

Weierstrass Institute for Applied Analysis and Stochastics

Computational finance – Lecture 4

Christian Bayer

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de

1 Quasi Monte Carlo

2 Sample path generation

Computational finance – Lecture 4 · May 7, 2021 · Page 2 (16)

More evenly distributed numbers

Discrepancy

- Intuition: discrepancy is the quadrature error for indocator functions of rectangles R.
- Consider point sets $(x_i)_{i=1}^M \subset (x_i)_{i\in\mathbb{N}}$ or $(x_i^M)_{i=1}^M$, $x_i \in [0, 1]^d$.

Discrepancy

D

- Intuition: discrepancy is the quadrature error for indocator functions of rectangles R.
- Consider point sets $(x_i)_{i=1}^M \subset (x_i)_{i\in\mathbb{N}}$ or $(x_i^M)_{i=1}^M$, $x_i \in [0, 1]^d$.

Definition (Discrepancy)

The discrepancy D_M and star-discrepancy D_M^* for a point set $(x_i)_{i=1}^M$ are defined as

$$D_{M} = \sup_{\substack{\text{rectangles } R \subset [0,1]^{d} \\ M}} \left| \frac{1}{M} \# \{ 1 \le i \le M : x_{i} \in R \} - \lambda(R) \right|,$$

$$M_{M}^{*} = \sup \left\{ \left| \frac{1}{M} \# \{ 1 \le i \le M : x_{i} \in R \} - \lambda(R) \right| : R = \sum_{j=1}^{d} [0, b_{j}[, b_{1}, \dots, b_{d} \in [0, 1] \} \right\}.$$

Discrepancy

 D_M^*

- Intuition: discrepancy is the quadrature error for indocator functions of rectangles R.
- Consider point sets $(x_i)_{i=1}^M \subset (x_i)_{i\in\mathbb{N}}$ or $(x_i^M)_{i=1}^M, x_i \in [0, 1]^d$.

Definition (Discrepancy)

The discrepancy D_M and star-discrepancy D_M^* for a point set $(x_i)_{i=1}^M$ are defined as

$$D_{M} = \sup_{\text{rectangles } R \subset [0,1]^{d}} \left| \frac{1}{M} \# \{ 1 \le i \le M : x_{i} \in R \} - \lambda(R) \right|,$$

= $\sup \left\{ \left| \frac{1}{M} \# \{ 1 \le i \le M : x_{i} \in R \} - \lambda(R) \right| : R = \sum_{j=1}^{d} [0, b_{j}[, b_{1}, \dots, b_{d} \in [0, 1] \} \right\}$

Definition (Low discrepancy)

A sequence of point sets $(x_i^M)_{i=1}^M$, $M \in \mathbb{N}$, has low discrepancy iff $D_M^* \leq c \frac{\log(M)^d}{M}$.

Computational finance – Lecture 4 · May 7, 2021 · Page 4 (16)

Variation

► Regularity of integrand *f* classically measured by variation.

Definition (Variation in the sense of Hardy-Krause)

For a one-dimensional function $f:[0,1] \to \mathbb{R}$

$$V[f] \coloneqq \int_0^1 \left| \frac{df}{dx}(x) \right| dx$$

and for $f: [0,1]^d \to \mathbb{R}$

$$V[f] \coloneqq \int_{[0,1]^d} \left| \frac{\partial^d f}{\partial x^1 \cdots \partial x^d}(x) \right| dx + \sum_{j=1}^d V[f_1^{(j)}],$$

where $f_1^{(j)}$ denotes the restriction of *f* to the boundary $x^j = 1$.

Computational finance – Lecture 4 · May 7, 2021 · Page 5 (16)

Theorem (Koksma-Hlawka inequality)

 $|I[f] - J_M[f]| \le V[f]D_M^*.$

Theorem (Koksma-Hlawka inequality)

 $|I[f] - J_M[f]| \le V[f]D_M^*.$

- Error factorization into term depending on regularity of integrand and uniformity of point set.
- In contrast to MC error, the Koksma-Hlawka inequality is deterministic, but usually far from sharp! (Note that it essentially require *f* to be C^d!)

