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4.2 Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Discretization of stochastic differential equations 43
5.1 The Euler method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Advanced methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Numerical methods for PDEs 59
6.1 The Black–Scholes PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 The finite difference method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 The finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3.1 A step-by-step guide to the finite element method . . . . . . . . . . . . . . . 64
6.3.2 Existence and uniqueness of solutions to the variational problem . . . . . . . 66
6.3.3 Error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3.4 FEM for parabolic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Fourier methods for option pricing 76
7.1 The Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 The Fourier method for the computation of expectations and option prices . . . . . . 80

7.2.1 Applications in option pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2.2 Computation of Greeks by Fourier methods . . . . . . . . . . . . . . . . . . . 84
7.2.3 The multi-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3 The fast Fourier transform (FFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.4 Cosine-series expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

i



A Stochastic differential equations 92
A.1 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.2 The Feynman-Kac formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.3 The first variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
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Chapter 1

Introduction

One of the goals in mathematical finance is the pricing of derivatives such as options. While there are
certainly also many other mathematically and computationally challenging areas of mathematical
finance (such as portfolio optimization or risk measures), we will concentrate on the problems arising
from option pricing. The techniques presented in this course are also often used in computational
finance in general, as well as in many other areas of applied mathematics, science and engineering.

The most fundamental model of a financial market consists of a probability space pΩ,F , P q, on
which a random variable S is defined. In the simplest case, S is R (or r0,8r) valued and simply
means the value of a stock at some time T . However, S might also represent the collection of all stock
prices St for t P r0, T s. Then S is a random variable taking values in the (infinite-dimensional) path
space, i.e., either the space of continuous functions Cpr0, T s;Rdq or the space of càdlàg functions
Dpr0, T s;Rdq taking values in Rd. Then the payoff function of almost any European option can be
represented as fpSq for some functional f .

Example 1.1. The European call option (on the asset S1) is given by

fpSq “
`

S1
T ´K

˘`
.

Example 1.2. An example of a look-back option, consider the contract with payoff function

fpSq “

ˆ

S1
T ´ min

tPr0,T s
S1
t

˙`

.

Example 1.3. A simple barrier option (down-and-out) could look like this (for the barrier B ą 0):

fpSq “
`

S1
T ´K

˘`
1mintPr0,T s S

1
tąB

.

In all these cases, the problem of pricing the option can therefore be reduced to the problem of
computing

(1.1) E rfpSqs .

Indeed, here we have assumed that we already started with the (or a) risk neutral measure P .
Moreover, if the interest rate is deterministic, then discounting is trivial. For stochastic interest
rates, we may assume that the stochastic interest rate is a part of S (depending on the interest rate
model, this might imply that the state space of the stochastic process St is infinite-dimensional, if
we use the Heath-Jarrow-Morton model, see [23]). Therefore, the option pricing problem can still
be written in the form (1.1) in the case of stochastic interest rates by incorporating the discount
factor in the “payoff function” f .

Of course, we have to assume that X :“ fpSq P L1pΩ,F , P q. Then the most general form of the
option pricing problem is to compute ErXs for an integrable random variable X. Corresponding to
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this extremely general modeling situation is an extremely general numerical method called Monte-
Carlo simulation. Assume that we can generate a sequence pXiqiPN of independent copies of X.1

Then, the strong law of large numbers implies that

(1.2)
1

M

M
ÿ

i“1

Xi ÝÝÝÝÑ
MÑ8

ErXs

almost surely. Since the assumptions of the Monte-Carlo simulations are extremely weak, we should
not be surprised that the rate of convergence is rather slow: Indeed, we shall see in Section 2.2 that
the error of the Monte-Carlo simulation decreases only like 1?

M
for M Ñ8 in a certain sense – note

that the error will be random. Nevertheless, Monte-Carlo simulation as a very powerful numerical
method, and we are going to discuss it together with several modifications in Chapter 2.

While the assumption that we can generate samples from the distribution of S might seem
innocent, it poses problems in many typical modeling situations, namely when S is defined as the
solution of a stochastic differential equation (SDE). Let

`

Ω,F , pFtqtPr0,T s, P
˘

be a filtered probability
space satisfying the usual conditions. In many models, the stock price St is given as solution of an
SDE of the form

(1.3) dSt “ V pStqdt`
d
ÿ

i“1

VipStqdB
i
t,

where V, V1, . . . , Vd : Rn Ñ Rn are vector fields and B denotes a d-dimensional Brownian motion.
(If we replace the Brownian motion by a Lévy process, we can also obtain jump-processes in this
way.) In general, it is not possible to solve the equation (1.3) explicitly, thus we do not know the
distribution of the random variable X “ fpSq and cannot sample from it. In Chapter 5 we are
going to discuss how to solve SDEs in a numerical way, in analogy to numerical solvers for ODEs
(ordinary differential equations). Then, the option price (1.1) can be computed by a combination of
the numerical SDE-solver (producing samples from an approximation of fpSq) and the Monte-Carlo
method (1.2) (applied to those approximate samples).

If the option under consideration is “Markovian” in the sense that the payoff function only
depends on the value of the underlying at time T , i.e., the payoff is given by fpST q, then the option
price satisfies a partial differential equation (PDE).2 Indeed, let

ups, tq “ E rfpST q|St “ ss ,

and define the partial differential operator L by

Lgpsq “ V0gpsq `
1

2

d
ÿ

i“1

V 2
i gpsq,

s P Rn, where the vector field V is applied to a function g : Rn Ñ R giving another function
V gpsq :“ ∇gpsq ¨ V psq from Rn to R and V 2

i gpsq is defined by applying the vector field Vi to the
function Vig. Moreover, we have

V0pxq :“ V pxq ´
1

2

d
ÿ

i“1

DVipxq ¨ Vipxq,

with DV denoting the Jacobian matrix of the vector field V . Then we have (under some rather mild
regularity conditions)

(1.4)

$

&

%

B

Bt
upt, sq ` Lupt, sq “ 0,

upT, sq “ fpsq.

1By this statement we mean that we have a random number generator producing (potentially infinitely many)
random numbers according to the distribution of X, which are independent of each other.

2In fact, we can find such PDEs in much more general situations!
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Therefore, another approach to solve our option pricing problem in a numerical way is to use the
well-known techniques from numerics of PDEs, such as the finite difference or finite element methods.
We will present the finite difference method in Section 6.2. We note that a similar partial differential
equation also holds when the SDE is driven by a Lévy process. Then the partial differential operator
L is non-local, i.e., there is an integral term. Note that there are also finite difference and finite
element schemes for the resulting partial integro-differential equations, see [10] and [42], respectively.

There is a very fast, specialized method for pricing European call options (and certain similar
options) on stocks ST , such that the characteristic function of logpST q is known (we take ST to be
one-dimensional). This condition is actually satisfied in quite a large class of important financial
models. Let φT denote the characteristic function of logpST q and let CT “ CT pKq denote the price
of the European call option with strike price K. Moreover, we denote its Fourier transform by ĈT .
Then

ĈT pµq “
φT pµ´ iq

iµ´ µ2
,

i.e., we have an explicit formula for the Fourier transform of the option price.3 Now we only need to
compute the inverse Fourier transform, which is numerically feasible because of the FFT-algorithm.

Unfortunately, most options encountered in practise are American options, and the above treated
methods do not directly apply for American options. Indeed, the pricing problem for an American
option is to find

(1.5) sup
τďT

E rfpSτ qs ,

where τ ranges through all stopping times in the filtered probability space. So, it is not obvious how
to apply any of the methods presented above.

The book of Glasserman [23] is a wonderful text book on Monte Carlos based methods in
computational finance, i.e., it covers Chapter 2 and Chapter 5 in great detail. On the other hand,
Seydel [55] does also treat Monte Carlo methods, but concentrates more on finite difference and
element methods. Wilmott [60] is a very popular, easily accessible book on quantitative finance.
It covers many of the topics of the course, but the level of mathematics is rather low. For the
prerequisites in stochastic analysis, the reader is referred to Øksendal [46] for an introduction of
SDEs driven by Brownian motion. Cont and Tankov [9] is the text book of choice for Lévy processes,
and Protter [47] treats stochastic integration and SDEs in full generality.

3For integrability reasons, the above formula is not true. Indeed, we have to dampen the option price, introducing
a damping parameter. For the precise formulation, see Section 7.
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Chapter 2

Monte Carlo simulation

2.1 Random number generation

The key ingredient of the Monte Carlo simulation is sampling of independent realizations of a given
distribution. This poses the question of how we can obtain such samples on a computer. We will
break the problem into two parts: First we try to find a method to get independent samples from
a uniform distribution (on the interval s0, 1r), then we discuss how to get samples from general
distributions provided we know how to sample the uniform distribution.

Uniform pseudorandom numbers

Computers do not know about randomness, so it is rather obvious that we cannot get truly random
numbers if we trust a computer to provide them for us. Therefore, the numbers produced by a
random number generator (RNG) on a computer are often referred to as pseudorandom numbers. If
the “random” numbers, say, u1, u2, . . . produced by a random number generator, are not random but
deterministic, they cannot really be realizations of a sequence U1, U2, . . . of independent, uniformly
distributed random variables. So what do we actually mean by a random number generator? More
precisely, what do we mean by a good random number generator?

