

Computational finance – Lecture 11

Christian Bayer

1 Pricing partial differential equations

2 The finite difference method

3 Finite element method

$$dS_t = rS_t dt + \sigma S_t dW_t$$

European option pricing PDE

$$u(t,x) := E\left[e^{-r(T-t)}f(S_T) \mid S_t = x\right],$$

$$\frac{\partial}{\partial t}u(t,x) + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2}{\partial x^2}u(t,x) + rx \frac{\partial}{\partial x}u(t,x) - ru(t,x) = 0, \quad u(T,x) = f(x).$$

$$dS_t = rS_t dt + \sigma S_t dW_t$$

European option pricing PDE

$$u(t,x) := E\left[e^{-r(T-t)}f(S_T) \mid S_t = x\right],$$

$$\frac{\partial}{\partial t}u(t,x) + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2}{\partial x^2}u(t,x) + rx\frac{\partial}{\partial x}u(t,x) - ru(t,x) = 0, \quad u(T,x) = f(x).$$

American option pricing PDE (HJB equation in form of variational inequality)

$$v(t,x) \coloneqq \sup_{\tau \in \mathcal{T}_{t,T}} E\left[\mathrm{e}^{-r(\tau-t)} f(S_\tau) \mid S_t = x\right], \quad \mathcal{T}_{t,T} \coloneqq \{ \text{ Stopping times } t \leq \tau \leq T \},$$

$$\frac{\partial}{\partial t}v(t,x) + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2}{\partial x^2}v(t,x) + rx\frac{\partial}{\partial x}v(t,x) - rv(t,x) \le 0, \quad v(t,x) \ge f(x), \quad v(T,x) = f(x),$$

with equality in the PDE on $\{x \mid v(t, x) > f(x)\}.$

A simplified European pricing PDE

$$\frac{\partial}{\partial t}u(t,x) + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2}{\partial x^2}u(t,x) + rx \frac{\partial}{\partial x}u(t,x) - ru(t,x) = 0, \quad u(T,x) = (K-x)^+$$

Change of variables: $y := \log(x/K)$, $\tau := \frac{1}{2}\sigma^2(T-t)$, $q := 2r/\sigma^2$ and $\widetilde{u}(\tau,y) := \frac{1}{K} \exp\left(\frac{1}{2}(q-1)y + \left(\frac{1}{4}(q-1)^2 + q\right)\tau\right)u(t,x)$, satisfying the heat equation $\frac{\partial}{\partial \tau}\widetilde{u}(\tau,y) = \frac{\partial^2}{\partial v^2}\widetilde{u}(\tau,y), \quad \widetilde{u}(0,y) = \left(e^{\frac{1}{2}(q-1)y} - e^{\frac{1}{2}(q+1)y}\right).$

A simplified European pricing PDE

$$\frac{\partial}{\partial t}u(t,x) + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2}{\partial x^2}u(t,x) + rx \frac{\partial}{\partial x}u(t,x) - ru(t,x) = 0, \quad u(T,x) = (K-x)^+$$

Change of variables: $y \coloneqq \log(x/K)$, $\tau \coloneqq \frac{1}{2}\sigma^2(T-t)$, $q \coloneqq 2r/\sigma^2$ and $\widetilde{u}(\tau,y) \coloneqq \frac{1}{K} \exp\left(\frac{1}{2}(q-1)y + \left(\frac{1}{4}(q-1)^2 + q\right)\tau\right)u(t,x)$, satisfying the heat equation $\frac{\partial}{\partial \tau}\widetilde{u}(\tau,y) = \frac{\partial^2}{\partial y^2}\widetilde{u}(\tau,y), \quad \widetilde{u}(0,y) = \left(e^{\frac{1}{2}(q-1)y} - e^{\frac{1}{2}(q+1)y}\right)_+.$

▶ Boundary conditions: Natural boundary condition for put option at $y \to \infty$ and from put-call-parity:

$$\widetilde{u}(\tau, y) = \exp\left(\frac{1}{2}(q-1)y + \frac{1}{4}(q-1)^2\tau\right) \text{ for } y \to -\infty, \quad \widetilde{u}(\tau, y) = 0 \text{ for } y \to \infty$$

