂ > τ see Figure 1.

X̂i+1

Xi+1

∂DS∂DS ∂DR∂D

Xi X̂i=
D

Figure 1. Example for τ̂ > τ as described in Remark 3.3.

For the considerations in the following propositions, let us assume that the solution u
of (1.3) can be extended to [0,T ]×Rd in the sense that there is a function v : [0,T ]×Rd → R
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that coincides with u on [0,T ] × D and solves ∂
∂t v + Lv = 0 globally and is C1,2 globally.

We will denote the extension again with the letter u. With both Dirichlet and Neumann
conditions present, this assumption is hard to verify.

Remark 3.4. To illustrate that the above assumption can be satisfied for some class of prob-
lems, consider the following situation. Assume that the driving vector fields V,V1, . . . ,Vd

are real-analytic and can be extended (as analytic functions) to some neighborhood U ⊃ D.
Moreover, assume that we are given an analytic solution u : [0,T ]×D→ R of (1.3) which
can be extended as an analytic function to U. Then the extended function u : [0,T ]×U → R
satisfies the PDE

∂

∂t
u(t, x) + Lu(t, x) = 0, x ∈ U,

since ∂
∂t u(t, x) + Lu(t, x) is an analytic function which is zero on D ⊂ U.

Proposition 3.5. The weak error of the Euler scheme (3.4) for approximation of the solu-
tion of (1.3) by

(3.5) u(0, x0) = E

 f (XN∧Nτ
) −

Nτ−1∑
i=0

h(Xi+1)∆Zi


satisfies the error expansion

(3.6) u(0, x0) − u(0, x0) = −
1
2

E

Nτ−1−1{τ<T }∑
i=0

uR,nn(ti+1, Xi+1,∆Zi)
(
∆Zi

)2

−
−

1
2

E

Nτ∧Nτ̂−1∑
i=0

uS ,nn(ti+1, Xi+1)
(
∆Zi

)2

 +

+ E
[∫ τ∧T

0
(L − L)uR(s, X̂s)ds

]
+ E

[∫ τ̂∧T

0
(L − L)uS (s, X̂s)ds

]
+

+ E
[(
∂tuR(τ, XNτ

)∆tNτ−1 + ∂nuR(τ, XNτ
)
〈
n(XNτ

) , XNτ
− XNτ−1

〉)
1{τ<T }

]
+

+ E

N−1∑
i=0

(
g(XNτ

)1Nτ<N + f (XNτ
)1Nτ=N − g

(
ΠS

(
X̂ti+ + X̂ti+1

2

)))
P(ti ≤ τ̂ < ti+1|X)

 +

+ terms of higher order,

where uR,nn and uS ,nn are defined in (3.9).

Proof. We analyze the error of the discrete Euler scheme (3.4) by splitting it into the error
contribution for the purely stopped part uS (0, x0) and for uR(0, x0), respectively. In other
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words, using u(t, x) = uR(t, x) + uS (t, x), we have

u(0, x0) − u(0, x0) = E
[
u(T ∧ τ, XN∧Nτ

) − u(0, x0) −
N∧Nτ−1∑

i=0

h(Xi+1)∆Zi

]

= E
[N∧Nτ−1∑

i=0

([
uR(ti+1, Xi+1) − uR(ti, Xi)

]
− h(Xi)∆Zi

)
+

+ uS (T ∧ τ, XN∧Nτ
) − uS (0, x0)

]

= E
[N∧Nτ−1−1Nτ<N∑

i=0

uR(ti+1, Xi+1) − uR(ti+1, X̂i+1) − h(Xi+1)∆Zi

]
+(3.7a)

+ E
[(

uR(tNτ
, Xi+1) − uR(ti+1, X̂i+1) − h(Xi+1)∆Zi

)
1Nτ≤N

]
+(3.7b)

+ E
[N∧Nτ−1∑

i=0

uR(ti+1, X̂i+1) − uR(ti, Xi)
]
+(3.7c)

+ E
[
uS (T ∧ τ, XN∧Nτ

) − uS (0, x0)
]

(3.7d)

= (I) + (II) + (III) + (IV).

Let us first consider (3.7c). By Ito’s formula and the fact that Xi = X̂ti+ for i < Nτ,

uR(ti+1, X̂i+1) − uR(ti, Xi) =

∫ ti+1

ti

(∂uR

∂t
(t, X̂t) + LXi

uR(t, X̂t)
)
dt + · · ·

=

∫ ti+1

ti
(LXi
− L)uR(t, X̂t)dt + · · · ,

where “· · · ” denotes a martingale term and Ly denotes the infinitesimal generator of the
SDE driven by the constant vector fields V(y),V1(y), . . . ,Vd(y) ∈ Rd. Consequently, the
term (3.7c) is equal to

(3.8) (III) = E
[∫ τ

0
(L − L)ur(t, X̂t)dt

]
.

Classical Taylor expansion allows us to re-express the first term in the error expan-
sion (3.7). Indeed,

Xi+1 = X̂i+1 + n(Xi+1)∆Zi

for 0 ≤ i ≤ Nτ−2 implies that

uR(ti+1, Xi+1) − uR(ti+1, X̂i+1) = uR(ti+1, Xi+1) − uR
(
ti+1, Xi+1 − n(Xi+1)∆Zi

)
= ∆Zi

∂

∂n
uR(ti+1, Xi+1) − (∆Zi)2uR,nn(ti+1, Xi+1,∆Zi),

where

(3.9) uR,nn(t, x, z) =

∫ 1

0
(1 − θ)

∂2

∂n2 uR(t, x − θzn(x))dθ

is a Taylor remainder term. Consequently, we get

(3.10) (I) = E
[N∧Nτ−1−1Nτ<N∑

i=0

(∆Zi)2uR,nn(ti+1, Xi+1,∆Zi)
]
.

Note that the above computation does not work for the sub-interval directly before hit-
ting the stopping boundary, since then X̂i+1 is projected onto the stopping boundary, and the
corresponding directional derivative is not given by the equation (unlike h, the directional
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derivative in the projection direction over the reflecting boundary). We can, however, do
make an ordinary Taylor expansion

E
[(

uR(tNτ
, XNτ

) − uR(tNτ−1, XNτ−1)
)

1
τ≤N

]
=

E
[(
∂tuR(tNτ

, XNτ
)∆tNτ−1 +

〈
∇uR(tNτ

, XNτ
)) , XNτ

− XNτ−1

〉)
1
τ≤N

]
+ O(. . .).

While this expression is still not computable, we expect it to give a small contribution of
order O(

√
∆tNτ−1) only. We represent XNτ

− XNτ−1 as the sum of its component in direction
n(XNτ

) and the complement. Since n is a normal vector to ∂D, the complement is tangential
to ∂D – as long as XNτ

is not a corner or an otherwise non-smooth point of ∂D. Since
uR|∂DS

≡ 0, we know that any directional derivative of uR at ∂DS is zero. Consequently,
we obtain

(3.11)
(II) = E

[(
∂tuR(tNτ

, XNτ
)∆tNτ−1 + ∂nuR(tNτ

, XNτ
)
〈
n(XNτ

) , XNτ
− XNτ−1

〉)
1{τ<T }

]
+O(. . .).

We are left with the error from the pure stopping problem. As usual, we are aiming at
Ito’s formula using X̂. Therefore, we subdivide the contribution into

(IV) = E[uS (τ ∧ T, XNτ∧N) − uS (τ̂ ∧ T, X̂τ̂∧T )]+(3.12a)

+ E[uS (τ̂ ∧ T, X̂τ̂∧T ) − uS (0, x0)](3.12b)
= (V) + (VI).

Noting that τ < τ̂ is very well possible, (3.12b) can be further expanded into

(VI) = E[uS (τ̂ ∧ T, X̂τ̂∧T ) − uS (τ̂ ∧ τ ∧ T, X̂τ̂∧τ∧T )]+

+ E[uS (τ̂ ∧ τ ∧ T, X̂τ̂∧τ∧T ) − uS (0, x0)].

Here, X̂ interpolates the discrete Euler process X until τ. Therefore, the second term of
the above expression can be expanded using Ito’s formula between the mesh points and
Taylor’s formula at the mesh points where reflection occurs, giving us

E[uS (τ̂ ∧ τ ∧ T, X̂τ̂∧τ∧T ) − uS (0, x0)] = E

Nτ∧Nτ̂−1∑
i=0

∫ ti+1

ti
(L − L)uS (s, X̂s)ds−

−

Nτ∧Nτ̂−1∑
i=0

1
2

uS ,nn(ti+1, Xi+1,∆Zi)
(
∆Zi

)2

 ,
where we used ∂nuS (t, x) = 0, x ∈ ∂DR. On the other hand, after τ ∧ τ̂, X̂ is either a
continuous process or a killed process, so we directly get

E[uS (τ̂ ∧ T, X̂τ̂∧T ) − uS (τ̂ ∧ τ ∧ T, X̂τ̂∧τ∧T )] = E
[∫ τ̂∧T

τ∧τ̂∧T
(L − L)uS (s, X̂s)ds

]
.

Consequently, (3.12b) is given by

(3.13) (VI) =

[∫ T∧τ̂

0
(L − L)uS (t, X̂t)dt −

Nτ∧Nτ̂∧N−1∑
i=0

1
2

uS ,nn(ti+1, Xi+1,∆Zi)
(
∆Zi

)2
]
.

This leaves us only with the term (3.12a). Here we apply the reasoning from [7], but
once again we have to observe that τ̂ > τ is very well possible due to reflections. Indeed,
let us denote by X the σ-algebra generated by all the simulated quantities, i.e.,

X = σ
({

X̂ti |0 ≤ i ≤ N
})
.

Then we have P(ti ≤ τ̂ ≤ ti+1|X) > 0 for all i – unless there is an i with X̂ti ∈ ∂DS , an event
with probability zero. After conditioning on X, we furthermore condition on {τ̂ ∈ [ti, ti+1[}
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and approximate

E
[
uS (τ̂ ∧ T, X̂τ̂∧T )

∣∣∣X ∨ σ({τ̂ ∈ [ti, ti+1[})
]
≈ g

(
ΠS

( X̂ti+ + X̂ti+1

2

))
,

where ΠS denotes the projection to the stopping boundary ∂DS . This gives us

(3.14) (V) ≈ E
[N−1∑

i=0

(
g(XNτ

)1Nτ<N + f (XNτ
)1Nτ=N −g

(
ΠS

( X̂ti+ + X̂ti+1

2

)))
P(ti ≤ τ̂ < ti+1|X)

]
.

Note that we have to sum over the whole range i ∈ {0, . . . ,N − 1}, since τ̂ is not directly
observable from the simulation and can take arbitrarily large values. �

Remark 3.6. In order to compute an error estimate based on Proposition 3.5, we need to
approximate ∂tuR and ∂nuR on ∂DS and ∂2

nuR, ∂2
nuS on ∂DR. Moreover, we ignore all terms

involving τ̂. Since these approximations may lead to undesired cancellation effects, if the
sign of the different contribution is not found correctly, it might be advisable to compute
an upper bound by taking absolute values of all the error contributions. A minor possible

modification of (3.14) is to replace g
(
ΠS

(
X̂ti++X̂ti+1

2

))
by

g(X̂ti+)+g(X̂ti+1 )
2 in the last line.

Remark 3.7. For an estimate of P(ti ≤ τ̂ < ti+1|X) see Appendix A.

Remark 3.8. Note that the absolute value of the leading order term in the error expansion
can be bounded by

(3.15) Error ≤ E

N−1∑
i=0

∣∣∣unn(ti+1, Xi+1)
∣∣∣ (∆Zi)2

 +

+ E
[(
∂tuR(τ, XNτ

)∆tNτ−1 + ∂nuR(τ, XNτ
)
〈
n(XNτ

) , XNτ
− XNτ−1

〉)
1{τ<T }

]
+

+ E

N−1∑
i=0

(
g(XNτ

)1Nτ<N + f (XNτ
)1Nτ=N − g

(
ΠS

( X̂ti+ + X̂ti+1

2

)))
P(ti ≤ τ̂ < ti+1|X)


up to terms of higher order. Therefore, we may interpret the leading error term as a sum
of three terms: the first term can be naturally interpreted as the error of a purely reflecting
problem; the last term corresponds to the error term of a purely stopped diffusion, whereas
the middle term is peculiar to the combination of a stopping and a reflecting boundary.
Note, however, that the last component of the above sum differs from the error term of a
stopped diffusion in the sense that τ̂ is only triggered if ∂DS is hit. Therefore, the corre-
sponding stopped diffusion is stopped only at ∂DS and may even wander outside D.

Corollary 3.9. In the case of a pure reflecting diffusion, i.e., ∂DR = ∂D, the error repre-
sentation is given by

u(0, x0) − u(0, x0) =

∫ T

0
E
(
(L − L)u(t, X̂t)

)
dt − E

[N−1∑
i=0

(
∆Zi

)2unn(ti+1, Xi+1,∆Zi)
]
.

