I\ .
NS

Weierstrass Institute for Leibniz .
Applied Analysis and Stochastics Association

Computational finance — Lecture 3

Christian Bayer

Mohrenstrasse 39 - 10117 Berlin - Germany - Tel. +49 30 20372 0 - www.wias-berlin.de

Amil A NAANA



Outline

Variance reduction
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Antithetic variates zﬁ@

> U~U]N0,1) = U:=1-U ~UJ0,1[), W ~ N©O,I;) = W = =W ~ N(0, I).
In an intuitive sense, in both cases X is anti-monotonic to X.

Definition (Antithetic variates)

Given ar.v. X and a (deterministic) transformation X with the same distribution.

= . 1S [ + fXD)
B XX =— )y =2 18
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Antithetic variates z@’}

> U~UJ0, 1) =>U:=1-U~UJ0,1[), W ~ N, I;) = W := =W ~ N(0, I,)).
In an intuitive sense, in both cases X is anti-monotonic to X.

Definition (Antithetic variates)

Given ar.v. X and a (deterministic) transformation X with the same distribution.

= . 1S [ + fXD)
B XX =— )y =2 18
M M ; 2

> Assume that cost(X, X) < 2 cost(X), i.e., cost of simulation of X and transformation to X
is at most twice the cost of simulation of X.

> Then antithetic variates are more efficient than standard MC iff cov (f(X),f(X)) <0.
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Control variates X“g’}

> Suppose we are given ar.v. Y and a function g s.t. I[g; Y] is known. Then, for 1 € R,

I[f; X1 = E[f(X) — 2g(V)] + Al[g; Y.

Definition (Control variates)

1 M
L X Y] = o2 D (FOX0) = Ag(¥) + Allg: Y1
i=1
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Control variates zﬁ@

> Suppose we are given ar.v. Y and a function g s.t. I[g; Y] is known. Then, for 1 € R,
I[f; X] = E[f(X) — 4g(V)] + Al[g; Y].

Definition (Control variates)

1 M
L X Y] = o2 > (F(KD) = Ag(¥) + Allg: Y.
i=1

> Often Y = X, and the cost of 15" is only insignificantly higher than the cost of Iy.

» The MSE of Iff is minimized by 1* = W the minimizer of var (f(X) — Ag(Y)).

» MSE [If/] = (1 - p>)MSE [I1/], where p = cor (f(X), g(Y)) = |p| as large as possible!
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Control variates %

> Suppose we are given ar.v. Y and a function g s.t. I[g; Y] is known. Then, for 1 € R,
I[f; X] = E[f(X) — 2g(V)] + A[g; Y].

Definition (Control variates)

1 M
L X Y] = o2 D (FOX0) = Ag(¥) + Allg: Y1
i=1

> Often Y = X, and the cost of 15" is only insignificantly higher than the cost of Iy.

> The MSE of I{;" is minimized by 1" = “*L20E0) the minimizer of var (f(X) - Ag(Y)).

> MSE[I{;" | = (1 = p?) MSE[1)/], where p := cor (f(X), g(¥)) = |p| as large as possible!

E[ST] = S0, hence Y = S, ¢ = id can be used as control variate for option pricing.
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Example & exercise: Arithemtic and Geometric Asian options in the Black-Scholes model X@

> Black — Scholes model (r = 0 as usual): §; = Sgexp (aWt - %a'zt).
> Asian option: option depending on the time average of the stock price, e.g.,

(X)_( Z X, — K), X:=(Sy,....8,), 0<n<---<iy<T.
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Example & exercise: Arithemtic and Geometric Asian options in the Black-Scholes model

> Black — Scholes model (r = 0 as usual): §; = Sgexp (aWt — 152 )
> Asian option: option depending on the time average of the stock price, e.g.,

(X)_( Z X, — K), X:= Sy, sSuy), 0<ty <

<ty <T.
> No explicit price formula as sum of log-normal r.v.s are not log-normal
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Example & exercise: Arithemtic and Geometric Asian options in the Black-Scholes model

> Black — Scholes model (r = 0 as usual): §; = Sgexp (aWt - %0’22‘).
> Asian option: option depending on the time average of the stock price, e.g.,
1« -
f(X)::(NZn:an_K) s X::(S11’~"7Sl‘}v)v 0St1<"'<tNST.

> No explicit price formula as sum of log-normal r.v.s are not log-normal.
» MC simulation: For Z ~ N(0, Iy), set W;, = \iiZyand W,, = W, + \/t, — in_17Zy.
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Example & exercise: Arithemtic and Geometric Asian options in the Black-Scholes model zﬁ@

v

Black — Scholes model (r = 0 as usual): S, = Sgexp (aWt - %0'22‘).
Asian option: option depending on the time average of the stock price, e.g.,

1 N ’
f(X)::(NZn:an_K) s X::(Sl‘l""vsl‘}v)v 0St1<"'<tNST.

No explicit price formula as sum of log-normal r.v.s are not log-normal.

