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Affine processes
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Affine processes %

> Consider a time-homogeneous Markov process X on the state space D := R, X R",
d=m+n.

> Associated semigroup and infinitesimal generator defined by

P _
Pf@) = ELfX) 1 Xo=x].  Af(x):=lim M

> X is assumed to be stochastically continuous.
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Affine processes zﬁg’}

> Consider a time-homogeneous Markov process X on the state space D := R, X R",
d=m+n.

> Associated semigroup and infinitesimal generator defined by
Pf0) = E[fX) | Xo=x], Af):= M,

> X is assumed to be stochastically continuous.

Definition (Affine process)

X is called affine iff there are functions ¢ : Rsg X iRY — C, ¥ : Ryg X iRY — C? s.t.

VxeD, t>0, uciR?: E[expu, X;)) | Xo = x] = exp (¢(t, u) + (1, u), x)).
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Semi-flow property

Gt + 5,u) = $(t,u) + $(s,Y(t,u)), Yt + 5,u) = Y(s, Y(t, u))
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Riccati equations

Definition
The affine process X is called regular iff there are F, R continuous s.t.

0 0
F(u) = 266w o’ R(u) = 20, 1) o
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Riccati equations X“(;’}

Definition
The affine process X is called regular iff there are F, R continuous s.t.

0
> R = 20,0

0
F(u) = 266w

=0 t=0

Lemma

For a regular affine process, the following system of ODEs holds:

0
Egb(t’ M) = F('ﬁ(t’ M))’ ¢(0’ M) = O,

0
o ) = MO, )=
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Chracterization theorem zﬁ(;’}

Theorem
The Markov process X with generator A is affine iff (up to some admissibility conditions)

3 O2f(x) .
Af@) = Y Au(x) Foeg T (B0, V00) = COOf(0)

k=1
+ fD\{O} (f(x + &) — f(x) + (Vf(x), x(&))) M(x,dE),

for A, B, C affine functions and M(x,d¢) = m(dé) + 37", xiu;i(d€), x € Cp, x(x) = x around 0.
F and R can be explicitly expressed in terms of A, B, C, M. Indeed,

Fu) = (AQO)u, uy + (B(0), uy - C(0) + f (e“® =1 = (u, x(&))) m(de),

D\{0}

Ri(u) = (0x,A(O)u, u) + (05, B(0), u) — 85,C(0) + f (6“9 = 1= (u, ¥(©))) i(dE)Ligm.

D\{0}
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Proof
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Examples %

1. Lévy processes are affine. By the Lévy-Khintchine formula,
E [exp (i {u, X)) | Xo = x] = exp (—t¢(u) + i{u, x)), u € R, with

o(u) = —ilu, a) + %(Zu, u) — f (exp(i (u, x)) — 1 —i{u, x) 1jy<1) v(dx).
R4

This corresponds to the case A, B, M constant in x, C = 0 above.
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Examples

1. Lévy processes are affine. By the Lévy-Khintchine formula,
E [exp (i {u, X)) | Xo = x] = exp (—t¢(u) + i{u, x)), u € R, with

o(u) = —ilu, a) + %(Zu, u) — f (exp(i (u, x)) — 1 —i{u, x) 1jy<1) v(dx).
R4

This corresponds to the case A, B, M constant in x, C = 0 above.

2. The Heston model is affine. Letting ¥; = log §;, we have
1
dYt = —Evtdt + \/v_,dZ,, dV[ = K(f - V[)dt + T]\/\TtdW[

Indeed, the characteristic function can be expressed in closed form.
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Riccati ODE @

Lemma

Fora,b,c,u € C,a+ 0, b*> + 4ac € C\ Ry, let A := Vb2 + 4ac. Consider
¥(@) = ay@®)* + by — ¢, y(0) = u.

Then, for t s.t. the solution exists up to t, we have

2e(e — 1) — (/l(e” + 1)+ be — 1)) u
YO = e T 1) = b = 1) = 2aeh — Dt *

1 1 2/16(/1_17)[/2
f y(s)ds = —log .
, a S\ + 1) - be¥ — 1) — 2a(e! — 1u

Additionally, ifa > 0, b € R, Rc > 0, Ru < 0, then y is globally defined and Ry < 0.
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Characteristic function for the Heston example
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Outline

B Fourier method for option pricing
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Dampening and moment generating functions %

> Setting: Let X be the log-price of the asset and f the payoff function (in x).

