



# **Computational finance – Lecture 7**

Christian Bayer







$$X_h = x + \int_0^h \beta(X_t) \mathrm{d}W_t$$





$$X_h = x + \int_0^h \beta(X_t) dW_t$$
  
=  $x + \int_0^h \left[ \beta(x) + \frac{1}{2} \int_0^t \beta''(X_s) \beta(X_s)^2 ds + \int_0^t \beta'(X_s) \beta(X_s) dW_s \right] dW_t$ 





$$X_{h} = x + \int_{0}^{h} \beta(X_{t}) dW_{t}$$

$$= x + \int_{0}^{h} \left[ \beta(x) + \frac{1}{2} \int_{0}^{t} \beta''(X_{s}) \beta(X_{s})^{2} ds + \int_{0}^{t} \beta'(X_{s}) \beta(X_{s}) dW_{s} \right] dW_{t}$$

$$= x + \beta(x) W_{h} + \frac{1}{2} \int_{0}^{h} \int_{0}^{t} \beta''(X_{s}) \beta(X_{s})^{2} ds dW_{t} + \int_{0}^{h} \int_{0}^{t} \beta'(X_{s}) \beta(X_{s}) dW_{s} dW_{t}$$





$$X_{h} = x + \int_{0}^{h} \beta(X_{t}) dW_{t}$$

$$= x + \int_{0}^{h} \left[ \beta(x) + \frac{1}{2} \int_{0}^{t} \beta''(X_{s}) \beta(X_{s})^{2} ds + \int_{0}^{t} \beta'(X_{s}) \beta(X_{s}) dW_{s} \right] dW_{t}$$

$$= x + \beta(x) W_{h} + \frac{1}{2} \int_{0}^{h} \int_{0}^{t} \beta''(X_{s}) \beta(X_{s})^{2} ds dW_{t} + \int_{0}^{h} \int_{0}^{t} \beta'(X_{s}) \beta(X_{s}) dW_{s} dW_{t}$$

$$= x + \beta(x) W_{h} + \beta'(x) \beta(x) \int_{0}^{h} W_{t} dW_{t} + \frac{1}{2} \beta''(x) \beta(x)^{2} \int_{0}^{h} t dW_{t} + \text{H.O.T.}$$





$$\begin{split} X_h &= x + \int_0^h \beta(X_t) \mathrm{d}W_t \\ &= x + \int_0^h \left[ \beta(x) + \frac{1}{2} \int_0^t \beta''(X_s) \beta(X_s)^2 \mathrm{d}s + \int_0^t \beta'(X_s) \beta(X_s) \mathrm{d}W_s \right] \mathrm{d}W_t \\ &= x + \beta(x) W_h + \frac{1}{2} \int_0^h \int_0^t \beta''(X_s) \beta(X_s)^2 \mathrm{d}s \mathrm{d}W_t + \int_0^h \int_0^t \beta'(X_s) \beta(X_s) \mathrm{d}W_s \mathrm{d}W_t \\ &= x + \beta(x) W_h + \beta'(x) \beta(x) \int_0^h W_t \mathrm{d}W_t + \frac{1}{2} \beta''(x) \beta(x)^2 \int_0^h t \mathrm{d}W_t + \text{H.O.T.} \end{split}$$

- ▶ The above scheme is the Milstein scheme (strong order 1, weak order 1).
- ▶ Higher order scheme require simulation of iterated integrals of  $(t, W_t^1, ..., W_t^d)$ . This is not feasible in the strong sense for d > 1. (Exception: commuting vector fields.)





# **Example**

Linear vector fields  $V_i(x) = A_i x$ , i = 1, 2, n = 3.

$$dX_t = V_1(X_t) \circ dW_t^1 + V_2(X_t) \circ dW_t^2,$$

$$A_1 = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix},$$

$$f(x) := (|x| - 1)^+, \quad X_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$





 $X = X_T$  is the solution of an SDE,  $f : \mathbb{R}^n \to \mathbb{R}$  a payoff. Compute  $E[f(X_T)] = I[f; X_T]$ .

## **Euler – Monte Carlo method**

$$E[f(X_T)] \approx I_M[f; \overline{X}_T], \quad \overline{X}_T$$
 based on grid of size  $N$ .

- ▶ Computing  $E[f(\overline{X}_T)]$  is a  $N \times d$ -dimensional integration problem (difficult for QMC?).
- Error decomposition:

$$\left| E[f(X_T)] - I_M \left[ f; \overline{X}_T \right] \right| \leq \underbrace{\left| E[f(X_T)] - E\left[ f\left(\overline{X}_T\right) \right] \right|}_{=:e_{\text{disc}}} + \underbrace{\left| E\left[ f\left(\overline{X}_T\right) \right] - I_M \left[ f; \overline{X}_T \right] \right|}_{=:e_{\text{stat}}}$$

► Generically,  $e_{\rm disc} \lesssim C_{\rm disc}/N$ ,  $e_{\rm stat} \lesssim C_{\rm stat}/\sqrt{M}$ . Hence, given error tolerance  ${\rm TOL} > 0$ , choose  $N \simeq {\rm TOL}^{-1}$ ,  $M \simeq {\rm TOL}^{-2}$ , leading to computational cost  $\simeq {\rm TOL}^{-3}$ .





1 Multilevel Monte Carlo





#### Idea

Let  $\overline{X}_T$ ,  $\overline{X}_T'$  be the Euler approximations of  $X_T$  based on different step sizes h < h', but the same Brownian paths. Then  $\overline{X}_T$  and  $\overline{X}_T'$  are highly correlated. Hence,  $f(\overline{X}_T')$  can serve as control variate for  $f(\overline{X}_T)$ .

