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Inversion method

Example (Black–Scholes model)

S T = S 0 exp
(
σWT +

(
r − 1

2σ
2
)

T
)
∼ LN(?, ?), WT ∼ N(0,T ). Simulate?

Simulation of non-uniform distributions
Transformation of independent uniform random variables U1,U2, . . ..

Theorem (Inversion method)

Let F be a c.d.f. and let F−1(u) B inf { x | F(x) ≥ u }. For U ∼ U([0, 1[), X B F−1(U) ∼ F.
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Inversion method – Examples and comments

I Exponential distribution: Exp(λ) has c.d.f. F(x) B 1 − e−λx, F−1(u) = − 1
λ log(1 − u).

Hence, X B − 1
λ log(U) ∼ Exp(λ).

I Sometimes no explicit expression of the quantile function exists, but efficient numerical
approximations are available. E.g., Φ−1(u) =

√
2 erf−1 (2u − 1).

I Transfer of structural properties from U to X.

Exercise

Generate samples from X∗ B max (X1, . . . , XL), given that F−1 is available.
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Acceptance-rejection method

Setting:

I Target distribution: X has density f : Rd → R+

I Auxiliary distribution: Y has density g : Rd → R+ and can be sampled in some way.

I There is c ≥ 1 s.t. f (x) ≤ cg(x), x ∈ Rd.
Algorithm (Acceptance–Rejection
method)
1. Generate (independent) instances

U ∼ U([0, 1[) and Y.

2. If U ≤ f (Y)
cg(Y) , return Y; else go back to 1.

Idea: The (x1, . . . , xd)-component of a uni-
form distribution on the hypograph ⊂ Rd ×

R+ of f has distriution of X.
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Proof
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Comments on the acceptance–rejection method

I Very flexible algorithm, requiring knowledge of the density.

I The number of uniform r.v.s required to generate one sample from the target
distribution is random. In fact, the number N of steps required satisfies N ∼ Geo(1/c),
with E[N] = c.

Example

The double exponential distribution has density g(x) = 1
2 e−|x|, x ∈ R. With the standard

normal density f = ϕ, we have

f (x) ≤ cg(x), x ∈ R, c B

√
2e
π
, since

ϕ(x)
g(x)

=

√
2
π

e−x2/2+|x| ≤ c.
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Ziggurat algorithm

I The auxiliary distribution g does not
need to be a standard distribution.

I Ziggurat algorithm proposes to use a
tailor made distribution with
step-function as density, closely
following the target density f up to
the tails.

I Rectangles and tail chosen to have
same areas.

I Specialized tail sampling distribution
assumed to exist.

I Choose large number of rectangles.
x0 = 0 x1 xn−1 xn = r

0
y n

y n
−1

y 1
y 0

Computational finance – Lecture 2 · April 23, 2021 · Page 8 (14)



Specialized algorithms for the normal distribution

Algorithm (Box–Muller method)

1. Generate ind. U1,U2 ∼ U([0, 1[);

2. Set θ B 2πU2, ρ B
√
−2 log(U1);

3. Return two independent standard
normal r.v.s X1 B ρ cos(θ),
X2 B ρ sin(θ).

Algorithm (Polar method)

1. Generate ind. U1,U2 ∼ U(] − 1, 1[) and
set S B U2

1 + U2
2 ;

2. If S < 1, set r B
√
−2 ln(S )

S return the
independent standard normals
Y1 B rU1, Y2 B rU2; else, return to 1.

Generation of d-dimensional r.v. X ∼ N(µ,Σ)

1. Generate d independent r.v.s Z1, . . . ,Zd ∼ N(0, 1), Z := (Z1, . . . ,Zd);

2. Use X D
= µ + AZ, where Σ = AA>.

Computational finance – Lecture 2 · April 23, 2021 · Page 9 (14)



Specialized algorithms for the normal distribution

Algorithm (Box–Muller method)

1. Generate ind. U1,U2 ∼ U([0, 1[);

2. Set θ B 2πU2, ρ B
√
−2 log(U1);

3. Return two independent standard
normal r.v.s X1 B ρ cos(θ),
X2 B ρ sin(θ).

Algorithm (Polar method)

1. Generate ind. U1,U2 ∼ U(] − 1, 1[) and
set S B U2

1 + U2
2 ;

2. If S < 1, set r B
√
−2 ln(S )

S return the
independent standard normals
Y1 B rU1, Y2 B rU2; else, return to 1.

Generation of d-dimensional r.v. X ∼ N(µ,Σ)

1. Generate d independent r.v.s Z1, . . . ,Zd ∼ N(0, 1), Z := (Z1, . . . ,Zd);

2. Use X D
= µ + AZ, where Σ = AA>.

Computational finance – Lecture 2 · April 23, 2021 · Page 9 (14)



Exercises

1. Explain why c in the acceptance–rejection method can only be greater than or equal to
1. What does c = 1 imply?

2. Provide a method for generating double exponential random variables using only one
uniform random number per output. Moreover, justify the bound c in the example on
generating normal r.v.s by the acceptance–rejection method.

3. Show that (X1, X2) generated by the Box–Muller method have the two-dimensional
standard normal distribution.
Hint: Show that the density of the two-dimensional uniform variate (U1,U2) is
transformed to the density of the two-dimensional standard normal distribution.

4. Show that (Y1,Y2) generated by the polar method have the two-dimensional standard
normal distribution.

5. Implement the different methods for generating Gaussian random numbers and
compare their efficiency.
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Monte Carlo simulation

Given a r.v. X taking values in some space X, and a measurable function f : X → R. Let
I[ f ; X] B E[ f (X)], provided that E[| f (X)|] < ∞.

Definition (Monte Carlo simulation)
Let X1, X2, . . . be a sequence of i.i.d. copies of X. Define

IM[ f ; X] B
1
M

M∑
i=1

f (Xi).

Theorem

IM[ f ; X]
M→∞
−−−−−→

a.s.
I[ f ; X].
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Error control

Theorem

Suppose that σ2( f ; X) B var f (X) < ∞. Letting εM( f ; X) B I[ f ; X] − IM[ f ; X], we have

E
[
εM( f ; X)2

]
=
σ2( f ; X)

M
, lim

M→∞
P

(
σ( f ; X)a
√

M
≤ εM ≤

σ( f ; X)b
√

M

)
= Φ(b) − Φ(a)

for the standard normal c.d.f. Φ.

Proof.

�

I The Monte Carlo method has rate of convergence 1
2 in the MSE sense.
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Comparison of Monte Carlo and classical numerical integration

I Suppose that X ∼ U([0, 1[d), d large, f smooth (enough).

I Classical numerical integration: iterative application of 1D quadrature (e.g., trapezoidal
rule) using Fubini’s theorem. Assume rate of convergence k in ∆x in dimension 1.

I Cost model: computation cost is assumed to be proportional to the number of
evaluations of the integrand f .

Monte Carlo

I Error ' 1√
M

, cost ' M. Hence,

error ' cost−1/2

I Error is random.

I Explicit and sharp error control in MSE
sense.

Classical numerical integration

I ∆x = 1
N . . . step size of 1D grid.

I Error ' 1
Nk , cost ' Nd. Hence,

error ' cost−k/d.

I Error is deterministic.

I No sharp and computable error control.
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