

Weierstrass Institute for Applied Analysis and Stochastics

Computational finance – Lecture 2

Christian Bayer

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de

1 Generation of non-uniform random numbers

2 Monte Carlo simulation

Example (Black–Scholes model)

$$S_T = S_0 \exp\left(\sigma W_T + \left(r - \frac{1}{2}\sigma^2\right)T\right) \sim \text{LN}(?, ?), W_T \sim \mathcal{N}(0, T).$$
 Simulate?

Simulation of non-uniform distributions

Transformation of independent uniform random variables U_1, U_2, \ldots

Theorem (Inversion method)

Let *F* be a c.d.f. and let $F^{-1}(u) := \inf \{ x | F(x) \ge u \}$. For $U \sim \mathcal{U}([0, 1[), X := F^{-1}(U) \sim F$.

Example (Black–Scholes model)

$$S_T = S_0 \exp\left(\sigma W_T + \left(r - \frac{1}{2}\sigma^2\right)T\right) \sim \text{LN}(?, ?), W_T \sim \mathcal{N}(0, T).$$
 Simulate?

Simulation of non-uniform distributions

Transformation of independent uniform random variables U_1, U_2, \ldots

Theorem (Inversion method)

Let *F* be a c.d.f. and let $F^{-1}(u) := \inf \{ x | F(x) \ge u \}$. For $U \sim \mathcal{U}([0, 1[), X := F^{-1}(U) \sim F$.

Example (Black–Scholes model)

$$S_T = S_0 \exp\left(\sigma W_T + \left(r - \frac{1}{2}\sigma^2\right)T\right) \sim \text{LN}(?, ?), W_T \sim \mathcal{N}(0, T).$$
 Simulate?

Simulation of non-uniform distributions

Transformation of independent uniform random variables U_1, U_2, \ldots

Theorem (Inversion method)

Let *F* be a c.d.f. and let $F^{-1}(u) := \inf \{ x \mid F(x) \ge u \}$. For $U \sim \mathcal{U}([0, 1[), X := F^{-1}(U) \sim F$.

- Exponential distribution: $\operatorname{Exp}(\lambda)$ has c.d.f. $F(x) \coloneqq 1 e^{-\lambda x}$, $F^{-1}(u) = -\frac{1}{\lambda} \log(1 u)$. Hence, $X \coloneqq -\frac{1}{\lambda} \log(U) \sim \operatorname{Exp}(\lambda)$.
- Sometimes no explicit expression of the quantile function exists, but efficient numerical approximations are available. E.g., $\Phi^{-1}(u) = \sqrt{2} \operatorname{erf}^{-1}(2u 1)$.
- Transfer of structural properties from U to X.

Exercise

Generate samples from $X^* := \max(X_1, \ldots, X_L)$, given that F^{-1} is available.

- Exponential distribution: $\operatorname{Exp}(\lambda)$ has c.d.f. $F(x) \coloneqq 1 e^{-\lambda x}$, $F^{-1}(u) = -\frac{1}{\lambda} \log(1 u)$. Hence, $X \coloneqq -\frac{1}{\lambda} \log(U) \sim \operatorname{Exp}(\lambda)$.
- Sometimes no explicit expression of the quantile function exists, but efficient numerical approximations are available. E.g., $\Phi^{-1}(u) = \sqrt{2} \operatorname{erf}^{-1}(2u 1)$.
- Transfer of structural properties from U to X.

Exercise

Generate samples from $X^* \coloneqq \max(X_1, \ldots, X_L)$, given that F^{-1} is available.

- Exponential distribution: $\operatorname{Exp}(\lambda)$ has c.d.f. $F(x) \coloneqq 1 e^{-\lambda x}$, $F^{-1}(u) = -\frac{1}{\lambda} \log(1 u)$. Hence, $X \coloneqq -\frac{1}{\lambda} \log(U) \sim \operatorname{Exp}(\lambda)$.
- Sometimes no explicit expression of the quantile function exists, but efficient numerical approximations are available. E.g., $\Phi^{-1}(u) = \sqrt{2} \operatorname{erf}^{-1}(2u 1)$.
- Transfer of structural properties from U to X.

Exercise

Generate samples from $X^* := \max(X_1, \ldots, X_L)$, given that F^{-1} is available.

Setting:

- Target distribution: *X* has density $f : \mathbb{R}^d \to \mathbb{R}_+$
- Auxiliary distribution: *Y* has density $g : \mathbb{R}^d \to \mathbb{R}_+$ and can be sampled in some way.
- There is $c \ge 1$ s.t. $f(x) \le cg(x), x \in \mathbb{R}^d$.

