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Generation of nhon-uniform random numbers
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Inversion method %

Example (Black—-Scholes model)

S7=Soexp(oWr +(r— 10?) T) ~ LN(%,?), Wy ~ N(0,T). Simulate?
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Inversion method @

Example (Black—Scholes model)

St =Soexp(oWr +(r - $0?) T) ~ LN(2,?), Wy ~ N(0,T). Simulate?

Simulation of non-uniform distributions

Transformation of independent uniform random variables Uy, U, .. ..
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Inversion method %

Example (Black—Scholes model)

St =Soexp(oWr +(r - $0?) T) ~ LN(2,?), Wy ~ N(0,T). Simulate?

Simulation of non-uniform distributions

Transformation of independent uniform random variables U, U, .. ..

Theorem (Inversion method)

Let F be a c.d.f. and let F~'(u) := inf { x| F(x) > u }. For U ~ U([0, 1[), X :== F~'(U) ~ F.
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Inversion method — Examples and comments @

> Exponential distribution: Exp(2) has c.d.f. F(x) = 1 — e, F~'(u) = =1 log(1 — u).
Hence, X = —4 log(U) ~ Exp(A).
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Inversion method — Examples and comments

> Exponential distribution: Exp(2) has c.d.f. F(x) = 1 — e, F~'(u) = =1 log(1 — u).
Hence, X = —4 log(U) ~ Exp(A).

> Sometimes no explicit expression of the quantile function exists, but efficient numerical
approximations are available. E.g., ®~'(u) = V2erf! Qu-1).
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Inversion method — Examples and comments

> Exponential distribution: Exp(2) has c.d.f. F(x) = 1 — e, F~'(u) = =1 log(1 — u).
Hence, X = —4 log(U) ~ Exp(A).

> Sometimes no explicit expression of the quantile function exists, but efficient numerical
approximations are available. E.g., ®~'(u) = V2erf! Qu-1).

> Transfer of structural properties from U to X.

Generate samples from X* := max (X1, ..., X;), given that F~! is available.
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Acceptance-rejection method

Setting:
» Target distribution: X has density f: RY — R,

> Auxiliary distribution: Y has density g : RY — R, and can be sampled in some way.
» Thereisc > 1 s.t. f(x) < cg(x), x € RY.
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Acceptance-rejection method
Setting:
» Target distribution: X has density f : RY — R,

> Auxiliary distribution: Y has density g : RY — R, and can be sampled in some way.
» Thereisc > 1 s.t. f(x) < cg(x), x € RY.
Algorithm (Acceptance—Rejection

method)
1. Generate (independent) instances
U~ U(O0,1]) and Y.

) .
2. IfU < 20 return Y; else go back to 1.
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Acceptance-rejection method

Setting:

» Target distribution: X has density f: RY — R,
> Auxiliary distribution: Y has density g : RY — R, and can be sampled in some way.
> Thereis ¢ > 1s.t. f(x) < cg(x), x € RZ

3 4
Algorithm (Acceptance—Rejection -
method) S ]
1. Generate (independent) instances ~
U ~U(0,1]) and Y. S
2. IfU < Cfﬂ return Y; else go back to 1. —_
g(Y) o
Idea: The (xi,...,xg)-component of a uni- o |
form distribution on the hypograph c RY x ° ' ' ' ' '
R, of f has distriution of X. 4 2 0 2 4
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Acceptance-rejection method

Setting:
» Target distribution: X has density f : RY — R,
> Auxiliary distribution: ¥ has density g : RY — R, and can be sampled in some way.
» Thereisc > 1s.t. f(x) < cg(x), x € RZ

Algorithm (Acceptance—Rejection

method)
1. Generate (independent) instances
U~UO,1[) and Y.

S .
2. IfU < 2@’ return Y; else go back to 1.

Idea: The (xi,...,xg)-component of a uni-
form distribution on the hypograph c R? x
R, of f has distriution of X.
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Proof
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Comments on the acceptance-rejection method

> Very flexible algorithm, requiring knowledge of the density.

» The number of uniform r.v.s required to generate one sample from the target
distribution is random. In fact, the number N of steps required satisfies N ~ Geo(1/c¢),
with E[N] =

The double exponential distribution has density g(x) = 1e™", x € R. With the standard
normal density f = ¢, we have

f(x) <cg(x), xeR, c:= \/27 since (x) \/ze"‘2 2+ < ¢,
Vg g(x) b
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Ziggurat algorithm

» The auxiliary distribution g does not
need to be a standard distribution.