A simplified American pricing PDE

$$\frac{\partial}{\partial t}v(t,x) + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2}{\partial x^2}v(t,x) + rx\frac{\partial}{\partial x}v(t,x) - rv(t,x) \le 0, \quad v(t,x) \ge (K-x)^+, \quad v(T,x) = (K-x)^+$$

The same transformation as above gives:

$$\left(\frac{\partial}{\partial \tau}\widetilde{v}(\tau, y) - \frac{\partial^{2}}{\partial y^{2}}\widetilde{v}(\tau, y)\right)(\widetilde{v}(\tau, y) - g(\tau, y)) = 0, \quad \frac{\partial}{\partial \tau}\widetilde{v}(\tau, y) - \frac{\partial^{2}}{\partial y^{2}}\widetilde{v}(\tau, y) \ge 0,$$

$$\widetilde{v}(\tau, y) \ge g(\tau, y), \quad \widetilde{v}(0, y) = g(0, y),$$

$$\widetilde{v}(\tau, y) = g(\tau, y) \text{ for } y \to -\infty, \quad \widetilde{v}(\tau, y) = 0 \text{ for } y \to \infty,$$

where

$$g(y,\tau) := \exp\left(\frac{1}{4}(q+1)^2\tau\right) \left(e^{\frac{1}{2}(q-1)y} - e^{\frac{1}{2}(q+1)y}\right)^+$$

A simplified American pricing PDE

$$\frac{\partial}{\partial t}v(t,x) + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2}{\partial x^2}v(t,x) + rx\frac{\partial}{\partial x}v(t,x) - rv(t,x) \le 0, \quad v(t,x) \ge (K-x)^+, \quad v(T,x) = (K-x)^+$$

The same transformation as above gives:

$$\left(\frac{\partial}{\partial \tau}\widetilde{v}(\tau, y) - \frac{\partial^{2}}{\partial y^{2}}\widetilde{v}(\tau, y)\right)(\widetilde{v}(\tau, y) - g(\tau, y)) = 0, \quad \frac{\partial}{\partial \tau}\widetilde{v}(\tau, y) - \frac{\partial^{2}}{\partial y^{2}}\widetilde{v}(\tau, y) \ge 0,$$

$$\widetilde{v}(\tau, y) \ge g(\tau, y), \quad \widetilde{v}(0, y) = g(0, y),$$

$$\widetilde{v}(\tau, y) = g(\tau, y) \text{ for } y \to -\infty, \quad \widetilde{v}(\tau, y) = 0 \text{ for } y \to \infty,$$

where

$$g(y,\tau) := \exp\left(\frac{1}{4}(q+1)^2\tau\right) \left(e^{\frac{1}{2}(q-1)y} - e^{\frac{1}{2}(q+1)y}\right)^+$$

1 Pricing partial differential equations

2 The finite difference method

3 Finite element method

Forward difference quotient: $f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$

- ► Forward difference quotient: $f'(x) = \frac{f(x+h) f(x)}{h} + O(h)$ ► Backward difference quotient: $f'(x) = \frac{f(x) f(x-h)}{h} + O(h)$

- Forward difference quotient: $f'(x) = \frac{f(x+h) f(x)}{h} + O(h)$
- ▶ Backward difference quotient: $f'(x) = \frac{f(x) f(x h)}{h} + O(h)$ ▶ Central difference quotient: $f'(x) = \frac{f(x + h) f(x h)}{h} + O(h^2)$

- Forward difference quotient: $f'(x) = \frac{f(x+h) f(x)}{h} + O(h)$
- ► Backward difference quotient: $f'(x) = \frac{f(x) f(x h)}{h} + O(h)$
- ► Central difference quotient: $f'(x) = \frac{f(x+h) f(x-h)}{h} + O(h^2)$ ► Central difference quotient: $f''(x) = \frac{f(x+h) 2f(x) + f(x-h)}{h^2} + O(h^2)$

- Forward difference quotient: $f'(x) = \frac{f(x+h) f(x)}{h} + O(h)$
- Backward difference quotient: $f'(x) = \frac{f(x) f(x h)}{h} + O(h)$
- ► Central difference quotient: $f'(x) = \frac{f(x+h) f(x-h)}{h} + O(h^2)$ ► Central difference quotient: $f''(x) = \frac{f(x+h) 2f(x) + f(x-h)}{h^2} + O(h^2)$

Replace derivatives in time and space by finite difference quotients based on grids.

