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El Pricing partial differential equations
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Black-Scholes pricing PDEs @

dSt =rS,dl‘+O’Stth

European option pricing PDE

u(t,x) = E[e" T f(S7) | S, = x],

0 1, 9* 0
u(t X) + 0' x2 u(t X) + rxa—u(t ,X) — ru(t, x) = u(T, x) = f(x).
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Black-Scholes pricing PDEs z@;,}

dSt ZrS[dt+O—Stth

European option pricing PDE

u(t,x) = E[e T f(S7) |8, = x|,

2
ﬁu(l‘, X) + l0'2)6 9 —u(t, x) + rxaiu(t x) — ru(t, x) =

ot 2 Ox2 0, u(T,x)=f(x).

American option pricing PDE (HJB equation in form of variational inequality)

v(t,x) = sup E[e""f(S:)| S, =x|, Tir:={Stoppingtimess<t<T},

TG‘TI’T

0 1, 62 0
6—v(t ,X) + 0' x> ER 2v(t X) + rx(9 v(t,x) —rv(t,x) <0, v(t,x)> f(x), v(T,x) = f(x),

with equality in the PDE on { x| v(z, x) > f(x) }.
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A simplified European pricing PDE @

1 2
%u(t, Xx) + Ea'zxz%u(t, X) + rx%u(t, x)—ru(t,x)=0, wT,x)=(K-x)"

> Change of variables: y := log(x/K), 7 := 30X(T — 1), ¢ := 2r/o* and
— 1 1 1 o .
u(t,y) = T exp (E(q -y+ (Z(q -1)%+ q) T) u(t, x), satisfying the heat equation
2

Ditr. ) = i), w0, = (eHo ety
or dy? +
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A simplified European pricing PDE zﬁgy

4 1 2
—u(t, x) + —a'zxza—u(t, X) + rxiu(t, x) —ru(t,x) =
0x? ox

_ At
gy > 0, u(T,x)=(K-x)

> Change of variables: y := log(x/K), 7 := 30X(T — 1), ¢ := 2r/o* and
— 1
u(t,y) = T exp (E(q -y+ (Z(q - 1) + q) T) u(t, x), satisfying the heat equation

2
9 u( ,y) = 6 M(T y), u(0,y) = (e%(q—l)y _ e%(q+1)y) .

+
» Boundary conditions: Natural boundary condition for put option at y — oo and from
put-call-parity:

— 1 1 —
u(t,y) = eXp(i(q - Dy+ Z(q - 1)27) fory — —oo, u(r,y) =0fory — oo
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A simplified American pricing PDE zﬁgy

(9 1 ) 62 a + _ +
éh‘v(l‘,x)+20' X Ew 2v(),‘ x)+rx(9 vit,x)—rv(t,x) <0, v(t,x)=(K-x)", w{T,x)=(K-x)

The same transformation as above gives:

2 2

) d 9
(—V(T y) - v(T y)) (r,y) — g(1,y)) = 0, V(T y) - —V(T y) =0,

v(t,y) > g(t,y), v(0,y) = g,y),
W(r,y) = g(1,y) fory - —oc0, V(1,y) = 0 fory — oo,

where
N
gy, 1) = exp (%(q + 1)27) (e%(q_l)y - e%(q“)y)
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A simplified American pricing PDE %

(9 1 ) 62 a + _ +
atv(t, x)+20' X Ew 2v(),‘ x)+rx(9 vit,x)—rv(t,x) <0, v(it,x)=(K-x)", w{T,x)=(K-x)

The same transformation as above gives:

2 2

) d 9
(—V(T y) - v(T y)) (r,y) — g(1,y)) = 0, V(T y) - —V(T y) =0,

v(t,y) > g(t,y), v(0,y) = g,y),
W(r,y) = g(1,y) fory - —oc0, V(1,y) = 0 fory — oo,

where
N
gy, 1) = exp (%(q + 1)27) (e%(q_l)y - e%(q“)y)
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Outline

E The finite difference method
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Difference quotients

» Forward difference quotient: f/(x) =

Jx+h) - f(x)
h

+ O(h)
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Difference quotients

h) —
» Forward difference quotient: f’(x) = M

» Backward difference quotient: f’(x) =

+

J) - fx—h)
h

O(h)

+ O(h)
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Difference quotients zﬁ@

» Forward difference quotient: f'(x) = w +O(h)