Theorem (Koksma-Hlawka inequality)

 $|I[f] - J_M[f]| \le V[f]D_M^*.$

- Error factorization into term depending on regularity of integrand and uniformity of point set.
- In contrast to MC error, the Koksma-Hlawka inequality is deterministic, but usually far from sharp! (Note that it essentially require *f* to be C^d!)

Example (Van der Corput sequence)

Let *p* prime and for $k \in \mathbb{N}_0$ let $(a_j(k))_{j \in \mathbb{N}_0}$ denote the p-ary expansion of *k*, i.e., $k = \sum_{i=0}^{\infty} a_i(k) p^i$. A one-dimensional low-discrepancy sequence is given by

$$x_i \coloneqq \psi_p(i) \coloneqq \sum_{j=0}^{\infty} \frac{a_j(i)}{p^{j+1}}, \quad i \in \mathbb{N}_0.$$

Numerical comparison

Figure: A call option in the Black-Scholes model using Monte Carlo and Quasi Monte Carlo simulation, Red: MC simulation, blue: QMC simulation, black: Reference lines proportional to 1/Mand $1/\sqrt{M}$.

Computational finance – Lecture 4 · May 7, 2021 · Page 7 (16)

- For uniform (pseudo) r.v.s: If $U_i \sim \mathcal{U}([0, 1])$, (U_i) independent, then $(U_{(i-1)d+1}, \ldots, U_{id})_{i \in \mathbb{N}}$ is a sequence of independent r.v.s from $\mathcal{U}([0, 1]^d)$.
- In contrast, if (x_i)_{i∈ℕ} is one-dimensional low-discrepancy sequence, then (x_{(i-1)d+1},..., x_{id})_{i∈ℕ} is most likely not a d-dimensional low-discrepancy sequence.
- ▶ QMC convergence is asymptotically much faster than MC convergence, but note that $\log(M)^d/M \gg M^{-1/2}$ for all reasonably sized **Figure:** F *M* even in fairly moderate dimensions *d*. E.g., numbers for *d* = 8 roughly from $M \ge 1.8 \times 10^{29}$.

Figure: Pairs of one-dimensional Sobol numbers

Randomized quasi Monte Carlo

Setting: $(x_i)_{i=1}^M$ low-discrepancy sequence in dim. d, $(U_l)_{l \in \mathbb{N}}$ i.i.d. sequence, $U_l \sim \mathcal{U}([0, 1]^d)$.

Definition (Randomized quasi Monte Carlo simulation)

$$J_{M;m}^{R}[f] \coloneqq \frac{1}{m} \sum_{l=1}^{m} \frac{1}{M} \sum_{i=1}^{M} f(\mathbf{x}_{i} + U_{l} \pmod{1})$$

Setting: $(x_i)_{i=1}^M$ low-discrepancy sequence in dim. d, $(U_l)_{l \in \mathbb{N}}$ i.i.d. sequence, $U_l \sim \mathcal{U}([0, 1]^d)$.

Definition (Randomized quasi Monte Carlo simulation)

$$J_{M;m}^{R}[f] \coloneqq \frac{1}{m} \sum_{l=1}^{m} \frac{1}{M} \sum_{i=1}^{M} f(x_{i} + U_{l} \pmod{1})$$

- Provides variance reduction for the Monte Carlo estimator $\frac{1}{m} \sum_{l=1}^{m} f(U_l)$
- Provides sharp, computable error control for the quasi Monte Carlo approximation $\frac{1}{M} \sum_{i=1}^{M} f(x_i):$ $E\left[\left(I[f] - J_{M;m}^R[f]\right)^2\right] = \frac{\operatorname{var}\left(\frac{1}{M} \sum_{i=1}^{M} f(x_i + U \pmod{1})\right)}{m}$

• Typically $m \ll M$, as accuracy is more important than error control.

1 Quasi Monte Carlo

2 Sample path generation

Computational finance - Lecture 4 · May 7, 2021 · Page 10 (16)

Goal

Simulate a trajectory W_{t_1}, \ldots, W_{t_N} of a Brownian motion $W, 0 \le t_1 < t_2 < \cdots < t_N$.