Remark 3.10. The error expansion in Corollary 3.9 naturally splits into two parts. The first
part, i.e., ∫ T

0
E

[(
L − L

)
u
(
t, X

N
t
)]

dt,

is well understood since this is the first order term for the usual Euler-Maruyama method
for (non-reflected) SDEs. We will refer to this part as interior error, since its main contri-
butions are discretization errors in the interior of the domain. Much more interesting for
our study is the second term in the error expansion,

(3.16) E

N−1∑
i=0

(
∆Z

N
i
)2

∫ 1

0
(1 − θ)

∂2

∂n
(
X

N
i+1

)2
u
(
ti+1, X

N
i+1 − θ∆Z

N
i n

(
X

N
i+1

))
dθ

 ,



ADAPTIVE WEAK APPROXIMATION OF REFLECTED AND STOPPED DIFFUSIONS 13

which measures the contribution from the reflection. In order to assert the meaning of (3.16),
let us take a first look at it. Assume that the equation is nice enough such that ∂2

∂n2 u is uni-
formly bounded on [0,T ] × D. Then the integral term can be bounded by some constant,
and we are left with

const E

N−1∑
i=0

(
∆Z

N
i
)2

 .
Heuristically, the number of hits at the boundary, i.e., the number of indices i such that
∆Z

N
i , 0, increases like

√
N with the number of time-steps. On the other hand, given a hit

takes place, then ∆Z
N
i ≈

√
∆ti, since ∆Z

N
i is, asymptotically, the modulus of the increment

of a Brownian motion, or the increment of a Brownian motion conditioned to be positive.
Combining these heuristic observations, we get

const E

N−1∑
i=0

(
∆Z

N
i
)2

 ≈ C
√

N ×
1
N
≈

C
√

N
,

as it should be by the results of [6].

The above heuristics can be partly backed up by the following observation.

Lemma 3.11. Given a one-dimensional Brownian motion
(
Bt

)
t∈[0,∞[ and a fixed time T >

0. For N ∈ N let ∆t = T/N and tn = n∆t, n = 0, . . . ,N. By abuse of notation, we define

∆Zn =
(∣∣∣Btn

∣∣∣ + sign(Btn )∆Bn

)
−
,

where, as usual, ∆Bn = Btn+1 − Btn and n ∈ {0, . . . ,N − 1}. Then we have

(3.17) E

N−1∑
n=0

1]0,∞[(∆Zn)

 ≤ 2
π

√
N + C,

where C ≈ 0.07127 is a numerical constant.

Remark 3.12. |Bt | is the continuously reflected Brownian motion at 0. Therefore, Lemma 3.11
establishes the desired asymptotics E

(
Ñ
)
≤ const

√
N for the number of hits at the bound-

ary Ñ, if we assume that X
N
btnc has already converged to its weak limit

∣∣∣Btn

∣∣∣.
Proof of Lemma 3.11. By independence of Btn and ∆Bn, we get

P(∆Zn > 0) = P
(∣∣∣Btn

∣∣∣ + sign(Btn )∆Bn < 0
)

= P(
√

tn |Y1| +
√

∆tY2 < 0)

= P
(
|Y1| <

1
√

n
Y2

)
for two independent standard normal random variables Y1 and Y2, n ≥ 1. This means that
we need to compute the probability of the convex cone

A =

{
(y1, y2) ∈ R2

∣∣∣∣∣∣ |y1| <
1
√

n
y2

}
with respect to the standard, two-dimensional Gaussian measure. By the rotation-invariance
of the Gaussian measure, the probability of the cone A coincides with the area of A ∩ D1

divided by the total area of D1, where D1 denotes the unit sphere, symbolically,

P(Y ∈ A) =
λ2(A ∩ D1)
λ2(D1)

=
λ2(A ∩ D1)

π
.
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Let A = A ∪ (−A) =
{

(y1, y2) ∈ R2
∣∣∣ y2

1 <
1
n y2

2

}
. In polar coordinates, we may rewrite

A ≡
{

(r, φ)
∣∣∣ φ ∈ [0, 2π[, tan2 φ > n

}
= [0,∞[×

(
] arctan(

√
n), π − arctan(

√
n)[ ∪ ]π + arctan(

√
n), 2π − arctan(

√
n)[

)
,

where we choose arctan to take values in ] − π/2, π/2[. Consequently, we get

λ2(A ∩ D1) = π − 2 arctan(
√

n),

implying

(3.18) P(∆Zn > 0) =
π − 2 arctan(

√
n)

2π
.

The Laurent series of the arctan for |x| > 1 is given by

arctan(x) =
π

2
−

1
x

+
1

3x3 −
1

5x5 + · · · ,

see Abramowitz and Stegun [1]. This implies

arctan(x) ≥
π

2
−

1
x
, x ≥ 1.

Equation (3.18) can now be bounded by

P(∆Zn > 0) ≤
1

π
√

n
, n > 0,

implying that
N−1∑
n=0

P(∆Zn > 0) ≤
1
2

+

N−1∑
n=1

1
π
√

n
.

The series expansion √
1 +

1
x

=
2
3

∞∑
i=0

1
B
( 3

2 − i, i + 1
)
xi

valid for |x| large enough, implies

g(x) := x
(

1
2
−
√

x
(√

x + 1 −
√

x
))

=
1
8
−

2
3

∞∑
i=3

1
B
( 3

2 − i, i + 1
)
xi−2

,

where B denotes the Beta-function. This shows that limx→∞ g(x) = 1
8 . Moreover,

g′(x) =

√
x + 1

√
x − 4x2 − 3x + 4x3/2

√
x + 1

2
√

x
√

x + 1
> 0, x > 0.

Consequently, g(x) < 1
8 for x > 0, and, for x = n, we get

1
π
√

n
≤

2
π

((√
n + 1 −

√
n
)

+
1

8n3/2

)
.

Putting everything together, we obtain

N−1∑
n=0

P(∆Zn > 0) ≤
1
2

+
2
π

N−1∑
n=1

(√
n + 1 −

√
n
)

+
1

4π

N−1∑
n=1

1
n3/2

≤
1
2

+
2
π

(√
N − 1

)
+

1
4π
ζ(3/2). �
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In the remainder of this article, we present two new algorithms based on the error ex-
pansion in Proposition 3.5, where we mainly concentrate on the reflecting part. The first
algorithm is an adaptive algorithm. Numerical experiments (with some theoretical under-
pinning, see Proposition 4.15) indicate a weak convergence with a rate between 1/2 and 1,
probably around 0.8. In Section 4 we present the adaptive algorithm for purely reflected
diffusions, which we combine, in light of Proposition 3.5, with the existing adaptive al-
gorithm for stopped diffusions of Dzougoutov et al. [7] in Section 5. We believe that this
algorithm is especially useful for domains with non-convex boundaries or different types
of boundary conditions – leading to singularities in the solution at the boundary.

Another possible approach to the problem at hand is to include the leading order term
of the error given in Corollary 3.9 for the purely reflecting case into the sample produced
by the algorithm. Thus, the new leading order error term of the expansion is of higher
order than the leading order term for the projected Euler method. We further develop this
approach in Section 6, where we also encounter its limitations: the algorithm is straight-
forward only in dimension one, and even in this case it is not superior to the adaptive
algorithm, again giving a rate of 0.8.

4. T     

The idea of adaptive algorithms for SDEs is the following: given a certain computational
error that one is willing to tolerate, one wants to minimize the work while achieving a
computational error smaller than the error tolerance. For “work” we substitute the number
of time-steps used. In fact, since the number of time-steps will be random, we try to
minimize the average number of time-steps. Notice that all our comments only refer to the
algorithm discretizing the SDE in order to produce random samples for the final Monte
Carlo simulation. For the general theory of adaptive weak algorithms for SDEs see Moon,
Szepessy, Tempone and Zouraris [16].

First we present an adaptive algorithm for a purely reflected diffusion, i.e., based on the
error expansion given in Corollary 3.9. In this situation, we can present a theory, partly
based on numerical observations. Later we present a heuristic extension to the mixed prob-
lem, i.e., to the case with both Neumann and Dirichlet boundary conditions. As already
mentioned before, the advantages of the adaptive algorithm are generally expected to show
in situations with inherent singularities. We do not have a proof for a certain convergence
rate, but notice that for problems with very low regularity most traditional weak conver-
gence results fail, too.

Our starting point is the error expansion in Corollary 3.9, which we rewrite as

(4.1) E

N−1∑
i=0

(
∆Z

N
i
)2

∣∣∣∣unn
(
ti+1, X

N
i+1,∆Z

N
i
)∣∣∣∣

where we use the shorthand notation

unn
(
ti+1, X

N
i+1,∆Z

N
i
)

=

∫ 1

0
(1 − θ)

∂2

∂n
(
X

N
i+1

)2
u
(
ti+1, X

N
i+1 − θ∆Z

N
i n

(
X

N
i+1

))
dθ.

Define auxiliary functions ∆tN : [0,T ]→ R by ∆tN(t) = ∆ti = ti+1− ti and Z
N

: [0,T ]→ R
by Z

N
(t) = Z

N
i+1 for t ∈]ti, ti+1]. Let Ñ denote the number of hits at the boundary for the

given time grid. We approximate

(4.2) E
[
Ñ
]
≈ E

∫ T

0

dZ
N

(t)√
∆tN(t)

 .
For justification of (4.2), we start with the same setting as in Lemma 3.11.
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Lemma 4.1. Given a one-dimensional Brownian motion
(
Bt

)
t∈[0,∞[, a fixed time T > 0 and

a partition 0 = t0 < · · · < tN = T. Define, within the scope of this lemma,

∆Zn =
(∣∣∣Btn

∣∣∣ + sign(Btn )∆Bn

)
−
,

where, as usual, ∆Bn = Btn+1 − Btn , ∆tn = tn+1 − tn and n ∈ {0, . . . ,N − 1}. Then

E

N−1∑
n=0

1]0,∞[(∆Zn)

 ≤ 2

√
2
π

E

N−1∑
n=0

∆Zn
√

∆tn

 ,(4.3)

E

N−1∑
n=0

1]0,∞[(∆Zn)

 ≥
√
π

2
E

N−1∑
n=0

∆Zn
√

∆tn

 .(4.4)

Proof. By interchanging the summation with the expectation, we need to prove that

P(∆Zn > 0) ≤ (≥)CE
[

∆Zn
√

∆tn

]
for suitable constants C as given in the statement of the lemma. For the computation of

P(∆Zn > 0), we proceed as in the proof of Lemma 3.11, with
√

n replaced by
√

tn
∆tn

, giving
us

P(∆Zn > 0) =
1
π

arctan


√

∆tn
tn

 .
Let Y2 denote a standard Gaussian random variable. We have

E
[

∆Zn
√

∆tn

∣∣∣∣∣Btn = x
]

= E
[(
|x|
√

∆tn
+ sign(x)Y2

)
−

]
= p

(
|x|
√

∆tn

)
−
|x|
√

∆tn

(
1 − Φ

(
|x|
√

∆tn

))
,

where p denotes the density of the standard Gaussian law and Φ its cumulative distribution
function. Consequently, we obtain

E
[

∆Zn
√

∆tn

]
= 2

∫ ∞

0

(
p
( √tnx
√

∆tn

)
−

√
tnx
√

∆tn

(
1 − Φ

( √tnx
√

∆tn

)))
p(x)dx

=
1
√

2π

1 −
√

tn
∆tn

√
tn

∆tn
+ 1 + tn

∆tn√
tn

∆tn
+ 1

.

Let δ B
√

tn
∆tn

and define

f (δ) =
P(∆Zn > 0)

E
[

∆Zn√
∆tn

] =

√
2 arctan(1/δ)

√
1 + δ2

√
π(1 − δ

√
1 + δ2 + δ2)

.

Noting the the numerator of f is increasing in δ, whereas the denominator is decreasing,
we get that f itself is an increasing function of δ, with

lim
δ↘0

f (δ) =

√
π

2
≈ 1.253, lim

δ→∞
f (δ) = 2

√
2
π
≈ 1.596.

Therefore, we can bound

P(∆Zn > 0) ≤ 2

√
2
π

E
[

∆Zn
√

∆tn

]
,

P(∆Zn > 0) ≥
√
π

2
E

[
∆Zn
√

∆tn

]
.

Summing up, we obtain the result. �
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We want to minimize (4.2) subject to the constraint that the error term (4.1) is smaller
than a given error tolerance TOL. In order to avoid non-adapted stochastic processes en-
tering the picture at this stage, let us approximate the error term by its leading order term

(4.5) E

N−1∑
i=0

(
∆Z

N
i
)2

∣∣∣∣unn
(
ti+1, X

N
i+1

)∣∣∣∣ ≈ E

N−1∑
i=0

∣∣∣∣unn
(
ti+1, X

N
i+1

)∣∣∣∣ ∆Z
N
i E

(
∆Z

N
i

∣∣∣XN
i , ∆ti

) .
Until we have identified an optimal strategy, let us assume that (∆ti)N−1

i=0 is an adapted time-
mesh in the sense that ∆ti is measurable with respect to

Fi = σ
({

X j

∣∣∣ j = 0, . . . , i
})

and such that ∆t0 + · · ·+∆tN−1 = T . In particular, N is constructed to be a random variable.

Lemma 4.2. Let ψ(x,∆t) = E
[
∆Zi

∣∣∣Xi = x, ∆ti = ∆t
]
. Assume that the domain D is the

half-space D = {x| 〈n , x〉 ≥ cD} for some normal vector n with ‖n‖ = 1, and that we con-
sider the reflected diffusion (1.2). Denote by Φ and p the distribution function and density
of a standard normal distribution. Then

ψ(x,∆t) = A(x,∆t)Φ
(

A(x,∆t)
√

∆tσ(x)

)
+
√

∆tσ(x)p
(

A(x,∆t)
√

∆tσ(x)

)
,

∂

∂∆t
ψ(x,∆t) = − 〈n ,V(x)〉Φ

(
A(x,∆t)
√

∆tσ(x)

)
+
σ(x)

2
√

∆t
p
(

A(x,∆t)
√

∆tσ(x)

)
,

where

A(x,∆t) = cD − 〈n , x〉 − 〈n ,V(x)〉∆t, σ(x) =

√√√ d∑
j=1

〈
n ,V j(x)

〉2
.