Remark 2.1. Even though the questions raised here are somehow vague, they are really important
for the success of the simulation. Bad random number generators can lead to huge errors in your
simulation, and therefore must be avoided. Unfortunately, there are still many bad random number
generators around. So you should rely on “standard” random number generators which have been
extensively tested. In particular, you should not use a random number generator of your own.
Therefore, the goal of this section is not to enable you to construct and implement a random
number generator, but rather to make you aware of a few issues around random number generation.

Before coming back to these questions, let us first note that a computer usually works with
finite arithmetic. Therefore, there is only a finite number of floating point numbers which can
be taken by the stream random numbers u1, u2, . . .. Therefore, we can equivalently consider a
random string of integers i1, i2, . . . taking values in a set t0, . . . ,mu with ul “ il{m.1 Then the
uniform random number generator producing u1, u2, . . . is good, if and only if the random number
generator producing i1, i2, . . . is a good random number generator for the uniform distribution on
t0, 1, . . . ,m´1u. Of course, this trick has not solved our problems. For the remainder of the section,
we study the problem of generating random numbers i1, i2, . . . on a finite set t0, 1, . . . ,m´ 1u.

Formally, a random number generator can be defined as follows, see L’Ecuyer [34]:

Definition 2.2. A random number generator is a structure pX,x0, T,G, t0, 1, . . . ,m ´ 1uq where
X is a finite set (the state space), x0 P X is the initial state (the seed), T : X Ñ X is a transition

1Integer is here used in its mathematical meaning not in the sense of a data type.
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function, and G : X Ñ t0, . . . ,m ´ 1u is the output function. Given a random number generator,
the pseudorandom numbers are computed via the recursion

xl “ T pxl´1q and il :“ Gpxlq for l “ 1, 2, . . . .

Remark 2.3. There is an immediate unfortunate consequence of this definition: since X is finite,
the sequence of random numbers pilq must be periodic. Indeed, there must exist an index ` such
that x` “ xl for some l ă `. This implies that x``1 “ xl`1 and so forth. Note that this index ` can
occur much later than the first occurrence of ik “ ik1 for some k1 ă k! Nonetheless, Definition 2.2
arguably contains all possible candidates for good random number generators.

The following criteria for goodness have evolved in the literature on random number generators,
see L’Ecuyer [34], L’Ecuyer et al. [36], and Glasserman [23]:

Statistical uniformity: The sequence of random numbers i1, i2, . . . produced by the generator
for a given seed should be hard to distinguish from truly random samples from the uniform
distribution on t0, . . . ,m´ 1u. This basically means that no computationally feasible statisti-
cal test for uniformity should be able to distinguish pilqlPN from a truly random sample. The
restraint to computationally feasible tests is important: since we know that the sequence is
actually deterministic (even periodic), it is easy to construct tests which can make the dis-
tinction. (The trivial test would be to wait for the period; then we see that the pseudorandom
sequence repeats itself.) The requirement of statistical uniformity basically means that we
cannot guess the next number il`1 given only the previously realized numbers i1, . . . , il, at
least not better than by choosing at random among t0, . . . ,m´1u, if we assume that we do not
know the algorithm.2 Note that by statistical uniformity we require more than just uniformity
of the one-dimensional marginals. Indeed, for any dimension d we require that sequences of
d-dimensional outputs are difficult to distinguish from truly random sequences according to
the uniform distribution on t0, . . . ,m´ 1u

d
. Of course, this property would be a consequence

of independence of the numbers i1, i2, . . ..

Theoretical support: Many properties of random number generators, like the period length and
the lattice structure (or hyperplane property), can be studied at a theoretical level; see e.g the
remarks below about linear congruential generators). RNGs with strong theoretical support
should be used and the others should be avoided. In principle, the optimal approach in choosing
random number generators is to first screen their theoretical properties and then submit to
empirical tests those with convincing theoretical support.

Speed: In modern applications, a lot of random numbers are needed. In molecular dynamics sim-
ulations for example, up to 1018 random numbers might be used (during several months of
computer time). In finance, most applications do not require more than, say, 106 random num-
bers. However, the generation of random numbers is often the bottleneck during a simulation.
Therefore, it is very important that the RNG is fast.

Period length: If we need 1018 random numbers, then the period length of the RNG must be at
least as high. In fact, usually the quality of randomness deteriorates well below the actual
period length. As a rule of thumb it has been suggested that the period length should be one
order of magnitude larger than the square of the number of values used; cf. Ripley [49].

Reproducibility: In order to debug code, for instance, it is very convenient to have a way of
exactly reproducing a sequence of random numbers generated before. (By setting the seed
this is, of course, possible for any RNG satisfying Definition 2.2.)

Portability: The RNG should be portable to different computers. Reliable implementations should
be available for different operating systems and various programming languages.

2There is a stronger notion of cryptographic security which requires that we cannot guess il`1 even if we are
intelligent in the sense that we do know and use the RNG. In essence, cryptographic security thus means that we
cannot compute the state xl from i1, . . . , il. While this property is essential in cryptography, it is not important for
Monte Carlo simulations.
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Jumping ahead: By “jumping ahead” we mean the possibility to quickly get to the state xl`n
given the state xl for large n (i.e., without having to generate all the states inbetween). This
is important for parallelization.

How do RNGs implemented on the computer actually look like? The prototypical class of RNGs
are linear congruential generators (LCG). In the class of LCGs, the state space is X “ t0, . . . ,m´1u,
the output function is the identity function xl “ il and the transition map is provided by

(2.1) xl`1 “ paxl ` cq mod m.

Remark 2.4. Linear congruential generators are very well analyzed from a theoretical point of
view, see Knuth [32]. For instance, we know that the RNG (2.1) has full period (i.e., the period
length is m) if c ‰ 0 and the following conditions are satisfied:

• c and a are relatively prime,

• every prime number dividing m also divides a´ 1,

• if m is divisible by 4 then so is a´ 1.

Nonetheless, it should be stressed that a high period is only one of the many requirements identified
above. In particular, the requirement of statistical uniformity is very hard to analyse by theoretical
tools alone. The choice of parameters a, c, m of an LCG is a largely empirical task, where suites of
statistical tests are run on large sequences of pseudo-random numbers.

Source m a c
Numerical Recipes 232 1664525 1013904223
glibc (GCC) 232 1103515245 12345
Microsoft C/C++ 232 214013 2531011
Apple Carbonlib 231 ´ 1 16807 0
Java 248 25214903917 11

Table 2.1: List of linear congruential RNGs as reported in [59].

Table 2.1 presents a list of linear congruential RNGs used in prominent libraries. Note that
m “ 232 is popular, since computing the remainder of a power of 2 in base-2 only means truncating
the representation.

We conclude this discussion by pointing out a common weakness of all linear congruential RNGs.
Fix d ě 1 and consider the sequence of vectors pil, il`1, . . . , il`d´1q indexed by l P N. Note that for
every l the truly random vector pIl, . . . , Il`d´1q is uniformly distributed on the set t0, . . . ,m´ 1ud.
On the other hand, the pseudorandom vectors generated by linear congruential RNGs fail in that
regard: they tend to lie on a (possibly) small number of hyperplanes in the hypercube t0, . . . ,m´1ud;
see Figure 2.1 for an example in d “ 2. It has been proved that they can lie at most on pd!mq1{d

hyperplanes, but often the actual figure is much smaller.
One of the most popular modern random number generators as of today is the Mersenne Twister

algorithm3. This RNG produces 32-bit integers, the state space is F19968
2 (in its most popular

version), where F2 denotes the finite field of size two, and the period is 219937 ´ 1. It is not a linear
congruential generator, but the basis of the transformation map T is a linear map in X – with
additional transformations, though. Note that in this case, the size of the state space (219968) is
much larger than the m “ 232.

Let us finally comment on the parallel generation of random numbers. As we shall see later in
Chapter 2, it is often desirable or even necessary to have the possibility to generate random numbers
on many cores in parallel. Indeed, as a general trend in computing one can observe that computers
are generally no longer accelerated by making processors ever faster, but instead by adding multiple

3Available at http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.
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Figure 2.1: Hyperplane property for the linear congruential generator with a “ 16807, c “ 0,
m “ 231 ´ 1. On the left, we have plotted 2 000 000 points pui, ui`1q, on the right 3000 pairs (i.e.,
6000 random numbers plotted as pairs).

cores. This is especially true in graphics processors, where typical GPUs (graphical processing units)
installed on average computers have dozens or even hundreds of cores, which are increasingly used
also for general numerical purposes. In fact, vendors of GPUs are actively promoting these new
applications; see e.g. NVIDIA [45]. 4 To cite L’Ecuyer et al. [36]:

In highly parallel systems, one may need thousands or even millions of virtual RNGs
which [. . . ] run in parallel without exchanging data between one another, and behave
from the user’s viewpoint just like independent RNGs.

Before continuing, let us have a very cursory look at parallelization in general. Let us consider
a simple program, which runs as a single process on the computer. Such a process can now start
different threads which behave like processes of their own in as much as they can be executed on
different cores in parallel, but have the big distinction that all the threads within a process share
the same memory. This allows them to work with the same data and even use the output of other
threads. As a simple example, think of a for-loop adding all the numbers stored in a very large array
a (of size n): a natural parallelization would be to start l threads each summing up n{l (distinct)
numbers (say, thread 1 computes ar0s` ¨ ¨ ¨`arn{l´1s, thread 2 computes arn{ls` ¨ ¨ ¨`ar2n{l´1s,
. . . ), which are finally added to form the total sum. Hence, shared memory is necessary for successful
parallelization, but it comes with a danger as different threads my end up using the same chunk of
memory in incompatible ways. In general, problems come in the form of a race-condition, when the
output of a process depends on the timing of threads within it, which produces a bug when this
timing is different from the one anticipated by the programmer.