Cholesky method

• Recall: if $X \sim \mathcal{N}(0, \Sigma)$ and $\Sigma = AA^{\top}$, then $X \stackrel{D}{=} AZ$ for $Z \sim \mathcal{N}(0, I)$.

For $(W_{t_1}, \ldots, W_{t_N})$: $\Sigma = (t_n \wedge t_m)_{n,m=1}^N$ and its Cholesky factorization AA^{\top} :

$$A = \begin{pmatrix} \sqrt{t_1} & 0 & \dots & 0 \\ \sqrt{t_1} & \sqrt{t_2 - t_1} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \sqrt{t_1} & \sqrt{t_2 - t_1} & \dots & \sqrt{t_N - t_{N-1}} \end{pmatrix}.$$

Random walk construction

- $\Delta W_n := W_{t_n} W_{t_{n-1}} \sim \sqrt{t_n t_{n-1}} Z_n,$ $Z \sim \mathcal{N}(0, I_N)$
- Same result as Cholesky method!
 Brownian bridge construction

$$\bullet \quad W_{t_N} \sim \mathcal{N}(0, t_N), \ W_{t_0} \coloneqq W_0 = 0.$$

$$(W_s|W_u = x, W_t = y) \sim$$
$$\mathcal{N}\left(\frac{(t-s)x + (s-u)y}{t-u}, \frac{(s-u)(t-s)}{t-u}\right).$$

Brownian bridge construction

Figure: Brownian motion constructed by the Brownian bridge approach. Dashed lines correspond to the newly inserted Brownian bridge

Computational finance – Lecture 4 · May 7, 2021 · Page 12 (16)

Wavelet constructions

- Construct functional approximations $(W_t^{(N)})_{t \in [0,T]}$ of the Bm $(W_t)_{t \in [0,T]}$.
- For simplicity, restriction to T = 1 and Haar wavelets, i.e., Lévy's construction of Bm.

Wavelet constructions

- Construct functional approximations $(W_t^{(N)})_{t \in [0,T]}$ of the Bm $(W_t)_{t \in [0,T]}$.
- For simplicity, restriction to T = 1 and Haar wavelets, i.e., Lévy's construction of Bm.
- Construct basis functions $\psi_{n,k}$ by shifting and rescaling of a mother wavelet ψ

$$\psi_{n,k}(t) \coloneqq 2^{n/2} \psi \left(2^n t - k \right), \quad \psi(t) \coloneqq \begin{cases} 1, & 0 \le t < \frac{1}{2}, \\ -1, & \frac{1}{2} \le t < 1, \\ 0, & \text{else}, \end{cases} \quad 0 \le k \le 2^n - 1, \quad t \in [0, 1].$$

▶ Note that $\{\psi_{n,k}\}$ form an orthonormal basis of $L^2([0,1])$.

- Construct functional approximations $(W_t^{(N)})_{t \in [0,T]}$ of the Bm $(W_t)_{t \in [0,T]}$.
- For simplicity, restriction to T = 1 and Haar wavelets, i.e., Lévy's construction of Bm.
- Construct basis functions $\psi_{n,k}$ by shifting and rescaling of a mother wavelet ψ

$$\psi_{n,k}(t) \coloneqq 2^{n/2} \psi\left(2^n t - k\right), \quad \psi(t) \coloneqq \begin{cases} 1, & 0 \le t < \frac{1}{2}, \\ -1, & \frac{1}{2} \le t < 1, \\ 0, & \text{else}, \end{cases} \quad 0 \le k \le 2^n - 1, \quad t \in [0, 1].$$

- Note that $\{\psi_{n,k}\}$ form an orthonormal basis of $L^2([0, 1])$.
- Given a i.i.d. sequence X_0 , $X_{n,k}$ of standard normal r.v.s, a Bm is defined by

$$W_t := X_0 t + \sum_{n=0}^{\infty} \sum_{k=0}^{2^n - 1} X_{n,k} \Psi_{n,k}(t), \quad t \in [0, 1], \quad \Psi_{n,k}(t) := \int_0^t \psi_{n,k}(s) ds = 2^{-n/2} \Psi(2^n t - k)$$