Proof. Note that for y ∈ Dc, the projection onto D is given by Π(y) = y + (cD − 〈n , y〉)n,
and the distance of y to ∂D is given by cD − 〈n , y〉. Consequently,

∆Zi =
(
cD −

〈
n , X̂i+1

〉)
+

=

cD −

〈
n , Xi + V(Xi)∆ti +

d∑
j=0

V j(Xi)∆B j
〉

+

.

Note that conditional on Fi,
〈
n ,

∑d
j=0 V j(Xi)∆B j

〉
has a normal distribution with variance

σ(Xi)2∆ti. Let Y denote aN(0, 1)-distributed random variable independent of Fi. Then we
have

ψ(x,∆t) = E
[(

cD − 〈n , x〉 − 〈n ,V(x)〉∆t +
√

∆tσ(x)Y
)
+

]
=

∫ ∞

−
A(x,∆t)
σ
√

∆t

(A(x,∆t) + σ(x)
√

∆ty)p(y)dy

= A(x,∆t)Φ
(

A(x,∆t)
√

∆tσ(x)

)
+
√

∆tσ(x)p
(

A(x,∆t)
√

∆tσ(x)

)
.

The formula for the derivative of ψ is then given by differentiation of the above. �

In the general case of a domain D not given by a half-space, we locally approximate
D by a suitable (tangent) half-space with normal n depending on x. Recall that we used
cD − 〈n , x〉 = −d(x) for x ∈ D, where d(x) denotes the distance to the boundary ∂D.
Therefore, we now again replace cD − 〈n(x) , x〉 with d(x), i.e., we define A as

(4.6) A(x,∆t) = −d(x) − 〈n(Π∂D(x)) ,V(x)〉∆t,

where Π∂D denotes the projection of x to the boundary.
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Combining these results and rewriting everything in terms of integrals instead of sums,
we get the Lagrangian of the minimization problem at hand:

(4.7) L(∆t) = E
[∫ T

0

dZ(s)
√

∆t(s)
+ λ

(∫ T

0

∣∣∣unn
(
s, X(s)

)∣∣∣ψ(X(s),∆t(s))dZ(s) − TOL
)]
.

L is understood as a function defined on the set of positive, piecewise constant functions
on [0,T ]. Note that we have tacitly omitted the dependence on N in the above equation,
because N is now a function of the mesh function ∆t, which is no longer fixed. The
derivative in direction of the piecewise constant function φ is then given by

L′(∆t) · φ = E
[∫ T

0

(
−

1
2∆t(s)3/2 + λ

∣∣∣unn
(
s, X(s)

)∣∣∣ ∂

∂∆t(s)
ψ(X(s),∆t(s))

)
φ(s)dZ(s)

]
.

The condition that L′(∆t) · φ = 0 for all functions φ implies

(4.8) const =
1
λ

=

[
−2

〈
n(X(t)) ,V(X(t))

〉
Φ

 A(X(t),∆t(t))
√

∆t(t)σ(X(t))

 ∆t(t)3/2+

+ σ(X(t))p
 A(X(t),∆t(t))
√

∆t(t)σ(X(t))

 ∆t(t)
] ∣∣∣unn(t, X(t))

∣∣∣
for all t ∈ [0,T ]. Notice that (4.8) can already be understood as a refinement rule, be-
cause it shows the dependence of the grid on the position. There is, however, no direct
dependence on the tolerance level TOL included, yet. To this end, we have the re-insert the
expression (4.8) into the error representation (4.5), giving us the constant in (4.8). More
precisely, note that

1
λ

=
√

∆t(t)ψ(X(t),∆t(t))
∣∣∣unn(t, X(t))

∣∣∣−
−

(
−d(X(t)) +

〈
n(X(t)) ,V(X(t))

〉
∆t(t)

)︸                                          ︷︷                                          ︸
CB(X(t),∆t(t))

Φ

 A(X(t),∆t(t))
√

∆t(t)σ(X(t))

 ∣∣∣unn(t, X(t))
∣∣∣ .

Therefore, plugging (4.8) into the constraint yields

(4.9) TOL = E


∫ T

0

∣∣∣unn(s, X(s))
∣∣∣ B(X(s),∆t(s))Φ

(
A(X(t),∆t(t))
√

∆t(t)σ(X(t))

)
√

∆t(s)
dZ(s)

 +

+

∆t(t)σ(X(t))p
A(X(t),∆t(t))

√
∆t(t)

 − 2∆t(t)3/2
〈
n(X(t)) ,V(X(t))

〉
Φ

A(X(t),∆t(t))
√

∆t(t)

×
×

∣∣∣unn(t, X(t))
∣∣∣ E

∫ T

0

dZ(s)
√

∆t(s)


This term is too complicated for the implementation. Two simplifications are immediately
possible. Note that

B(x,∆t) = −d(x)︸︷︷︸
≤0

+ 〈n(x) ,V(x)〉∆t.

Therefore, the positive part of B is small. If V is small close to the boundary ∂D, we
may, therefore, ignore the first term in (4.9). Otherwise, we can run the adaptive algorithm
once in order to get an estimate for the expected value, and then run the algorithm again
using that estimate. If necessary, this procedure can be iterated. Secondly, we may again
apply (4.2), this time in the other direction, which gives a term E

(
Ñ
)

in the denominator.
In practice, we do not know this expected value, especially since it highly depends on
the grid, which is no longer fixed. Therefore, we can use the same procedure as for the
first expectation. However, empirically it turns out that the expected number of hits as a
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function of TOL can be reliably estimated, and then used for the computations. Moreover,
the term of order ∆t(t)3/2 is negligible for small ∆t. These simplifications lead to

TOL = ∆t(t)σ(X(t))p
A(X(t),∆t(t))

√
∆t(t)

 ∣∣∣unn(t, X(t))
∣∣∣ E

[
Ñ
]

≈ ∆t(t)σ(X(t))p
d(X(t))
√

∆t(t)

 ∣∣∣unn(t, X(t))
∣∣∣ E

[
Ñ
]
.(4.10)

Next we solve the equation (4.10) for the optimal increment ∆t using a special function
known as Lambert’s W-function, see [5]. This function is defined by

W(z) exp(W(z)) = z.

The following elementary facts about Lambert’s W-function are presented for later use.

Lemma 4.3. The function f (x) =
W(x)

x , x ≥ 0, is strictly decreasing in x, positive and
f (0) = 1. Moreover, for x ≥ e, W(x) ≤ log(x).

Proof. First note that W(x) itself is strictly increasing on R≥0. The last two assertions on f
follow immediately from

f (x) = e−W(x).

The monotonicity follows just as easily from

f ′(x) = −e−W(x)W ′(x).

Let us write W(x) = log(x) + g(x). Then at x ≥ e we have x = W(x) · x · eg(x), thus
1 = W(x)eg(x). Since W(x) ≥ 1 for x ≥ e, we have g(x) ≤ 0. �

Lemma 4.4. The reduced equation (4.10) for the optimal time steps corresponds to the
explicit formula

(4.11) ∆ti =
d(Xi)2

2σ(Xi)2W
(

d(Xi)2
∣∣∣unn(ti,Xi)

∣∣∣E[
Ñ
]

√
2π2σ(Xi) TOL

) ,
where d(x) denotes the distance of x ∈ D to the boundary ∂D.

Proof. Equation (4.10) is equivalent to

exp
 d(Xi)

2σ(Xi)2∆ti

 d(Xi)2

2σ(Xi)2∆ti
=

d(Xi)2

2σ(Xi) TOL
√

2π

∣∣∣unn(ti, Xi)
∣∣∣ E

[
Ñ
]
,

for d(Xi) > 0. The formula (4.11) now follows by definition of Lambert’s W-function. For
d(Xi) = 0 the formula is still valid by continuity of (4.11). �

There is still the unknown term
∣∣∣unn

(
t, X(t)

)∣∣∣ left in equation (4.10). We propose two
possible approaches to it, depending on the problem at hand.

• If the problem is simple enough or we have some a-priori information, we can
replace

∣∣∣unn
(
t, X(t)

)∣∣∣ by the constant 1 or by some approximation based on our
knowledge of the problem, respectively. For instance, if v is well behaved but for
one singularity at a known point x0 ∈ R

n, we could replace
∣∣∣unn

(
t, X(t)

)∣∣∣ with 1 far
away from x0 and with 1/ ‖x − x0‖

α close to x0, with α depending on the type of
singularity. Notice, however, that in this situation the true computational error can
only be proportional to the error estimate given by the local error indicator (4.10).
Therefore, it is not possible to guarantee – within the limitations of a Monte-Carlo
setup and our further assumptions – the computational error to be bounded by
TOL, but one has to observe the dynamics of the results for smaller and smaller
TOL.
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• In general,
∣∣∣unn

(
t, X(t)

)∣∣∣ can be approximated by the discrete dual functions, see
[20] for more details. The use of the dual functions introduces some subtleties
into the algorithm, because they are computed by backward recursion. Thus, they
are not adapted to the filtration. In this case, the error representation based on
the local error indicator is precise, again under the limitations of the setup, in
particular keeping in mind that the discrete dual functions are only approximations
of the true second normal derivative.

Let us summarize the adaptive algorithm. In the following, t will denote a partition of
[0,T ], i.e., t = (ti)

N(t)
i=0 with 0 = t0 < · · · < tN(t) = T . Given a partition t, we will denote

∆tti = ti+1 − ti, 0 ≤ i ≤ N(t)− 1. Moreover, B
t
, X
t
, Z
t

will denote discrete processes defined

on the grid t, i.e., B
t

= (Bti )
N(t)
i=0 and we will also use ∆B

t

i = Bti+1 − Bti , ∆Z
t

i = Z
t

i+1 − Z
t

i,
0 ≤ i ≤ N(t) − 1.

Remark 4.5. Of course, it is also possible to sample the Brownian motion in a weak way.
In this situation, one has to use the weak analogue of the above Brownian bridge formula.

Algorithm 4.6 (Adaptive Euler Algorithm for Reflecting Diffusions – Refinement Ver-
sion). Start with an initial mesh t and the corresponding Brownian motion B

t
.

(1) Set X
t

0 = x, Z
t

0 = 0, and i = 0.
(2) Set

X̂ti+1 = X
t

i + V
(
X
t

i
)
∆ti +

d∑
j=1

V j
(
X
t

i
)
∆B

j
i .

(3) Set

X
t

i+1 =

X̂ti+1, X̂ti+1 ∈ D,
Π(X̂ti+1), X̂ti+1 < D,

Z
t

i+1 =

Z
t

i, X̂ti+1 ∈ D,

Z
t

i +
∥∥∥Π(X̂ti+1) − X̂ti+1

∥∥∥ , X̂ti+1 < D.

(4) Increase i by one. If i < N(t), go back to (2).
(5) Refine the grid t using Algorithm 4.7. If the grid has changed during refinement,

then set i = 0 and go back to (2), using the refined grid.
(6) Calculate

F
t
= f

(
X
t

N(t)
)
−

N(t)−1∑
i=0

h
(
X
t

i+1
)
∆Z
t

i.

Algorithm 4.7 (Refinement Algorithm). Given a time grid t, the Brownian motion Bt

sampled on t and an error tolerance TOL. Do for i = 0, . . . ,N(t) − 1:
(1) Compute a local error indicator by

li = ∆tiσ(Xi)p
A(Xi,∆ti)
√

∆ti

 ∣∣∣unn(ti, Xi)
∣∣∣ E

[
Ñ
]
,

where
∣∣∣unn(ti, Xi)

∣∣∣ is chosen by one of the two approaches mentioned earlier.
(2) If li > TOL, insert t = ti+ti+1

2 into the grid t and generate the corresponding sample
of the Brownian motion Bt by a Brownian bridge between the already sample
values Bti and Bti+1 .

As an alternative, we can directly use the explicit formula (4.11), which greatly in-
creases the efficiency of the algorithm. The corresponding Euler scheme has only a marginally
higher complexity as a uniform Euler scheme with a grid size equal to the mean grid size
of the adaptive scheme.
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Algorithm 4.8 (Adaptive Euler Algorithm for Reflecting Diffusions – Explicit Version).
Start with X0 = x0 and set t = 0, i = 0, N = 0 and B0 = 0. While t < T do:

(1) Define ∆ti by equation (4.11) (but not larger then T − t) and generate ∆Bi accord-
ingly, i.e., as a vector of d independent normals with variance ∆ti.

(2) Set

X̂i+1 = Xi + V
(
Xi

)
∆ti +

d∑
j=1

V j
(
Xi

)
∆B

j
i .

(3) Set

Xi+1 =

X̂i+1, X̂i+1 ∈ D,
Π(X̂i+1), X̂i+1 < D,

∆Zi =

0, X̂i+1 ∈ D,∥∥∥Π(X̂i+1 − X̂i+1
∥∥∥ , X̂i+1 < D.

(4) Increase i and N by one and update t = t + ∆t.
Finally, calculate

F = f
(
XN

)
−

N−1∑
i=0

h
(
Xi+1

)
∆Zi.

Remark 4.9. Algorithm 4.7 uses the reduced form of (4.9), where the first expected value is
removed. Alternatively, one could use the full form (4.9) and estimate the expected value in
that formula in a first run, using the so obtained value in a second run for the computation
of the error density.