- Forward difference quotient: $f'(x) = \frac{f(x+h) f(x)}{h} + O(h)$
- ▶ Backward difference quotient: $f'(x) = \frac{f(x) f(x h)}{h} + O(h)$
- Central difference quotient: $f'(x) = \frac{f(x+h) f(x-h)}{h} + O(h^2)$
- ► Central difference quotient: $f''(x) = \frac{f(x+h) 2f(x) + f(x-h)}{h^2} + O(h^2)$

Replace derivatives in time and space by finite difference quotients based on grids.

- Notation: $t_i := i\Delta t$, i = 0, ..., N, $\Delta t := T/N$. $x_j := a + j\Delta x$, j = 0, ..., M, $\Delta x := (b a)/M$.
- Solving heat equation with appropriate boundary conditions on [a,b], setting $u_{i,j} := u(t_i,x_j)$ and similarly its FD approximation $\overline{u}_{i,j}$.

Based on the approximations:

$$\frac{\partial}{\partial t}u(t_i,x_j) = \frac{u_{i+1,j} - u_{i,j}}{\Delta t} + O(\Delta t), \quad \frac{\partial^2}{\partial x^2}u(t_i,x_j) = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{\Delta x^2} + O(\Delta x^2).$$

Based on the approximations:

$$\frac{\partial}{\partial t}u(t_i,x_j) = \frac{u_{i+1,j} - u_{i,j}}{\Delta t} + O(\Delta t), \quad \frac{\partial^2}{\partial x^2}u(t_i,x_j) = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{\Delta x^2} + O(\Delta x^2).$$

Explicit FD scheme for the heat equation

With
$$\lambda := \frac{\Delta t}{\Delta x^2}$$
 set $\overline{u}_{i+1,j} := \overline{u}_{i,j} + \lambda (\overline{u}_{i,j+1} - 2\overline{u}_{i,j} + \overline{u}_{i,j-1}), i = 0, \dots, N-1, j = 1, \dots, M-1.$

Based on the approximations:

$$\frac{\partial}{\partial t}u(t_i,x_j) = \frac{u_{i+1,j} - u_{i,j}}{\Delta t} + O(\Delta t), \quad \frac{\partial^2}{\partial x^2}u(t_i,x_j) = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{\Delta x^2} + O(\Delta x^2).$$

Explicit FD scheme for the heat equation

With
$$\lambda := \frac{\Delta t}{\Delta x^2}$$
 set $\overline{u}_{i+1,j} := \overline{u}_{i,j} + \lambda(\overline{u}_{i,j+1} - 2\overline{u}_{i,j} + \overline{u}_{i,j-1}), i = 0, \dots, N-1, j = 1, \dots, M-1.$

Boundary and initial conditions for the European put option:

$$\overline{u}_{0,j} = \left(e^{\frac{1}{2}(q-1)x_j} - e^{\frac{1}{2}(q+1)x_j}\right)^+, \quad \overline{u}_{i+1,0} = \exp\left(\frac{1}{2}(q-1)a + \frac{1}{4}(q-1)^2t_{i+1}\right), \quad \overline{u}_{i+1,M} = 0$$

Based on the approximations:

$$\frac{\partial}{\partial t}u(t_i,x_j) = \frac{u_{i+1,j} - u_{i,j}}{\Delta t} + O(\Delta t), \quad \frac{\partial^2}{\partial x^2}u(t_i,x_j) = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{\Delta x^2} + O(\Delta x^2).$$

Explicit FD scheme for the heat equation

With
$$\lambda \coloneqq \frac{\Delta t}{\Delta x^2}$$
 set $\overline{u}_{i+1,j} \coloneqq \overline{u}_{i,j} + \lambda (\overline{u}_{i,j+1} - 2\overline{u}_{i,j} + \overline{u}_{i,j-1}), i = 0, \dots, N-1, j = 1, \dots, M-1.$

Boundary and initial conditions for the European put option:

$$\overline{u}_{0,j} = \left(e^{\frac{1}{2}(q-1)x_j} - e^{\frac{1}{2}(q+1)x_j}\right)^+, \quad \overline{u}_{i+1,0} = \exp\left(\frac{1}{2}(q-1)a + \frac{1}{4}(q-1)^2t_{i+1}\right), \quad \overline{u}_{i+1,M} = 0$$