MC simulation: For Z ~ N(0, Iy), set W,, = v Ziand W,, = W, | + iy — ty-1Z,.
1/N

Observation: & ¥ | x, ~ ( N ) ! (arithmetic vs. geometric mean), and

n= 1%

N /N o & PR
(ﬂs,,,] :soexp[ﬁzw,n_ﬁz

n=1 n=1 n=1

v

vy

v

~LN

log S - —Ztn, v Z(l +2(N =)ty |-
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Example & exercise: Arithemtic and Geometric Asian options in the Black-Scholes model zﬁ@

v

Black — Scholes model (r = 0 as usual): S, = Sgexp (aWt - %0'22‘).
Asian option: option depending on the time average of the stock price, e.g.,

+
f(X) = (%ZnN:an—K) , X =(Sy,--Sy), 0<n<---<ty<T.

No explicit price formula as sum of log-normal r.v.s are not log-normal.

MC simulation: For Z ~ N(0, Iy), set W,, = v Ziand W,, = W, | + iy — ty-1Z,.

Observation: & ¥ | x, ~ ( Nox )I/N (arithmetic vs. geometric mean), and

N /N o & PR
[]_[s] :soexp[ﬁzw,n_ﬁz

n=1 n=1

v

vy

v

~LN logSO——Ztn, NZZ(I +2(N =)t .

> By the Black-Scholes formula, a control variate is given by the geometric Asian option

a(Y) = ((HN:1 Y,,)UN - K)+ . Y i=X= (S S0y).
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Importance sampling

> |dea: Sample more where the “local variance” is higher.
> Setting: X has (d-dimensional) density p, additional r.v. Y with density g.
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Importance sampling X“g’}

> |dea: Sample more where the “local variance” is higher.
> Setting: X has (d-dimensional) density p, additional r.v. Y with density g.

Definition (Importance sampling)

1 p(Y) P
IS X Y= — > f(Y)—— =1y [f—; Y].
- M ; q(Yy) q

Computational finance — Lecture 3 - April 30, 2021 - Page 6 (14) %



Importance sampling zﬁ@

> |dea: Sample more where the “local variance” is higher.
> Setting: X has (d-dimensional) density p, additional r.v. Y with density g.

Definition (Importance sampling)

1 p(Y) P
IS X Y= — > f(Y)—— =1y [f—; Y].
- M ; q(Yy) q

> Mean squared error determined by

p(Y) 2P(Y)2] 2 [ 2P(X)] 2
Y—|=F Y —I[f; X]"=E|fX)"—=| - 1I|f; X]".
Var(f( )q(Y)) [f( ) 27 [f3 X] SX) 7% [f3X]
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Importance sampling zﬁ@

> |dea: Sample more where the “local variance” is higher.
> Setting: X has (d-dimensional) density p, additional r.v. Y with density g.

Definition (Importance sampling)

1 p(Y) P
IS X Y= — > f(Y)—— =1y [f—; Y].
- M ; q(Yy) q

> Mean squared error determined by

p(Y) 2P(Y)2] 2 [ 2P(X)] 2
Y—|=F Y —I[f; X]"=E|fX)"—=| - 1I|f; X]".
Var(f( )q(Y)) [f( ) 27 [f3 X] SX) 7% [f3X]

> Best possible speed-up: ¢ proportional to f - p, implying f(Y)% = 1 — but requires
knowledge of I[ f; X] for normalization.
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Outline

H Quasi Monte Carlo
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More evenly distributed numbers

1[f]= f(x)dx

[0,11¢

M
> Quadrature: Jy[f] = %Zf(xi), X1,..., Xy € [0, 174,
] o

1
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Discrepancy

> Intuition: discrepancy is the quadrature error for indocator functions of rectangles R.
> Consider point sets (x)¥ C (xi)iaw or (x*)¥ | x; € [0,1]%.
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Discrepancy

> Intuition: discrepancy is the quadrature error for indocator functions of rectangles R.
> Consider point sets (x)¥ C (xi)iaw or (x*)¥ | x; € [0,1]%.