Algorithm (Acceptance–Rejection method)

- 1. Generate (independent) instances
 - $U \sim \mathcal{U}([0,1[) \text{ and } Y.$
- **2.** If $U \leq \frac{f(Y)}{c_R(Y)}$, return *Y*; else go back to 1.

Idea: The (x_1, \ldots, x_d) -component of a uniform distribution on the hypograph $\subset \mathbb{R}^d \times \mathbb{R}_+$ of f has distribution of X.

Setting:

- Target distribution: *X* has density $f : \mathbb{R}^d \to \mathbb{R}_+$
- Auxiliary distribution: *Y* has density $g : \mathbb{R}^d \to \mathbb{R}_+$ and can be sampled in some way.
- There is $c \ge 1$ s.t. $f(x) \le cg(x), x \in \mathbb{R}^d$.

Algorithm (Acceptance–Rejection method)

1. Generate (independent) instances $U \sim \mathcal{U}([0, 1[) \text{ and } Y.$

2. If
$$U \leq \frac{f(Y)}{cg(Y)}$$
, return *Y*; else go back to 1.

Idea: The (x_1, \ldots, x_d) -component of a uniform distribution on the hypograph $\subset \mathbb{R}^d \times \mathbb{R}_+$ of f has distribution of X.

Setting:

- Target distribution: *X* has density $f : \mathbb{R}^d \to \mathbb{R}_+$
- Auxiliary distribution: *Y* has density $g : \mathbb{R}^d \to \mathbb{R}_+$ and can be sampled in some way.

0.4

• There is $c \ge 1$ s.t. $f(x) \le cg(x), x \in \mathbb{R}^d$.

Algorithm (Acceptance–Rejection method)

1. Generate (independent) instances $U \sim \mathcal{U}([0, 1])$ and *Y*.

2. If
$$U \leq \frac{f(Y)}{cg(Y)}$$
, return *Y*; else go back to 1.

Idea: The (x_1, \ldots, x_d) -component of a uniform distribution on the hypograph $\subset \mathbb{R}^d \times \mathbb{R}_+$ of *f* has distribution of *X*.

Setting:

- Target distribution: *X* has density $f : \mathbb{R}^d \to \mathbb{R}_+$
- Auxiliary distribution: *Y* has density $g : \mathbb{R}^d \to \mathbb{R}_+$ and can be sampled in some way.
- There is $c \ge 1$ s.t. $f(x) \le cg(x), x \in \mathbb{R}^d$.

Proof

- Very flexible algorithm, requiring knowledge of the density.
- The number of uniform r.v.s required to generate one sample from the target distribution is random. In fact, the number N of steps required satisfies N ~ Geo(1/c), with E[N] = c.

Example

The double exponential distribution has density $g(x) = \frac{1}{2}e^{-|x|}$, $x \in \mathbb{R}$. With the standard normal density $f = \varphi$, we have

$$f(x) \le cg(x), \quad x \in \mathbb{R}, \quad c := \sqrt{\frac{2e}{\pi}}, \text{ since } \frac{\varphi(x)}{g(x)} = \sqrt{\frac{2}{\pi}}e^{-x^2/2+|x|} \le c.$$

Ziggurat algorithm

- The auxiliary distribution g does not need to be a standard distribution.
- Ziggurat algorithm proposes to use a tailor made distribution with step-function as density, closely following the target density *f* up to the tails.
- Rectangles and tail chosen to have same areas.
- Specialized tail sampling distribution assumed to exist.
- Choose large number of rectangles.

Algorithm (Box–Muller method)

- **1.** Generate ind. $U_1, U_2 \sim \mathcal{U}([0, 1[);$
- **2.** Set $\theta := 2\pi U_2$, $\rho := \sqrt{-2\log(U_1)}$;
- Return two independent standard normal r.v.s X₁ := ρ cos(θ), X₂ := ρ sin(θ).

Algorithm (Polar method)

1. Generate ind. $U_1, U_2 \sim \mathcal{U}(] - 1, 1[)$ and set $S := U_1^2 + U_2^2;$

2. If S < 1, set $r := \sqrt{\frac{-2\ln(S)}{S}}$ return the independent standard normals $Y_1 := rU_1, Y_2 := rU_2$; else, return to 1.

Generation of *d*-dimensional r.v. $X \sim \mathcal{N}(\mu, \Sigma)$ **1.** Generate *d* independent r.v.s $Z_1, \ldots, Z_d \sim \mathcal{N}(0, 1), Z :=$

2. Use $X \stackrel{D}{=} \mu + AZ$, where $\Sigma = AA^{\top}$.

Algorithm (Box–Muller method)

- **1.** Generate ind. $U_1, U_2 \sim \mathcal{U}([0, 1[);$
- **2.** Set $\theta := 2\pi U_2$, $\rho := \sqrt{-2\log(U_1)}$;
- Return two independent standard normal r.v.s X₁ := ρ cos(θ), X₂ := ρ sin(θ).