Example 2.5. As an example we consider the following highly simplified (and artificial) example
in the context of RNGs. Let us assume we have one thread (thread 1), which runs an RNG and
puts a random number into a double variable x. Whenever another thread accesses x, thread 1 will
produce a new random number, which is again stored in x. We further have two threads (thread 2
and 3) which use random numbers produced by thread 1 for simulation. Now the intended sequence
of events is that, say, thread 2 picks up the random number stored in x, then thread 1 updates x,
and then thread 3 picks up the updated number in x. But in the absence of safety mechanisms, it
could be that thread 3 is too fast, i.e., it accesses x already when thread 1 has not yet updated x,
resulting in threads 2 and 3 using the same random number instead of independent ones.

4One limitation of GPUs as compared to classical CPUs is the rather small amount of rapidly accessible memory,
which puts real restraints on the size of the seed or the dimensionality of the state space in an RNG context.
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These problems mainly occur because developers for many decades were not concerned with
parallel execution of code, which only became mainstream in the ’90s. Thread-safety is the absence
of any kind of race conditions, guaranteeing the safe execution of parallelized code. It is always
important to check whether libraries or other pieces of code used in a parallel program are thread-
safe!

Now, how can we generate parallel streams of random numbers? Let us describe several possible
ways, along with their advantages and drawbacks:

• Use a central source of randomness for all threads, i.e., one thread produces all the random
numbers for all other threads. As random number generation is often a bottleneck for appli-
cations (especially in a Monte Carlo framework) and data exchange between different threads
is often the bottleneck in parallelization, this simple method is typically not acceptable.

• Use different RNGs for different threads, i.e., either truly different RNGs or the same class
of RNGs but with different parameters. This requires one to have many good parameters /
good RNGs available, and, besides, even if parameters / RNGs are individually good, their
combination may fail the independence requirement. Hence, any such combination needs to
be tested statistically, which makes it cumbersome to use this method for an arbitrary (high)
number of streams.

• Use a single RNG split into equally-spaced blocks. Say we know that we have n threads which
all may require (at most) ν random numbers. We use our favorite RNG with seed x0 for thread
1. We jump ahead to step ν and use the RNG with seed xν for thread 2. In the same way, each
thread uses the same RNG with seeds obtained by jumping ahead ν steps from the seed used
by the previous thread. From a theoretical point of view, this method is most satisfactory,
since good statistical properties of the RNG used imply good statistical properties of the
sequence of streams constructed in that way. However, good RNGs can only be used for this
method when they allow for rapid jumping-ahead. As in most varieties of RNGs the transition
function T has the form of a matrix multiplication (say with a matrix A), this means that
there must be a rapid way of computing Aν , which is often not possible, especially if the state
space X is extremely high-dimensional, such as in the case of the Mersenne Twister. Hence, it
may be simpler to use an RNG constructed by the combination of two simpler RNGs defined
on relatively low-dimensional state spaces. We refer to L’Ecuyer et al. [36] for references on
good RNGs and suitable implementations for this purpose.

• Use one RNG with random seeds. If we have a good RNG with very high period, but bad
jumping-ahead capability like the Mersenne Twister, then we may want to use n copies of
the RNG with n seeds drawn from the state space X with the help of another RNG. While
overlaps between the different streams are possible, they are extremely unlikely. Indeed, if the
period of the RNG is ρ, then the probability of an overlap is approximately p1´nν{ρqn´1. For
instance, L’Ecuyer et al. [36] report that this probability is close to 2´964 when l “ ν “ 220

and ρ “ 21024. An added benefit of this method is that it is applicable when the number of
random streams is not known beforehand, for instance because new random streams need to
be generated depending on random events.

Finally, let us note that reproducibility may become an issue with parallelization, as the orga-
nization of threads and the assignment of tasks to a thread may be determined at execution time
and may differ between two different executions. Hence, it may be advisable to assign streams at an
abstract level, i.e., to distinct computational tasks instead of individual threads, the number and
speed of execution of which may be hard to predict for the programmer.

Non-uniform random numbers

In many applications, we do not need uniform random numbers, but random numbers from another
distribution. In the Black-Scholes model for instance, the stock price has the following dynamics:

ST “ S0 exp

ˆ

σBT `

ˆ

µ´
1

2
σ2

˙

T

˙

.
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Therefore, the stock price ST has a log-normal distribution, while BT has a normal distribution.
Thus, there are two ways to sample the stock price: we can either sample from the log-normal or
from the normal distribution.

For the rest of this section, and indeed, the whole text, we assume that we are given a perfect (i.e.,
truly random) RNG producing a sequence U1, U2, . . . of independent Ups0, 1rq-distributed random
numbers. We will present some general techniques to produce samples from other distributions, and
then some specialized methods for generating normal (Gaussian) random numbers. An exhaustive
treatment of random number generation can be found in the classical book of Devroye [13].

We start with a well-known result from probability theory, which readily implies the first general
method for random number generation.

Proposition 2.6. Let F be a cumulative distribution function and define

F´1puq :“ inf t x | F pxq ě u u .

Given a uniform random variable U , the random variable X :“ F´1pUq has the distribution function
F .

Proof. By definition of F´1 we have F´1puq ď x ðñ F pxq ě u, therefore

P pX ď xq “ P pF´1pUq ď xq “ P pU ď F pxqq “ F pxq.

Proposition 2.6 is the basis of Algorithm 2.7.

Algorithm 2.7 (Inversion method). Given F´1 and U „ Ups0, 1rq, return X “ F´1pUq.

Example 2.8. The exponential distribution with parameter λ ą 0 has the distribution function
F pxq “ 1 ´ e´λx, which is explicitly invertible with F´1puq “ ´ 1

λ logp1 ´ uq. Thus, using the fact
that 1´U is uniformly distributed if U is, we can generate samples from the exponential distribution
by

X “ ´
1

λ
logpUq.

Remark 2.9. If an explicit formula for the distribution function F is available, but not for its
inverse F´1, we can try to use numerical inversion. Of course, this results in random numbers,
which are samples from an approximation of the distribution F only. Nevertheless, if the error
is small and/or the inversion can be done efficiently, this method might be competitive even if
more direct, “exact” methods are available.5 For instance, approximations of the inverse of the
distribution function Φ of the standard normal distribution have been suggested for the simulation
of normal random variables, see Glasserman [23].

Remark 2.10. The transparent relation between the uniform random numbers U1, . . . , Ul and the
transformed random numbers X1, . . . , Xl (with distribution F ) underlying the inversion method
allows to translate many structural properties on the level of the uniform random numbers to cor-
responding properties for the transformed random numbers. For instance, if we want the random
numbers X1, . . . , Xl to be correlated, we can choose the uniforms to be correlated. Another exam-
ple is the generation of the maximum X˚ :“ maxpX1, . . . , Xlq. Apart from the obvious solution
(generating X1, . . . , Xl and finding their maximum), there are also two other possible methods for
generating X˚ based on the inversion method:

• Since X˚ has the distribution function F l, we can compute a sample from X˚ by pF lq´1pU1q.
Efficiency of this method depends on the tractability of F l.

• Let U˚ “ maxpU1, . . . , Ulq. Then, using the monotonicity of F´1, X˚ “ F´1pU˚q. Since we
only have to do one inversion instead of l, this method is usually much more efficient than the
obvious method.

5We should note that many elementary functions like exp and log cannot be evaluated exactly on a computer.
Therefore, one might argue that even the simple inversion situation of Example 2.8 suffers from this defect.
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• Combining both approaches, we see that the c.d.f. of U˚ is given by xl, 0 ď x ď 1, with inverse

function x1{l. So we obtain one sample from the distribution of U˚ simply by U
1{l
1 , and X˚

has the same distribution as F´1pU
1{l
1 q.

Next we present another general purpose method, which is based on the densities of the distri-
butions involved instead of their distribution functions. More precisely, let g : Rd Ñ r0,8r be the
density of a d-dimensional distribution, from which we can sample efficiently (by whatever method).
We want to sample from another d-dimensional distribution with density f . The acceptance-rejection
method works if we can find a bound c ě 1 such that

(2.2) fpxq ď cgpxq, x P Rd.

Algorithm 2.11 (Acceptence-rejection method). Given an RNG producing independent samples X
from the distribution with density g and an RNG producing independent samples U of the uniform
distribution, independent of the samples X.

1. Generate one instance of X and one instance of U .

2. If U ď fpXq{pcgpXqq return X;6else go back to 1.

Proposition 2.12. Let Y be the outcome of Algorithm 2.11. Then Y has the distribution given by
the density f . Moreover, the loop in the algorithm has to be traversed c times on average.

Proof. By construction, Y has the distribution of X conditioned on U ď
fpXq
cgpXq . Thus, for any

measurable set A Ă Rd, we have

P pY P Aq “ P

ˆ

X P A

ˇ

ˇ

ˇ

ˇ

U ď
fpXq

cgpXq

˙

“
P
´

X P A, U ď fpXq
cgpXq

¯

P
´

U ď fpXq
cgpXq

¯ .

