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More evenly distributed numbers

1[f]= f(x)dx

[0,11¢

M
> Quadrature: Jy[f] = %Zf(xi), X1,..., Xy € [0, 174,
o~ |

1
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Discrepancy

> Intuition: discrepancy is the quadrature error for indocator functions of rectangles R.
> Consider point sets (x)¥ C (xi)iaw or (x*)¥ | x; € [0,1]%.
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Discrepancy

> Intuition: discrepancy is the quadrature error for indocator functions of rectangles R.
> Consider point sets (x)¥ C (xi)iaw or (x*)¥ | x; € [0,1]%.

Definition (Discrepancy)
The discrepancy Dy and star-discrepancy Dj, for a point set (x,-)f‘ﬁ1 are defined as

1
Dy = sup —#{1<i<M:x; €R}—AR)

rectangles Rc[0,1]¢

b

Dy = sup{

d
1
ik sisM:xieR}—/l(R)‘ :R= ?g[o,b,-[, bi,...,ba € [0, 1]}.
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Discrepancy X“(;’}

» Intuition: discrepancy is the quadrature error for indocator functions of rectangles R.
> Consider point sets (x, | € (x)ien OF (x e 1, x; € [0, 114,

Definition (Discrepancy)

The discrepancy Dy and star-discrepancy Dj, for a point set (x,-)f‘ﬁ1 are defined as

1
Dy = sup —#{1<i<M:x;eR}-

rectangles Rc[0,1]¢

d
1
Dy =supi|=#{1<i<M:x;eR}-AR)| : R= [0,b[, b1,...,bq €0, 1]}.
M M j

Definition (Low discrepancy)

log(M)"

A sequence of point sets (xM) M € N, has low discrepancy iff D}, < c==7~

i=1’
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Variation

» Regularity of integrand f classically measured by variation.

Definition (Variation in the sense of Hardy-Krause)
For a one-dimensional function f : [0,1] - R

VISl = fo 1

_f
Ox! - 9xd

af

a(x) dx

and for f:[0,1]Y - R

VIf] = f
[0,1]4

where fl(j) denotes the restriction of f to the boundary x/ = 1.

(x)

d
dx+ > VA,
=1
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Controlling the integration error

Theorem (Koksma-Hlawka inequality)

ILA1 = Julf1l < VIFID],.
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Controlling the integration error

Theorem (Koksma-Hlawka inequality)

ILA1 = Julf1l < VIFID],.

> Error factorization into term depending on regularity of integrand and uniformity of

point set.
> In contrast to MC error, the Koksma-Hlawka inequality is deterministic, but usually far

from sharp! (Note that it essentially require f to be C?!)
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Controlling the integration error

Theorem (Koksma-Hlawka inequality)

ILA1 = Julf1l < VIFID],.

> Error factorization into term depending on regularity of integrand and uniformity of
point set.

> In contrast to MC error, the Koksma-Hlawka inequality is deterministic, but usually far
from sharp! (Note that it essentially require f to be C¢1)

Example (Van der Corput sequence)

Let p prime and for k € Ny let (a(k)) jery, denote the p-ary expansion of k, i.e.,
k= Z;‘;O aj(k)pf. A one-dimensional low-discrepancy sequence is given by

xi = Upli) = ) ;’](:1) . ieNp.

=0
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Numerical comparison

10°
Figure: A call option

{ in the Black-Scholes
model using Monte
Carlo and Quasi
Monte Carlo
simulation. Red: MC
simulation, blue: QMC
simulation, black:
Reference lines
proportional to 1/M

{1 and1/VM.

10!
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Number of samples Time in milli-seconds
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Remarks on quasi Monte Carlo

» For uniform (pseudo) r.v.s: If U; ~ U([O0, 1]),
(U;) independent, then (Ui-1ya+1, - - -
is a sequence of independent r.v.s from

U0, 119).