By strong convergence,  $\operatorname{var}\left(f(\overline{X}_T^{(h_L)}) - f(\overline{X}_T^{(h_{L-1})})\right) \lesssim h_L$ , allowing us to choose  $M_L \to 0$ .





#### Idea

Let  $\overline{X}_T$ ,  $\overline{X}_T'$  be the Euler approximations of  $X_T$  based on different step sizes h < h', but the same Brownian paths. Then  $\overline{X}_T$  and  $\overline{X}_T'$  are highly correlated. Hence,  $f(\overline{X}_T')$  can serve as control variate for  $f(\overline{X}_T)$ .

Let  $h_0 > h_1 > \ldots > h_L > 0$  and  $\overline{X}^{(h)}$  the Euler scheme with step size h.

By strong convergence,  $\operatorname{var}\left(f(\overline{X}_T^{(h_L)}) - f(\overline{X}_T^{(h_{L-1})})\right) \lesssim h_L$ , allowing us to choose  $M_L \to 0$ .





#### Idea

Let  $\overline{X}_T$ ,  $\overline{X}_T'$  be the Euler approximations of  $X_T$  based on different step sizes h < h', but the same Brownian paths. Then  $\overline{X}_T$  and  $\overline{X}_T'$  are highly correlated. Hence,  $f(\overline{X}_T')$  can serve as control variate for  $f(\overline{X}_T)$ .

- Let  $h_0 > h_1 > \ldots > h_L > 0$  and  $\overline{X}^{(h)}$  the Euler scheme with step size h.
- 1. Compute  $E[f(\overline{X}_T^{(h_L)}) f(\overline{X}_T^{(h_{L-1})})]$  by Monte Carlo with  $M_L$  samples, at cost  $\simeq \frac{M_L}{h_L}$ .
- 2. Compute  $E[f(\overline{X}_T^{(h_{L-1})}) f(\overline{X}_T^{(h_{L-2})})]$  by Monte Carlo with  $M_{L-1}$  samples, at cost  $\simeq \frac{M_{L-1}}{h_{L-1}}$ . . . .
- **L.** Compute  $E[f(\overline{X}_T^{(h_0)})]$  by Monte Carlo with  $M_0$  samples, at cost  $\simeq \frac{M_0}{h_0}$ .

By strong convergence,  $\operatorname{var}\left(f(\overline{X}_T^{(h_L)}) - f(\overline{X}_T^{(h_{L-1})})\right) \lesssim h_L$ , allowing us to choose  $M_L \to 0$ .



#### **Complexity theorem**



▶  $h_l := TN^{-l}, l = 0, ..., L, P_l := f(\overline{X}_T^{(h_l)}), I_l := \frac{1}{M_l} \sum_{m=1}^{M_l} (P_l^{(m)} - P_{l-1}^{(m)}), \text{ with } P_{-1} := 0.$ 



#### Complexity theorem



- $h_l := TN^{-l}, \ l = 0, \dots, L, \ P_l := f\left(\overline{X}_T^{(h_l)}\right), \ I_l := \frac{1}{M_l} \sum_{m=1}^{M_l} \left(P_l^{(m)} P_{l-1}^{(m)}\right), \ \text{with} \ P_{-1} := 0.$
- ► There are constants  $\alpha \geq \frac{1}{2}$  (weak rate),  $\beta > 0$  (twice strong rate),  $C_1, C_2 > 0$  s.t.

$$\left| E\left[ f(X_T) - P_l \right] \right| \le C_1 \frac{h_l^{\alpha}}{M_l}, \quad \text{var}(I_l) \le C_2 \frac{h_l^{\beta}}{M_l}$$



#### **Complexity theorem**



- $h_l := TN^{-l}, \ l = 0, \dots, L, \ P_l := f\left(\overline{X}_T^{(h_l)}\right), \ I_l := \frac{1}{M_l} \sum_{m=1}^{M_l} \left(P_l^{(m)} P_{l-1}^{(m)}\right), \ \text{with} \ P_{-1} := 0.$
- ► There are constants  $\alpha \geq \frac{1}{2}$  (weak rate),  $\beta > 0$  (twice strong rate),  $C_1, C_2 > 0$  s.t.

$$\left| E\left[ f(X_T) - P_l \right] \right| \le C_1 h_l^{\alpha}, \quad \text{var}(I_l) \le C_2 \frac{h_l^{\beta}}{M_l}$$

### Theorem

For any error tolerance  $\varepsilon > 0$  there are  $L, M_0, \ldots, M_L \in \mathbb{N}$  s.t.  $I := \sum_{l=0}^L I_l$  satisfies  $E\left[|E[f(X_T)] - I|^2\right]^{1/2} \le \varepsilon$  with computational work

$$C \le \begin{cases} C_3 \varepsilon^{-2}, & \beta > 1, \\ C_3 \varepsilon^{-2} \log(\varepsilon)^2, & \beta = 1, \\ C_3 \varepsilon^{-2 - (1 - \beta)/\alpha}, & \beta < 1. \end{cases}$$





# Corollary

Choose  $L = \frac{-\log \varepsilon}{\log N} + O(1)$  and  $M_l \simeq (L+1)h_l \varepsilon^{-2}$ . Then the MLMC estimator for the Euler scheme has RMSE  $O(\varepsilon)$  with computational cost proportional to  $(\log \varepsilon)^2 \varepsilon^{-2}$ .