We compute the numerator by conditioning on X, i.e.,

P

ˆ

X P A, U ď
fpXq

cgpXq

˙

“

ż

Rd
P

ˆ

X P A, U ď
fpXq

cgpXq

ˇ

ˇ

ˇ

ˇ

X “ x

˙

gpxqdx

“

ż

A

P

ˆ

U ď
fpxq

cgpxq

˙

gpxqdx “

ż

A

fpxq

cgpxq
gpxqdx

“
1

c

ż

A

fpxqdx.

On the other hand, a similar computation shows that P
´

U ď fpXq
cgpXq

¯

“ 1
c , and together we get

P pY P Aq “

ż

A

fpxqdx.

Moreover, we have seen that the probability that the sample X is accepted is given by 1{c. Since the
different runs of the loop in the algorithm are independent, this implies that the expected “waiting
time” is c, the expectation of a geometric distribution with parameter 1{c.

Naturally, we want c to be as small as possible. That is, in fact, the tricky part of the endeavour.
Exercise 2.2 asks for a method to sample normal random variables starting from the exponential
distribution, which we can sample by Example 2.8.

6Note that P pgpXq “ 0q “ 0.

10



Example 2.13. The double exponential distribution (with parameter λ “ 1) has the density gpxq “
1
2 expp´ |x|q for x P R. Let f “ ϕ denote the density of the standard normal distribution. Then

ϕpxq

gpxq
“

c

2

π
e´

x2

2 `|x| ď

c

2e

π
« 1.315 “: c.

Although the acceptance-rejection algorithm is a very general and exact transformation algo-
rithm, i.e., if fed with truly random numbers it will produce random numbers which are exactly
distributed according to the desired density, it can be quite inefficient if the parameter c is large.
Marsaglia and Tsang [41] have constructed a fast and efficient variant of the acceptance-rejection
algorithm, which is still applicable in the majority of cases. For reasons to become clear later, they
call their algorithm Ziggurat algorithm.

Like in the acceptance-rejection algorithm, the fundamental idea of the Ziggurat algorithm is
based on the principle that sampling from the distribution given by a (say, univariate) density f is
equivalent to sampling a point from the (say, bi-variate) uniform distribution in the area between 0
and the graph of f . The situation would be especially simple if this area was “Ziggurat” shaped, i.e.,
had the form of rectangles (parallel to the abscissa) put on top of each other. In this case, we could
first choose the rectangle at random (according to their respective volumes) and then we would only
have to sample a uniform random number on the lower side of the rectangle – note that the second
coordinate of the chosen random number in R2 does not really matter for the acceptance-rejection
method, as long as it is guaranteed that the two-dimensional random variate is below the graph
of the density. Now the idea of the Ziggurat algorithm is simply to approximate the area under
the graph by such a Ziggurat-shaped polygon using tabulated values for the respective density, and
accompany this by a classical acceptance-rejection method for the “remainder” of the area.

More precisely, assume we are given a density f : r0,8rÑ r0,8r which is monotonically de-
creasing like the density of the exponential distribution. Moreover, fix some n P N and assume we
aregiven a sequence 0 “ x0 ă x1 ă ¨ ¨ ¨ ă xn such that the following condition holds with yi :“ fpxiq,
i “ 0, . . . , n:

(2.3) xipyi´1 ´ yiq “ xnyn `

ż 8

xn

fpxqdx “: v, i “ 1, . . . , n´ 1.

Obviously, the values x0, . . . , xn depend on the distribution under consideration and on the numer-
ical parameter n. Hence, these values are best treated as pre-computed, tabulated parameters; we
will comment further below.

Equation (2.3) means that the areas of the n´1 rectangles with corners p0, yiq, pxi, yiq, pxi, yi´1q

and p0, yi´1q (denoted by Ri), i “ 1, . . . , n´1, are all equal to v, just as the area of the last rectangle
with corners p0, 0q, pxn, 0q, pxn, ynq and p0, ynq together with the area below the graph f on rxn,8r.
This surface will be denoted by Rn. Moreover, the area below the graph of f is contained in the
surface

Ťn
i“1Ri composed of all the surfaces described above. Furthermore, we assume that we have

a specialized algorithm for sampling from the tail distribution X „ f conditioned on X ą xn. See
also Figure 2.2.

Algorithm 2.14 (Ziggurat algorithm). Goal: Sample a random variable X „ f .

1. Generate i uniform in t1, . . . , nu.

2. If i “ n, go to (6).

3. Generate U1 „ Up0, 1q and set x :“ U1xi.

4. If x ă xi´1 return x.

5. Otherwise, generate U2 „ Up0, 1q and set y :“ yi ` U2pyi´1 ´ yiq. If y ď fpxq return x; else
go back to (1).

6. Generate U1 „ Up0, 1q and set x :“ vU1{yn.

11



x0 = 0 x1 xn−1 xn = r

0
y n

y n
−1

y 1
y 0

Figure 2.2: Ziggurat algorithm

7. If x ă xn, return x. Otherwise, return a sample from the tail distribution X|X ą xn.

Remark 2.15. Most of the time the algorithm stops in step (4), in which case we save one uniform
random number generation and do not even need to evaluate f once. Moreover, it is obvious how
to extend the algorithm to a symmetric or uni-modal distribution.

We round up this discussion with two examples, namely the Ziggurat algorithm for the ex-
ponential and the standard normal distributions. In both cases, the Ziggurat algorithm is highly
competitive in speed.

Example 2.16. For the exponential distribution Expp1q, we can use as tail sample xn ´ logU for
U „ Up0, 1q. For n “ 255 (a typical value), a possible choice of xn is 7.697 . . . implying v “ 0.0039 . . .,
which results in an efficiency of 98.9%, i.e., the probability of needing only one iteration of the
algorithm to produce one sample of the target distribution is 98.9%.

Example 2.17. For the standard normal distribution N p0, 1q, for n “ 255, a possible choice of xn

12



is 3.65 . . . implying v “ 0.0049 . . ., which results in an efficiency of 99.33%. [41] suggest the following
algorithm for sampling from the tail distribution:

1. Generate U1, U2 „ Up0, 1q.

2. Set x :“ ´ logpU1q{xn, y :“ ´ logU2.

3. If 2y ą x2, return x` xn, else go back to (1).

We conclude this section by presenting two methods designed specifically for generating standard
normal random numbers. The Box–Muller method and the polar method are probably two of the
simplest such methods, although not the most efficient ones. A comprehensive list of random number
generators specifically available for Gaussian random numbers is available in the survey article by
Thomas et al. [57].

Algorithm 2.18 (Box–Muller method). 1. Generate two independent uniform randoms num-
bers U1, U2;

2. Set θ “ 2πU2, ρ “
a

´2 logpU1q;

3. Return two independent standard normals X1 “ ρ cospθq, X2 “ ρ sinpθq.

Algorithm 2.19 (Polar method). 1. Generate two independent uniform random numbers U1, U2

from the interval s ´ 1, 1r;

2. Set S “ U2
1 ` U

2
2 ;

3. If S ă 1, return the independent standard normals

Y1 “ U1

c

´2 lnpSq

S
and Y2 “ U2

c

´2 lnpSq

S
;

else, return to 1.

The polar method is more efficient than the Box–Muller algorithm, because it avoids the evaluation
of the computationally expensive trigonometric functions.

Remark 2.20. In order to generate samples from the general, d-dimensional normal distribution
N pµ,Σq, we first generate a d-dimensional vector of independent standard normal variates X “

pX1, . . . , Xdq using, for instance, the Box-Muller method. Then we obtain the sample from the
general normal distribution by

µ`AX,

where A satisfies Σ “ AAT . Note that A can be obtained from Σ by Cholesky factorization.

Exercise 2.1. Explain why c in (2.2) can only be greater than or equal to 1. What does c “ 1
imply?

Exercise 2.2. Provide a method for generating double exponential random variables using only
one uniform random number per output. Moreover, justify the bound c in Example 2.13.

Exercise 2.3. Show that pX1, X2q generated by the Box–Muller method have the two-dimensional
standard normal distribution.
Hint: Show that the density of the two-dimensional uniform variate pU1, U2q is transformed to the
density of the two-dimensional standard normal distribution.

Exercise 2.4. Show that pY1, Y2q generated by the polar method have the two-dimensional standard
normal distribution.

Exercise 2.5. Implement the different methods for generating Gaussian random numbers and
compare their efficiency.
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2.2 Monte Carlo simulation

The Monte Carlo simulation method is one of the most important numerical methods available.
It was developed by giants of mathematics and physics like J. von Neumann, E. Teller, S. Ulam
and N. Metropolis during the development of the H-bomb. A short account of the origins of Monte
Carlo simulation can be found in Metropolis [43]. Today, it is widely used in fields like statistical
mechanics, particle physics, computational chemistry, molecular dynamics, computational biology
and, of course, computational finance! An overview of the mathematics behind the Monte Carlo
method is available, for instance, in the survey paper of Caflisch [6] or, as usual, in Glasserman [23].

