
Weierstrass Institute for
Applied Analysis and Stochastics

Computational finance

Christian Bayer

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de
April 16, 2021



Outline

1 Introduction

2 Uniform pseudo random number generation

Computational finance · April 16, 2021 · Page 2 (13)



Option pricing

Let (Ω,F , P) denote a probability space supporting a random variable S modelling an
asset price. Often, S might take values in C([0,T ];Rd) or D([0,T ];Rd). Some examples of
European options include:

Example
A European call option on
S 1 has payoff of the form

f (S ) = (S 1
T − K)+.

Example
A lookback option might
have a payoff

f (S ) = (S 1
T − min

t∈[0,T ]
S 1

t )+.

Example
A (down-and-out) barrier
option has a payoff

f (S ) = (S 1
T−K)+1mint∈[0,T ] S 1

t >B.

Assuming that we have already chosen a risk-neutral measure P and payoffs are already
discounted, the Europen option pricing problem is of the form:

Compute E
[
f (S )

]
.
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Numerical integration

Let X B f (S ) and assume X ∈ L1 (Ω,F , P). We try to solve the integration problem E[X].

I Classical numerical integration usually not suitable, as the integration problems are
often high dimensional and the integrands non-smooth.

Monte Carlo simulation
(Xi) i.i.d. sequence of copies of X, M ∈ N. Then

XM B
1
M

M∑
i=1

Xi
a.s.
−−−−−→
M→∞

E[X], E
[(

E[X] − XM
)2

]
=

var X
M

.

I How to generate random numbers on a
computer?

I How to simulate from a given,
complicated (asset price) distribution?

I Speeding up MC simulation by variance
reduction.

I Deterministic integration using low
discrepancy sequences.
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Discretization of stochastic differential equations

Suppose that S t = X1
t , where Xt ∈ R

d solves a stochastic differential equation (SDE)

dXt = V(Xt)dt +

d∑
i=1

Vi(Xt)dW i
t , X0 = x ∈ Rd,

where W1, . . . ,Wd denote independent Brownian motions (or Levy processes).

Example (Stochastic volatility models)

Xt = (S t,Vt), where Vt is the stochastic variance. E.g., the Heston model is defined by

dS t =
√

VtS t(ρdWt +

√
1 − ρ2dW⊥t ),

dVt = κ(θ − Vt)dt + η
√

VtdWt.

How to simulate from the distribution of X?

Computational finance · April 16, 2021 · Page 5 (13)



Solving partial differential equations for the price

Convention

For a vector field V : Rd → Rd and a function h : Rd → R we set Vh(x) B ∇h(x) · V(x).

Let u(t, x) B E[g(XT ) | Xt = x]. Then

∂tu(t, x) + Lu(t, x) = 0, u(T, x) = g(x), t ∈ [0,T ], x ∈ Rd,

where

Lh(x) B V0h(x) +
1
2

d∑
i=1

V2
i h(x), V0(x) B V(x) −

1
2

d∑
i=1

DVi(x) · Vi(x), x ∈ Rd.

Compute the option price u(0, x) by solving the PDE, using the finite element method or by
Fourier methods.
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American options

American options prices are solutions to optimal stopping problems.

sup
τ∈T0,T

E[ f (S τ)], T0,T B {0 ≤ τ ≤ T, τ stopping time}.

I Important class of options.

I Simple example of a truly high-dimensional problem.

I Stochastic optimal control problem.
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Uniform random numbers

Problem
How to algorithmically generate realizations u1, u2, . . . of i.i.d. random variables U1,U2, . . .

distributed according toU([0, 1[).

I Equivalent: Generate realizations i1, i2, . . . of i.i.d. random variables I1, I2, . . . uniformly
distributed on {0, 1, . . . ,m − 1} for fixed (large enough) m. Then set u` B i`/m.

I Crucial importance for computations. Do use a trusted, well-established RNG!

Definition

A random number generator (RNG) is a structure (X, x0,T,G, {0, 1, . . . ,m − 1}) where X is
a finite set (the state space), x0 ∈ X is the initial state (the seed), T : X → X is a transition
function, and G : X → {0, . . . ,m − 1} is the output function. We have

xl B T (xl−1) and il B G(xl) for l = 1, 2, . . . .
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Good RNGs
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Linear congruential generators (LCGs)

Linear congruential generators
X = {0, . . . ,m − 1}, G(x) = x, T (x) = (ax + c) mod m

I Simple to implement, fast, well-understood theoretically.

I Full period m provided that
I c and a are relatively prime,
I every prime number dividing m also divides a − 1,
I if m is divisible by 4 then so is a − 1.

I E.g., Numerical Recipes suggests: m = 232, a = 1664525, c = 1013904223

I Common weakness: Fix d and consider ((il, il+1, . . . , il+d−1))l=1,2,.... While (Il, . . . , Il+d−1)
is uniformly distributed on the set {0, . . . ,m − 1}d, (il, il+1, . . . , il+d−1) tend to lie on a
(possibly) small number of hyperplanes.
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Hyperplane property of LCGs

Figure: Hyperplane property for the linear congruential generator with a = 16807, c = 0,
m = 231 − 1. On the left, we have plotted 2 000 000 points (ui, ui+1), on the right 3000 pairs (i.e.,
6000 random numbers plotted as pairs).
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Parallel generation of pseudo random numbers

I Use a common source of randomness for all threads.

I Use different RNGs for different threads.

I Use a single RNG split into equally-spaced blocks.

I Use one RNG with random seeds.
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