Up to the boundary conditions,

Foundary conditions,
$$\overline{u}_{i+1,:} = A(\lambda)\overline{u}_{i,:}, \quad A(\lambda) := \begin{pmatrix} 1 - 2\lambda & \lambda & 0 & \cdots & 0 \\ \lambda & 1 - 2\lambda & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \lambda \\ 0 & \cdots & 0 & \lambda & 1 - 2\lambda \end{pmatrix}.$$

Consider the heat equation with $u(0, x) = \sin(\pi x)$, $x \in [0, 1]$, $u(t, 0) \equiv u(t, 1) \equiv 1$. Then $u(t, x) = \sin(\pi x)e^{-\pi^2 t}$. Compute u(0.5, 0.2):

Explicit solution: u(0.5, 0.2) = 0.004227.

Consider the heat equation with $u(0, x) = \sin(\pi x)$, $x \in [0, 1]$, $u(t, 0) \equiv u(t, 1) \equiv 1$. Then $u(t, x) = \sin(\pi x)e^{-\pi^2 t}$. Compute u(0.5, 0.2):

- **Explicit solution:** u(0.5, 0.2) = 0.004227.
- ► FD with $\Delta x = 0.1$, $\Delta t = 0.0005$: $u(0.5, 0.2) \approx \overline{u}_{1000,2} = 0.00435$.
- ► FD with $\Delta x = 0.1$, $\Delta t = 0.01$: $u(0.5, 0.2) \approx \overline{u}_{50,2} = -1.5 \times 10^8$.

Consider the heat equation with $u(0, x) = \sin(\pi x)$, $x \in [0, 1]$, $u(t, 0) \equiv u(t, 1) \equiv 1$. Then $u(t, x) = \sin(\pi x)e^{-\pi^2 t}$. Compute u(0.5, 0.2):

- **Explicit solution:** u(0.5, 0.2) = 0.004227.
- ► FD with $\Delta x = 0.1$, $\Delta t = 0.0005$: $u(0.5, 0.2) \approx \overline{u}_{1000,2} = 0.00435$.
- ► FD with $\Delta x = 0.1$, $\Delta t = 0.01$: $u(0.5, 0.2) \approx \overline{u}_{50,2} = -1.5 \times 10^8$.
- ► The explicit FD scheme is prone to instability, i.e., explosive error propagation.
- ▶ $x \mapsto Ax$ is stable iff the spectral radius is bounded by 1. For $A(\lambda)$ this can be proved to be the case when $\lambda \le 1/2$.

Consider the heat equation with $u(0, x) = \sin(\pi x)$, $x \in [0, 1]$, $u(t, 0) \equiv u(t, 1) \equiv 1$. Then $u(t, x) = \sin(\pi x)e^{-\pi^2 t}$. Compute u(0.5, 0.2):

- **Explicit solution:** u(0.5, 0.2) = 0.004227.
- ► FD with $\Delta x = 0.1$, $\Delta t = 0.0005$: $u(0.5, 0.2) \approx \overline{u}_{1000,2} = 0.00435$.
- ► FD with $\Delta x = 0.1$, $\Delta t = 0.01$: $u(0.5, 0.2) \approx \overline{u}_{50,2} = -1.5 \times 10^8$.
- ► The explicit FD scheme is prone to instability, i.e., explosive error propagation.
- ▶ $x \mapsto Ax$ is stable iff the spectral radius is bounded by 1. For $A(\lambda)$ this can be proved to be the case when $\lambda \le 1/2$.

Theorem

The explicit FD scheme converges is stable and converges when $\Delta t \leq \frac{1}{2}\Delta x^2$ (plus technical conditions). In this case, the error behaves like $O(\Delta t) + O(\Delta x^2)$.

