

Weierstrass Institute for Applied Analysis and Stochastics

Computational finance

Christian Bayer

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de

1 Introduction

2 Uniform pseudo random number generation

Option pricing

Let (Ω, \mathcal{F}, P) denote a probability space supporting a random variable *S* modelling an asset price. Often, *S* might take values in $C([0, T]; \mathbb{R}^d)$ or $D([0, T]; \mathbb{R}^d)$. Some examples of European options include:

Example

A European *call* option on S^{1} has payoff of the form

$$f(S) = (S_T^1 - K)^+.$$

Example

A *lookback* option might have a payoff

$$f(S) = (S_T^1 - \min_{t \in [0,T]} S_t^1)^+.$$

Example

A (down-and-out) *barrier* option has a payoff

$$f(S) = (S_T^1 - K)^+ \mathbf{1}_{\min_{t \in [0,T]} S_t^1 > B}$$

Assuming that we have already chosen a risk-neutral measure P and payoffs are already discounted, the Europen option pricing problem is of the form:

Compute E[f(S)].

Let X := f(S) and assume $X \in L^1(\Omega, \mathcal{F}, P)$. We try to solve the integration problem E[X].

Classical numerical integration usually not suitable, as the integration problems are often high dimensional and the integrands non-smooth.

Monte Carlo simulation

 (X_i) i.i.d. sequence of copies of $X, M \in \mathbb{N}$. Then

$$\overline{X}_M := \frac{1}{M} \sum_{i=1}^M X_i \xrightarrow[M \to \infty]{a.s.} E[X], \quad E\left[\left(E[X] - \overline{X}_M\right)^2\right] = \frac{\operatorname{var} X}{M}.$$

- How to generate random numbers on a computer?
- How to simulate from a given, complicated (asset price) distribution?
- Speeding up MC simulation by variance reduction.
- Deterministic integration using low discrepancy sequences.

Suppose that $S_t = X_t^1$, where $X_t \in \mathbb{R}^d$ solves a stochastic differential equation (SDE)

$$\mathrm{d}X_t = V(X_t)\mathrm{d}t + \sum_{i=1}^d V_i(X_t)\mathrm{d}W_t^i, \quad X_0 = x \in \mathbb{R}^d,$$

where W^1, \ldots, W^d denote independent Brownian motions (or Levy processes).

Example (Stochastic volatility models)

 $X_t = (S_t, V_t)$, where V_t is the stochastic variance. E.g., the Heston model is defined by

$$dS_t = \sqrt{V_t} S_t (\rho dW_t + \sqrt{1 - \rho^2} dW_t^{\perp}),$$

$$dV_t = \kappa (\theta - V_t) dt + \eta \sqrt{V_t} dW_t.$$

How to simulate from the distribution of *X*?

Computational finance · April 16, 2021 · Page 5 (13)

Libriz

Convention

For a vector field $V : \mathbb{R}^d \to \mathbb{R}^d$ and a function $h : \mathbb{R}^d \to \mathbb{R}$ we set $Vh(x) := \nabla h(x) \cdot V(x)$.

Let $u(t, x) := E[g(X_T) | X_t = x]$. Then

 $\partial_t u(t,x) + Lu(t,x) = 0, \quad u(T,x) = g(x), \quad t \in [0,T], \quad x \in \mathbb{R}^d,$

where

$$Lh(x) := V_0 h(x) + \frac{1}{2} \sum_{i=1}^d V_i^2 h(x), \quad V_0(x) := V(x) - \frac{1}{2} \sum_{i=1}^d DV_i(x) \cdot V_i(x), \quad x \in \mathbb{R}^d.$$

Compute the option price u(0, x) by solving the PDE, using the finite element method or by Fourier methods.

Computational finance · April 16, 2021 · Page 6 (13)

American options prices are solutions to optimal stopping problems.

```
\sup_{\tau \in \mathcal{T}_{0,T}} E[f(S_{\tau})], \quad \mathcal{T}_{0,T} \coloneqq \{0 \le \tau \le T, \ \tau \text{ stopping time}\}.
```

- Important class of options.
- Simple example of a truly high-dimensional problem.
- Stochastic optimal control problem.

1 Introduction

2 Uniform pseudo random number generation

Problem

How to algorithmically generate realizations u_1, u_2, \ldots of i.i.d. random variables U_1, U_2, \ldots distributed according to $\mathcal{U}([0, 1[).$

- Equivalent: Generate realizations *i*₁, *i*₂,... of i.i.d. random variables *I*₁, *I*₂,... uniformly distributed on {0, 1, ..., *m* − 1} for fixed (large enough) *m*. Then set *u*_ℓ := *i*_ℓ/*m*.
- Crucial importance for computations. Do use a trusted, well-established RNG!

Definition

A random number generator (RNG) is a structure $(X, x_0, T, G, \{0, 1, ..., m-1\})$ where X is a finite set (the state space), $x_0 \in X$ is the initial state (the seed), $T : X \to X$ is a transition function, and $G : X \to \{0, ..., m-1\}$ is the output function. We have

$$x_l \coloneqq T(x_{l-1})$$
 and $i_l \coloneqq G(x_l)$ for $l = 1, 2, \ldots$

Good RNGs

Linear congruential generators

 $X = \{0, \dots, m-1\}, G(x) = x, T(x) = (ax + c) \mod m$

- Simple to implement, fast, well-understood theoretically.
- Full period m provided that
 - \triangleright c and a are relatively prime,
 - every prime number dividing m also divides a 1,
 - if *m* is divisible by 4 then so is a 1.
- ► E.g., Numerical Recipes suggests: $m = 2^{32}$, a = 1664525, c = 1013904223
- ► Common weakness: Fix *d* and consider ((*i*_l, *i*_{l+1}, ..., *i*_{l+d-1}))_{l=1,2,...}. While (*I*_l, ..., *I*_{l+d-1}) is uniformly distributed on the set {0, ..., *m* − 1}^d, (*i*_l, *i*_{l+1}, ..., *i*_{l+d-1}) tend to lie on a (possibly) small number of hyperplanes.

Hyperplane property of LCGs

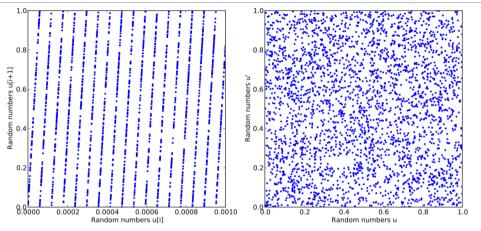


Figure: Hyperplane property for the linear congruential generator with a = 16807, c = 0, $m = 2^{31} - 1$. On the left, we have plotted 2 000 000 points (u_i , u_{i+1}), on the right 3000 pairs (i.e., 6000 random numbers plotted as pairs).

Computational finance · April 16, 2021 · Page 12 (13)

- Use a common source of randomness for all threads.
- Use different RNGs for different threads.
- Use a single RNG split into equally-spaced blocks.
- Use one RNG with random seeds.