In the Black-Scholes model, X = X7 =log So + (r — "72) T + oWy, and

fout(®) = (K —€")",  foan(x) =(e*-K)", xeR.
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Dampening and moment generating functions %

> Setting: Let X be the log-price of the asset and f the payoff function (in x).

In the Black-Scholes model, X = X7 =log So + (r — "72) T + oWy, and

fout(®) = (K —€")",  foan(x) =(e*-K)", xeR.

» Define the moment generating function (Laplace transform)

Mx(u) = E[e"X], ueCs.t My exists.

Further, let 7 :=={Re R : Mx(R) < oo }.
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Dampening and moment generating functions %

> Setting: Let X be the log-price of the asset and f the payoff function (in x).

In the Black-Scholes model, X = X7 =log So + (r — ”72) T + oWy, and

fout(®) = (K —€")",  foan(x) =(e*-K)", xeR.

» Define the moment generating function (Laplace transform)
Mx(u) = E[e"X], ueCs.t My exists.

Further,let 7 :={R € R : Mx(R) < oo }.
> For R € Rdefine fp(x) = e ™ f(x) andlet 7 == {R € R: fr € L} (R) and fr € L' }.
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Pricing formula @

Assume that R .= 7 N J # @ and choose R € R. Then

1 _
15X = ELF 01 = 5 fR Mx(R - 1) f(u + iR)du.
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Remarks %

> 1 # @ requires continuity of f, whereas J # @ is a pure integrability condition.
Alternatively, we can use

I"={ReR: freL'®) and J’ :={ReR:Mx(R) < and Mx(R - i) € L'(R)}.
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Remarks zﬁgy
> 1 # @ requires continuity of f, whereas J # @ is a pure integrability condition.
Alternatively, we can use
I'={ReR: freL'(R)} and g’ :={ReR:Mx(R) < oo and Mx(R - i) € L'(R)}.
» Minimal requirements: formula holds in the sense of a pointwise limit for

Tmin:={ReR: fre L"(R)} and Jmin :={R € R : Mx(R) < o).
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Remarks z@;’}

> 1 # @ requires continuity of f, whereas J # @ is a pure integrability condition.
Alternatively, we can use

I"={ReR: freL'®) and J’ :={ReR:Mx(R) < and Mx(R - i) € L'(R)}.
> Minimal requirements: formula holds in the sense of a pointwise limit for
Tmin:={ReR: fre L"(R)} and Jmin :={R € R : Mx(R) < o).
> A sufficient condition for f € L'(R) is that f € H!(R).
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Remarks z@;,}

> I +# @ requires continuity of f, whereas J # @ is a pure integrability condition.
Alternatively, we can use

I"={ReR: freL'®) and J’ :={ReR:Mx(R) < and Mx(R - i) € L'(R)}.
> Minimal requirements: formula holds in the sense of a pointwise limit for
Tmin:={ReR: fre L"(R)} and Jmin :={R € R : Mx(R) < o).

> A sufficient condition for f € L'(R) is that f € H!(R).
> Assume that we extend the definition of the Fourier transform to u € C, for which the
integral exists. Then

Fr(u) = f e RY f(x)dx = f @R £ dx = f(u + iR).
R R
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Payoff functions @

Lemma (Call option)
For f(x) = fean(x) = (e* — K)*, we have 7 =]1,co[ and

1+iu

flu) = ueC, Ju>1.

(1 +iu)’
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Payoff functions

Lemma (Call option)
For f(x) = fean(x) = (e* — K)*, we have 7 =]1,co[ and

. 1+iu
Sfw) ueC, Ju>1.

T+ i)’

| A\

Lemma (Put option)
For f(x) = four(x) = (K — )", we have I =] — 0,0 and (same formula!!!)

1+iu

JT(M) ueC, 3Su<0.

Tl +in)
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Payoff functions

Lemma (Call option)
For f(x) = fean(x) = (e* — K)*, we have I =]1,co[ and

e 1+iu
Su) ueC, Ju>1.

"l +iw)

Lemma (Put option)
For f(x) = fout(x) = (K —e*)*, we have I =] — o0, 0[ and (same formula!l!)

1+iu

ueC, 3Su<0.

fw

" iu(l +iw)

> fhas singularities in u = 0 and u = i. Moving the contour integral in the Fourier pricing
formula over both singularities, residual calculus provides the put-call-parity:

CSo,K.T)=PSo,K.T)+So-e"TK.
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