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More evenly distributed numbers

I[ f ] B
∫

[0,1]d
f (x)dx

I Quadrature: JM[ f ] B
1
M

M∑
i=1

f (xi), x1, . . . , xM ∈ [0, 1]d.
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Discrepancy

I Intuition: discrepancy is the quadrature error for indocator functions of rectangles R.
I Consider point sets (xi)M

i=1 ⊂ (xi)i∈N or (xM
i )M

i=1, xi ∈ [0, 1]d.

Definition (Discrepancy)

The discrepancy DM and star-discrepancy D∗M for a point set (xi)M
i=1 are defined as

DM = sup
rectangles R⊂[0,1]d

∣∣∣∣∣ 1
M

# { 1 ≤ i ≤ M : xi ∈ R } − λ(R)
∣∣∣∣∣ ,

D∗M = sup
{∣∣∣∣∣ 1

M
# { 1 ≤ i ≤ M : xi ∈ R } − λ(R)

∣∣∣∣∣ : R =

d�
j=1

[0, b j[, b1, . . . , bd ∈ [0, 1]
}
.

Definition (Low discrepancy)

A sequence of point sets (xM
i )M

i=1, M ∈ N, has low discrepancy iff D∗M ≤ c log(M)d

M .

Computational finance – Lecture 4 · May 7, 2021 · Page 4 (16)



Discrepancy

I Intuition: discrepancy is the quadrature error for indocator functions of rectangles R.
I Consider point sets (xi)M

i=1 ⊂ (xi)i∈N or (xM
i )M

i=1, xi ∈ [0, 1]d.

Definition (Discrepancy)

The discrepancy DM and star-discrepancy D∗M for a point set (xi)M
i=1 are defined as

DM = sup
rectangles R⊂[0,1]d

∣∣∣∣∣ 1
M

# { 1 ≤ i ≤ M : xi ∈ R } − λ(R)
∣∣∣∣∣ ,

D∗M = sup
{∣∣∣∣∣ 1

M
# { 1 ≤ i ≤ M : xi ∈ R } − λ(R)

∣∣∣∣∣ : R =

d�
j=1

[0, b j[, b1, . . . , bd ∈ [0, 1]
}
.

Definition (Low discrepancy)

A sequence of point sets (xM
i )M

i=1, M ∈ N, has low discrepancy iff D∗M ≤ c log(M)d

M .

Computational finance – Lecture 4 · May 7, 2021 · Page 4 (16)



Discrepancy

I Intuition: discrepancy is the quadrature error for indocator functions of rectangles R.
I Consider point sets (xi)M

i=1 ⊂ (xi)i∈N or (xM
i )M

i=1, xi ∈ [0, 1]d.

Definition (Discrepancy)

The discrepancy DM and star-discrepancy D∗M for a point set (xi)M
i=1 are defined as

DM = sup
rectangles R⊂[0,1]d

∣∣∣∣∣ 1
M

# { 1 ≤ i ≤ M : xi ∈ R } − λ(R)
∣∣∣∣∣ ,

D∗M = sup
{∣∣∣∣∣ 1

M
# { 1 ≤ i ≤ M : xi ∈ R } − λ(R)

∣∣∣∣∣ : R =

d�
j=1

[0, b j[, b1, . . . , bd ∈ [0, 1]
}
.

Definition (Low discrepancy)

A sequence of point sets (xM
i )M

i=1, M ∈ N, has low discrepancy iff D∗M ≤ c log(M)d

M .

Computational finance – Lecture 4 · May 7, 2021 · Page 4 (16)



Variation

I Regularity of integrand f classically measured by variation.

Definition (Variation in the sense of Hardy-Krause)

For a one-dimensional function f : [0, 1]→ R

V[ f ] B
∫ 1

0

∣∣∣∣∣d f
dx

(x)
∣∣∣∣∣ dx

and for f : [0, 1]d → R

V[ f ] B
∫

[0,1]d

∣∣∣∣∣∣ ∂d f
∂x1 · · · ∂xd (x)

∣∣∣∣∣∣ dx +

d∑
j=1

V[ f ( j)
1 ],

where f ( j)
1 denotes the restriction of f to the boundary x j = 1.
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Controlling the integration error

Theorem (Koksma-Hlawka inequality)

|I[ f ] − JM[ f ]| ≤ V[ f ]D∗M.

I Error factorization into term depending on regularity of integrand and uniformity of
point set.

I In contrast to MC error, the Koksma-Hlawka inequality is deterministic, but usually far
from sharp! (Note that it essentially require f to be Cd!)

Example (Van der Corput sequence)
Let p prime and for k ∈ N0 let (a j(k)) j∈N0 denote the p-ary expansion of k, i.e.,
k =

∑∞
j=0 a j(k)p j. A one-dimensional low-discrepancy sequence is given by

xi B ψp(i) B
∞∑
j=0

a j(i)
p j+1 , i ∈ N0.
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Numerical comparison

Figure: A call option
in the Black-Scholes
model using Monte
Carlo and Quasi
Monte Carlo
simulation. Red: MC
simulation, blue: QMC
simulation, black:
Reference lines
proportional to 1/M
and 1/

√
M.
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Remarks on quasi Monte Carlo

I For uniform (pseudo) r.v.s: If Ui ∼ U([0, 1]),
(Ui) independent, then

(
U(i−1)d+1, . . . ,Uid

)
i∈N

is a sequence of independent r.v.s from
U([0, 1]d).

I In contrast, if (xi)i∈N is one-dimensional
low-discrepancy sequence, then(
x(i−1)d+1, . . . , xid

)
i∈N is most likely not a

d-dimensional low-discrepancy sequence.