» Backward difference quotient: f’(x) = W +O(h)

» Central difference quotient: f'(x) = fox+h ; fx=h + O(hz)
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Difference quotients X“g’}

Jx+h) - f(x)

» Forward difference quotient: f'(x) = p

+ O(h)

» Backward difference quotient: f’(x) = w +O(h)
» Central difference quotient: f'(x) = fox+h ; fx=h + O(hz)
» Central difference quotient: f”'(x) = TAC R 2];(2)6) Gl +Oh?)
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Difference quotients zﬁ@

Fee D=0 o)

J) - fx—h)
h

» Forward difference quotient: f'(x) =

» Backward difference quotient: f’(x) = +O(h)

f(x+h);f(x_h)+0(h2)

Jx+h) =2f(x) + f(x—h)
h2

» Central difference quotient: f'(x) =

» Central difference quotient: f”'(x) = +O(h?)

Replace derivatives in time and space by finite difference quotients based on grids. ]
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Difference quotients z@’}

fet D=1, o)

J) - fx—h)
h

» Forward difference quotient: f'(x) =

» Backward difference quotient: f’(x) = +O(h)

f(x+h);f(x_h)+0(h2)

Jx+h) =2f(x) + f(x—h)
h2

» Central difference quotient: f'(x) =

» Central difference quotient: f”'(x) = +O(h?)

Replace derivatives in time and space by finite difference quotients based on grids. ]

» Notation: 7; .= iAt,i=0,...,N,At :=T/N.x;:=a+ jAx, j=0,...,M, Ax .= (b—a)/M.

> Solving heat equation with appropriate boundary conditions on [a, b], setting
u; ;= u(t;, x;) —and similarly its FD approximation u; ;.

Computational finance — Lecture 11 - June 25, 2021 - Page 7 (15) %



Explicit finite differences

Based on the approximations:
Ui jr1 = 2 + U j-1
Ax?

Uirl,j — Ui 2

S G iy = 2
At +O(At)’ axz u(tl’-x_]) - +O(Ax )

0
Eu(ti, xj) =
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Explicit finite differences Lok

Based on the approximations:

Uirl,j — Ui

J
A7 + O(Av),

0
ﬁ_tu(ti’ xj) =
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Explicit finite differences
Based on the approximations:

2
Uirl,j = Uij 0 Wi j+1 = 2Uij + Ui j-1
—L——L L O(An,  —ult, x)) = = —
/ Ax?

Y e + O(AXP).

0
57 X)) =

Explicit FD scheme for the heat equation

With 2 := 25 set U1 = Ui j + AW je1 — 2ij+Wijo1), i=0,...,N—1,j=1,...,M—1.

» Boundary and initial conditions for the European put option:

+ 1 1 _
uo,j = (e%(q_l)xj - e%(q+l)xj) . Uir1,0 = €Xp (5((] - Da + Z(q - %1, Ui =0
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Explicit finite differences Lok
Based on the approximations:
2

62

Uirl,j — Uij

At

Ui jv1 = 2Ui j + Ui j-1
Ax?

u(ti, xj) = +O0A),  —ult,xj) = +O(AX?).

o

Explicit FD scheme for the heat equation

With 2 := 25 set U1 = Ui j + AW je1 — 2ij+Wijo1), i=0,...,N—1,j=1,...,M—1.

» Boundary and initial conditions for the European put option:

+ 1 1 _
uo,j = (e%(q_l)xj - e%(q+l)xj) . Uir1,0 = €Xp (5((] - Da + Z(q - %1, Ui =0

> Up to the boundary conditions, 1-22 Pl 0 - 0

A 1-24
Uivl; = ADui;, A =

0 0 4 1-24
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Convergence of the explicit FD scheme %

Example (Instability of the explicit FD scheme)

Consider the heat equation with «(0, x) = sin(zx), x € [0, 1], u(z,0) = u(z, 1) = 1. Then
u(t, x) = sin(rx)e ™. Compute u(0.5,0.2):
» Explicit solution: u(0.5,0.2) = 0.004227.
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Convergence of the explicit FD scheme zﬁ“’g

Example (Instability of the explicit FD scheme)

Consider the heat equation with «(0, x) = sin(zx), x € [0, 1], u(z,0) = u(z, 1) = 1. Then
u(t, x) = sin(rx)e ™. Compute u(0.5,0.2):