Algorithm (Polar method)

- 1. Generate ind. $U_1, U_2 \sim \mathcal{U}(] 1, 1[)$ and set $S := U_1^2 + U_2^2;$
- **2.** If S < 1, set $r := \sqrt{\frac{-2 \ln(S)}{S}}$ return the independent standard normals $Y_1 := rU_1, Y_2 := rU_2$; else, return to 1.

Generation of *d*-dimensional r.v. $X \sim \mathcal{N}(\mu, \Sigma)$

1. Generate *d* independent r.v.s $Z_1, \ldots, Z_d \sim \mathcal{N}(0, 1), Z := (Z_1, \ldots, Z_d);$ 2. Use $X \stackrel{D}{=} \mu + AZ$, where $\Sigma = AA^{\top}$.

Exercises

- Loibniz
- **1.** Explain why c in the acceptance–rejection method can only be greater than or equal to 1. What does c = 1 imply?
- 2. Provide a method for generating double exponential random variables using only *one* uniform random number per output. Moreover, justify the bound *c* in the example on generating normal r.v.s by the acceptance–rejection method.
- **3.** Show that (X_1, X_2) generated by the Box–Muller method have the two-dimensional standard normal distribution.

Hint: Show that the density of the two-dimensional uniform variate (U_1, U_2) is transformed to the density of the two-dimensional standard normal distribution.

- **4.** Show that (Y_1, Y_2) generated by the polar method have the two-dimensional standard normal distribution.
- 5. Implement the different methods for generating Gaussian random numbers and compare their efficiency.

1 Generation of non-uniform random numbers

2 Monte Carlo simulation

Computational finance - Lecture 2 · April 23, 2021 · Page 11 (14)

Given a r.v. *X* taking values in some space *X*, and a measurable function $f : X \to \mathbb{R}$. Let I[f; X] := E[f(X)], provided that $E[|f(X)|] < \infty$.

Definition (Monte Carlo simulation)

Let X_1, X_2, \ldots be a sequence of i.i.d. copies of X. Define

$$I_M[f;X] \coloneqq \frac{1}{M} \sum_{i=1}^M f(X_i).$$

Theorem

$$I_M[f;X] \xrightarrow{M \to \infty} a_{.s.} I[f;X].$$

Computational finance – Lecture 2 · April 23, 2021 · Page 12 (14)

Theorem

Suppose that $\sigma^2(f; X) := \operatorname{var} f(X) < \infty$. Letting $\epsilon_M(f; X) := I[f; X] - I_M[f; X]$, we have

$$E\left[\epsilon_M(f;X)^2\right] = \frac{\sigma^2(f;X)}{M}, \quad \lim_{M \to \infty} P\left(\frac{\sigma(f;X)a}{\sqrt{M}} \le \epsilon_M \le \frac{\sigma(f;X)b}{\sqrt{M}}\right) = \Phi(b) - \Phi(a)$$

for the standard normal c.d.f. Φ .

Proof.

• The Monte Carlo method has rate of convergence $\frac{1}{2}$ in the MSE sense.

Computational finance – Lecture 2 · April 23, 2021 · Page 13 (14)

Lnibniz

- Suppose that $X \sim \mathcal{U}([0, 1[^d), d \text{ large}, f \text{ smooth (enough)})$.
- Classical numerical integration: iterative application of 1D quadrature (e.g., trapezoidal rule) using Fubini's theorem. Assume rate of convergence k in Δx in dimension 1.
- Cost model: computation cost is assumed to be proportional to the number of evaluations of the integrand *f*.

- Suppose that $X \sim \mathcal{U}([0, 1[^d), d \text{ large}, f \text{ smooth (enough)})$.
- Classical numerical integration: iterative application of 1D quadrature (e.g., trapezoidal rule) using Fubini's theorem. Assume rate of convergence k in Δx in dimension 1.
- Cost model: computation cost is assumed to be proportional to the number of evaluations of the integrand *f*.

Monte Carlo

- Error $\simeq \frac{1}{\sqrt{M}}$, cost $\simeq M$. Hence, error $\simeq \text{cost}^{-1/2}$
- Error is random.
- Explicit and sharp error control in MSE sense.

Classical numerical integration

- $\Delta x = \frac{1}{N} \dots$ step size of 1D grid.
- Error $\simeq \frac{1}{N^k}$, cost $\simeq N^d$. Hence, error $\simeq \text{cost}^{-k/d}$.
- Error is deterministic.
- No sharp and computable error control.