• Define $W^{(N)}$ by truncation at n = N. Note that $W_t^{(N)} = W_t$ for $t \in \{k2^{-N-1} \mid 0 \le k \le 2^{N+1}\}$

Computational finance – Lecture 4 · May 7, 2021 · Page 14 (16)

Figure: Approximate Brownian motion $B_t^{(N)}$, $0 \le t \le 1$, for N = 10(blue) and N = 2 (red) superimposed

WI

Important as building blocks: Recall that finite activity (pure jump) Lévy processes are compound Poisson processes, i.e., of the form Z_t = Z₀ + ∑^{N_t}_{i=1} X_i.

- Important as building blocks: Recall that finite activity (pure jump) Lévy processes are compound Poisson processes, i.e., of the form Z_t = Z₀ + ∑^{N_t}_{i=1} X_i.
- ► Values on a grid: Note that increments are independent. Hence, $N_{t_1} \sim \text{Poi}(\lambda t_1)$, $N_{t_2} N_{t_1} \sim \text{Poi}(\lambda (t_2 t_1))$, ...
- ▶ Poisson bridge: $(N_s | N_t = n) \sim Bin(n, p = s/t), 0 < s < t.$

- Important as building blocks: Recall that finite activity (pure jump) Lévy processes are compound Poisson processes, i.e., of the form Z_t = Z₀ + ∑^{N_t}_{i=1} X_i.
- ► Values on a grid: Note that increments are independent. Hence, $N_{t_1} \sim \text{Poi}(\lambda t_1)$, $N_{t_2} N_{t_1} \sim \text{Poi}(\lambda (t_2 t_1))$, ...
- ▶ Poisson bridge: $(N_s | N_t = n) \sim Bin(n, p = s/t), 0 < s < t.$

Exact simulation

Exact simulation of the trajectory $(N_t)_{t \in [0,T]}$ by simulating the jump times (T_1, \ldots, T_{N_T}) .

- **1.** Interarrival times $\tau_n \coloneqq T_n T_{n-1}$ are i.i.d. ~ Exp(λ).
 - ► $T_0 := 0$, and iterate: simulate $\tau_n \sim \text{Exp}(\lambda)$, set $T_n := T_{n-1} + \tau_n$, until $T_n > T$.

- Important as building blocks: Recall that finite activity (pure jump) Lévy processes are compound Poisson processes, i.e., of the form Z_t = Z₀ + ∑^{N_t}_{i=1} X_i.
- ► Values on a grid: Note that increments are independent. Hence, $N_{t_1} \sim \text{Poi}(\lambda t_1)$, $N_{t_2} N_{t_1} \sim \text{Poi}(\lambda (t_2 t_1))$, ...
- ▶ Poisson bridge: $(N_s | N_t = n) \sim Bin(n, p = s/t), 0 < s < t.$

Exact simulation

Exact simulation of the trajectory $(N_t)_{t \in [0,T]}$ by simulating the jump times (T_1, \ldots, T_{N_T}) .

- **1.** Interarrival times $\tau_n := T_n T_{n-1}$ are i.i.d. ~ Exp(λ).
 - ► $T_0 := 0$, and iterate: simulate $\tau_n \sim \text{Exp}(\lambda)$, set $T_n := T_{n-1} + \tau_n$, until $T_n > T$.
- **2.** Given $N_T = n$, jump times (T_1, \ldots, T_n) are uniformly distributed on [0, T].
 - Simulate $N_T \sim \text{Poi}(\lambda T)$ and independent $U_1, \ldots, U_{N_T} \sim \mathcal{U}([0, T])$.
 - Set $(T_1, \ldots, T_{N_T}) \coloneqq (U_{(1)}, \ldots, U_{(N_T)})$, the order statistics of U_1, \ldots, U_{N_T} .

Example: Merton's jump diffusion model

Computational finance – Lecture 4 · May 7, 2021 · Page 16 (16)