» Explicit solution: u(0.5,0.2) = 0.004227.
» FD with Ax = 0.1, At = 0.0005: u(0.5,0.2) = U002 = 0.00435.
» FD with Ax = 0.1, At = 0.01: (0.5,0.2) = uspp, = —1.5 X 108.
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Convergence of the explicit FD scheme @

Example (Instability of the explicit FD scheme)
Consider the heat equation with u(0, x) = sin(zx), x € [0, 1], u(z,0) = u(¢,1) = 1. Then
u(t, x) = sin(rx)e ™. Compute u(0.5,0.2):

> Explicit solution: u(0.5,0.2) = 0.004227.
» FD with Ax = 0.1, At = 0.0005: u(0.5,0.2) = u19002 = 0.00435.
> FD with Ax = 0.1, At = 0.01: #(0.5,0.2) = uspp, = —1.5 X 108.

> The explicit FD scheme is prone to instability, i.e., explosive error propagation.

> x> Axis stable iff the spectral radius is bounded by 1. For A(Q) this can be proved to
be the case when 1 < 1/2.
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Convergence of the explicit FD scheme @

Example (Instability of the explicit FD scheme)

Consider the heat equation with u(0, x) = sin(zx), x € [0, 1], u(z,0) = u(¢,1) = 1. Then
u(t, x) = sin(rx)e ™. Compute u(0.5,0.2):

> Explicit solution: u(0.5,0.2) = 0.004227.

» FD with Ax = 0.1, At = 0.0005: u(0.5,0.2) = ujp002 = 0.00435.

> FD with Ax = 0.1, At = 0.01: #(0.5,0.2) = uspp, = —1.5 X 108.

> The explicit FD scheme is prone to instability, i.e., explosive error propagation.
> x > Ax is stable iff the spectral radius is bounded by 1. For A(2) this can be proved to
be the case when 1 < 1/2.

The explicit FD scheme converges is stable and converges when At < %sz (plus
technical conditions). In this case, the error behaves like O(Ar) + O(Ax?).
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Implicit finite difference scheme

Based on the approximations:

Lj = Ui, ’

Ui je1 — 2Uij + Ui j-1

ﬁ (t, x;) = Ui, + O(AD) (9_ (ti, x;) =
u l’x] - At > axzu l’x] -

ot

Ax?
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Implicit finite difference scheme Lok

Based on the approximations:

2

0 Ujj — Uji-1,j 0
Eu(ti,xj) = A + O(Ap), ﬁu(ti,xj) =

Ui je1 — 2Uij + Ui j-1
Ax?

Implicit FD scheme for the heat equation

Define u;. as solution of the system u; | ; = u; ; + AA—X’Z( —Ujje1 +2uj—uij-1),i=1,...,N,
j=1,.... M- 1.
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Implicit finite difference scheme Lok

Based on the approximations:

2

0 Ujj — Uji-1,j 0
Eu(ti,xj) = A + O(Ap), ﬁu(ti,xj) =

Ui je1 — 2Uij + Ui j-1
Ax?

Implicit FD scheme for the heat equation

Define ;.. as solution of the system u;_ j = u;; + +5( — Ui j1 + 20 — Wi j-1), i = 1,..., N,
j=1,...,M—1.

» Up to boundary conditions: 1+224 -4 0o --- 0

-4 1+24
Au;; = uj1:, A=
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Implicit finite difference scheme Lok

Based on the approximations:

2

0 Ujj — Uji-1,j 0
Eu(ti,xj) = A + O(Ap), ﬁu(ti,xj) =

Ui je1 — 2Ui j + Uj j-1
Ax?

Implicit FD scheme for the heat equation

Define ;.. as solution of the system u;_ j = u;; + +5( — Ui j1 + 20 — Wi j-1), i = 1,..., N,
j=1,...,M—1.

» Up to boundary conditions: 1+224 -4 0o --- 0

-1 1+22
Aui; = Uj-1;, A=

: .. . .. -1
0 0 -1 1+22

The implicit FD scheme is unconditionally stable and converges with O(At) + O(Ax?).
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Lax—Richtmyer theorem @

> Assume that the Cauchy problem is well-posed.

» Notation: « ... solution of the PDE, ' ...u at time t; discretized on the x-grid, @ ...FD
approximation, given by B " = By’ + f.
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Lax—Richtmyer theorem @

> Assume that the Cauchy problem is well-posed.