Definition (Discrepancy)
The discrepancy Dy and star-discrepancy Dj, for a point set (x,-)f‘ﬁ1 are defined as

1
Dy = sup —#{1<i<M:x; €R}—AR)

rectangles Rc[0,1]¢

b

Dy = sup{

d
1
ik sisM:xieR}—/l(R)‘ :R= ?g[o,b,-[, bi,...,ba € [0, 1]}.
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Discrepancy X“(;’}

» Intuition: discrepancy is the quadrature error for indocator functions of rectangles R.
> Consider point sets (x, | € (x)ien OF (x e 1, x; € [0, 114,

Definition (Discrepancy)

The discrepancy Dy and star-discrepancy Dj, for a point set (x,-)f‘ﬁ1 are defined as

1
Dy = sup —#{1<i<M:x;eR}-

rectangles Rc[0,1]¢

d
1
Dy =supi|=#{1<i<M:x;eR}-AR)| : R= [0,b[, b1,...,bq €0, 1]}.
M M j

Definition (Low discrepancy)

log(M)"

A sequence of point sets (xM) M € N, has low discrepancy iff D}, < c==7~

i=1’
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Variation

» Regularity of integrand f classically measured by variation.

Definition (Variation in the sense of Hardy-Krause)
For a one-dimensional function f : [0,1] - R

VISl = fo 1

_f
Ox! - 9xd

af

a(x) dx

and for f:[0,1]Y - R

VIf] = f
[0,1]4

where fl(j) denotes the restriction of f to the boundary x/ = 1.

(x)

d
dx+ > VA,
=1
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Controlling the integration error %

Theorem (Koksma-Hlawka inequality)

ILA1 = Julf1l < VIFID],.
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Controlling the integration error

Theorem (Koksma-Hlawka inequality)

ILA1 = Julf1l < VIFID],.

> Error factorization into term depending on regularity of integrand and uniformity of

point set.
> In contrast to MC error, the Koksma-Hlawka inequality is deterministic, but usually far

from sharp! (Note that it essentially require f to be C?!)
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Controlling the integration error

Theorem (Koksma-Hlawka inequality)

ILA1 = Julf1l < VIFID],.

> Error factorization into term depending on regularity of integrand and uniformity of
point set.

> In contrast to MC error, the Koksma-Hlawka inequality is deterministic, but usually far
from sharp! (Note that it essentially require f to be C¢1)

Example (Van der Corput sequence)

Let p prime and for k € Ny let (a(k)) jery, denote the p-ary expansion of k, i.e.,
k= Z;‘;O aj(k)pf. A one-dimensional low-discrepancy sequence is given by

xi = Upli) = ) ;’](:1) . ieNp.

=0
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Numerical comparison

10°
Figure: A call option

{ in the Black-Scholes
model using Monte
Carlo and Quasi
Monte Carlo
simulation. Red: MC
simulation, blue: QMC
simulation, black:
Reference lines
proportional to 1/M

{1 and1/VM.

10!

10»6 0 ‘l ‘2 ‘3 IA \5 6 10-6 -1 ‘0 I1 ‘2 ‘3 IA 5
10 10 10 10 10 10 10 10 10 10 10 10 10 10
Number of samples Time in milli-seconds
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Remarks on quasi Monte Carlo

» For uniform (pseudo) r.v.s: If U; ~ U([O0, 1]),
(U;) independent, then (Ui-1ya+1, - - -
is a sequence of independent r.v.s from

U0, 119).

> |n contrast, if (x;);ey iS One-dimensional
low-discrepancy sequence, then
(X(=1)d+15 - - - » Xid);epy 1S MoOst likely not a
d-dimensional low-discrepancy sequence.

» QMC convergence is asymptotically much
faster than MC convergence, but note that
log(M)?/M = M~"/? for all reasonably sized

1

02y

&
o L

Figure: Pairs of one-dimensional Sobol

M even in fairly moderate dimensions d. E.g., numbers

for d = 8 roughly from M > 1.8 x 10%.
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Randomized quasi Monte Carlo %

Setting: (xf),/-Z1 low-discrepancy sequence in dim. d, (U;)en i.i.d. sequence,
Uy ~ U (10, 119).

Definition (Randomized quasi Monte Carlo simulation)

M
IR 1= D f(xi + Uy (mod 1)
i=1

~
]
—_

S|~
M=
<[ =
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Randomized quasi Monte Carlo zﬁ@

Setting: (x;)X, low-discrepancy sequence in dim. d, (U;)ey i.i.d. sequence,
i=1

~ fu([o, 119).

Definition (Randomized quasi Monte Carlo simulation)

1 v 1
.@Mﬂ:aithﬂx+meD)

=1 i=1

> Provides variance reduction for the Monte Carlo estimator % e fUD

> Provides sharp, computable error control for the quasi Monte Carlo approximation
1 M .
M Zizl S(xi):

var (4 ) f(xi + U (mod 1))

m

E|(1171- 7%.,101) | =

» Typically m < M, as accuracy is more important than error control.
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