> |n contrast, if (x;);ey iS One-dimensional
low-discrepancy sequence, then
(X(=1)d+15 - - - » Xid);epy 1S MoOst likely not a
d-dimensional low-discrepancy sequence.

» QMC convergence is asymptotically much
faster than MC convergence, but note that
log(M)?/M = M~"/? for all reasonably sized

1

02y

&
o L

Figure: Pairs of one-dimensional Sobol

M even in fairly moderate dimensions d. E.g., numbers

for d = 8 roughly from M > 1.8 x 10%.
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Randomized quasi Monte Carlo %

Setting: (xf),/-Z1 low-discrepancy sequence in dim. d, (U;)en i.i.d. sequence,
Uy ~ U (10, 119).

Definition (Randomized quasi Monte Carlo simulation)

M
IR 1= D f(xi + Uy (mod 1)
i=1

~
]
—_

S|~
M=
| =
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Randomized quasi Monte Carlo zﬁ@

Setting: (x;)X, low-discrepancy sequence in dim. d, (U;)ey i.i.d. sequence,
i=1

~ fu([o, 119).

Definition (Randomized quasi Monte Carlo simulation)

1 v 1
.@Mﬂ:aithﬂx+meD)

=1 =il

> Provides variance reduction for the Monte Carlo estimator % e fUD

> Provides sharp, computable error control for the quasi Monte Carlo approximation
1 M .
M Zizl S(xi):

var (4 ) f(xi + U (mod 1))

m

E|(1171- 7%.,101) | =

» Typically m < M, as accuracy is more important than error control.
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Outline

Bl Sample path generation
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Exact simulation of Brownian motion @

Simulate a trajectory W, ..., W,, of a Brownian motion W, 0 <t <, <--- <ty.

Cholesky method Random walk construction
> Recall:gX ~ N(0,X)and X = AAT, > AW, =W, =W, | ~ \ty — ta_1Zn,
then X = AZ for Z ~ N(0, I). Z~N(@,Iy)
> For (Wy,...,Wy):Z=(ts At)Y _ and » Same result as Cholesky method!
its Cholesky factorization AAT: Brownian bridge construction
N 0 0 > W, ~ N, 1y), Wy, := Wy = 0.
a Vi Nb-1 ... 0 > (WWu=x, W, =y) ~
: : : ' N((I—S)X+(S—u)y, (s—u)(t—S)).
Vi NG=0 ... \Ivn—Ina t—u t—u
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Brownian bridge construction

1.0 1.0
/’. S
0.8 )/ AN 0.8 !
/ S '
0.6 . > 0.6 J
Il !
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0.4 -0 " 0.
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Figure: Brownian
motion constructed by
the Brownian bridge
approach. Dashed
lines correspond to
the newly inserted
Brownian bridge
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Wavelet constructions %

» Construct functional approximations (Wt(N ))ze[O,T] of the Bm (W)seq0,71-
> For simplicity, restriction to 7 = 1 and Haar wavelets, i.e., Lévy’s construction of Bm.
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Wavelet constructions %

» Construct functional approximations (WI(N )),G[O,T] of the Bm (W)seq0,71-
> For simplicity, restriction to 7 = 1 and Haar wavelets, i.e., Lévy’s construction of Bm.
> Construct basis functions i, by shifting and rescaling of a mother wavelet v

I, 0<t<i,
Yk = 2" ("= k), w(t)=3-1, L<i<1, n>0, 0<k<2'-1, re[0,1].
0, else,

> Note that {1,,} form an orthonormal basis of L2 ([0, 1]).
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Wavelet constructions X“g’}

» Construct functional approximations (W,(N)),e[oj] of the Bm (W)seq0,71-
> For simplicity, restriction to 7 = 1 and Haar wavelets, i.e., Lévy’s construction of Bm.
> Construct basis functions i, by shifting and rescaling of a mother wavelet v

I, 0<t<i,
Yk = 2" ("= k), w(t)=3-1, L<i<1, n>0, 0<k<2'-1, re[0,1].