Remark 4.10. In both algorithms, knowledge of E
[
Ñ
]

is presupposed. One can either

use an asymptotic formula E
[
Ñ
]
≈ TOL−β for some numerically computed constant β as

discussed below, or one can use the same approach as advocated in Remark 4.9.

Remark 4.11. Both Algorithm 4.6 and Algorithm 4.8 ignore the error contribution in the
interior of the domain, i.e., they ignore the part

E
[∫ T

0
(L − L)u(t, Xbtc)dt

]
.

One can construct an adaptive algorithm also using this “interior” error contribution based
on the theory developed in [20] and [16] – in the same fashion as we combine the algo-
rithms for reflecting and for stopped diffusions in Section 5. On the other hand, since the
adaptive algorithms for reflecting diffusions have an order of weak convergence less than
one, cf. Remark 4.17, we may ignore the interior error contribution as a higher order error
term, provided that the initial mesh is fine enough, e.g., uniform with ∆t ≈ TOL.

Using the adaptive Algorithm 4.8, we know that the discretization error is of order TOL,
provided some assumptions. However, in order to obtain a convergence rate we need to
compute the work in the sense of the size of the finest grid in the adaptive algorithm in terms
of TOL. Since the number of hits at the boundary E

[
Ñ
]

undoubtedly depends strongly on
TOL, too, we need to get a grip on its dependence on TOL before being able to compute the
dependence of the total work. The following assumption is based on numerical evidence.

Assumption 4.12. The expected number of hits at the boundary depends on the tolerance
as

E
(
Ñ
)
/ TOL−β

for some β > 0.

Remark 4.13. Numerical experiments suggest β ≈ 5/4 in many cases, see the numerical
part of this paper. However, the optimal rate β might not be problem independent
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By Lemma 4.3, the optimal time-steps ∆ti given by Lemma 4.4 are asymptotically (in
TOL) bounded from below by

(4.12) ∆tMIN =

√
2πTOL1+β

‖unn|∂D‖∞ ‖σ|∂D‖∞
,

given Assumption 4.12. We also need a boundedness assumption on the density of the law
of the Euler approximations X away from the boundary.

Assumption 4.14. The densities pTOL(t, x) of Xbtc on Xbtc > 0 are uniformly bounded for
TOL→ 0.

For the next lemma, we again confine ourselves to the situation of reflection at a half-
space, without loss of generality given by the normal vector n.

Proposition 4.15. For the approximation of (1.1) on a half-space domain using Algo-
rithm 4.8 take Assumption 4.12 and Assumption 4.14 for granted and assume that the
second normal derivative of of the solution and σ(x)2 =

∑d
j=1

〈
n ,V j(x)

〉2
are uniformly

bounded away from zero as well as from above. Moreover, assume that 〈n ,V(x)〉 is uni-
formly bounded. Then the work in the sense of the expected value of the final grid size is
asymptotically bounded by

E(N) / TOL−max(β,(1+β)/2) .

Proof. Fix TOL > 0 and δ > 0 possibly depending on TOL. Then obviously

E(N) = E
[N−1∑

i=0

1{
d(Xi)<δ

}] + E
[N−1∑

i=0

1{
d(Xi)≥δ

}].
Let us first consider the second expectation above, i.e., the sum over “large” values of
d(Xi). In order to being able to interchange integration and summation, we move to a
continuous formulation of the formula, i.e.,

E
[N−1∑

i=0

1{
d(Xi)≥δ

}] = E
[N−1∑

i=0

1{
d(Xi)≥δ

} ∆ti
∆ti

]
= E

[∫ T

0
1{

d(Xbsc)≥δ
} 1
∆t(s)

ds
]
,

where bsc = sup {0 ≤ i ≤ N |ti ≤ s} and ∆t(s) = ∆tbsc. Note that both bsc and ∆t(s) are
piecewise constant stochastic processes, and ∆t(s) is asymptotically bounded from below
by ∆tMIN given in (4.12). We may interchange the expectation and the integration with
respect to time by Fubini’s theorem. Next we provide a bound for the expected value of
the integrand. We replace ∆tbsc using (4.11) and get

E
[
1{

d(Xbsc)≥δ
} 1
∆t(s)

]
≤ E

1{
d(Xbsc)

} 2σ(Xbsc)W
(

d(Xbsc)2
∣∣∣unn(tbsc,Xbsc)

∣∣∣ TOL−(1+β)

2
√

2πσ(Xbsc)

)
d(Xbsc)2


≤ E

1{
d(Xbsc)≥δ

} 2 log
(

d(Xbsc)2
∣∣∣unn(tbsc,Xbsc)

∣∣∣ TOL−(1+β)

2
√

2πσ(Xbsc)

)
X

2
bsc

 ,
where the inequality is valid by Lemma 4.3 provided that

(4.13) δ =

√
2
√

2πe ‖σ‖∞
∥∥∥u−1

nn

∥∥∥
∞

TOL(1+β)/2 C C1 TOL(1+β)/2 .
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Thus, we may further simplify, ignoring constants and using the assumption that Xbsc, and
thus d(Xbsc) has a bounded density (bounded by c > 0),

E
[
1{

d(Xbsc)≥δ
} 1
∆t(s)

]
≤ c

∫ ∞

δ

2 log
(

y2‖unn‖∞‖σ−1‖∞ TOL−(1+β)

2
√

2π

)
y2 dy

=
2c
C1

2 + log

C2
1 ‖unn‖∞

∥∥∥σ−1
∥∥∥
∞

2
√

2π

 TOL−(1+β)/2

≈ TOL−(1+β)/2,

where we have used that the primitive function of log(ay2)
y2 is given by − 2+log(ay2)

y . Note that
the above formula is independent from the index i and from time, therefore we obtain

(4.14) E
[N−1∑

i=0

1{
d(Xi)≥δ

}] / T TOL−
1+β

2 .

For the first sum, the number of steps with Xi < δ, we proceed by making yet more
subdivisions of the form

E
[N−1∑

i=0

1{
0≤d(Xi)<δ

}] = E
[N−1∑

i=0

1{
d(Xi)=0

}] + E
[N−1∑

i=0

1{
0<d(Xi)<δ

}]

= E
[
Ñ
]
+ E

[N−1∑
i=0

1{
0<d(Xi)<δ

}
∩
{
d(Xi+1)=0

}] + E
[N−1∑

i=0

1{
0<d(Xi)<δ

}
∩
{
d(Xi+1)≥δ

}]+
+ E

[N−1∑
i=0

1{
0<d(Xi)<δ

}
∩
{
0<d(Xi+1)<δ

}]

≤ 2E
[
Ñ
]
+ E

[N−1∑
i=0

1{
0<d(Xi)<δ

}
∩
{
d(Xi+1)≥δ

}] + E
[N−1∑

i=0

1{
0<d(Xi)<δ

}
∩
{
0<d(Xi+1)<δ

}].(4.15)

Noting that the random time ti is a stopping time for i ∈ N and the fact that the set {i < N}
is Fti -measurable, we can re-phrase the second expectation as

E
[N−1∑

i=0

1{
0<d(Xi)<δ

}
∩
{
d(Xi+1)≥δ

}] = E
[ ∞∑

i=0

1{
0<d(Xi)<δ

}
∩
{
d(Xi+1)≥δ

}1{i<N}

]

= E
[N−1∑

i=0

P
[
d(Xi+1) ≥ δ

∣∣∣Fti
]
1{

0<d(Xi)<δ
}].

Note that for the half-space under consideration, d(x) = 〈n , x〉, x ∈ D. For a standard
Gaussian random variable Y , the above conditional probability can be expressed using

P
[
d(Xi+1) ≥ δ

∣∣∣Xi = x] = P
[
〈n , x + V(x)∆t(x)〉 + σ(x)

√
∆t(x)Y ≥ δ

]
= Φ

(
−
δ − 〈n , x + V(x)∆t(x)〉

σ(x)
√

∆t(x)

)
,

where Φ denotes the cumulative distribution function of the standard normal distribution
and ∆t(x) denotes ∆ti as a function of Xi = x. As before, σ is defined by

σ(x)2 =

d∑
j=1

〈
n ,V j(x)

〉2
.
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For 0 < d(x) < δ and δ = C1 TOL(1+β)/2 by (4.13), we introduce x̃ B x TOL−(1+β)/2 and
∆̃t B ∆t(x) TOL−(1+β) and note that

0 < x̃ < C1, 0 <

√
2π

‖unn‖∞ ‖σ‖∞
≤ ∆̃t ≤

C2
1

∥∥∥σ−1
∥∥∥2
∞

2W
(

C2
1

2
√

2π‖σ‖∞‖u−1
nn‖∞

) ,
at least for TOL small enough. This gives

P
[
d(Xi+1) ≥ δ

∣∣∣Xi = x] = Φ

(
−

C1 − 〈n , x̃〉

σ(x)
√

∆̃t
+
〈n ,V(x)〉

√
∆̃t TOL(1+β)/2

σ(x)︸                           ︷︷                           ︸
=O(TOL(1+β)/2))

)
, 0 < d(x) < δ,

by boundedness of 〈n ,V(x)〉. Similarly, we obtain

P
[
d(Xi+1) = 0

∣∣∣Xi = x] = Φ

(
−
〈n , x̃〉

σ(x)
√

∆̃t
−
〈n ,V(x)〉

√
∆̃t TOL(1+β)/2

σ(x)︸                           ︷︷                           ︸
=O(TOL(1+β)/2))

)
, 0 < d(x) < δ.

Therefore,

P
[
d(Xi+1) ≥ δ

∣∣∣Xi = x] / sup

Φ

−C1 − 〈n , x̃〉

σ(x)
√

∆̃t

 /Φ
− 〈n , x̃〉
σ(x)

√
∆̃t


 P

[
d(Xi+1) = 0

∣∣∣Xi = x]

≤ C2P
[
d(Xi+1) = 0

∣∣∣Xi = x]

uniformly in 0 < d(x) < δ, where

(4.16) C2 B
1

2Φ

(
−

C1‖σ−1‖∞
√
‖unn‖∞‖σ‖∞

(2π)1/4

) < ∞.
Consequently, the second sum in (4.15) can be bounded from above by

(4.17) E
[N−1∑

i=0

1{
0<d(Xi)<δ

}
∩
{
d(Xi+1)≥δ

}] / C2E
[N−1∑

i=0

P
[
d(Xi+1) = 0

∣∣∣Fti
]
1{

0<d(Xi)<δ
}] ≤ C2E

[
Ñ
]
.

For the third sum of (4.15) we proceed in a similar way as for the second one. Using
the notations introduced before, we have

P
[
0 < d(Xi+1) < δ

∣∣∣Xi = x] / Φ

(
C1 − 〈n , x̃〉

σ(x)
√

∆̃t

)
− Φ

(
−
〈n , x̃〉

σ(x)
√

∆̃t

)
≤ C3, 0 < x < δ,

where

(4.18) C3 B 2Φ

C1
∥∥∥σ−1

∥∥∥
∞

√
‖unn‖∞

√
‖σ‖∞

(2π)1/4

 − 1 < 1.

This implies that the last term in (4.15) can finally be bounded from above by

(4.19) E
[N−1∑

i=0

1{
0<d(Xi)<δ

}
∩
{
0<d(Xi+1)<δ

}] / C3E
[N−1∑

i=0

1{
0<d(Xi)<δ

}] ≤ C3E[N].

Inserting the bounds (4.17) and (4.19) back into (4.15), we obtain

(4.20) E
[N−1∑

i=0

1{
0≤Xi<δ

}] / (2 + C2)E
[
Ñ
]
+ C3E[N].

Together with (4.14), the expected total work can, thus, be bounded by

E[N] / const TOL−(1+β)/2 +(2 + C2)E
[
Ñ
]
+ C3E[N],
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which, by C3 < 1, implies that

�(4.21) E[N] /
1

1 −C3

(
const TOL−(1+β)/2 +(2 + C2)E

[
Ñ
])
.

Remark 4.16. The proof of Proposition 4.15 can be immediately extended to general do-
mains D (satisfying the usual conditions for reflecting diffusions) provided that one can
show that

sup
 P[d(Xi+1) ≥ δ|Xi = x]

P[d(Xi+1) = 0|Xi = x]

∣∣∣∣∣∣ 0 < d(x) < δ = C1 TOL(1+β)/2, 0 < TOL < TOL0

 < ∞,
sup

{
P[0 < d(Xi+1) < δ|Xi = x]

∣∣∣ 0 < d(x) < δ = C1 TOL(1+β)/2, 0 < TOL < TOL0

}
< 1,

for some TOL0 > 0.

Remark 4.17. Under the assumptions of Proposition 4.15, provided that indeed Error ≈
TOL, the order of convergence of the method is given by

Error ≈ E(N)−1/max(β,(1+β)/2).

If, as indicated by computer-experiments. β ≈ 5/4, then the order is given by 4/5, clearly
better than the order of convergence of the uniform Euler method (= 1/2). Note that for
Algorithm 4.8, the over-all complexity of the method is, indeed, proportional to E(N), with
a proportionality constant only marginally larger than for the uniform Euler method. On
the other hand, the complexity for Algorithm 4.6 should still be proportional to E(N), but
with a much larger constant.

Remark 4.18. While it is difficult to assess Assumption 4.14 by empirical observations, we
have found evidence for

E

N−1∑
i=0

1{
d(Xi)≥δ

}
 ≈ TOL−(1+β)/2

in our numerical experiments.