» Ziggurat algorithm proposes to use a
tailor made distribution with
step-function as density, closely
following the target density f up to
the tails.

> Rectangles and tail chosen to have
same areas.

> Specialized tail sampling distribution
assumed to exist.

» Choose large number of rectangles.

Yo

Y1

0YwWn-
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Specialized algorithms for the normal distribution

Algorithm (Box—Muller method) Algorithm (Polar method)

1. Generate ind. U, U, ~ U([0, 1]); 1. Generate ind. Uy, U, ~ U(] - 1, 1]) and
2. Set:=2xU,, p = \—2log(U)); setS = Ut + Uj;
3. Return two independent standard 2. IfS <1, setr = % return the
normal r.v.s X, := p cos(6), independent standard normals
X, = psin(0). | Y1 =rU,, Yo :=rU;;else, returnto 1. |
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Specialized algorithms for the normal distribution

Algorithm (Box—Muller method) Algorithm (Polar method)

1. Generate ind. U, U, ~ U([0, 1]); 1. Generate ind. Uy, U, ~ U(] - 1, 1]) and
2. Set = 21Uy, p = \—21og(Uy); set§ = Ut + Uj;
3. Return two independent standard 2. IfS <1, setr:= ‘/% return the
normal r.v.s X| = pcos(9), independent standard normals
X5 := psin(6). | Y| =rU;, Y, :=rU;; else, return to 1. |

Generation of d-dimensional r.v. X ~ N(u, X)
1. Generate d independentr.v.s Zy,...,Z; ~ N, 1), Z := (Zy,...,2Zy);
2. Use x 2 u+AZ, where X = AA™.
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Exercises

1. Explain why ¢ in the acceptance—rejection method can only be greater than or equal to
1. What does ¢ = 1 imply?

2. Provide a method for generating double exponential random variables using only one
uniform random number per output. Moreover, justify the bound ¢ in the example on
generating normal r.v.s by the acceptance-rejection method.

3. Show that (X;, X») generated by the Box—Muller method have the two-dimensional
standard normal distribution.

Hint: Show that the density of the two-dimensional uniform variate (U, U,) is
transformed to the density of the two-dimensional standard normal distribution.

4. Show that (Y1, Y>) generated by the polar method have the two-dimensional standard
normal distribution.

5. Implement the different methods for generating Gaussian random numbers and
compare their efficiency.
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Outline

E Monte Carlo simulation
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Monte Carlo simulation

Given a r.v. X taking values in some space X, and a measurable function f : X — R. Let
I[f; X] == E[f(X)], provided that E[|f(X)|] < co.

Definition (Monte Carlo simulation)
Let X1, X», ... be a sequence of i.i.d. copies of X. Define

1 M
Inlf:X1:= = > f(X0.
i=1

Theorem

| A\

Inl ;X1 =5 1113 X0,
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Error control

Suppose that0'2(f; X) = var f(X) < 0. Letting ey (f; X) = I[f; X] — Iy f; X1, we have

27 185
efeutr 7] = CG2. g

<T(f;X)a< <0'(f;X)b

<€y < =®0bh) -
o €M e ) (b) — D(a)

for the standard normal c.d.f. ®.

DJ

» The Monte Carlo method has rate of convergence % in the MSE sense.
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Comparison of Monte Carlo and classical numerical integration %

> Suppose that X ~ U([0, 1[¢9), d large, f smooth (enough).

» Classical numerical integration: iterative application of 1D quadrature (e.qg., trapezoidal
rule) using Fubini’s theorem. Assume rate of convergence k in Ax in dimension 1.

» Cost model: computation cost is assumed to be proportional to the number of
evaluations of the integrand f.
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Comparison of Monte Carlo and classical numerical integration z@’}

» Suppose that X ~ U([0, 1[¢), d large, f smooth (enough).

» Classical numerical integration: iterative application of 1D quadrature (e.qg., trapezoidal
rule) using Fubini’s theorem. Assume rate of convergence k in Ax in dimension 1.

» Cost model: computation cost is assumed to be proportional to the number of
evaluations of the integrand f.

Monte Carlo Classical numerical integration

> Error ~ \/_, cost ~ M. Hence, > Ax = l .. step size of 1D grid.
error ~ cost™!/2 > Error = o, cost = N. Hence,
» Error is random. error ~ cost ¥4,
» Explicit and sharp error control in MSE > Error is deterministic.
sense. | » No sharp and computable error control.
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