Based on the approximations:

$$\frac{\partial}{\partial t}u(t_i,x_j) = \frac{u_{i,j} - u_{i-1,j}}{\Delta t} + O(\Delta t), \quad \frac{\partial^2}{\partial x^2}u(t_i,x_j) = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{\Delta x^2}$$

Based on the approximations:

$$\frac{\partial}{\partial t}u(t_i,x_j) = \frac{u_{i,j} - u_{i-1,j}}{\Delta t} + O(\Delta t), \quad \frac{\partial^2}{\partial x^2}u(t_i,x_j) = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{\Delta x^2}$$

Implicit FD scheme for the heat equation

Define
$$\overline{u}_{i,:}$$
 as solution of the system $\overline{u}_{i-1,j} = \overline{u}_{i,j} + \frac{\Delta t}{\Delta x^2} (-\overline{u}_{i,j+1} + 2\overline{u}_{i,j} - \overline{u}_{i,j-1}), i = 1, \dots, N,$ $j = 1, \dots, M-1.$

Implicit finite difference scheme

Based on the approximations:

$$\frac{\partial}{\partial t}u(t_i,x_j) = \frac{u_{i,j} - u_{i-1,j}}{\Delta t} + O(\Delta t), \quad \frac{\partial^2}{\partial x^2}u(t_i,x_j) = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{\Delta x^2}$$

Implicit FD scheme for the heat equation

Define $\overline{u}_{i,:}$ as solution of the system $\overline{u}_{i-1,j} = \overline{u}_{i,j} + \frac{\Delta t}{\Lambda x^2} (-\overline{u}_{i,j+1} + 2\overline{u}_{i,j} - \overline{u}_{i,j-1}), i = 1, \dots, N,$ i = 1, ..., M - 1.

Up to boundary conditions:
$$A\overline{u}_{i,:} = \overline{u}_{i-1,:}, \quad A := \begin{pmatrix} 1+2\lambda & -\lambda & 0 & \cdots & 0 \\ -\lambda & 1+2\lambda & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & -\lambda \\ 0 & \cdots & 0 & -\lambda & 1+2\lambda \end{pmatrix}.$$

Implicit finite difference scheme

Based on the approximations:

$$\frac{\partial}{\partial t}u(t_i,x_j) = \frac{u_{i,j} - u_{i-1,j}}{\Delta t} + O(\Delta t), \quad \frac{\partial^2}{\partial x^2}u(t_i,x_j) = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{\Delta x^2}$$

Implicit FD scheme for the heat equation

Define $\overline{u}_{i,:}$ as solution of the system $\overline{u}_{i-1,j} = \overline{u}_{i,j} + \frac{\Delta t}{\Delta x^2} (-\overline{u}_{i,j+1} + 2\overline{u}_{i,j} - \overline{u}_{i,j-1}), i = 1, \dots, N, j = 1, \dots, M-1.$

Up to boundary conditions:
$$A\overline{u}_{i,:} = \overline{u}_{i-1,:}, \quad A := \begin{pmatrix} 1 + 2\lambda & -\lambda & 0 & \cdots & 0 \\ -\lambda & 1 + 2\lambda & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & -\lambda \\ 0 & \cdots & 0 & -\lambda & 1 + 2\lambda \end{pmatrix}.$$

Theorem

The implicit FD scheme is unconditionally stable and converges with $O(\Delta t) + O(\Delta x^2)$.

Lax-Richtmyer theorem

- Assume that the Cauchy problem is well-posed.
- Notation: u ... solution of the PDE, u^i ... u at time t_i discretized on the x-grid, \overline{u}^i ... FD approximation, given by $B_1\overline{u}^{i+1} = B_0\overline{u}^i + f^i$.

- Assume that the Cauchy problem is well-posed.
- Notation: u ... solution of the PDE, u^i ... u at time t_i discretized on the x-grid, \overline{u}^i ... FD approximation, given by $B_1\overline{u}^{i+1} = B_0\overline{u}^i + f^i$.
- ► Consistency: $\|B_1 u^{i+1} (B_0 u^i + f^i)\| \to 0$ as $\Delta t = T/N, \Delta x = (b-a)/M \to 0, i = 0, ..., N$.

- Assume that the Cauchy problem is well-posed.
- Notation: u ... solution of the PDE, u^i ... u at time t_i discretized on the x-grid, \overline{u}^i ... FD approximation, given by $B_1\overline{u}^{i+1} = B_0\overline{u}^i + f^i$.
- ► Consistency: $||B_1u^{i+1} (B_0u^i + f^i)|| \to 0$ as $\Delta t = T/N, \Delta x = (b-a)/M \to 0, i = 0, ..., N$.
- ► Stability: there is a constant C s.t. $\|(B_1^{-1}B_0)^N\| \le C$ uniformly in N. (Note: B_1, B_0 depend on N via $\Delta t, \Delta x$.)