I QMC convergence is asymptotically much
faster than MC convergence, but note that
log(M)d/M � M−1/2 for all reasonably sized
M even in fairly moderate dimensions d. E.g.,
for d = 8 roughly from M ≥ 1.8 × 1029.

Figure: Pairs of one-dimensional Sobol
numbers

Computational finance – Lecture 4 · May 7, 2021 · Page 8 (16)



Randomized quasi Monte Carlo

Setting: (xi)M
i=1 low-discrepancy sequence in dim. d, (Ul)l∈N i.i.d. sequence,

Ul ∼ U
(
[0, 1]d

)
.

Definition (Randomized quasi Monte Carlo simulation)

JR
M; m[ f ] B

1
m

m∑
l=1

1
M

M∑
i=1

f
(
xi + Ul (mod 1)

)

I Provides variance reduction for the Monte Carlo estimator 1
m

∑m
l=1 f (Ul)

I Provides sharp, computable error control for the quasi Monte Carlo approximation
1
M

∑M
i=1 f (xi):

E
[(

I[ f ] − JR
M; m[ f ]

)2
]

=
var

(
1
M

∑M
i=1 f (xi + U (mod 1))

)
m

I Typically m � M, as accuracy is more important than error control.
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Exact simulation of Brownian motion

Goal
Simulate a trajectory Wt1 , . . . ,WtN of a Brownian motion W, 0 ≤ t1 < t2 < · · · < tN .

Cholesky method

I Recall: if X ∼ N(0,Σ) and Σ = AA>,
then X D

= AZ for Z ∼ N(0, I).

I For
(
Wt1 , . . . ,WtN

)
: Σ = (tn ∧ tm)N

n,m=1 and
its Cholesky factorization AA>:

A =


√

t1 0 . . . 0
√

t1
√

t2 − t1 . . . 0
...

...
. . .

...
√

t1
√

t2 − t1 . . .
√

tN − tN−1

 .

Random walk construction

I ∆Wn B Wtn −Wtn−1 ∼
√

tn − tn−1Zn,
Z ∼ N(0, IN)

I Same result as Cholesky method!

Brownian bridge construction

I WtN ∼ N(0, tN), Wt0 B W0 = 0.

I (Ws|Wu = x, Wt = y) ∼

N

(
(t − s)x + (s − u)y

t − u
,

(s − u)(t − s)
t − u

)
.

Computational finance – Lecture 4 · May 7, 2021 · Page 11 (16)



Brownian bridge construction

Figure: Brownian
motion constructed by
the Brownian bridge
approach. Dashed
lines correspond to
the newly inserted
Brownian bridge
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Wavelet constructions

I Construct functional approximations (W (N)
t )t∈[0,T ] of the Bm (Wt)t∈[0,T ].

I For simplicity, restriction to T = 1 and Haar wavelets, i.e., Lévy’s construction of Bm.

I Construct basis functions ψn,k by shifting and rescaling of a mother wavelet ψ

ψn,k(t) B 2n/2ψ
(
2nt − k

)
, ψ(t) B


1, 0 ≤ t < 1

2 ,

−1, 1
2 ≤ t < 1,

0, else,

n ≥ 0, 0 ≤ k ≤ 2n−1, t ∈ [0, 1].

I Note that {ψn,k} form an orthonormal basis of L2 ([0, 1]).
I Given a i.i.d. sequence X0, Xn,k of standard normal r.v.s, a Bm is defined by

Wt B X0t +

∞∑
n=0

2n−1∑
k=0

Xn,kΨn,k(t), t ∈ [0, 1], Ψn,k(t) B
∫ t

0
ψn,k(s)ds = 2−n/2Ψ(2nt − k)

I Define W(N) by truncation at n = N. Note that W(N)
t = Wt for t ∈

{
k2−N−1

∣∣∣ 0 ≤ k ≤ 2N+1
}
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Samples generated by Haar wavelet construction

Figure: Approximate
Brownian motion B(N)

t ,
0 ≤ t ≤ 1, for N = 10
(blue) and N = 2 (red)
superimposed
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Generating Poisson processes

I Important as building blocks: Recall that finite activity (pure jump) Lévy processes are
compound Poisson processes, i.e., of the form Zt = Z0 +

∑Nt
i=1 Xi.

I Values on a grid: Note that increments are independent. Hence, Nt1 ∼ Poi(λt1),
Nt2 − Nt1 ∼ Poi(λ(t2 − t1)), . . .

I Poisson bridge: (Ns | Nt = n) ∼ Bin(n, p = s/t), 0 < s < t.

Exact simulation
Exact simulation of the trajectory (Nt)t∈[0,T ] by simulating the jump times (T1, . . . ,TNT ).

1. Interarrival times τn B Tn − Tn−1 are i.i.d. ∼ Exp(λ).

I T0 B 0, and iterate: simulate τn ∼ Exp(λ), set Tn B Tn−1 + τn, until Tn > T .

2. Given NT = n, jump times (T1, . . . ,Tn) are uniformly distributed on [0,T ].

I Simulate NT ∼ Poi(λT ) and independent U1, . . . ,UNT ∼ U([0,T ]).
I Set (T1, . . . ,TNT ) B (U(1), . . . ,U(NT )), the order statistics of U1, . . . ,UNT .
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Example: Merton’s jump diffusion model

Figure: Trajectory of
Merton’s model S t =

S 0 exp
(
σBt +

(
µ − σ2

2

)
t
)∏Nt

j=1 X j

generated by exact
simulation of jump times
and simulation of Bm by
random walk construction
inbetween.
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