5. T      

Recall that the error expansion given in Proposition 3.5 can be written as a sum of
three error components, coming from a purely reflecting diffusion, from a purely stopped
diffusion and coming from their interplay, respectively, i.e.,

Error = Errorref + Errorstop + Errormix,

see Remark 3.8 – notice that the stopped diffusion for Errorstop is stopped at a strange set,
namely at ∂DS . In Section 4 we have developed an adaptive algorithm for reflected dif-
fusions based on Errorref. Dzougoutov et al. [7] have developed an adaptive algorithm for
stopped diffusion based on the error term Errorstop. In order to develop an adaptive algo-
rithm for the stopped reflected diffusion, it suffices, thus, to develop an adaptive algorithm
based on Errormix. Notice, however, that

(5.1) Errormix = E
[(
∂tuR(τ, XNτ

)∆tNτ−1 + ∂nuR(τ, XNτ
)
〈
n(XNτ

) , XNτ
− XNτ−1

〉)
1{τ<T }

]
only depends on one single sub-interval, namely the sub-interval of stopping. Since this
interval already contributes highly to Errorstop (given enough regularity of the data), one
might presume that this contribution is small compared to Errorre f and Errorstop. Thus, in
our proposed adaptive algorithm for stopped reflected diffusions, we will ignore Errormix
and only assume leading order term of the error of the form

Error = Errorref + Errorstop.
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Using the techniques of [7], this yields the following extension of Algorithm 4.6. Let dR(x)
denote the distance to the reflecting boundary ∂DR and let dS (x) denote the distance to the
stopping boundary ∂DS , x ∈ D. Following [7], we define

(5.2) P̂X,i = PX,i

i−1∏
j=0

(1 − PXi
), with PX,i = exp

−2
dS (Xi)dS (Xi+1)

∆ti

 , i = 0, . . . ,N − 1.

The quantity P̂X,i serves as a rough approximation of the probability of the process X̂ to hit
the stopping boundary ∂DS between ti and ti+1.

Remark 5.1. Following the expansion in Proposition 3.5, we should compute these quanti-
ties up to time T , not only up to the observed stopping time τ, since the “true”, continuous
stopping time may very well be after time τ (which is not true for the purely stopped dif-
fusion, at least if there is no interior error). However, as a second simplification, we only
follow a trajectory until the first observed stopping time τ.

Moreover, we also modify the adaptive algorithm for the purely reflecting diffusion by
substituting the distance to the reflecting boundary ∂DR for the distance to the boundary,
i.e., we replace A(x,∆t) in (4.6) by

(5.3) A(x,∆t) = −dR(x) − 〈n(x) ,V(x)〉∆t.

Algorithm 5.2 (Adaptive Euler Algorithm for Stopped Reflected Diffusions). Start with
an initial mesh t and the corresponding Brownian motion B

t
.

(1) Set X
t

0 = x, Z
t

0 = 0, i = 0 and Nτ = N(t).
(2) Set

X̂ti+1 = X
t

i + V
(
X
t

i
)
∆ti +

d∑
j=1

V j
(
X
t

i
)
∆B

j
i .

(3) Set

X
t

i+1 =

X̂ti+1, X̂ti+1 ∈ D,
Π(X̂ti+1), X̂ti+1 < D.

If X
t

i+1 ∈ ∂DS , set Nτ = i + 1, else set

Z
t

i+1 =

Z
t

i, X̂ti+1 ∈ D,

Z
t

i +
∥∥∥Π(X̂ti+1) − X̂ti+1

∥∥∥ , X̂ti+1 < D.

(4) Increase i by one. If i < N(t) and Nτ = N(t), go back to (2).
(5) Refine the grid t using Algorithm 5.3. If the grid has changed during refinement,

then set i = 0 and go back to (2), using the refined grid.
(6) Calculate

F
t
= f

(
X
t

N(t)
)
1Nτ=N(t) + g

(
X
t

Nτ

)
1Nτ<N(t) −

Nτ−1∑
i=0

h
(
X
t

i+1
)
∆Z
t

i.

Algorithm 5.3 (Refinement Algorithm). Given a time grid t, the Brownian motion Bt

sampled on t and an error tolerance TOL and a stopping index Nτ. Do for i = 0, . . . ,Nτ−1:
(1) Compute a local error indicator by

li = l(re f )
i + l(stop)

i ,

where

l(re f )
i = ∆tiσ(Xi)p

A(Xi,∆ti)
√

∆ti

 ∣∣∣unn(ti, Xi)
∣∣∣ E

[
Ñ
]
,

l(stop)
i =

(
g(Xi+1) − g(XNτ

)1Nτ<N(t) − f (XNτ
)1Nτ=N(t)

)
P̂X,i.

.



ADAPTIVE WEAK APPROXIMATION OF REFLECTED AND STOPPED DIFFUSIONS 27

(2) If li > TOL, insert t = ti+ti+1
2 into the grid t and generate the corresponding sample

of the Brownian motion Bt by a Brownian bridge between the already sample
values Bti and Bti+1 .

Remark 5.4. One can incorporate the explicit formula (4.11) for ∆ti in the case of the purely
reflecting diffusion for instance by using it to generate the initial grid in Algorithm 5.2.
While this might remove a considerable part of the necessary refinements, it is possible
that through the interplay of l(stop) further refinements of the grid caused by the reflecting
error contribution will be necessary. Consequently, this initialization does not allow us to
set l(re f ) = 0 in Algorithm 5.3.

Remark 5.5. In the case of a stopped reflecting diffusion, the solution u usually has a
singularity at points, where the different boundary conditions meet. Thus, boundedness
of unn is an unrealistic assumption and one should use some a-priori information of the
expected singularities in these points instead. It turns out, however, that even grossly mis-
estimated or even disregarded singularities often do not greatly reduce the efficiency of the
adaptive algorithm.

6. T        

Since the error term (3.16) is of order
√

∆t, it seems to be a promising idea to carry
the expansion one step further. If a calculation is still feasible, we may hope to get a
better order of convergence for the reflection error. Indeed, the main idea of the algorithm
presented in this section is to construct a correction term such that the error expansion of
the Euler algorithm with correction starts with a term of order 1, instead of order 1/2 as
Proposition 3.5. Of course, the computation of the correction term will introduce additional
complexity into the algorithm. It will turn out, however, that the resulting algorithm is still
more efficient than the ordinary Euler scheme, Algorithm 2.1, since the computation of
the correction term is relatively cheap in comparison to the approximation of the reflected
diffusion.

Remark 6.1. The main goal of the considerations in this section is to motivate that there
seems to be no advantage in the computation of the duals weights for the adaptive algo-
rithms presented in Section 4. This is mainly due to the extra work of computing those
dual weights, which compensates possible gains in approximation accuracy. To illustrate
this point, it is already sufficient to only consider the one-dimensional case, which is con-
siderably easier for the algorithm presented in this section. Obviously, problem (1.3) is
best solved by PDE-methods in dimension one.

Remark 6.2. The arguments presented here will stay on the heuristic level as in Re-
mark 3.10 above. Rigorous arguments are possible using the techniques of [6].

A second order Taylor expansion of the term (I) in the error expansion gives

u(0, x) − u(0, x) =

∫ T

0
E
((

L
X

N
btc
− L

)
u
(
t, X

N
t
))

dt(6.1)

−
1
2

E

N−1∑
i=0

(
∆Z

N
i
)2 ∂2

∂n
(
X

N
i+1

)2
u
(
ti+1, X

N
i+1

)
+

1
2

E
[N−1∑

i=0

(
∆Z

N
i
)3
×

×

∫ 1

0
(1 − θ)2 ∂3

∂n
(
X

N
i+1

)3
u
(
ti+1, X

N
i+1 − θn

(
X

N
i+1

)
∆Z

N
i
)
dθ

]
.
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Consequently, let us define

(6.2) u(0, x) = E

 f
(
X

N
N
)
−

N−1∑
i=0

h
(
X

N
i+1

)
∆Z

N
i +

1
2

N−1∑
i=0

(
∆Z

N
i
)2
∂2

nu(ti+1, X
N
i+1

) ,
where ∂2

nu(ti+1, X
N
i+1

)
is a computable approximation of

∂2
nu(ti+1, X

N
i+1

)
≈

∂2

∂n
(
X

N
i+1

)2
u
(
ti+1, X

N
i+1

)
.

Remark 6.3. If we could work with the exact value for the second normal derivative, then
equation (6.1) would give a precise error expansion for u. Indeed, with the same heuristics
as before, this approximate error expansion indicates a convergence of order 1. Of course,
this presupposes that the approximation ∂2

nu can be calculated with sufficient accuracy and
efficiency.

We present a scheme for efficient computation of ∂2
nu applicable in dimension one. Un-

fortunately, we have not found sufficiently efficient methods to approximate the second
normal derivative of u in more generality, but under special circumstances, see the dis-
cussion at the end of this section. For the remainder of the section, we assume d = 1.
Consequently, all the normal derivatives are, in fact, ordinary derivatives with respect to
the space variable x, possibly with a sign, and the domain is an interval D =]a, b[, where
one of a, b ∈ R ∪ {±∞} may be ±∞. More precisely, the Neumann boundary condition
reads

(6.3)
∂

∂x
u(t, a) = h(a),

∂

∂x
u(t, b) = −h(b),

provided that both a and b are real numbers. For simplicity, we will only consider the
case a = 0 and b = +∞, the extension to the general case is trivial. ux = ∂

∂x u solves the
following PDE with Dirichlet boundary conditions

(6.4)


∂

∂t
ux(t, x) + L̃ux(t, x) = 0, (t, x) ∈ [0,T [×D,

ux(T, x) = f ′(x), x ∈ D,

ux(t, x) = h(x), (t, x) ∈ [0,T [×∂D.

In (6.4), the differential operator L̃ is no longer of the same form as L, but it still allows for
a stochastic representation using the Feynman-Kac formula. Indeed, if

Lg(x) = V(x)g′(x) +
1
2

(V1(x))2g′′(x),

then the solution of the heat equation with

L̃g(x) = V ′(x)g(x) + (V(x) + V ′1(x))g′(x) +
1
2

(V1(x))2g′′(x)

has the stochastic representation

ux(t, x) = E
[

f ′(XT ) exp
(∫ T

t
V ′(Xs)ds

)
1[T,∞[(τt,x)

∣∣∣∣∣Xt = x
]

(6.5)

+ E
[
h(Xτt,x ) exp

(∫ τt,x

t
V ′(Xs)ds

)
1[t,T [(τt,x)

∣∣∣∣∣Xt = x
]
,

where
τt,x = inf

{
s > t

∣∣∣ Xt,x
s ∈ ∂D

}
,

see (6.6). Consequently, in order to compute ux(t, x) one needs to solve a stopped diffusion
following the well known SDE

(6.6) dXt,x
s = V(Xt,x

s )ds + V1(Xt,x
s )dB1

s , s > t,
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started at time t and Xt,x
t = x and stopped when hitting the boundary ∂D.

Remark 6.4. Notice that stopped diffusions are much simpler problems than reflected dif-
fusions. As already indicated in the beginning of this subsection, the computation of the
correction term amounts to additionally solving a number of simple problems (compared
to the reflected diffusion), namely the stopped diffusions, in order to obtain a faster con-
vergence rate for the reflected diffusion.

The idea for the approximation ∂2
nu is the following. First note that ∂2

nu(t, x) is only
needed for x ∈ ∂D, i.e., x = 0, because otherwise ∆Z = 0 owing Algorithm 2.1, see (6.2).
We approximate uxx(t, 0) = ∂2

∂x2 u(t, x) by a finite difference quotient, i.e.,

uxx(t, 0) = −
ux(t, 0) − ux(t,∆x)

∆x
+ O(∆x)(6.7)

= −
h(0) − ux(t,∆x)

∆x
+ O(∆x),

for ∆x > 0 sufficiently small. ux(t,∆x) is then approximated by a stopped diffusion. Notice
that we do not need to perform an “inner” Monte Carlo simulation for this computation.
Indeed, let G(t, x) denote the random variable under the expectation in (6.5), i.e.,

G(t, x) = f ′(Xt,x
T ) exp

(∫ T

t
V ′(Xt,x

s )ds
)
1[T,∞[(τt,x)

+ h(Xt,x
τt,x

) exp
(∫ τt,x

t
V ′(Xt,x

s )ds
)
1[t,T [(τt,x).

Notice that G(t, x) is independent of Ft. Consequently, we have

E

N−1∑
i=0

uxx
(
ti+1, X

N
i+1

)(
∆Z

N
i
)2

 ≈ E

N−1∑
i=0

ux(ti+1,∆x) − h(0)
∆x

(
∆Z

N
i
)2


= E

N−1∑
i=0

E(G(ti+1,∆x)) − h(0)
∆x

(
∆Z

N
i
)2


= E

N−1∑
i=0

G(ti+1,∆x) − h(0)
∆x

(
∆Z

N
i
)2

 ,
by independence of G(ti+1,∆x) and ∆Z

N
i . In order to get a workable algorithm, we need to

fix an approximation G(t,∆x) of G(t,∆x). Then, we can finally set

(6.8) ∂2
nu

(
tI+1, X

N
i+1

)
=

G(ti+1,∆x) − h(0)
∆x

.

Remark 6.5. Of course, ∂2
nu as in (6.8) is not a true approximation of uxx, only its expected

value is. ∆x is a critical parameter for the algorithm and needs to be chosen depending on
N and on the approximation method G.

