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Antithetic variates

I U ∼ U(]0, 1[)⇒ Ũ B 1 − U ∼ U(]0, 1[), W ∼ N(0, Id)⇒ W̃ B −W ∼ N(0, Id).
In an intuitive sense, in both cases X is anti-monotonic to X̃.

Definition (Antithetic variates)

Given a r.v. X and a (deterministic) transformation X̃ with the same distribution.

IA
M[ f ; X, X̃] B

1
M

M∑
i=1

f (Xi) + f (X̃i)
2

.

I Assume that cost(X, X̃) ≤ 2 cost(X), i.e., cost of simulation of X and transformation to X̃
is at most twice the cost of simulation of X.

I Then antithetic variates are more efficient than standard MC iff cov
(

f (X), f (X̃)
)
< 0.
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Control variates

I Suppose we are given a r.v. Y and a function g s.t. I[g; Y] is known. Then, for λ ∈ R,

I[ f ; X] = E
[
f (X) − λg(Y)

]
+ λI[g; Y].

Definition (Control variates)

IC,λ
M [ f ; X,Y] B

1
M

M∑
i=1

( f (Xi) − λg(Yi)) + λI[g; Y].

I Often Y = X, and the cost of IC,λ
M is only insignificantly higher than the cost of IM.

I The MSE of IC,λ
M is minimized by λ∗ B cov( f (X),g(Y))

var(g(Y)) , the minimizer of var ( f (X) − λg(Y)).
I MSE

[
IC,λ∗

M

]
= (1 − ρ2) MSE [IM], where ρ B cor ( f (X), g(Y))⇒ |ρ| as large as possible!

Example
E[S T ] = S 0, hence Y = S T , g = id can be used as control variate for option pricing.
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Example & exercise: Arithemtic and Geometric Asian options in the Black-Scholes model

I Black – Scholes model (r = 0 as usual): S t = S 0 exp
(
σWt −

1
2σ

2t
)
.

I Asian option: option depending on the time average of the stock price, e.g.,

f (X) B
(

1
N

∑N

n=1
Xn − K

)+
, X B

(
S t1 , . . . , S tN

)
, 0 ≤ t1 < · · · < tN ≤ T.

I No explicit price formula as sum of log-normal r.v.s are not log-normal.
I MC simulation: For Z ∼ N(0, IN), set Wt1 =

√
t1Z1 and Wtn = Wtn−1 +

√
tn − tn−1Zn.

I Observation: 1
N

∑N
n=1 xn ≈

(∏N
n=1 xn

)1/N
(arithmetic vs. geometric mean), and N∏

n=1

S tn


1/N

= S 0 exp

σN
N∑

n=1

Wtn −
σ2

2N

N∑
n=1

tn

 ∼ LN

log S 0 −
σ2

2N

N∑
n=1

tn,
σ2

N2

N∑
n=1

(1 + 2(N − n)) tn

 .
I By the Black-Scholes formula, a control variate is given by the geometric Asian option

g(Y) B
((∏N

n=1
Yn

)1/N
− K

)+
, Y B X =

(
S t1 , . . . , S tN

)
.
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Importance sampling

I Idea: Sample more where the “local variance” is higher.
I Setting: X has (d-dimensional) density p, additional r.v. Y with density q.

Definition (Importance sampling)

IIS
M [ f ; X,Y] B

1
M

M∑
i=1

f (Yi)
p(Yi)
q(Yi)

= IM

[
f

p
q

; Y
]
.

I Mean squared error determined by

var
(

f (Y)
p(Y)
q(Y)

)
= E

[
f (Y)2 p(Y)2

q(Y)2

]
− I[ f ; X]2 = E

[
f (X)2 p(X)

q(X)

]
− I[ f ; X]2.

I Best possible speed-up: q proportional to f · p, implying f (Y) p(Y)
q(Y) ≡ 1 – but requires

knowledge of I[ f ; X] for normalization.
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More evenly distributed numbers

I[ f ] B
∫

[0,1]d
f (x)dx

I Quadrature: JM[ f ] B
1
M

M∑
i=1

f (xi), x1, . . . , xM ∈ [0, 1]d.
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Discrepancy

I Intuition: discrepancy is the quadrature error for indocator functions of rectangles R.
I Consider point sets (xi)M

i=1 ⊂ (xi)i∈N or (xM
i )M

i=1, xi ∈ [0, 1]d.

