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Stochastic Taylor expansion

For simplicity, consider the one-dimensional SDE dX; = B(X,)dW;, Xy = x.
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Stochastic Taylor expansion

For simplicity, consider the one-dimensional SDE dX; = B(X;)dW;, Xy = x.

h
0

Computational finance — Lecture 7 - May 21, 2021 - Page 2 (8)



Stochastic Taylor expansion %

For simplicity, consider the one-dimensional SDE dX; = B(X;)dW;, Xy = x.

h
Xp=x+ f BX)dW;
0

h t t
=x+ f [ﬁ(x)+% f B’ (X)B(X)*ds + f IBl(Xs)ﬁ(Xs)dWs]th
0 0 0
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Stochastic Taylor expansion %

For simplicity, consider the one-dimensional SDE dX; = B(X;)dW;, Xy = x.

h
X, = x+ f BX)AW,
0
i t !
- f [ﬁ(x)+% f B (X)B(X,)2ds + f ﬁ’(xg,e(Xs)dWs] aw,
0 0 0

h t h t
= ¥+ Wi+ f f B (X,)B(X,)PdsdW, + f f B (X )BX)AW,dW,;
0 0 0 0
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Stochastic Taylor expansion %
For simplicity, consider the one-dimensional SDE dX; = B(X;)dW;, Xy = x.
h
Xy =x+ [ pocpaw,
0
h 1 t 5 t
=x+ fo [ﬁ(x) +5 fo B’ (X)B(X,)"ds + j; ﬁ’(Xs)ﬁ(Xs)dWs] dw;

h t h t
= ¥+ BOWit 3 f f B (X,)B(X,)PdsdW, + f f B (X )BX)AW,dW,;
0 0 0 0

h h
= x4 BOOW, + BB [ Widw, + %B”(x)ﬁ(x)z f W, + HOT.
0 0
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Stochastic Taylor expansion z@’}

For simplicity, consider the one-dimensional SDE dX; = B(X;)dW;, Xy = x.

h
X, = x+ f BX)AW,
0
i t !
- f [ﬁ(x)+% f B (X)B(X,)2ds + f ﬁ’(xs>ﬁ<xs>dws] aw,
0 0 0

1 h ot h ot
—xapemiey [ [ prooperasan s [ [ poopoama,
0 Jo 0o Jo
I 1 h
= x4 BOW)+B (0BG | W, + 25" (0 f W, + HO.T.
0 0
> The above scheme is the Milstein scheme (strong order 1, weak order 1).

> Higher order scheme require simulation of iterated integrals of (¢, W/, ..., W9). This is
not feasible in the strong sense for d > 1. (Exception: commuting vector fields.)
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Example with weak rate 1/2

o
(Example YN
Linear vector fields Vi(x) = A;x, ]
i=1,2,n=3, g -
o
dX, = ViXp o dW, + Va(XpodW?, | g |
[} d
1 1 = o S R
0 1 1 0 3 ) v _
A] =|-1 0 1 . A2: —3 0 5 |k o BN
1 1 S
-1 -1 0 2 -2 0 o Milstein method
-1 | --- Euler method
1 -+~ Confidence interval
__ + _ S | --- Reference lines
fx)=(d-1)7, Xo=]0]. 3 .
0 T — T —
o’ 1 5 10 50 100 500

Number of time steps
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Euler — Monte Carlo method %

X = Xy is the solution of an SDE, f : R"” — R a payoff. Compute E [ f(X7)| = I[f; X7].

Euler — Monte Carlo method

E[f(X7)] = In [f; YT] , X7 based on grid of size N.

» Computing E[f(X7)] is a N x d-dimensional integration problem (difficult for QMC?).
» Error decomposition:

ELf X)) - In [ £: X7 | < [EF o1 = E [£ (%) + [ [ £ (%r)] = i [ £: %]

=l€disc =l€stat

> Generically, egisc S Cdisc/N, estat S Cstat/ VM. Hence, given error tolerance TOL > 0,
choose N ~ TOL™!, M ~ TOL?, leading to computational cost =~ TOL .
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Outline

Bl Multilevel Monte Carlo
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Multilevel Monte Carlo zﬁg’}

Let X7, X, be the Euler approximations of X; based on different step sizes i < i, but the
same Brownian paths. Then X and X are highly correlated. Hence, f(X) can serve as
control variate for f(Xr).

< (hr-1 )

By strong convergence, var (f(XT )— f(Xy ) < hy, allowing us to choose M; — 0. J
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Multilevel Monte Carlo z@’}

Let X7, X, be the Euler approximations of X; based on different step sizes i < i, but the
same Brownian paths. Then X and X are highly correlated. Hence, f(X) can serve as
control variate for f(Xr).

» lethg>h >...>h;, >0and Y(h) the Euler scheme with step size h.

< (hr-1 )

By strong convergence, var (f(XT )— f(Xp ) < hy, allowing us to choose M; — 0. J
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Multilevel Monte Carlo

Let X7, X, be the Euler approximations of X; based on different step sizes i < i, but the
same Brownian paths. Then X and X are highly correlated. Hence, f(X) can serve as
control variate for f(Xr).

» lethg>h >...>h;, >0and Y(h) the Euler scheme with step size h.

1. Compute E[/(X,") — £(X+“")] by Monte Carlo with /7, samples, at cost = L

2. Compute E[f(X2") = 7(XV“*)] by Monte Carlo with /;_, samples, at cost ~ e

L. Compute E[f(??“)] by Monte Carlo with 1/, samples, at cost ~ //WT?

By strong convergence, var (f(Y?L) — f(i?’“))) < hy, allowing us to choose M; — 0. J
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Complexity theorem

> hy:=TN,1=0,...,L P = f(x‘;”)), Ii= 3 (P — P, with Py = 0.
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Complexity theorem %

—(h .
> = TN =0, L Pri= £(X57) 1 o S (PY - PY), with Py = 0.

> There are constants a > % (weak rate), 8 > 0 (twice strong rate), C;,C, > 0 s.1.

W
|E[f(Xr) = Pi]| < Cihf, var(I)) < Cgﬁll
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Complexity theorem

—(h .
> = TN =0, L Pri= £(X57) 1 o S (PY - PY), with Py = 0.

> There are constants a > % (weak rate), 8 > 0 (twice strong rate), C;,C, > 0 s.1.

W’
|E[f(Xr) - Pi]| < C1hY,  var(I) < C%lz

For any error tolerance € > 0 there are L, My, ...,M; e Ns.t. [ = ZIL: o 11 satisfies

E[IELf0¢) - 1P]" < & with computational work

C38_2, ﬂ > 19
C <{Cze?log(e)?, B=1,
Cie 2Bl g <.
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Multilevel Monte Carlo for the Euler scheme @

Choose L = —%2 + O(1) and M; ~ (L + 1)lye~2. Then the MLMC estimator for the Euler

log N
scheme has RMSE O(g) with computational cost proportional to (log £)>s™2.
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