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Bl Multilevel Monte Carlo
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Complexity theorem

> hy:=TN,1=0,...,L P = f(x‘;”)), Ii= 3 (P — P, with Py = 0.
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Complexity theorem %

—(h .
> = TN =0, L Pri= £(X57) 1 o S (PY - PY), with Py = 0.

> There are constants a > % (weak rate), 8 > 0 (twice strong rate), C;,C, > 0 s.1.

W
|E[f(Xr) = Pi]| < Cihf, var(I)) < Cgﬁll
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Complexity theorem

—(h .
> = TN =0, L Pri= £(X57) 1 o S (PY - PY), with Py = 0.

> There are constants a > % (weak rate), 8 > 0 (twice strong rate), C;,C, > 0 s.1.

W’
|E[f(Xr) - Pi]| < C1hY,  var(I) < C%lz

For any error tolerance € > 0 there are L, My, ...,M; e Ns.t. [ = ZIL: o 11 satisfies

E[IELf0¢) - 1P]" < & with computational work

C38_2, ﬂ > 19
C <{Cze?log(e)?, B=1,
Cie 2Bl g <.
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Multilevel Monte Carlo for the Euler scheme @

Choose L = —%2 + O(1) and M; ~ (L + 1)lye~2. Then the MLMC estimator for the Euler

log N
scheme has RMSE O(g) with computational cost proportional to (log £)>s™2.
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Bl A reminder on Fourier analysis
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Fourier methods for option pricing @

» The characteristic function of the asset price distribution is often known in closed form.
» Fast Fourier transform (FFT) provides fast ways of Fourier inversion. J
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Fourier methods for option pricing zﬁ@

» The characteristic function of the asset price distribution is often known in closed form.
> Fast Fourier transform (FFT) provides fast ways of Fourier inversion. J

> Exponential Lévy models: S; = exp (X;) for a Lévy process X. By the Lévy-Khintchine
formula, E [exp (iu - X;)] = exp (—t¥(u)), u € R, with

W) = —iu-a + %Zu cu-— f (exp(iu - x) — 1 —iu - x1jy<1) v(dx).
R‘i
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Fourier methods for option pricing z@;’}

» The characteristic function of the asset price distribution is often known in closed form.
> Fast Fourier transform (FFT) provides fast ways of Fourier inversion. J

> Exponential Lévy models: S; = exp (X;) for a Lévy process X. By the Lévy-Khintchine
formula, E [exp (iu - X;)] = exp (—t¥(u)), u € R, with

W) = —iu-a + %Zu cu-— f (exp(iu - x) — 1 —iu - x1jy<1) v(dx).
R‘i

> Affine processes: Suppose that X is a Markov process with “generator L affine in the
state variable x”. Then, for u € C s.t. the expectation exists,

E [exp(u - X;) | Xo = x] = exp (¢(t,u) + x - y(t,u)), for ¢, ¢ solving Riccati ODEs.
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Fourier methods for option pricing X“(;’}

» The characteristic function of the asset price distribution is often known in closed form.
> Fast Fourier transform (FFT) provides fast ways of Fourier inversion. J

> Exponential Lévy models: S; = exp (X;) for a Lévy process X. By the Lévy-Khintchine
formula, E [exp (iu - X;)] = exp (—t¥(u)), u € R, with

W) = —iu-a + %ZM cu-— f (exp(iu - x) — 1 —iu - x1jy<1) v(dx).
R‘i

> Affine processes: Suppose that X is a Markov process with “generator L affine in the
state variable x”. Then, for u € C s.t. the expectation exists,

E [exp(u - X;) | Xo = x] = exp (¢(t,u) + x - y(t,u)), for ¢, ¢ solving Riccati ODEs.

> Use suitable generalization of Parseval’s identity:

E[fXp)] = fR Py (dy) = fR ) F)Px(u)du.
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Fundamentals of Fourier analysis

> For simplicity, we now assume d = 1.

Definition
Let f € L' := L'(R, B(R)dx; C). Then for u € R, we define

— . = 1 :
f = [ e f(xdx, f(u):= 7 f e " f(x)dx.
R T JR

Both definitions are extended to u € C wherever the integrals exist.
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The Lemma of Riemann-Lebesgue

For f € L' we have fe Co, the continuous functions vanishing at co.
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Properties for f € L

If g(x) = F(x)el®* for a € R, then () = F(u + a).

If g(x) = f(x — a) for a € R, then g(u) = e F(u).

If g(x) = f(x/A) for A € Ry, then g(u) = Af(u).

If g(x) = f(~x), then gu) = f(u). L

lfge L'Ryandh = f =g, i.e., h(x) = fRf(y)g(x —y)dy, then h(u) = f(u)g(u).

If g(x) = ixf(x) and g € L' (R), then fis continuously differentiable with (]7), () =gw).
Let f € C'(R) and assume that f, f* € L] (R) := L'(R) N C4»(R). Then F(u) = —iuf(u)
and, in particular, u — uf(u) is bounded.