We use two different methods G, namely the uniform Euler method, see Gobet [12], and
an adaptive Euler scheme, see Dzougoutov et al. [7]. It is well known that the uniform Euler
scheme converges with the rate 1/2, whereas the adaptive scheme has the (conjectured)
order 1.

Let us first consider the uniform scheme, i.e., let (X
N,ti+1,∆x
j )N

j=i+1 be the Euler approxi-

mation of the SDE started at X
N,ti+1,∆x
i+1 = ∆x and calculated along the uniform grid ti+1 <

ti+2 < . . . < tN = T . More precisely, we have

X
N,ti+1,∆x
j+1 = X

N,ti+1,∆x
j + V

(
X

N,ti+1,∆x
j

)
∆t j + V1

(
X

N,ti+1,∆x
j

)
∆B1

j ,
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j = i + 1, . . . ,N − 1. Moreover, let τN,ti+1,∆x be the first hitting time of the discrete process
X

N,ti+1,∆x
at Dc – we set τN,ti+1,∆x

= ∞ if no hitting occurs. For tk+1 ≥ ti+1 let

I(ti+1, tk+1) = exp
( k∑

j=i+1

V ′
(
X

N,ti+1,∆x
j+1

)
∆t j

)
and define

(6.9) G
un

(ti+1,∆x) =
(

f ′
(
X

N,ti+1,∆x
N

)
1{T,∞}

(
τN,ti+1,∆x)

+ h
(
X

N,ti+1,∆x
τN,ti+1 ,∆x

)
1{ti+2,...,tN−1}

(
τN,ti+1,∆x))I(ti+1, τ

N,ti+1,∆x).
Of course, if the boundary has been hit before j = N, G

un
can already be computed and the

iteration does not need to be continued until time T .

Remark 6.6. Since we solve the stopped diffusion with the same grid as the outer reflected
diffusion, we do not need to sample additional Brownian increments.

We still have to choose the parameter ∆x. Notice that we approximate the second deriv-
ative uxx with the error

uxx(t, 0) =
E
(
G(t,∆x)

)
− h(0)

∆x
+
O(
√

∆t)
∆x

+ O(∆x),

where ∆t = T/N. Optimizing the error with respect to ∆x yields

(6.10) ∆x = const×(∆t)1/4 = const×
( T

N

)1/4
.

This gives an error from the approximation of the correction term of order

E

N−1∑
i=0

O((∆t)1/4)
(
∆Z

N
i
)2

 = O(
√

N) × O(N−1/4) × O(N−1) = O(N−3/4).

However, we have an additional complexity due to the simulation of G. Indeed, since
E
(
τN,t,∆x)

= O(∆x), the additional work is of order N × O(∆x)
T = O(N3/4) per reflection at

the boundary. Since these reflections take place O(
√

N) times, the additional and, hence,
the total work is O(N5/4). Therefore, the rate of convergence with respect to the total work
K ≈ const×N5/4 is expected to be O(K−3/5).

Remark 6.7. Of course, all the arguments in the preceding paragraph are highly heuristic.
For example, the number of hits at the boundary (of the reflected trajectory) and the time
until stopping (of the stopped trajectory using the same Brownian increments) are certainly
not independent. However, independence would hold if we sampled new, independent
increments of Brownian motion for the stopped diffusion. Nevertheless, all the above
observations seem to be consistent with the results of numerical experiments.

Remark 6.8. E
(
τN,t,∆x)

= O(∆x) is motivated by the following consideration. Let B∆x
t be a

1-dimensional Brownian motion started at B∆x
0 = ∆x > 0 and denote by τ∆x the first hitting

time of B∆x
t at 0, if B∆x

t hits 0 before time T , and τ∆x = T otherwise. The distribution of
τ∆x is given by

P(τ∆x ∈ ds) =
∆x
√

2πs3
e−

∆x2
2s ds, s ∈ [0,T [,

P(τ∆x = T ) =
2

2π

∫ ∆x/
√

T

0
e−

s2
2 ds,
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see Karatzas and Shreve [14]. The first two moments of τ∆x can be explicitly calculated
and an expansion in ∆x gives

E(τ∆x) =
2
√

2T
√
π

∆x + O(∆x2).

We do not give a detailed description of the adaptive algorithm for stopped diffusions,
see Section 5 for some hints. We just mention that the adaptive algorithm has an empirical
rate of convergence 1 in the general case. If the coefficients of the equation are constant,
i.e., if there is no error stemming from the discretization in the interior of the domain,
then the adaptive algorithm for the stopped diffusion problem converges exponentially fast.
Therefore, we can now approximate the second derivative uxx with an error

uxx(t, 0) =
E
(
G

ad
(t,∆x)

)
− h(0)

∆x
+
O(∆t)

∆x
+ O(∆x),

where G
ad

(t,∆x) denotes the stopped diffusion started at ∆x computed with the adaptive
algorithm (noting that the discretization grid is random, too). Minimizing the error gives

(6.11) ∆x = const×
√

∆t = const×

√
T
N
.

Consequently, the error from the approximation in the correction term is this time

E

N−1∑
i=0

O(
√

∆t)
(
∆Z

N
i
)2

 = O(
√

N) × O(1/
√

N) × O(1/N) = O(1/N).

However, note that we still have an additional work of order O(N5/4), which leads to the
total convergence rate O(K−4/5). Notice that this is the same rate as empirically found for
the adaptive algorithm. Only in case of constant coefficients, the additional work is still of
O(N), therefore giving us the desired order O(N−1).

Concluding, we propose the following algorithm for one dimensional problems.

Algorithm 6.9. Fix a uniform time discretization 0 = t0 < t1 < · · · < tN = T, i.e.,
∆ti = ti+1 − ti = T

N , i = 0, . . . ,N − 1. Moreover, fix an i. i. d. sequence of random variables
(∆Bi)N−1

i=0 such that the moments of order up to three of ∆B0 (and hence of all ∆Bi) coincide
with those of an one dimensional normal random variable with variance T

N .

(1) Set X
N
0 = x, Z

N
0 = 0, set i = 0.

(2) Set

X̂N
i+1 = X

N
i + V

(
X

N
i
)
∆ti +

d∑
j=1

V j
(
X

N
i
)
∆B

j
i .

(3) Set

X
N
i+1 =

X̂N
i+1, X̂N

i+1 ∈ D,
Π(X̂N

i+1), X̂N
i+1 < D,

Z
N
i+1 =

Z
N
i , X̂N

i+1 ∈ D,

Z
N
i +

∥∥∥Π(X̂N
i+1) − X̂N

i+1

∥∥∥ , X̂N
i+1 < D.

(4) If ∆Z
N
i > 0, calculate either G

un
(ti+1,∆t1/4) or G

ad
(ti+1,

√
∆t) and compute the

approximate second order normal derivative ∂2
nu(ti+1, 0) according to (6.8).

(5) Increase i by one. If i < N, go back to (2).
(6) Calculate

F
N

= f
(
X

N
N
)
−

N−1∑
i=0

h
(
X

N
i+1

)
∆Z

N
i +

1
2

N−1∑
i=0

(
∆Z

N
i
)2
∂2

nu(ti+1, X
N
i+1

)
.
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Remark 6.10. In the d-dimensional situation with d > 1, we can use the same finite differ-
ence approximation as (6.7), i. e.

unn(t, x) =
un(t, x + ∆xn(x)) − h(x)

∆x
+ O(∆x),

where un and unn are the needed normal derivatives, x ∈ ∂D. Unless n(x) is a constant
vector (corresponding to a half-space domain), we do not get a PDE for un. However,
using the stochastic representation of the original problem, we get

un(t, x + ∆xn(x)) = E
[〈
∇u

(
τ, Xt,x+∆xn(x)

τ

)
, Jt→τ(x + ∆xn(x))n(x)

〉]
,

where Xt,x+∆xn(x) denotes the solution of the SDE started at time t with Xt,x+∆xn(x)
t = x +

∆xn(x) and τ denotes the first hitting time of Xt,x+∆xn(x) at ∂D (or τ = T if no such hit
occurs before T ). Jt→s(x + ∆xn(x)) is the first variation, i.e., the (path-wise) Jacobi matrix
of the map y 7→ Xt,y

s evaluated at y = x + ∆xn(x). By the boundary condition,〈
∇u

(
τ, Xt,x+∆xn(x)

τ

)
, n

(
Xt,x+∆xn(x)
τ

)〉
= h

(
Xt,x+∆xn(x)
τ

)
,

but
Jt→τ(x + ∆xn(x))n(x) , n

(
Xt,x+∆xn(x)
τ

)
in general. Nevertheless, we might boldly use

un(t, x + ∆xn(x)) ≈ E
(
h
(
Xt,x+∆xn(x)
τ

))
,

but that approximation would lead to a non-converging scheme unless the “normal vector
field” n(x) can be extended to x ∈ D and commutes with L.

7. N 

We illustrate the performance of the algorithms presented in the previous sections by
some numerical examples in dimension one and two. For reporting the results of the com-
putations, we use the following nomenclature. By “error” we understand the computational
error in the sense of

Error = u(t0, x0) − u(t0, x0),

where u(t0, x0) denotes the computed approximation to the true value u(t0, x0) of the respec-
tive problem. We denote the number of paths used in the Monte-Carlo simulation by M.
An estimate for the possible “statistical” error component caused by the computation of the
expected value of the random variable F

N
constructed by the relevant numerical scheme

by Monte-Carlo simulation is given by S. Indeed, let F
N
i denote the ith sample of F

N
,

i = 1, . . . ,M. Ideally, these samples are mutually independent and identically distributed,
which allows us to appeal to the central limit theorem, giving

√
M

(
E
(
F

N)
−

1
M

M∑
i=1

F
N
i

)
−−−−→
M→∞

N(0, σ2),

where the convergence is understood as convergence in distribution and σ2 denotes the
variance of F

N
. Heuristically, we may assume that M is already large enough that the

convergence in the central limit theorem has already taken place, i.e.,

Error ≈ N
(
0,
σ2

M

)
,

where σ2 denotes the empirical variance of the sample
(
F

N
i
)M
i=1. This gives us a 90%-

confidence interval,

(7.1) E
(
F

N)
− u(t0, x0) ∈

[
Error − 1.65 ×

σ
√

M
, Error + 1.65 ×

σ
√

M

]
.
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We denote

(7.2) S = 1.65 ×
σ
√

M
and report it in Table 1 and all the subsequent tables.

Remark 7.1. The quantity S as defined in (7.2) is an indicator for the size of the statistical
error, possibly overlapping the error from the time discretization in the observed computa-
tional error. Recall that the computational error can be decomposed as

u(t0, x0) −
1
M

M∑
i=1

F
N
i︸      ︷︷      ︸

=u(t0,x0)

= u(t0, x0) − E
[
F

N
]

︸                ︷︷                ︸
=Edisc

+ E
[
F

N
]
−

1
M

M∑
i=1

F
N
i︸                   ︷︷                   ︸

=Estat

.

Edisc can be naturally interpreted as the error caused by the time-discretization of the dy-
namics of the (reflected) SDE, whereas Estat is the “statistical” error caused by Monte-Carlo
simulation, i.e., the integration error. In this study, we are only interested in the discretiza-
tion error Edisc, since we want to analyze the behavior of special time-discretization al-
gorithms. Consequently, we need to make sure that our results are not overshadowed by
the statistical error. In practice, we choose M large enough such that S = S(M) is much
smaller than the observed computational error. For a thorough treatment of the types of
errors involved in Euler Monte-Carlo schemes, we refer to [16] and [20], and to Glasser-
man [11] for general application of Monte-Carlo methods.

We would like to stress that the statistical error is, in practice, a very important part of
the overall computational error. Therefore, the strategy advocated above is not suited for
true computations, but only for the purpose of analysis of algorithms as mentioned above.

For the adaptive algorithms presented in Section 4 and Section 5 we still need to specify
one parameter, namely the expected number of hits at the reflecting boundary ∂DR, E

[
Ñ
]
.

Note that E
[
Ñ
]

as a parameter in the adaptive algorithm influences the number of hits

at the boundary obtained by the same algorithm. Therefore, we need to choose E
[
Ñ
]

in
such a way that the parameter for the adaptive algorithm is consistent in the sense that the
average number of hits of the adaptive algorithm coincides with the parameter. Since we
have not found a formula for E

[
Ñ
]
, we are left with two possibilities:

(1) We can start with some initial guess N0 for E
[
Ñ
]

and run the adaptive algorithm
with it. Taking the average of the number of hits at the reflecting boundary, we
obtain an estimate N1 for the expected number of hits of the boundary for the
adaptive algorithm run with N0. If N0 0 N1, we run the adaptive algorithm with
N1, thus obtaining an estimate N2. We iterate this procedure until we find Nk ≈

Nk+1, and use this number as parameter for the adaptive algorithm for the problem
at hand.

(2) We make the Ansatz E
[
Ñ
]

= TOL−β for some β > 0 and estimate β for various
model problems. Of course, the same problem as above applies, i.e., β must be
consistent in the sense that using E

[
Ñ
]
≈ TOL−β in the algorithm must give an

empirical mean number of hits ≈ TOL−β. It turns out that β seems to be easy to
estimate, and we get consistent results in the range β ∈ [1.15, 1.25] for all our
numerical tests. Thus we think that β is a largely problem-independent quantity.
When we draw conclusions from β, we will stick to the least favorable value β =

1.25 = 5/4.