0, else,

> Note that {1,,} form an orthonormal basis of L2 ([0, 1]).
» Given a i.i.d. sequence Xy, X,,x of standard normal r.v.s, a Bm is defined by

co 2"—1

!
m:%HZZ&NM&lﬂm,wm:f%NW=WWmF@
n=0 k=0 0

» Define W™ by truncation at n = N. Note that W) = W, for ¢ € {k2‘N‘1 | 0 <k < 2N+ }
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Samples generated by Haar wavelet construction

0.2 T T T T
0.0
-0.2
-0.4 . .
Figure: Approximate
&5 —0.6 Brownian motion B",
0<t<l1,forN=10
-08 (blue) and N = 2 (red)
1.0 superimposed
-1.2
_14 1 L 1 Il
0.0 0.2 0.4 0.6 0.8 1.0

t
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Generating Poisson processes @

> Important as building blocks: Recall that finite activity (pure jump) Lévy processes are
compound Poisson processes, i.e., of the form Z, = Zy + Zfﬁl X;.
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Generating Poisson processes

> Important as building blocks: Recall that finite activity (pure jump) Lévy processes are
compound Poisson processes, i.e., of the form Z, = Zy + Zﬁ’] X;.

> Values on a grid: Note that increments are independent. Hence, N;, ~ Poi(At}),
N,2 - NI| ~ Poi(A(tp — 11)), ...

» Poisson bridge: (Ns | Ny =n) ~ Bin(n, p = s/1),0 < s < t.
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Generating Poisson processes

> Important as building blocks: Recall that finite activity (pure jump) Lévy processes are
compound Poisson processes, i.e., of the form Z, = Zy + Z?i’] X;.

> Values on a grid: Note that increments are independent. Hence, N;, ~ Poi(dt),
N,z — NI| ~ POi(/l([z — l‘])), e

» Poisson bridge: (Ns | Ny =n) ~ Bin(n, p = s/1),0 < s < t.

Exact simulation
Exact simulation of the trajectory (N;)«[0,7) by simulating the jump times (7', ..., Tx,).
1. Interarrival times 7, := T,, — T, are i.i.d. ~ Exp(Q).

> Ty =0, and iterate: simulate 7, ~ Exp(1), set T, .= T,—1 + 7, until 7,, > T.
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Generating Poisson processes

> Important as building blocks: Recall that finite activity (pure jump) Lévy processes are
compound Poisson processes, i.e., of the form Z, = Zy + Z?i’] X;.

> Values on a grid: Note that increments are independent. Hence, N;, ~ Poi(dt),
N,z — NI| ~ POi(/l([z — l‘])), e

» Poisson bridge: (Ns | Ny =n) ~ Bin(n, p = s/1),0 < s < t.

Exact simulation
Exact simulation of the trajectory (N;)«[0,7) by simulating the jump times (7', ..., Tx,).
1. Interarrival times 7, := T,, — T, are i.i.d. ~ Exp(Q).
> Ty =0, and iterate: simulate 7, ~ Exp(1), set T, .= T,—1 + 7, until 7,, > T.
2. Given N7 = n, jump times (T, ..., T,) are uniformly distributed on [0, T'].
» Simulate Nr ~ Poi(4AT) and independent Uy, ..., Uy, ~ U([0, T]).
> Set (T1,...,Tn;) = (Uq), ..., Unyy), the order statistics of Uy, ..., Uy,.
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Example: Merton’s jump diffusion model

2.6 T T T T

2.4
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0'%.0 0.2 0.4 0.6 0.8 1.0
t

Figure: Trajectory of
Merton’s model S, =
Soexp<0'Bt + (,u - %)t) H?’z’l
generated by exact
simulation of jump times

and simulation of Bm by
random walk construction
inbetween.
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