- Assume that the Cauchy problem is well-posed.
- Notation: u ... solution of the PDE, u^i ... u at time t_i discretized on the x-grid, \overline{u}^i ... FD approximation, given by $B_1\overline{u}^{i+1} = B_0\overline{u}^i + f^i$.
- ► Consistency: $||B_1u^{i+1} (B_0u^i + f^i)|| \rightarrow 0$ as $\Delta t = T/N, \Delta x = (b-a)/M \rightarrow 0, i = 0, \dots, N$.
- ► Stability: there is a constant C s.t. $\|(B_1^{-1}B_0)^N\| \le C$ uniformly in N. (Note: B_1, B_0 depend on N via $\Delta t, \Delta x$.)
- ► Convergence: Consider i(N) s.t. $t_i \to t$ as $N \to \infty$. Then $\left\| \overline{u}^{i(N)} u^{i(N)} \right\| \to 0$ as $N \to \infty$.

- Assume that the Cauchy problem is well-posed.
- Notation: u ... solution of the PDE, u^i ... u at time t_i discretized on the x-grid, \overline{u}^i ... FD approximation, given by $B_1\overline{u}^{i+1} = B_0\overline{u}^i + f^i$.
- ► Consistency: $||B_1u^{i+1} (B_0u^i + f^i)|| \to 0$ as $\Delta t = T/N, \Delta x = (b-a)/M \to 0, i = 0, ..., N$.
- ► Stability: there is a constant C s.t. $\|(B_1^{-1}B_0)^N\| \le C$ uniformly in N. (Note: B_1, B_0 depend on N via $\Delta t, \Delta x$.)
- ► Convergence: Consider i(N) s.t. $t_i \to t$ as $N \to \infty$. Then $\|\overline{u}^{i(N)} u^{i(N)}\| \to 0$ as $N \to \infty$.

Theorem (Lax–Richtmyer; Lax equivalence principle; Fundamental theorem of numerical analysis)

For a consistent scheme, stability is equivalent to convergence, provided the problem is linear and well-posed.

$$\frac{\partial}{\partial t}u(t_{i+1},x_j) = \frac{u_{i+1,j} - u_{i,j}}{\Delta t} + O(\Delta t)$$

can be seen as forward or backward difference quotient, leading to

$$\frac{\overline{u}_{i+1,j} - \overline{u}_{i,j}}{\Delta t} = \frac{\overline{u}_{i,j+1} - 2\overline{u}_{i,j} + \overline{u}_{i,j-1}}{\Delta x^2} \text{ or } \frac{\overline{u}_{i+1,j} - \overline{u}_{i,j}}{\Delta t} = \frac{\overline{u}_{i+1,j+1} - 2\overline{u}_{i+1,j} + \overline{u}_{i+1,j-1}}{\Delta x^2}$$

$$\frac{\partial}{\partial t}u(t_{i+1},x_j) = \frac{u_{i+1,j} - u_{i,j}}{\Delta t} + O(\Delta t)$$

can be seen as forward or backward difference quotient, leading to

$$\frac{\overline{u}_{i+1,j} - \overline{u}_{i,j}}{\Delta t} = \frac{\overline{u}_{i,j+1} - 2\overline{u}_{i,j} + \overline{u}_{i,j-1}}{\Delta x^2} \text{ or } \frac{\overline{u}_{i+1,j} - \overline{u}_{i,j}}{\Delta t} = \frac{\overline{u}_{i+1,j+1} - 2\overline{u}_{i+1,j} + \overline{u}_{i+1,j-1}}{\Delta x^2}$$

Instead, take the mean of the right hand sides:

Crank-Nicolson scheme

Define $\overline{u}_{i+1,:}$ as solution of the system

$$\overline{u}_{i+1,j} - \overline{u}_{i,j} = \frac{\Delta t}{2\Delta x^2} \left(\overline{u}_{i,j+1} - 2\overline{u}_{i,j} + \overline{u}_{i,j-1} + \overline{u}_{i+1,j+1} - 2\overline{u}_{i+1,j} + \overline{u}_{i+1,j-1} \right).$$

$$\frac{\partial}{\partial t}u(t_{i+1},x_j) = \frac{u_{i+1,j} - u_{i,j}}{\Delta t} + O(\Delta t)$$

can be seen as forward or backward difference quotient, leading to

$$\frac{\overline{u}_{i+1,j} - \overline{u}_{i,j}}{\Delta t} = \frac{\overline{u}_{i,j+1} - 2\overline{u}_{i,j} + \overline{u}_{i,j-1}}{\Delta x^2} \text{ or } \frac{\overline{u}_{i+1,j} - \overline{u}_{i,j}}{\Delta t} = \frac{\overline{u}_{i+1,j+1} - 2\overline{u}_{i+1,j} + \overline{u}_{i+1,j-1}}{\Delta x^2}$$