» Notation: « ... solution of the PDE, ' ...u at time t; discretized on the x-grid, @ ...FD
approximation, given by B " = By’ + f.

> Consistency: ||Byu'*! — (Bou' + f')|| — 0 as At = T/N,Ax = (b—a)/M - 0,i=0,...,N.
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Lax—Richtmyer theorem zﬁgy

> Assume that the Cauchy problem is well-posed.

» Notation: « ... solution of the PDE, ' ...u at time t; discretized on the x-grid, @ ...FD
approximation, given by B " = By’ + f.

> Consistency: ||Byu*! = (Bou' + f')|| > 0 as At = T/N,Ax = (b—a)/M - 0,i=0,...,N.

> Stability: there is a constant C s.t. ||(B'By)"|| < C uniformly in N. (Note: By, By depend
on N via At, Ax.)
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Lax—Richtmyer theorem zﬁgy

> Assume that the Cauchy problem is well-posed.

» Notation: « ... solution of the PDE, ' ...u at time t; discretized on the x-grid, @ ...FD
approximation, given by B,u'"" = Byii' + f.

> Consistency: ||Byu*! = (Bou' + f')|| > 0 as At = T/N,Ax = (b—a)/M - 0,i=0,...,N.

> Stability: there is a constant C s.t. ||(B!Bo)"|| < C uniformly in N. (Note: By, By depend
on N via At, Ax.)

> Convergence: Consider i(N) s.t. t; — t as N — co. Then |[i™" — /™| - 0 as N — oo.
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Lax—Richtmyer theorem zﬁgy

> Assume that the Cauchy problem is well-posed.

» Notation: « ... solution of the PDE, ' ...u at time t; discretized on the x-grid, @ ...FD
approximation, given by B,u'"" = Byii' + f.

> Consistency: ||Byu*! = (Bou' + f')|| > 0 as At = T/N,Ax = (b—a)/M - 0,i=0,...,N.

> Stability: there is a constant C s.t. ||(B!Bo)"|| < C uniformly in N. (Note: By, By depend
on N via At, Ax.)

> Convergence: Consider i(N) s.t. ; — t as N — co. Then |[™™ — u'™| - 0 as N — oo.

Theorem (Lax—Richtmyer; Lax equivalence principle; Fundamental theorem of

numerical analysis)

For a consistent scheme, stability is equivalent to convergence, provided the problem is
linear and well-posed.
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Crank-Nicolson

Uirl,j — Ui
oo ultiv, Xj) = ————

o
+ O(At
ot At (A
can be seen as forward or backward difference quotient, leading to

Uiplj—UWij  Uijel — 2055+ Uijo1 Uiglj— Wij  Uppl jol — 2Uig1j + Uig1 j1
J J — J or —

At Ax? At Ax?
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Crank-Nicolson %

o Uirl,j — Ui j
ot At
can be seen as forward or backward difference quotient, leading to

+ O(At)

u(tivy, Xj) =

Uiplj—UWij  Uijel — 2055+ Uijo1 Uil j— Wij  Upgl jol — 2Uig1j + Uig1 j1
J J — J or —

At Ax? At Ax?

Instead, take the mean of the right hand sides:

Crank-Nicolson scheme

Define u; . as solution of the system

- - A - p— - - -
Uirl,j = Uij = 553 (Mz el = 2uG 5 w1 F Wiy e — 2041, Mi+1,j—1)-
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Crank-Nicolson

Uirl,j — Ui
oo ultiv, Xj) = ————

o)
A
ot At + 0@

can be seen as forward or backward difference quotient, leading to

At Ax? At Ax?

Instead, take the mean of the right hand sides:

Uiplj—UWij  Uijel — 2055+ Uijo1 Uil j— Wij  Upgl jol — 2Uig1j + Uig1 j1
J J _ J or _

Crank—Nicolson scheme

Define u; . as solution of the system

Uirl,j = Uij = 553 (ui,j+1 =20 j + Ui j1 + Ui, j1 — 2Uir1j + ”i+1,j—1)-

> System of equations of the form Au;.. = Bu;..
» Unconditionally stable and converges with error O(Ar?) + O(Ax?).
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American options %