Let f € C*(R) and assume that f, f’, f” € L, (R). Then fe L (R).

9. If fe LéC(R) and fe L'(R), then the Fourier inversion formula f = fholds, i.e., for
every x € R

N akrobdb-=

o

1 —iux 7y
f(x)=§11;6 f(u)du.
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Proofs
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Kl Fourier method for option pricing
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Dampening and moment generating functions %

> Setting: Let X be the log-price of the asset and f the payoff function (in x).

In the Black-Scholes model, X = X7 =log So + (r — "72) T + oWy, and

fout(®) = (K —€")",  foan(x) =(e*-K)", xeR.
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Dampening and moment generating functions %

> Setting: Let X be the log-price of the asset and f the payoff function (in x).

In the Black-Scholes model, X = X7 =log So + (r — "72) T + oWy, and

fout(®) = (K —€")",  foan(x) =(e*-K)", xeR.

» Define the moment generating function (Laplace transform)

Mx(u) = E[e"X], ueCs.t My exists.

Further, let 7 :=={Re R : Mx(R) < oo }.
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Dampening and moment generating functions %

> Setting: Let X be the log-price of the asset and f the payoff function (in x).

In the Black-Scholes model, X = X7 =log So + (r — ”72) T + oWy, and

fout(®) = (K —€")",  foan(x) =(e*-K)", xeR.

» Define the moment generating function (Laplace transform)
Mx(u) = E[e"X], ueCs.t My exists.

Further,let 7 :={R € R : Mx(R) < oo }.
> For R € Rdefine fp(x) = e ™ f(x) andlet 7 == {R € R: fr € L} (R) and fr € L' }.
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Pricing formula @

Assume that R .= 7 N J # @ and choose R € R. Then

1 _
15X = ELF 01 = 5 fR Mx(R - 1) f(u + iR)du.
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Remarks %

> 1 # @ requires continuity of f, whereas J # @ is a pure integrability condition.
Alternatively, we can use

I"={ReR: freL'®) and J’ :={ReR:Mx(R) < and Mx(R - i) € L'(R)}.
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Remarks zﬁgy
> 1 # @ requires continuity of f, whereas J # @ is a pure integrability condition.
Alternatively, we can use
I'={ReR: freL'(R)} and g’ :={ReR:Mx(R) < oo and Mx(R - i) € L'(R)}.
» Minimal requirements: formula holds in the sense of a pointwise limit for

Tmin:={ReR: fre L"(R)} and Jmin :={R € R : Mx(R) < o).
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Remarks z@;’}

> 1 # @ requires continuity of f, whereas J # @ is a pure integrability condition.
Alternatively, we can use

I"={ReR: freL'®) and J’ :={ReR:Mx(R) < and Mx(R - i) € L'(R)}.
> Minimal requirements: formula holds in the sense of a pointwise limit for
Tmin:={ReR: fre L"(R)} and Jmin :={R € R : Mx(R) < o).
> A sufficient condition for f € L'(R) is that f € H!(R).
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Remarks z@;,}

> I +# @ requires continuity of f, whereas J # @ is a pure integrability condition.
Alternatively, we can use

I"={ReR: freL'®) and J’ :={ReR:Mx(R) < and Mx(R - i) € L'(R)}.
> Minimal requirements: formula holds in the sense of a pointwise limit for
Tmin:={ReR: fre L"(R)} and Jmin :={R € R : Mx(R) < o).

> A sufficient condition for f € L'(R) is that f € H!(R).
> Assume that we extend the definition of the Fourier transform to u € C, for which the
integral exists. Then

Fr(u) = f e RY f(x)dx = f @R £ dx = f(u + iR).
R R
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Payoff functions @

Lemma (Call option)
For f(x) = fean(x) = (e* — K)*, we have 7 =]1,co[ and

1+iu

flu) = ueC, Ju>1.

(1 +iu)’
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Payoff functions

Lemma (Call option)
For f(x) = fean(x) = (e* — K)*, we have 7 =]1,co[ and

. 1+iu
Sfw) ueC, Ju>1.

T+ i)’

| A\

Lemma (Put option)
For f(x) = four(x) = (K — )", we have I =] — 0,0 and (same formula!!!)

1+iu

JT(M) ueC, 3Su<0.

Tl +in)
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Payoff functions

Lemma (Call option)
For f(x) = fean(x) = (e* — K)*, we have I =]1,co[ and

e 1+iu
Su) ueC, Ju>1.

"l +iw)

Lemma (Put option)
For f(x) = fout(x) = (K —e*)*, we have I =] — o0, 0[ and (same formula!l!)

1+iu

f(u) ueC, Ju<O.

" iu(l +iw)

> fhas singularities in u = 0 and u = i. Moving the contour integral in the Fourier pricing
formula over both singularities, residual calculus provides the put-call-parity:

CSo,K.T)=PSo,K.T)+So-e"TK.
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