7.1. A reflected diffusion in dimension 1. We start with a one-dimensional example,
which mainly serves as illustration of the algorithm with correction, cf. Algorithm 6.9.
Because we are only interested in the error coming from the reflection at the boundary,
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we use a problem without interior discretization error, i.e., in the interior of the domain
D = [0,∞[. The solution process X is the driving Brownian motion B reflected at the
boundary ∂D = {0}. The Neumann boundary condition and the initial condition are fixed
as follows:

(7.3)



∂

∂t
u(t, x) = −

1
2

∆u(t, x), (t, x) ∈ [0, 2] × [0,∞[,

u(2, x) = e2(sin(
√

2x) + cos(
√

2x)), x ∈ [0,∞[,
∂

∂x
u(t, 0) =

√
2et, t ∈ [0, 2].

Obviously, problem (7.3) has the explicit solution

(7.4) u(t, x) = et(sin(
√

2x) + cos(
√

2x)).

Remark 7.2. In [6], the authors prove that the uniform Euler algorithm for the Brownian
motion reflected at 0 (but with different boundary and initial conditions) does not converge
faster than with rate one half. We have changed the boundary conditions because the third
derivative of the solution of their problem vanishes, which would lead to untypically fast
convergence rates for the algorithm with second order correction terms, because its leading
order error term involves the third derivative. As can be easily checked, the third derivative
of (7.4) does not vanish for x = 0.

We compute the value u(0, x0) for x0 = 0.5 using three different methods: the uniform
Euler method, cf. Algorithm 2.1, the uniform Euler method with second order correction
term computed using a stopped diffusion approximated by the adaptive algorithm of [7],
cf. Algorithm 6.9. Finally, we also compute the outcome with the adaptive Algorithm 4.6.
Notice that the exact value is u(0, 0.5) ≈ 1.4099.

N M Error S

2 80 080 0.3811 0.0416
4 80 320 0.5986 0.0386
8 56 400 0.6252 0.0448

16 62 800 0.5417 0.0420
32 75 600 0.4493 0.0382
64 101 200 0.3581 0.0329

128 152 400 0.2461 0.0269
256 254 800 0.1822 0.0208
512 459 600 0.1330 0.0155

1024 869 200 0.0881 0.0113
2048 1 688 400 0.0638 0.0081
4096 3 326 800 0.0496 0.0058

Table 1. Results of the uniform Euler Monte-Carlo algorithm for problem (7.3)

Table 1 gives the results for the uniform algorithm. The results show the typical conver-
gence order 1/2 of the reflected uniform Euler method. See also Figure 2 for comparisons
of the different algorithms used.

Table 2 shows the results for the algorithm with second order correction term, cf. Al-
gorithm 6.9. The correction term G

ad
is calculated using the adaptive Euler algorithm for

stopped diffusions presented in [7]. The local error tolerance parameter is chosen to be

TOL =
1

log(N)
,
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Figure 2. Absolute value of the computational error for problem (7.3). The dotted
lines show confidence areas for the true error in the sense of equation (7.1) and
the dashed lines in black are reference lines of order 1/N and 1/

√
N, respectively.

Notice that the “Average number of time-steps” is understood as the work in the
above sense in the case of the algorithm with a second order correction term and
as average size of the refined mesh in the case of the adaptive algorithm. The
dashed line for the adaptive algorithm corresponds to the error estimate com-
puted for the refinement algorithm and is clearly proportional to the observed
computational error.

N Work M Error S

2 2.45 5 400 −3.1856 0.2928
4 7.74 6 600 −1.4092 0.1838
8 19.35 11 400 −0.7224 0.1163

16 43.66 30 600 −0.3743 0.0647
32 92.22 107 400 −0.2014 0.0333
64 193.13 414 600 −0.0690 0.0166

128 401.43 1 643 400 −0.0255 0.0083
256 831.52 6 558 600 −0.0036 0.0041
512 3065.85 5 262 880 −0.0144 0.0046

Table 2. Results of the uniform Euler Monte-Carlo algorithm with second order cor-
rection term calculated using an adaptive algorithm for problem (7.3).

which is consistent with the observation that the error decreases exponentially fast, imply-
ing an approximation error proportional to 1

N for the correction term using the above local
error tolerance.
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As before, N is the size of the uniform base grid of the discretization of the reflected
diffusion. Work denotes the average work per realization, i.e., for one single realization, the
corresponding work is N plus the total work for each stopped diffusion, which is computed
in order to get the respective correction terms.

The results of the algorithm with correction show an empirical order of convergence
one, i.e., like 1/N, even if the total work in the above sense is used as reference. As
remarked above Algorithm 6.9, this is only possible since the approximation is precise
in the interior of the domain. Compare also Figure 2, which shows the superiority of
the algorithm with correction over the other two proposed algorithms. (Notice that the
confidence interval for the last but second result of this algorithm could not be plotted in
Figure 2, because it contains negative numbers. Therefore, this confidence interval was
changed manually.)

Finally, Table 3 shows the results of the adaptive Algorithm 4.6 applied to problem (7.3).

TOL N M Error S Ñ
0.5743 4 56 400 1.9191 0.0424 0.79
0.3789 6.15 62 800 1.3719 0.0409 1.36
0.2500 10.58 75 600 0.8574 0.0377 2.31
0.1649 18.41 101 200 0.5698 0.0328 3.90
0.1088 31.81 152 400 0.3725 0.0268 6.45
0.0718 54.25 254 800 0.2402 0.0208 10.59
0.0474 91.07 459 600 0.1535 0.0155 17.23
0.0313 150.94 869 200 0.0920 0.0113 27.83
0.0206 247.98 1 688 400 0.0542 0.0081 44.83
0.0136 403.61 3 326 800 0.0299 0.0058 71.93
0.0090 653.62 6 603 600 0.0188 0.0041 115.28

Table 3. Results of the adaptive Euler Monte-Carlo algorithm for problem (7.3).

Here, TOL is the local error tolerance used for the adaptive algorithm, cf. Algorithm 4.7.
The second order normal derivative in the local error term (4.10) is approximated by the
constant 1. The number of steps in the uniform initial grid is always 2, which is, of course,
unrealistically small but probably useful for the theoretical understanding of the refine-
ments. The value N as reported in the second column of Table 3 corresponds to the aver-
age size of the final mesh, we use Algorithm 4.8. Finally, Ñ as reported in Table 3 is the
average number of hits at the boundary.

The observed computational error of the adaptive algorithm lies between the errors for
the uniform Euler algorithms with and without correction term, as expected. A fit of the
observed average number of hits at the boundary gives E

[
Ñ
]
≈ TOL−1.19, reasonably

close to the dependence TOL−β with β = 1.25 used in the algorithm. While β = 1.25
would correspond to a convergence like N−0.8, a fit of the error in terms of the size of the
adaptively generated mesh gives Error ≈ E[N]−0.89. If we can choose β even smaller than
1.25, as indicated by the results, then the theoretical rate of convergence is improved.

In the tables above we have noted certain indicators for the computational cost of run-
ning the various algorithms. While these numbers are useful in showing the dependence
of the computational cost for one particular algorithm depending on the grid size, the tol-
erance or both, it does not allow to compare the efficiency of different algorithms other
than in an asymptotic sense. Note that it is easy to compare the uniform Euler scheme with
the adaptive Euler scheme in its explicit form, see Algorithm 4.8. Indeed, for the same
(average) grid size N, the only difference in these algorithm is that in the uniform case the
step-size is given by ∆t = T/N, whereas in the adaptive case it has to be computed in every
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step using Lemma 4.4. That is, the only additional computational work in the adaptive case
is this evaluation, which basically boils down to one evaluation of Lambert’s W-function.
We have used the implementation of W in the GNU Scientific Library (GSL), see [9], as
well as the approximation

(7.5) W(x) ≈ log(1 + x)
(
1 −

log(1 + log(1 + x))
2 + log(1 + x)

)
due to [22]. The timings from Table 4 indicate that for a one-dimensional reflected Brow-

Uniform Adaptive – precise Adaptive – approximation Correction
N 151 – – 50

Work 151 150.94 150.26 173.71
TOL – 0.0313 0.0313 0.4411
Error 0.2281 0.0922 0.0889 −0.0865
Time 42 180 70 175

Table 4. Running times (in seconds) on a laptop with a Intel(R) Pentium(R) M proces-
sor with 2.13GHz for problem (7.3). “Adaptive–precise” means the explicit adap-
tive algorithm with the precise evaluation of Lambert’s W function using the GSL
library, whereas “Adaptive–approximation” uses the approximation of Lambert’s
W-function. In all cases, we used M = 869 200 trajectories for the Monte-Carlo
simulation. N means the initial grid size, works denotes the average final grid size
for the adaptive (and the uniform) algorithm and the work in the above sense for
the algorithm with correction.

nian motion, the evaluation of Lambert’s W-function consume almost 75% of the running
time, whereas it is only 50% if one uses (7.5). (I.e., the approximation (7.5) in three times
faster than the GSL-implementation.) Note that the approximation seems to be sufficiently
accurate for the purposes of the algorithm. The statistical error indicator S is around 0.011
for all the results in Table 4.

7.2. A purely reflected diffusion in dimension 2. We present two multi-dimensional ex-
amples, one with a purely reflecting boundary and one with both reflecting and stopping
boundaries. For the purely reflecting case we choose one of Gobet’s examples in [13]. The
process X under consideration is a Brownian motion (normally) reflected on the unit-circle
in dimension two, i.e., D is the unit disc. We consider

(7.6) u(t, x) = E
[

1
2
‖X1‖

2 + Z1

∣∣∣∣∣ Xt = x
]
,

which satisfies the Neumann problem

(7.7)



∂

∂t
u(t, x) = −

1
2

∆u(t, x), (t, x) ∈]0, 1[×D,

u(1, x) =
1
2
‖x‖2 , x ∈ D,

∂

∂n
u(t, x) = −1, (t, x) ∈]0, 1[×∂D.

We use both the uniform and the adaptive algorithm in its explicit form. In this case,
it seems that β = 1.16 is the appropriate choice for the expected number of hits at the
boundary in terms of the tolerance, which would indicate a rate of weak convergence of
0.86. Note that the partial differential equation (7.7) has the exact solution

u(t, x) = 1 − t +
1
2
‖x‖2 ,
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we compute u(0, 0, 0) = 1. For the adaptive algorithm we have approximated the second
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Figure 3. Absolute value of the computational error for problem (7.7). The reference
lines are proportional to 1/N and 1/

√
N, respectively. The dashed-dotted line

is an estimate for the leading order error term in the expansion given in Corol-
lary 3.9. As usual, the dotted lines indicate confidence intervals around the ob-
served errors.

N M Error S

2 44 000 −0.1741 0.0048
4 46 000 −0.1481 0.0048
8 50 000 −0.1176 0.0046

16 58 000 −0.0890 0.0044
32 74 000 −0.0659 0.0039
64 106 000 −0.0458 0.0032

128 170 000 −0.0345 0.0026
256 298 000 −0.0267 0.0020
512 554 000 −0.0175 0.0014

1024 1 066 000 −0.0122 0.0010

Table 5. Results of the uniform algorithm for problem (7.7).

normal derivative unn by the constant 1, which incidentally is the correct value in this
special example.The fitted order of convergence of the adaptive algorithm is 0.78, which
improves to 0.9 if the first three observations tolerance levels are discarded.
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TOL N M Error S

0.3906 9.50 82 000 −0.0996 0.0037
0.2441 19.17 122 000 −0.0622 0.0030
0.1526 37.71 202 000 −0.0388 0.0024
0.0954 71.54 362 000 −0.0247 0.0018
0.0596 131.11 682 000 −0.0170 0.0013
0.0373 234.63 1 322 000 −0.0095 0.0009
0.0233 411.14 2 602 000 −0.0056 0.0007
0.0146 709.82 5 162 000 −0.0032 0.0005

Table 6. Results of the adaptive algorithm for problem (7.7).

While the order of convergence for the adaptive scheme does not seem to be far away
from 1, Gobet’s algorithm still seems to be much more efficient in this case. Indeed, Gobet
reports a computational error of 0.0038 already for only N = 10 steps of his half-space
algorithm, while the adaptive algorithm needs about N = 700 (in the average) to achieve a
similar result.

Figure 4. Domain for the two-dimensional example with mixed boundary conditions.
The solid line denotes the reflecting boundary, the “empty” lines belong to the
stopping boundary.

7.3. A stopped reflected diffusion in dimension 2. The second example in dimension
two is a Neumann and Dirichlet boundary value problem, see equation (1.3) for the gen-
eral framework. More precisely, let D =]0, 20[×]0, 10[, and let ∂DR =]0, 10[×{0} be the
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Neumann boundary and ∂DS = ∂D \ ∂DR, see Figure 4. Consider the problem

(7.8)



∂

∂t
u(t, x) = −

1
2

∆u(t, x), (t, x) ∈ [0, 2] × D,

u(2, x) = 10 exp
(
−

√
(10 − x1)2 + x2

2

)
, x ∈ D,

∂

∂n
u(t, x) = x1, (t, x) ∈ [0, 2] × ∂DR,

u(t, x) = 10 exp
(
−

√
(10 − x1)2 + x2

2

)
, (t, x) ∈ [0, 2] × ∂DS .