The Monte Carlo method

As we have already discussed in the introduction, we want to compute the quantity

(2.4) Irf ;Xs :“ E rfpXqs ,

assuming only that fpXq is integrable, i.e., Ir|f | ;Xs ă 8, and that we can actually sample from
the distribution of X. Taking a sequence X1, X2, . . . of independent realizations of X, the law of
large numbers implies that

(2.5) Irf ;Xs “ lim
MÑ8

1

M

M
ÿ

i“1

fpXiq, P´ a.s.

However, in numerics we are usually not quite satisfied with a mere convergence statement like
in (2.5). Indeed, we would like to be able to control the error, i.e. we would like to have an error
estimate or bound, and we would also like to know how fast the error goes to zero if we increase M .
Before continuing the discussion, let us formally introduce the Monte Carlo integration error εM by

(2.6) εM “ εM pf ;Xq :“ Irf ;Xs ´ IM rf ;Xs, where IM rf ;Xs :“
1

M

M
ÿ

i“1

fpXiq

is the estimate based on the first M samples. Note that IM rf ;Xs is an unbiased estimate for Irf ;Xs
in the statistical sense, i.e. E rIM rf ;Xss “ Irf ;Xs, implying E rεM s “ 0. Let us also introduce the
mean square error and its square root, the error in L2, via

(2.7) MSErIM s “ E
“

εM pf ;Xq2
‰

and RMSErIM s “ E
“

εM pf ;Xq2
‰1{2

.

The central limit theorem immediately implies both an error bound and a convergence rate provided
that fpXq is square integrable.

Proposition 2.21. Let σ “ σpf ;Xq ă 8 denote the standard deviation of the random variable
fpXq. Then the root mean square error satisfies

E
“

εM pf ;Xq2
‰1{2

“
σ
?
M
.

Moreover,
?
MεM pf ;Xq is asymptotically normally distributed with standard deviation σpf ;Xq.

That is, for any constants a ă b P R we have

lim
MÑ8

P
ˆ

σa
?
M
ă εM ă

σb
?
M

˙

“ Φpbq ´ Φpaq,

where Φ denotes the cumulative distribution function of the standard normal random variable.

Proof. Using the independence of the Xi’s and the fact that IM rf ;Xs is an unbiased estimator of
Irf ;Xs, we get

E
“

ε2M
‰

“ var

˜

1

M

M
ÿ

i“1

fpXiq

¸

“
1

M2

M
ÿ

i“1

varpfpXiqq “
M varpfpX1qq

M2
“
σ2

M
.
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In addition, from the central limit theorem we know that

řM
i“1 fpXiq ´M ¨ Irf ;Xs

σ
?
M

ÝÝÝÝÑ
MÑ8

N p0, 1q

which yields the asymptotic normality of the error.

Remark 2.22. Proposition 2.21 has two important implications:

1. The error is probabilistic: there is no deterministic error bound. In other words, for a particular
simulation and a given sample size M , the error of the simulation can be arbitrarily large.
However, large errors only occur with probabilities decreasing in M .

2. The “typical” error, e.g. the root mean square error
a

E rε2M s, decreases to zero like 1{
?
M . In

other words, if we want to increase the accuracy of the result tenfold, i.e. if we want to obtain
one more significant digit, then we have to increase the sample size M by a factor 102 “ 100.
We thus say that the Monte Carlo method converges with rate 1{2.

Let us now discuss the merits of Monte Carlo simulation. We assume, for simplicity, that X is
a d-dimensional uniform random variable, i.e.,

Irf s :“ Irf ;U s “

ż

r0,1sd
fpxqdx.

Observe that the dimension of the space did not enter into our discussion of the convergence rate
and of the error bounds at all. This is remarkable if we compare the Monte Carlo method to
traditional methods for numerical integration. Those methods are usually based on a grid 0 ď
x1 ă x2 ă ¨ ¨ ¨ ă xN ď 1 of arbitrary length N . The corresponding d-dimensional grid is simply
given by tx1, . . . , xNu

d
, a set of size n :“ Nd. The function f is evaluated on the grid points and an

approximation of the integral is computed based on interpolation of the function between grid points
by suitable functions (e.g. piecewise polynomials), whose integral can be explicitly computed. Given

a numerical integration method of order k, the error is then proportional to p1{Nq
k
. However, we

have to evaluate the function on n points, implying that the total computational work is proportional
to n rather then N . Therefore, the accuracy in terms of the complexity n, the ratio of the error
relative to the computational work, behaves like n´k{d. Thus, the rate of convergence in terms of
the computational cost is only k{d, which rapidly decreases in the dimension d. This phenomenon
is known as the curse of dimensionality : methods which are very well suited in low dimensions,
deteriorate very fast in higher dimensions.

The curse of dimensionality is the main reason for the popularity of the Monte Carlo method. As
we will see later, in financial applications the dimension of the state space can easily be in the order
of 100 (or much higher), which already makes traditional numerical integration methods completely
unfeasible. In other applications, like molecular dynamics, the dimension of the state space might
be in the magnitude of 1012!

Error control and confidence intervals

Next, we discuss how to control the error of the Monte Carlo method taking its random nature into
account. The question here is, how do we have to choose M , the only parameter available, such that
the probability of an error larger than a given tolerance level ε ą 0 is smaller than a given δ ą 0,
symbolically

P
`

|εM pf ;Xq| ą ε
˘

ă δ.

Fortunately, this question is already almost answered in Proposition 2.21. Indeed, it implies that

P p|εM | ą εq “ 1´ P
ˆ

´
σε̃
?
M
ă εM ă

σε̃
?
M

˙

„ 1´ Φpε̃q ` Φp´ε̃q “ 2´ 2Φpε̃q,
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where ε̃ “
?
Mε{σ. Of course, the normalized Monte Carlo error is only asymptotically normal,

which means the equality between the left and the right hand side of the above equation only holds
for M Ñ8, which is signified by the “„”-symbol. Equating the right hand side with δ and solving
for M yields

(2.8) M “

ˆ

Φ´1

ˆ

2´ δ

2

˙˙2
σ2

ε2
.

Thus, as we have already observed before, the number of samples depends on the tolerance like
1{ε2.

Remark 2.23. This analysis tacitly assumed that we know σ “ σpf ;Xq. Since we started the
whole endeavor in order to compute the mean of fpXq, Irf ;Xs, it is, however, very unlikely that
we already know the variance of fpXq. Therefore, in practice we will have to replace σpf ;Xq by
a sample estimate. See Exercise 2.6 for a sample estimator of σ. (This is not unproblematic: what
about the Monte Carlo error for the approximation of σpf ;Xq?)

In addition, since the Monte Carlo estimator is a random variable, when computing expectations
via this method it is not very helpful to report just the value IM rf ;Xs. This estimator is a function
of the sample size M and we do not know how accurate the estimation is unless we also have
information about the sample size. Therefore, it is more meaningful to report the estimator and
some confidence interval.

Definition 2.24. Let Z be a random variable and consider some level α P p0, 1q. The 1 ´ α-level
confidence interval is defined by

r´z1´α2
, z1´α2

s

such that the critical number z1´α2
satisfies:

P
´

|Z| ď z1´α2

¯

“ 1´ α.(2.9)

The critical number z1´α2
for a given level 1´ α can be computed from the inverse cumulative

distribution function. Consider, for example, the normal distribution; then we get that

z1´α2
“ Φ´1

´

1´
α

2

¯

.

In particular, using the inverse cdf of the normal distribution, we get that for α “ 5% the critical
number equals 1.96, while for α “ 1% it equals 2.58.

Now, we can use the asymptotic normality of the Monte Carlo error εM to derive confidence
intervals for IM rf ;Xs. Indeed, using Proposition 2.21 and denoting εM “ I ´ IM , we have

1´ α « P
ˆ

´
σz1´α2?
M

ď εM ď
σz1´α2?
M

˙

“ P
ˆ

IM ´
σz1´α2?
M

ď I ď IM `
σz1´α2?
M

˙

.

Thus, the 1´ α-level confidence interval for I “ Irf ;Xs is

CIαrIM s :“

„

IM ´
σz1´α2?
M

, IM `
σz1´α2?
M



.(2.10)

Example 2.25. We consider the Black–Scholes–Samuelson model, where the dynamics of the un-
derlying asset have the form

dSt “ rStdt` σStdWt, S0 “ s P R`,(2.11)
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where W is a standard Brownian motion, while we assume we are already under the martingale
measure. We want to compute the price of a European call option with payoff function

fpST q “ pST ´Kq
`,(2.12)

together with the 95% and 99% confidence intervals. Algorithm 1 contains pseudo-code for the
Black–Scholes formula for a European call, while Algorithm 2 contains pseudo-code for the compu-
tation of the Monte Carlo price and the RMSE. An outcome of this example is shown in Figure 2.3,
where the Monte Carlo price for different sample sizes together with the corresponding confidence
intervals are plotted together with the Black–Scholes price. One should notice how the Monte Carlo
price converges to the Black–Scholes price and how the confidence intervals shrink as the sample
size M increases.