2 2

0 0 0 _ 6
(—V(T y) - v(T y)) (z,y) - g(z,y) = V(T y) - v(T y) =0,

v(r,y) = g(r,y), W0,y) = g(O, )
V(r,y) = g(r,y)fory - —c0, W(1,¥) =0fory — oo,
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American options X“g’}

2 2

) 0 d a
(—v(T y) - v(T y)) (t,y) = g(1,y)) = 0, V(T y) - v(T y) =0,

v, y) = g(r,y), v(0,y) =g,y),
V(t,y) = g(r,y) fory = —co, W(r,y) =0fory — oo,

> Have to solve linear inequality systems of the form Aw — b > 0, w > g,
(aw —b)"(w — g) = 0 for the approximate solution w. Projection SOR (Successive
over-relaxation algorithm).
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American options

2

2 9 a
v(T y)) W(1,y) — g(1,y) =0, V(T V)= v(T y) >0,

0 0
(—V(T y) -
v(r,y) = g(r,y), v(0,y) = g,y),
V(t,y) = g(r,y) fory = —co, W(r,y) =0fory — oo,

> Have to solve linear inequality systems of the form Aw — b > 0, w > g,
(aw — b)T(w — g) = 0 for the approximate solution w. Projection SOR (Successive

over-relaxation algorithm).
» Poor man’s algorithm: Use standard FD iterations, but take maximum with payoff
function at each iteration step.
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Outline

Kl Finite element method
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A map to the finite element method @

Consider, for simplicity, the Poisson equation Au = f on [0, 1] with u(0) = u(1) = 0.
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A map to the finite element method %

Consider, for simplicity, the Poisson equation Au = f on [0, 1] with u(0) = u(1) = 0.

1. Variational (weak) formulation: u is the only element of V := H(l) such that for every test
functionv e V:

1 1
Au,v) = L(v), A,v) =-— f W ()W (x)dx, L) := f f(x)v(x)dx
0 0
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A map to the finite element method z@’}
Consider, for simplicity, the Poisson equation Au = f on [0, 1] with u(0) = u(1) = 0.
1. Variational (weak) formulation: u is the only element of V = Hé such that for every test
functionv e V: 1 '
A(u,v) = L(v), Au,v) =-— f(; W ()W (x)dx, L) := L f(x)v(x)dx
2. Projection onto finite dimensional space: Choose V;, c V, dimV}, < o0, h > 0, and
consider the projected problem Yv € V), : A(uy,, v) = L(v), with solution u;, € Vj,. E.g.,

1
N+1

Vi = {v e C(0, 1) | Vipy ., affine,i =0,....N, v(©0) = v(1) =0}, x; = ih, h =
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A map to the finite element method

Consider, for simplicity, the Poisson equation Au = f on [0, 1] with u(0) = u(1) = 0.

1.

Variational (weak) formulation: u is the only element of V := Hé such that for every test
functionv e V:

1 1
A(u,v) = L(v), Au,v) =-— f W ()W (x)dx, L) := f f(x)v(x)dx
0 0

Projection onto finite dimensional space: Choose V, c V, dim V), < oo, h > 0, and
consider the projected problem ¥Yv € Vj, : A(uy, v) = L(v), with solution u;, € V. E.g.,

Parameterization in terms of basis: Choose a basis (¢i)§‘i] of V}, obtaining the system
Alup, @) = L(¢), i = 1,...,N. E.g., ¢; piecewise-linear, ¢,(x;) = 6;;, j=0,...,N + 1.
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A map to the finite element method

Consider, for simplicity, the Poisson equation Au = f on [0, 1] with u(0) = u(1) = 0.

1.

Variational (weak) formulation: u is the only element of V := Hé such that for every test
functionv e V:

1 1
A(u,v) = L(v), Au,v) =-— f W ()W (x)dx, L) := f f(x)v(x)dx
0 0

Projection onto finite dimensional space: Choose V, c V, dim V), < oo, h > 0, and
consider the projected problem ¥Yv € Vj, : A(uy, v) = L(v), with solution u;, € V. E.g.,

Parameterization in terms of basis: Choose a basis (¢i)fi] of V}, obtaining the system
A(up, @) = L(¢y), i = 1,...,N. E.g., ¢; piecewise-linear, ¢;(x;) = 6;;, j=0,...,N + 1.

Solve the system: For up = Zfil §i¢is Z{: = Z, where Zi,j = A(¢,‘, ¢j)= Zi = L(¢,‘),
i,j=1,...,N.
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