Notice that the solution u(t, x) of (7.8) has singularities at x = (0, 0) and at x = (10, 0),
where the Neumann and the Dirichlet boundaries meet. The stochastic representation is
given by a Brownian motion Xt reflected at ∂DR and stopped when hitting ∂DS , see Propo-
sition 1.10. Once again, we compute u(0, x0) with x0 = (10, 0.2), close to the singularity
at (10, 0). Using the commercial finite-element package FEMLAB, see [4], we have com-
puted

u(0, 10, 0.2) ≈ 4.352,

which is used as reference value for the reported computational errors.
Since the stochastic representation of Proposition 1.10 involves sampling from a mixed

reflected-stopped diffusion, we use the uniform Algorithm 2.1 and the adaptive Algo-
rithm 5.2 for the case of both Neumann and Dirichlet boundary conditions.

N M Error S Ntot

2 20 020 −3.3371 0.0643 1.79
4 20 040 −3.1662 0.0681 3.18
8 20 080 −2.7336 0.0687 5.63

16 20 160 −2.2720 0.0715 10.04
32 20 320 −1.7794 0.0710 18.12
64 20 640 −1.2920 0.0698 33.39

128 21 280 −1.0527 0.0698 63.16
256 22 560 −0.7367 0.0673 118.4
512 25 120 −0.5640 0.0639 228.9

1 024 30 240 −0.4172 0.0581 445.7
2 048 40 480 −0.2975 0.0505 861.2
4 096 60 960 −0.1921 0.0404 1 704
8 192 101 920 −0.1617 0.0315 3 357

16 384 183 840 −0.1311 0.0236 6 669
32 768 347 680 −0.0878 0.0171 13 247
65 536 675 360 −0.0556 0.0122 26 331

131 072 1 330 720 −0.0342 0.0087 52 427

Table 7. Results of the uniform Euler Monte-Carlo algorithm for problem (7.8) with
x0 = (10, 0.2).

Table 7 gives the results of the uniform Euler scheme for equation (7.8). While N
denotes the size of the uniform grid, Ntot denotes the average grid size until the algorithm
stops. The iteration only needs to be computed until the first (observed) hitting time of
the discretized process at the stopping boundary. Note that Table 7 shows that the uniform
Euler scheme still seems to converge with order 1/2 in the singular situation (7.8), even
though the starting vector x0 = (10, 0.2) is close to one singularity of the solution u. Indeed,
a numerical estimate gives an estimated order of convergence of 0.46 with respect to Ntot
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provided that the first four results of Table 7 are discarded and similar results hold for
convergence with respect to N.

For the adaptive algorithm, we use Algorithm 5.2 with

(7.9)
∣∣∣∣unn

(
ti, X

t

i
)∣∣∣∣ =

1∥∥∥∥X
t

i − xsing

∥∥∥∥η + TOLα
,

where xsing = (10, 0), the place of one singularity of u, and α and η are two parameters.
The second parameter, η gives the order of the singularity of u at xsing. We use η = 1/2,
even though actual computation of unn using a finite element algorithm shows that the
singularity is more complicated. We have also used η = 0, which corresponds to not using
the a-priori information on the singularity at xsing. Adding TOLα smoothes the singularity
out, we choose α = 2.
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Figure 5. Absolute value of the error for problem (7.8) for x0 = (10, 0.2). The ref-
erence lines are proportional to 1/N and 1/

√
N, respectively. The dashed line in

color is proportional to the error estimate computed for the refinement algorithm,
whereas the dotted lines correspond to 90% confidence intervals around the error.

The empirical rates of convergence for the results of the adaptive Euler algorithm with
η = 0 and with η = 1/2 are both larger than 1. The explanation for this apparent contra-
diction with the previous results is a very favorable cancellation of error contribution from
the stopped and the reflected diffusion. Indeed, what we see in these results is mainly the
decrease of the error of a purely stopped Brownian motion. The error coming from the
reflection only materializes at smaller levels of TOL, and, as we strongly expect, will slow
down the asymptotic order of convergence to the reasonable usual levels. Unfortunately,
we cannot convincingly show this effect in the plot due to the statistical error.

As a contrast, we have found out that only a slight change of x0 can already change
the situation completely. Here, the error cancellations are so unfavorable that the adaptive
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Figure 6. Absolute value of the error for problem (7.8) at x0 = (9.5, 0.1). The refer-
ence lines are proportional to 1/

√
N and 1/N, respectively.

algorithm performs even worse than the uniform algorithm. Note, however, that we still
get an empirical weak rate of convergence of 0.75 for the adaptive algorithm, which is in
line with our expectations (of a rate of around 0.8). In contrast, the empirical rate of the
uniform Euler algorithm in this case is 0.54.

TOL N M Error S

0.3086 4.40 9 000 −3.2112 0.1024
0.1715 6.39 13 000 −2.5444 0.0848
0.0953 9.07 21 000 −1.9312 0.0680
0.0529 11.41 37 000 −1.7854 0.0511
0.0294 15.73 69 000 −1.2149 0.0375
0.0163 21.22 133 000 −0.7889 0.0273
0.0091 27.52 261 000 −0.6025 0.0194
0.0050 36.51 517 000 −0.3061 0.0138
0.0028 47.06 1 029 000 −0.1938 0.0098
0.0016 61.68 5 125 000 −0.0691 0.0044
0.0009 78.06 10 245 000 −0.0124 0.0031

Table 8. Results of the adaptive Euler algorithm with α = 2 and η = 1/2 for prob-
lem (7.8).

We have plotted the spacial distribution of the triggered refinements in Figure 7. Note
that whether the grid is refined at some time ti or not only depends on the position of Xi
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(a) Refinements with l(re f ) > l(stop).
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(b) Refinements with l(re f ) < l(stop).

Figure 7. Locations of refinements for x0 = (5, 0.5). The figures display the number
of refinements over a subdivision of the domain into rectangles. The number of
refinements are given on a logarithmic scale.

(and of Xi+1 for the stopped error contribution). Therefore, it is meaningful to collect all the
positions x ∈ D, where refinements occur and count the frequencies of those refinements.
In order to being able to distinguish the starting point of the process from the singularity
(10, 0), we have chosen x0 = (5, 0.5) for this purpose. Note that most refinements are
actually due to the error contribution of the stopped diffusion, even far away from ∂DS .

8. C

In this work, we have considered the weak approximation problem for stochastic differ-
ential equations, which are reflected at the boundary of a domain D and, possibly, stopped
at some part of the boundary. We have developed a new error representation for the approx-
imation of expected values of functionals depending on the solution, whose computable
leading order term can be decomposed into four different contributions:

(1) the classical “interior” error from the Euler scheme in the interior of a domain as
in [21] and [20],

(2) an error contribution caused by mis-specification of the stopping time similar
to [7],

(3) an error contribution due to discrete reflection at the boundary determined by the
second normal derivative of the solution u of the Kolmogorov backward equation
at the reflecting boundary,

(4) an new additional term due to the interplay between reflection and stopping con-
ditions.

We have used this error representation as the basis for an adaptive weak projected Euler
scheme for reflected diffusions. In the case of a stopped reflected diffusion, the fourth term
in our error representation is, however, neglected for the grid-refinement algorithm applied
in our numerical example.

The above mentioned adaptive Euler scheme is believed to converge with a weak rate
of approximately 0.8. This result is motivated by a combination of numerical results,
relating the tolerance level TOL of the adaptive scheme to the expected number of hits at
the reflecting boundary, and theoretical results, relating the expected number of hits at the
boundary to the convergence rate. Moreover, an alternative algorithm for one-dimensional
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problems only indicates that the above adaptive algorithm might be asymptotically optimal
for the projected Euler scheme among all adaptive algorithms solely based on the leading
order term of our error expansion. We have also presented several numerical examples, in
dimensions one and two, backing our findings.

In this work, we have only considered the time-discretization error for the weak approx-
imation problem, i.e., we have completely neglected the corresponding integration problem
– which we solve by Monte-Carlo simulation. Usually, the integration error is, however, at
least as important as the time-discretization error.

As a future next step, we will explore possible complexity improvements using Giles’ [10]
multi-level Monte-Carlo method, both for the uniform and for the adaptive projected Eu-
ler algorithms. This requires to additionally consider the strong approximation problem
for stopped reflected diffusions. Note that multi-level approximation has already been ex-
tended to adaptive Euler schemes for ordinary and stopped diffusions [cite your work].
Therefore, we will mainly need to treat the case of stopped reflected diffusions.
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A A. A     

In order to effectively use the error expansion given in Proposition 3.5, we need to
estimate P(ti ≤ τ̂ < ti+1|X). Let us denote the conditional probability given X by PX.
Moreover, let τ̂i denote the first hitting time of X̂ at ∂DS after time ti, i = 0, . . . ,N − 1. By
the Markov property, we have

(A.1) PX(ti ≤ τ̂ < ti+1) = PX(ti ≤ τ̂ < ti+1|τ̂ ≥ ti)PX(τ̂ ≥ ti) = PX(τ̂i < ti+1)PX(τ̂ ≥ ti).

Furthermore, PX(τ̂ < ti) can be iteratively computed by

PX(τ̂ < ti) = PX(τ̂ < ti|τ̂ < ti−1)PX(τ̂ < ti−1) + PX(τ̂ < ti|τ̂ ≥ ti−1)PX(τ̂ ≥ ti−1)

= PX(τ̂ < ti−1) + PX(τ̂i−1 < ti)
(
1 − PX(τ̂ < ti−1)

)
.(A.2)

Since PX(τ̂ < t1) = PX(τ̂0 < t1), this leaves us with the task to approximate PX(τ̂i−1 <
ti), i = 1, . . . ,N, which is the probability of hitting ∂DS for a Brownian bridge between
x = X̂ti−1 and y = X̂ti between ti−1 and ti. Notice that hitting probabilities of Brownian
bridges decrease exponentially with dist(x,D)∧ dist(y,D). Therefore, we may assume that
the boundary D is given by a hyperplane – e.g., by a tangent plane to the true boundary.
Moreover, assume that the boundary between ∂DS and ∂DR is given by ∂D ∩ H for some
hyperplane H. Without loss of generality, we choose coordinates such that

∂D =
{
ξ ∈ Rd | 〈ξ , nD〉 = cD

}
, H =

{
ξ ∈ Rd | 〈ξ , nH〉 = cH

}
with ξ ∈ DS iff 〈ξ , nD〉 ≤ cD and 〈ξ , nH〉 ≥ cH . Then we approximate

(A.3a) PX(τ̂i−1 < ti) ≤ PX
(

inf
ti−1≤s<ti

〈
X̂s , nD

〉
≤ cD

)
× PX

(
sup

ti−1≤s<ti

〈
X̂s , nH

〉
≥ cH

)
.

This formula is, however, only used for X̂ti−1 ∈ D and X̂ti ∈ D. If both of them are outside
D, we replace the first factor by the probability to hit the boundary from outside, i.e., we
set

(A.3b) PX(τ̂i−1 < ti) ≤ PX
(

inf
ti−1≤s<ti

〈
X̂s , nD

〉
≥ cD

)
× PX

(
sup

ti−1≤s<ti

〈
X̂s , nH

〉
≥ cH

)
.

Moreover, if precisely one of the points X̂ti−1 and X̂ti is outside D and the other one is inside
D, then ∂D must have been crossed and we use the bound

(A.3c) PX(τ̂i−1 < ti) ≤ PX
(

sup
ti−1≤s<ti

〈
X̂s , nH

〉
≥ cH

)
.

We have now effectively reduced the problem to a one-dimensional. Indeed, let Y denote
a (one-dimensional) Brownian bridge with Y0 = y0 and Y∆t = y1 coming from a Brownian
motion with quadratic variation σ2t, then, using the notation (x)+ = x ∨ 0,

P
(

sup
0≤t<∆t

Yt ≥ λ
)

= exp
(
−2

(λ − y0)+(λ − y1)+

σ2∆t

)
,

see, for instance, [7]. We apply this result for the Brownian bridges
〈
X̂t , nD

〉
and

〈
X̂t , nH

〉
,

respectively, where ti−1 ≤ t < ti and we condition on the σ-algebra X. This finally gives
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the computable approximation

(A.4) PX(τ̂i−1 < ti) ≤ exp

−2

(〈
nD , X̂ti−1

〉
− cD

)
+

(〈
nD , X̂ti

〉
− cD

)
+

σ̂2
D∆ti−1

×
× exp

−2

(
cH −

〈
nH , X̂ti−1

〉)
+

(
cH −

〈
nH , X̂ti

〉)
+

σ̂2
H∆ti−1

 ,
where

σ̂2
D =

d∑
j=1

〈
V j(X̂ti−1 ) , nD

〉2
, σ̂2

H =

d∑
j=1

〈
V j(X̂ti−1 ) , nH

〉2
.

Again, (A.4) only holds if both X̂ti−1 and X̂ti are inside the domain D. Otherwise we ad-
just (A.4) according to (A.3).

Note that we also need a lower bound for PX(τ̂i−1 < ti) in order to get an upper bound
for (A.1). For simplicity, we approximate a lower bound by setting

(A.5) PX(τ̂i−1 < ti) / cPXup,

where PXup denotes the upper bound computed in (A.4) and 0 < c < 1 is a fixed constant.

Remark A.1. Notice that the approximation error in (A.4) can be considerable, depending
on the location relative to the boundary. If the points X̂ti−1 and X̂ti are far away from the
separating hyperplane H, but near to the stopping boundary ∂DS , the error will be small.
On the other hand, if the points are both near to H and to ∂D, then the error will be rather
high. On the other hand, the approximation clearly shows the exponential decay of the
hitting probabilities with distance from the stopping boundary.
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