Algorithm 1 Pseudo-code for the Black–Scholes formula

1: input: S0,K, T, r, σ
2: d1 Ð plog pS0{Kq ` pr ` σ

2{2q ¨ T q{pσ ¨
?
T q

3: d2 Ð plog pS0{Kq ` pr ´ σ
2{2q ¨ T q{pσ ¨

?
T q

4: price Ð S0 ¨ Φpd1q ´K ¨ e´r¨T ¨ Φpd2q

5: output: price

Algorithm 2 Pseudo-code for MC simulation in the Black–Scholes model

1: input: S0,K, T, r, σ,M
2: W ÐM independent samples from the standard normal distribution
3: S Ð S0 ¨ exppσ ¨

?
T ¨W ` pr ´ σ2{2q ¨ T q

4: C Ð expp´r ¨ T q ¨maxtS ´K, 0u
5: price Ð sum{C}/M
6: varest Ð sumtpprice´ Cq2u{pM ´ 1q
7: rmse Ð

a

varest{M
8: output: price, rmse

Figure 2.3: Convergence of the Monte Carlo price of a European call option to the Black–Scholes
price as a function of the sample size M , together with the 95% and 99% confidence intervals.
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Variance reduction

Figure 2.4: Improved
convergence rate vs.
improved constant.

Although there are no obvious handles on how to increase the convergence
rate in Proposition 2.21, we might be able to improve the constant factor in
the RMSE by reducing the variance σpf ;Xq2 “ varpfpXqq. The idea is to
obtain, in a systematic way, random variables Y and functions g such that
ErgpY qs “ ErfpXqs, but with smaller variance varpgpY qq ă varpfpXqq.
Inserting σpg;Y q “

a

varpgpY qq into (2.8) shows that such an approach
will decrease the computational work—proportional to the number of
trajectories—provided that the generation of samples from gpY q is not
prohibitively more expensive than the generation of samples from fpXq.
This leads then to a faster numerical scheme, since the same error can be
achieved with fewer samples.

A pictorial representation of the potential improvement is available in
Figure 2.4, where the log-error (y-axis) is plotted against the log-number
of samples (x-axis). The convergence rate of the Monte Carlo method is
depicted with the solid line with slope 1

2 . An improved convergence rate would lead to a line with
different slope, e.g. the dashed line with slope 1 in the figure above. On the other hand, an improved
constant leads to a parallel shift of the line with slope 1

2 , see the dotted line in the figure above.

Antithetic variates

Let us start with the following simple observation: If U has the uniform distribution, then the
same is true for 1´U . Similarly, if B has the d-dimensional normal distribution, then so does ´B.
Therefore, these transformations do not change the expected value ErfpXqs, if X “ U or X “ B.7

In general, assume there exists a (simple) transformation rX having the same law as X, such that a

realization of rX can be computed from a realization of X by a deterministic transformation. Define
the antithetic variates Monte Carlo estimate by

(2.13) IAM rf ;Xs “
1

M

M
ÿ

i“1

fpXiq ` fp rXiq

2
.

Since ErpfpXiq ` fp rXiqq{2s “ ErfpXqs, (2.13) is another unbiased estimator for Irf ;Xs. If we

assume that the actual simulation of pfpXiq ` fp rXiqq{2 takes at most two times the computing
time as the simulation of fpXiq, then the computing time necessary for the computation of the
estimate IAM rf ;Xs does not exceed the computing time for the computation of I2M rf ;Xs.8 Then,
the application of antithetic variates makes sense if the mean square error of IAM rf ;Xs is smaller
than the MSE of I2M rf ;Xs, i.e. if

var

ˆ

fpXiq`fpĂXiq
2

˙

M
ă

varpfpXiqq

2M
.

This is equivalent to varpfpXiq` fp rXiqq ă 2 varpfpXiqq. Since varpfpXiq` fp rXiqq “ 2 varpfpXiqq`

2 covpfpXiq, fp rXiqq, antithetic variates can speed up a Monte Carlo simulation if and only if

(2.14) cov
`

fpXq, fp rXq
˘

ă 0.

In other words, the antithetic variates Monte Carlo method should be used when the negative
dependence between the input variables X and rX (think of U and 1 ´ U or B and ´B) produces

7Since many random number generators for non-uniform distributions are based on uniform ones, we can often
view our integration problem as being of this type.

8Since we only need to sample one random number Xi and obtain rXi by a simple deterministic transformation,
in many situations it is much faster to compute pfpXiq ` fp rXiqq{2 than to compute two realizations of fpXiq.

18



also negative dependence between the output variables fpXq and fp rXq. A simple, sufficient condition
for the latter is the monotonicity of the function f that maps inputs to outputs.

The calculations above yield also the following decomposition for the MSE of the antithetic
variates Monte Carlo method:

MSE
“

IAM
‰

“ MSE
“

I2M
‰

`
cov

`

fpXq, fp rXq
˘

2M
.(2.15)

In other words, the improvement over the standard Monte Carlo method, if any, comes in the form
of an additive factor (which obviously tends to zero as M Ñ8). The larger the negative dependence

between fpXq and fp rXq, the larger this factor as well, for fixed M .

Remark 2.26. Exercise 2.9 asks the reader to justify the application of the antithetic variates
Monte Carlo method for pricing a European call option in the Black–Scholes model, theoretically
and by computing the sample covariance. Once the sample estimator for the covariance is coded,
one could notice that the speed-up factor depends on the strike K (all other parameters equal), and
is larger for deep-in-the-money options, i.e. for K Ñ 0.

Control variates

Assume there exists a random variable Y and a functional g such that we know the exact value of
Irg;Y s “ ErgpY qs. (Note that we allow for Y “ X.) Then obviously

Irf ;Xs “ E rfpXq ´ λpgpY q ´ Irg;Y sqs ,

for any deterministic parameter λ. Thus, a Monte Carlo estimate for Irf ;Xs is given by

(2.16) IC,λM rf ;Xs :“
1

M

M
ÿ

i“1

´

fpXiq ´ λgpYiq
¯

` λIrg;Y s,

where pXi, Yiq are independent realizations of pX,Y q. Similar to the situation with antithetic vari-

ates, we may assume that the simulation of IC,λM rf s takes at most c times the computing time of the
simulation of IM rf s, where c ą 1 often is quite small, especially if X “ Y . We are going to choose
the parameter λ such that varpfpXq ´ λgpY qq is minimized. A simple calculation yields that

varpfpXq ´ λgpY qq “ varpfpXqq ´ 2λ covpfpXq, gpY qq ` λ2 varpgpY qq,

which is minimized by choosing λ to be equal to

(2.17) λ‹ “
covpfpXq, gpY qq

varpgpY qq
.

Applying Proposition 2.21, we get that the mean square error for the standard and the control
variates Monte Carlo simulations compare as follows:

MSE
“

IC,λ
‹

M

‰

“
varpfpXqq

M
p1´ ρ2q ď

varpfpXqq

M
“ MSE

“

IM
‰

,(2.18)

where ρ denotes the correlation coefficient between fpXq and gpY q. In other words, the improvement
of the control variates Monte Carlo simulation over the standard Monte Carlo method comes in the
form of a multiplicative factor. Assuming that the computational work per realization is c times
higher using control variates, (2.8) implies that the control variates technique is 1{pcp1´ ρ2qq-times
faster than standard Monte Carlo. In particular, the improvement in speed from the use of control
variates is larger as the correlation between fpXq and gpY q becomes higher. If, for example, ρ “ 0.8
and c “ 2 the speed-up factor equals 1.38, while if ρ “ 0.95 the speed-up factor equals 5.

Remark 2.27. We can determine the optimal factor λ‹ only if we know covpfpXq, gpY qq and
varpgpY qq. If we are not in this highly unusual situation, we can use sample estimates instead—see
Exercise 2.6—obtained by (standard) Monte Carlo simulations with a smaller sample size.
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A natural question now is how to find, or construct, good control variates. There does not exist
a general answer since these are typically specified by the problem at hand. However, in option
pricing the underlying asset provides a virtually universal source of control variates, because

e´rTErSts “ S0(2.19)

for every t ě 0, assuming that E denotes the expectation with respect to a martingale measure.
Moreover, simple options that admit a closed-form solution can be used as control variates for
the pricing of more complex derivatives, see e.g. Exercise . . . with geometric and arithmetic Asian
options. In additions, simple models can be used as control variates for option pricing in more
advanced models; for example, the Black–Scholes model can serve as control variate for stochastic
volatility models.

Example 2.28. Assume we want to compute the price of an option with payoff fpST q and we are
given a sample S1

T , . . . , S
M
T from the law of ST . The control variates Monte Carlo estimator takes

the form

IC,λ
‹

M rf ;ST s “
1

M

M
ÿ

i“1

!

fpSiT q ´ λ
‹SiT

)

` λ‹S0,(2.20)

where λ‹ can be also replaced by the sample estimator λ‹M . The interest rate is set to zero, for
simplicity. If fpST q “ pST ´Kq

`, i.e. we are pricing a call option, then

λ‹ “
cov

`

pST ´Kq
`, ST

˘

varpST q
,(2.21)

and the efficiency of the control variate depends, essentially, on the strike K (all other parameters
equal). In particular, for K “ 0 we obviously have perfect correlation and the method is very
effective. On the other hand, for deep out-of-the-money options (i.e. for large K) the correlation
becomes quite low and the effectiveness of the method deteriorates.