Instead, take the mean of the right hand sides:

Crank-Nicolson scheme

Define $\overline{u}_{i+1,:}$ as solution of the system

$$\overline{u}_{i+1,j} - \overline{u}_{i,j} = \frac{\Delta t}{2\Delta x^2} \left(\overline{u}_{i,j+1} - 2\overline{u}_{i,j} + \overline{u}_{i,j-1} + \overline{u}_{i+1,j+1} - 2\overline{u}_{i+1,j} + \overline{u}_{i+1,j-1} \right).$$

- System of equations of the form $A\overline{u}_{i+1,:} = B\overline{u}_{i,:}$.
- ▶ Unconditionally stable and converges with error $O(\Delta t^2) + O(\Delta x^2)$.

$$\left(\frac{\partial}{\partial \tau}\widetilde{v}(\tau, y) - \frac{\partial^{2}}{\partial y^{2}}\widetilde{v}(\tau, y)\right)(\widetilde{v}(\tau, y) - g(\tau, y)) = 0, \quad \frac{\partial}{\partial \tau}\widetilde{v}(\tau, y) - \frac{\partial^{2}}{\partial y^{2}}\widetilde{v}(\tau, y) \ge 0,$$

$$\widetilde{v}(\tau, y) \ge g(\tau, y), \quad \widetilde{v}(0, y) = g(0, y),$$

$$\widetilde{v}(\tau, y) = g(\tau, y) \text{ for } y \to -\infty, \quad \widetilde{v}(\tau, y) = 0 \text{ for } y \to \infty,$$

$$\left(\frac{\partial}{\partial \tau}\widetilde{v}(\tau, y) - \frac{\partial^2}{\partial y^2}\widetilde{v}(\tau, y)\right)(\widetilde{v}(\tau, y) - g(\tau, y)) = 0, \quad \frac{\partial}{\partial \tau}\widetilde{v}(\tau, y) - \frac{\partial^2}{\partial y^2}\widetilde{v}(\tau, y) \ge 0,$$

$$\widetilde{v}(\tau, y) \ge g(\tau, y), \quad \widetilde{v}(0, y) = g(0, y),$$

$$\widetilde{v}(\tau, y) = g(\tau, y) \text{ for } y \to -\infty, \quad \widetilde{v}(\tau, y) = 0 \text{ for } y \to \infty,$$

► Have to solve linear inequality systems of the form $Aw - b \ge 0$, $w \ge g$, $(aw - b)^{\top}(w - g) = 0$ for the approximate solution w. Projection SOR (Successive over-relaxation algorithm).

$$\begin{split} \left(\frac{\partial}{\partial \tau}\widetilde{v}(\tau,y) - \frac{\partial^2}{\partial y^2}\widetilde{v}(\tau,y)\right) (\widetilde{v}(\tau,y) - g(\tau,y)) &= 0, \quad \frac{\partial}{\partial \tau}\widetilde{v}(\tau,y) - \frac{\partial^2}{\partial y^2}\widetilde{v}(\tau,y) \geq 0, \\ \widetilde{v}(\tau,y) &\geq g(\tau,y), \quad \widetilde{v}(0,y) = g(0,y), \\ \widetilde{v}(\tau,y) &= g(\tau,y) \text{ for } y \to -\infty, \quad \widetilde{v}(\tau,y) = 0 \text{ for } y \to \infty, \end{split}$$

- ► Have to solve linear inequality systems of the form $Aw b \ge 0$, $w \ge g$, $(aw b)^{\top}(w g) = 0$ for the approximate solution w. Projection SOR (Successive over-relaxation algorithm).
- Poor man's algorithm: Use standard FD iterations, but take maximum with payoff function at each iteration step.

1 Pricing partial differential equations

2 The finite difference method

3 Finite element method

Consider, for simplicity, the Poisson equation $\Delta u = f$ on [0, 1] with u(0) = u(1) = 0.