Definition (Discrepancy)

The discrepancy DM and star-discrepancy D∗M for a point set (xi)M
i=1 are defined as

DM = sup
rectangles R⊂[0,1]d

∣∣∣∣∣ 1
M

# { 1 ≤ i ≤ M : xi ∈ R } − λ(R)
∣∣∣∣∣ ,

D∗M = sup
{∣∣∣∣∣ 1

M
# { 1 ≤ i ≤ M : xi ∈ R } − λ(R)

∣∣∣∣∣ : R =
d�

j=1

[0, b j[, b1, . . . , bd ∈ [0, 1]
}
.

Definition (Low discrepancy)

A sequence of point sets (xM
i )M

i=1, M ∈ N, has low discrepancy iff D∗M ≤ c log(M)d

M .
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Variation

I Regularity of integrand f classically measured by variation.

Definition (Variation in the sense of Hardy-Krause)

For a one-dimensional function f : [0, 1]→ R

V[ f ] B
∫ 1

0

∣∣∣∣∣d f
dx

(x)
∣∣∣∣∣ dx

and for f : [0, 1]d → R

V[ f ] B
∫

[0,1]d

∣∣∣∣∣∣ ∂d f
∂x1 · · · ∂xd (x)

∣∣∣∣∣∣ dx +
d∑

j=1

V[ f ( j)
1 ],

where f ( j)
1 denotes the restriction of f to the boundary x j = 1.
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Controlling the integration error

Theorem (Koksma-Hlawka inequality)

|I[ f ] − JM[ f ]| ≤ V[ f ]D∗M.

I Error factorization into term depending on regularity of integrand and uniformity of
point set.

I In contrast to MC error, the Koksma-Hlawka inequality is deterministic, but usually far
from sharp! (Note that it essentially require f to be Cd!)

Example (Van der Corput sequence)
Let p prime and for k ∈ N0 let (a j(k)) j∈N0 denote the p-ary expansion of k, i.e.,
k =

∑∞
j=0 a j(k)p j. A one-dimensional low-discrepancy sequence is given by

xi B ψp(i) B
∞∑
j=0

a j(i)
p j+1 , i ∈ N0.
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Numerical comparison

Figure: A call option
in the Black-Scholes
model using Monte
Carlo and Quasi
Monte Carlo
simulation. Red: MC
simulation, blue: QMC
simulation, black:
Reference lines
proportional to 1/M
and 1/

√
M.
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Remarks on quasi Monte Carlo

I For uniform (pseudo) r.v.s: If Ui ∼ U([0, 1]),
(Ui) independent, then

(
U(i−1)d+1, . . . ,Uid

)
i∈N

is a sequence of independent r.v.s from
U([0, 1]d).

I In contrast, if (xi)i∈N is one-dimensional
low-discrepancy sequence, then(
x(i−1)d+1, . . . , xid

)
i∈N is most likely not a

d-dimensional low-discrepancy sequence.

I QMC convergence is asymptotically much
faster than MC convergence, but note that
log(M)d/M � M−1/2 for all reasonably sized
M even in fairly moderate dimensions d. E.g.,
for d = 8 roughly from M ≥ 1.8 × 1029.

Figure: Pairs of one-dimensional Sobol
numbers
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Randomized quasi Monte Carlo

Setting: (xi)M
i=1 low-discrepancy sequence in dim. d, (Ul)l∈N i.i.d. sequence,

Ul ∼ U
(
[0, 1]d

)
.

Definition (Randomized quasi Monte Carlo simulation)

JR
M; m[ f ] B

1
m

m∑
l=1

1
M

M∑
i=1

f
(
xi + Ul (mod 1)

)

I Provides variance reduction for the Monte Carlo estimator 1
m

∑m
l=1 f (Ul)

I Provides sharp, computable error control for the quasi Monte Carlo approximation
1
M

∑M
i=1 f (xi):

E
[(

I[ f ] − JR
M; m[ f ]

)2
]
=

var
(

1
M

∑M
i=1 f (xi + U (mod 1))

)
m

I Typically m � M, as accuracy is more important than error control.
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i=1 low-discrepancy sequence in dim. d, (Ul)l∈N i.i.d. sequence,

Ul ∼ U
(
[0, 1]d

)
.

Definition (Randomized quasi Monte Carlo simulation)

JR
M; m[ f ] B

1
m

m∑
l=1

1
M

M∑
i=1

f
(
xi + Ul (mod 1)

)
I Provides variance reduction for the Monte Carlo estimator 1

m
∑m

l=1 f (Ul)
I Provides sharp, computable error control for the quasi Monte Carlo approximation

1
M

∑M
i=1 f (xi):

E
[(

I[ f ] − JR
M; m[ f ]

)2
]
=

var
(

1
M

∑M
i=1 f (xi + U (mod 1))

)
m

I Typically m � M, as accuracy is more important than error control.
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