Stratified sampling

The main principle of stratified sampling is to partition the sample space into disjoint subsets,
called strata, and to constrain the number of samples selected from each stratum. Let A1, . . . , AL
be disjoint subsets of Rd such that PpX P YlAlq “ 1. Then, using the law of total probability, we
can estimate fpXq as follows

ErfpXqs “
L
ÿ

l“1

ErfpXq|X P AlsPpX P Alq “
L
ÿ

l“1

plErfpXq|X P Als,(2.22)

where pl “ PpX P Alq. In the standard Monte Carlo method, we generate X1, . . . , XM which
are independent and distributed identically to X, and the fraction of samples that belong to each
stratum Al is in general not equal to pl, although it converges to pl as M Ñ 8. In contrast, in
stratified sampling we preselect what fraction of samples should belong to each stratum, and every
sample drawn from Al has the distribution of X conditional on X P Al.

Let M denote the total size of the sample. For every l “ 1, . . . , L, let ql “
Ml

M denote the
fraction of observations from the stratum Al, and Xlk, k “ 1, . . . ,Ml, be i.i.d. realizations from the
distribution of X conditional on X P Al. An unbiased estimator for the expectation in the RHS of
(2.22) is provided by the sample average, i.e. by 1

Ml

řMl

k“1 fpXlkq. Therefore, the stratified sampling
estimator takes the form

ISTM rf ;Xs “
L
ÿ

l“1

pl
1

Ml

Ml
ÿ

k“1

fpXlkq “
1

M

L
ÿ

l“1

pl
ql

Ml
ÿ

k“1

fpXlkq.(2.23)
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Remark 2.29. The strata can also depend on another variable Z, called the stratifying variable,
which is possibly dependent on X. In that case, the estimator has the same form, i.e.

ISTM rf ;Xs “
1

M

L
ÿ

l“1

pl
ql

Ml
ÿ

k“1

fpXlkq,(2.24)

where now pl “ PpZ P Alq and pXlkqk are i.i.d. realizations from the distribution of X conditional
on Z P Al. We will use this more general formulation from now on.

Therefore, in order to effectively implement a stratified sampling estimator we should select
and optimize the following variables: the stratification variable Z, the strata A1, . . . , AL and the
allocations M1, . . . ,ML. Moreover, we should also know how to efficiently sample from the law of
pX,Zq conditional Z P Al.

Let us now compare the variance of the stratified sampling estimator with the variance of the
standard Monte Carlo estimator. We will use the following notation:

µl “ ErfpXlkqs “ ErfpXq|Z P Als and σ2
l “ varrfpXlkqs “ varrfpXq|Z P Als,(2.25)

and then the variance of the stratified sampling estimator, using the proportional allocation ql “ pl,
is provided by

var
`

ISTM
˘

“
1

M

L
ÿ

l“1

plσ
2
l .(2.26)

On the other hand, the variance of the standard Monte Carlo estimator equals varpIM q “ varpfpXqq{M ,
where

varpfpXqq “ ErfpXq2s ´ ErfpXqs2

“

L
ÿ

l“1

plErfpXq2|Z P Als ´

˜

L
ÿ

l“1

plErfpXq|Z P Als

¸2

“

L
ÿ

l“1

plpσ
2
l ` µ

2
l q ´

˜

L
ÿ

l“1

plµl

¸2

.(2.27)

Therefore, the MSE of the stratified sampling Monte Carlo estimator admits the following decom-
position:

MSE
“

ISTM
‰

“ MSE
“

IM
‰

`
1

M

L
ÿ

l“1

plµ
2
l ´

1

M

˜

L
ÿ

l“1

plµl

¸2

,(2.28)

therefore any potential improvement over the standard Monte Carlo method comes in the form of
an additive factor again. Now, Jensen’s inequality yields that

L
ÿ

l“1

plµ
2
l ě

˜

L
ÿ

l“1

plµl

¸2

,

therefore stratified sampling Monte Carlo with proportional allocation leads to a reduction of the
variance of the estimator.

One can achieve a further reduction of the variance by optimizing the allocations, i.e. by selecting
the fractions ql such that the variance of the estimator is minimized. The variance of the stratified
sampling estimator in general has the form

var
`

ISTM
˘

“
1

M

L
ÿ

l“1

p2
l

ql
σ2
l ,
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and minimizing this quantity subject to the constraints ql P p0, 1q and
ř

l ql “ 1 leads to the optimal
allocation provided by

q‹l “
plσl

ř

k pkσk
.

The variance of the estimator with the optimal allocation equals then

var
`

IST,‹M

˘

“
1

M

˜

L
ÿ

l“1

plσl

¸2

.

Using Jensen’s inequality once again and comparing with (2.26) we observe that optimizing the
allocations leads to a further reduction of the variance.

Remark 2.30. Similar to other methods, the variances σl are typically not known explicitly. One
could then use sample estimators with a smaller sample size to compute q‹l and then use the
estimated optimal allocations in a second simulation run.

Importance sampling

Importance sampling is related to the acceptance-rejection method and also to Girsanov’s theorem
(or changes of measures). The idea is to sample more often in regions where the variance is higher,
thus increasing the sampling efficiency. Assume that the underlying random variable X has a density
p (on Rd). Moreover, let q be another probability density. Then we can obviously write

Irf ;Xs “

ż

Rd
fpxqppxqdx “

ż

Rd
fpxq

ppxq

qpxq
qpxqdx “ E

„

fpY q
ppY q

qpY q



“ I

„

f
p

q
;Y



,

where Y is a d-dimensional random variable with density q. The quantity p{q is called the likelihood
ratio or the Radon–Nikodym derivative. Thus, a Monte Carlo estimate for Irf s is given by

(2.29) IISM rf ;Xs “
1

M

M
ÿ

i“1

fpYiq
ppYiq

qpYiq
“ IM

„

f
p

q
;Y



.

As usual, a possible speed up is governed by the variance of fpY qppY qqpY q , which is determined by

(2.30) var

ˆ

fpY q
ppY q

qpY q

˙

` Irf ;Xs2 “ E

«

ˆ

fpY q
ppY q

qpY q

˙2
ff

“ E

„

fpXq2
ppXq

qpXq



.

So how do we have to choose q? Assume for a moment that f ě 0 itself. Take q proportional to
f ¨ p. Then, the new estimator is based on the random variable

fpY q
ppY q

qpY q
” 1,

thus, the variance is zero! Of course, there is a catch: q needs to be normalized to one, therefore in
order to actually construct q, we need to know the integral of f ¨ p, i.e., we would need to know
our quantity of interest Irf s. However, we can gain some intuition on how to construct a good
importance sample estimate: we should choose q in such a way that f ¨ p{q is almost flat.

Conclusions

Comparing the three methods of variance reduction presented here, we see that antithetic variates
are the easiest to implement, but can only give a limited speed-up. On the other hand, both control
variates and importance sampling can allow us to use very specific properties of the problem at
hand. Therefore, the potential gain can be large (in theory, the variance can be reduced almost
to zero). However, this also means that there is no general way to implement control variates or
importance sampling.
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Exercise 2.6. Show that an unbiased estimator of σ2pf ;Xq is

σ2
M pf ;Xq “

1

M ´ 1

M
ÿ

i“1

´

fpXiq ´ IM rf ;Xs
¯2

(2.31)

and an unbiased estimator of covpfpXq, gpY qq is

covM pfpXq, gpY qq “
1

M ´ 1

M
ÿ

i“1

´

fpXiq ´ IM rf ;Xs
¯´

gpYiq ´ IM rg;Y s
¯

.(2.32)

Exercise 2.7. Compute the price of a European call option in the Black–Scholes model using
Monte Carlo simulation, as well as the 95% and 99% confidence intervals. Study the convergence
and the asymptotic normality of the error. Then, use (2.8) for a more systematic approach.

Exercise 2.8. Compute the expected value of 1{
?
U for a uniform random variable U using Monte

Carlo simulation. Study the speed of convergence and whether the errors are still asymptotically
normal.

Hint: This exercise shows that if we want to compute the expected value of an integrable random
variable, which is not square integrable, the above analysis does not apply.

Exercise 2.9. Compute the price of a European call option in the Black–Scholes model using the
antithetic variates Monte Carlo method. Justify why the method works

(i) numerically, by computing the sample covariance;

(ii) theoretically, by showing that the map from inputs to outputs is monotone.

Exercise 2.10. Compute the price of a European call option in the Black–Scholes model using
the control variates Monte Carlo method where the underlying price is the control. Study how
the efficiency of the method depends on the strike price and compare the convergence rates with
Exercises 2.7 and 2.9.
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Chapter 3

Deterministic integration
techniques

3.1 Quasi Monte Carlo simulation

Monte Carlo simulation provides a method to compute numerically integrals of the form

(3.1) Irf s :“

ż

r0,1sd
fpxqdx.

In fact, by composition with the inverse of the distribution function, all the integration problems in
the previous section were of the form (3.1). This means that we use the approximation

(3.2) JM rf s :“
1

M

M
ÿ

i“1

fpxiq,

where the xi P r0, 1s
d are chosen in such a way as to mimic the properties of a sequence of inde-

pendent uniform random variates. However, they are, in fact, still deterministic. The idea of Quasi
Monte Carlo (QMC) simulation is to choose instead a deterministic sequence xi P r0, 1s

d which is
especially “evenly distributed” in r0, 1sd. Figure 3.1 shows samples in r0, 1s2 as generated from a
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0.0
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Figure 3.1: Pseudo random samples in r0, 1s2 (left picture) versus quasi random ones (right picture)

uniform (pseudo) RNG. We can see a lot of clumping of the drawn points. This is not a sign of a bad
RNG: indeed, for truly random realizations of the uniform distribution on r0, 1s2 we would expect a
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similar kind of clumping. However, it is easy to see that it should be possible to construct sequences
pxiq with much less clumping, see again Figure 3.1. So, in some sense the idea is to replace pseudo
random numbers by “more evenly distributed” but deterministic sequences.