Consider, for simplicity, the Poisson equation $\Delta u = f$ on [0,1] with u(0) = u(1) = 0.

1. Variational (weak) formulation: u is the only element of $V := H_0^1$ such that for every test function $v \in V$:

$$A(u,v) = L(v), \quad A(u,v) := -\int_0^1 u'(x)v'(x) dx, \quad L(v) := \int_0^1 f(x)v(x) dx$$

Consider, for simplicity, the Poisson equation $\Delta u = f$ on [0,1] with u(0) = u(1) = 0.

1. Variational (weak) formulation: u is the only element of $V := H_0^1$ such that for every test function $v \in V$:

$$A(u,v) = L(v), \quad A(u,v) := -\int_0^1 u'(x)v'(x) dx, \quad L(v) := \int_0^1 f(x)v(x) dx$$

2. Projection onto finite dimensional space: Choose $V_h \subset V$, dim $V_h < \infty$, h > 0, and consider the projected problem $\forall v \in V_h$: $A(u_h, v) = L(v)$, with solution $u_h \in V_h$. E.g.,

$$V_h := \left\{ v \in C([0,1]) \mid v|_{[x_i,x_{i+1}]} \text{ affine, } i = 0,\ldots,N, \ v(0) = v(1) = 0 \right\}, \ x_i := ih, \ h := \frac{1}{N+1}.$$

Consider, for simplicity, the Poisson equation $\Delta u = f$ on [0,1] with u(0) = u(1) = 0.

1. Variational (weak) formulation: u is the only element of $V := H_0^1$ such that for every test function $v \in V$:

$$A(u, v) = L(v), \quad A(u, v) := -\int_0^1 u'(x)v'(x) dx, \quad L(v) := \int_0^1 f(x)v(x) dx$$

2. Projection onto finite dimensional space: Choose $V_h \subset V$, dim $V_h < \infty$, h > 0, and consider the projected problem $\forall v \in V_h$: $A(u_h, v) = L(v)$, with solution $u_h \in V_h$. E.g.,

$$V_h := \left\{ v \in C([0,1]) \mid v|_{[x_i,x_{i+1}]} \text{ affine, } i = 0,\ldots,N, \ v(0) = v(1) = 0 \right\}, \ x_i := ih, \ h := \frac{1}{N+1}.$$

3. Parameterization in terms of basis: Choose a basis $(\phi_i)_{i=1}^N$ of V_h obtaining the system $A(u_h, \phi_i) = L(\phi_i), i = 1, \ldots, N$. E.g., ϕ_i piecewise-linear, $\phi_i(x_j) = \delta_{ij}, j = 0, \ldots, N+1$.

Consider, for simplicity, the Poisson equation $\Delta u = f$ on [0,1] with u(0) = u(1) = 0.

1. Variational (weak) formulation: u is the only element of $V := H_0^1$ such that for every test function $v \in V$:

$$A(u, v) = L(v), \quad A(u, v) := -\int_0^1 u'(x)v'(x) dx, \quad L(v) := \int_0^1 f(x)v(x) dx$$

2. Projection onto finite dimensional space: Choose $V_h \subset V$, dim $V_h < \infty$, h > 0, and consider the projected problem $\forall v \in V_h$: $A(u_h, v) = L(v)$, with solution $u_h \in V_h$. E.g.,

$$V_h := \left\{ v \in C([0,1]) \mid v|_{[x_i, x_{i+1}]} \text{ affine, } i = 0, \dots, N, \ v(0) = v(1) = 0 \right\}, \ x_i := ih, \ h := \frac{1}{N+1}.$$

- **3.** Parameterization in terms of basis: Choose a basis $(\phi_i)_{i=1}^N$ of V_h obtaining the system $A(u_h, \phi_i) = L(\phi_i), \ i = 1, \dots, N$. E.g., ϕ_i piecewise-linear, $\phi_i(x_j) = \delta_{ij}, \ j = 0, \dots, N+1$.
- **4.** Solve the system: For $u_h = \sum_{i=1}^N \xi_i \phi_i$, $\overline{A}\xi = \overline{L}$, where $\overline{A}_{i,j} := A(\phi_i, \phi_j)$, $\overline{L}_i := L(\phi_i)$, i, j = 1, ..., N.