For more information on Quasi Monte Carlo methods, we refer to Glasserman [23] and the survey
articles by Caflisch [6] and L’Ecuyer [35].

Discrepancy and variation

In order to proceed mathematically, we need a quantitative measure of “even distribution”. This
measure is provided by the notion of discrepancy. Let λ denote the restriction of the d-dimensional
Lebesgue measure to the unit cube r0, 1sd, i.e., the law of the uniform distribution. Now consider a
rectangular subset R of r0, 1sd, i.e., R “ ra1, b1rˆ ¨ ¨ ¨ ˆ rad, bdr for some a1 ă b1, . . . , ad ă bd. Then
for a given sequence xi P r0, 1s

d we can compare the Monte Carlo error for computing the volume
of the set R using the first M elements of the sequence pxiq and get

1

M
# t1 ď i ďM : xi P Ru ´ λpRq.

This is the basis of the following two (supremum-norm type) definitions of discrepancy.

Definition 3.1. The discrepancy DM of a sequence pxiqiPN (or rather of its subsequence pxiq
M
i“1)

is defined by

DM “ sup
R

∣∣∣∣ 1

M
# t1 ď i ďM : xi P Ru ´ λpRq

∣∣∣∣ .
The star-discrepancy D˚M is defined similar to DM , but the supremum is taken over only those
rectangles containing the origin p0, . . . , 0q, i.e.,

D˚M “ sup

# ∣∣∣∣ 1

M
# t1 ď i ďM : xi P Ru ´ λpRq

∣∣∣∣
ˇ

ˇ

ˇ

ˇ

ˇ

R “
d

ą

j“1

r0, bjr, b1, . . . , bd P r0, 1s

+

.

The quality of the quadrature rule (3.2) will depend both on the uniformity of the sequence
(measured by some form of discrepancy) and on the regularity of the function f . For Monte Carlo
simulation, we only needed the function f to be square integrable, and the accuracy was determined
by the variance varpfpXqq. Error bounds for Quasi Monte Carlo simulation will generally require
much more regularity. One typical measure of regularity is the following.

Definition 3.2. The variation in the sense of Hardy-Krause is recursively defined as follows: for a
one-dimensional function f : r0, 1s Ñ R

V rf s “

ż 1

0

∣∣∣∣ dfdx pxq
∣∣∣∣ dx

and1 for a function f : r0, 1sd Ñ R

V rf s “

ż

r0,1sd

∣∣∣∣ Bdf

Bx1 ¨ ¨ ¨ Bxd
pxq

∣∣∣∣ dx` d
ÿ

j“1

V rf
pjq
1 s,

where f
pjq
1 denotes the restriction of f to the boundary xj “ 1, i.e.

f
pjq
1 : r0, 1sd´1 Ñ R s.t. x ÞÑ fpx1, ¨ ¨ ¨ , xj “ 1, ¨ ¨ ¨ , xdq, j P t1, . . . , du

The convergence of the Monte Carlo estimator to the true value follows from the law of large
numbers, however the same argumenation does not apply for the Quasi Monte Carlo method since
the sequence pxiq is deterministic. The following result, combined with sequences of low discrepancy,
justifies the convergence of JM rf s in (3.2) to Irf s.

1If the integral is not defined, because the function f is not smooth enough, we set V rf s “ 8.
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Theorem 3.3. For any integrable function f : r0, 1sd Ñ R the Koksma-Hlawka inequality holds:

|Irf s ´ JM rf s| ď V rf sD˚M .

Remark 3.4. The Koksma-Hlawka inequality is a deterministic upper bound for the integration
error, a worst case bound. In contrast, for the Monte-Carlo method, we only got probabilistic
bounds (see Proposition 2.21), which could be seen as bounds for the average case. However, while
the Monte-Carlo bounds are sharp, the error estimate given by the Koksma-Hlawka inequality
usually is a gross over estimation of the true error. Indeed, even the basic assumption that f P Cd

turns it useless for most financial applications. Fortunately, Quasi Monte Carlo works much better
in practice!

In the literature, one can find other measures of variation and discrepancy, which together can
give much better estimates than the Koksma-Hlawka inequality. The interested reader is referred
to L’Ecuyer [35] and the references therein. Still, the good performance of Quasi Monte Carlo
methods in practice seems to defy theoretical analysis.

We give the proof of the Koksma-Hlawka inequality in a special case only (the extension to the
general case is left as an exercise).

Proof of Theorem 3.3 for d “ 1. Assume that f P C1pr0, 1sq. Then for any 0 ď x ď 1 we have

fpxq “ fp1q ´

ż 1

0

f 1ptq1sx,1sptqdt.

We insert this representation into the quadrature error

|Irf s ´ JM rf s| “

∣∣∣∣∣ 1

M

M
ÿ

i“1

ż 1

0

f 1ptq1sxi,1sptqdt´

ż 1

0

ż 1

0

f 1ptq1sx,1sptqdtdx

∣∣∣∣∣
“

∣∣∣∣∣
ż 1

0

f 1ptq

«

1

M

M
ÿ

i“1

1sxi,1sptq ´

ż 1

0

1sx,1sptqdx

ff

dt

∣∣∣∣∣
ď

ż 1

0

∣∣f 1ptq∣∣ ∣∣∣∣∣ 1

M

M
ÿ

i“1

1r0,trpxiq ´

ż 1

0

1r0,trpxqdx

∣∣∣∣∣
looooooooooooooooooooomooooooooooooooooooooon

ďD˚M

dt

ď V rf sD˚M .

Sequences of low discrepancy

According to Theorem 3.3, the QMC method will perform well when the star discrepancy of the
quasi-random sequence is small and converges to zero as the sample gets larger, which leads to
sequences of low discrepancy.

Definition 3.5. We say that a sequence pxiqiPN, xi P r0, 1s
d, has low discrepancy, if

D˚M ď c
logpMqd

M´1
.

We give a few examples of sequences of low discrepancy.

Example 3.6. Choose a prime number p (or more generally, an integer p ě 2); this is the basis.
Compute, for every k P N0, the coefficients ajpkq, j ě 0, in basis p, i.e. the p-ary expansion of k

k “
8
ÿ

j“0

ajpkqp
j .
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Define the map ψp : N0 Ñ r0, 1r by

ψppkq “
8
ÿ

j“0

ajpkq

pj`1
.

Then, the Van der Corput sequence is the one-dimensional sequence xi “ ψppiq, i P N0.

Example 3.7. Let the basis p “ 2 and consider the integer k “ 7. The 2-ary expansion of 7 is
7 “ 20 ` 21 ` 22, thus the coefficients are a0p7q “ a1p7q “ a2p7q “ 1. Then, using the map ψ2 we
get that

ψ2p7q “
ÿ

jě0

ajp7q

2j`1
“

7

8
P r0, 1s.

Example 3.8. The Halton sequence is a d-dimensional generalization of the Van der Corput
sequence. Let p1, . . . , pd be relatively prime integers. Define a d-dimensional sequence by xi “
px1
i , . . . , x

d
i q, i P N0, with xji “ ψpj piq, j “ 1, . . . , d.

Additionally, there are several other prominent families of sequences with low discrepancy, like
the Sobol or Faure sequences.

Remark 3.9. When we work with RNGs, we do not have to define extra multi-dimensional RNGs.
Indeed, if pXiqiPN is a sequence of independent, uniform, one-dimensional random numbers, then
the sequence

`

Xpi´1qd`1, . . . , Xid

˘

iPN

is a sequence of d-dimensional, independent, uniform random variables. On the other hand, if
we take d-tuples of a one-dimensional sequence of low discrepancy, we cannot hope to obtain a
d-dimensional sequence with low discrepancy, see Figure 3.2.

Remark 3.10. Clearly, a very evenly spaced (finite) sequence is given by taking all the pn ` 1qd

points
 

0, 1
n ,

2
n , . . . , 1

(d
for some fixed n P N. However, we would like to have a sequence of arbitrary

length: we want to compute estimates JM rf s increasing M until some stopping criterion is satisfied –
and, of course, this is only feasible if updating from JM rf s to JM`1rf s does not require to recompute
M ` 1 terms. Using the tensorized sum above, we can only compute Jpn`1qdrf s, since JM rf s would

probably give a very bad estimate for M ă pn` 1qd and would require recomputing the whole sum
for M ą pn` 1qd, unless we refine the grid taking nÑ 2n, which increases M by a factor 2d. Thus,
taking a regular tensorized grid is not feasible.

Consider a sequence of low discrepancy. Then the Koksma-Hlawka inequality, when applicable,
implies that the quadrature error satisfies

(3.3)
ˇ

ˇIrf s ´ JM rf s
ˇ

ˇ ď
V rf sc logpMqd

M
,

i.e., the rate of convergence is given by 1´ ε, as compared to the meagre 1{2 from classical Monte
Carlo simulation. This is indeed the usually observed rate in practice, however, this statement should
be treated with care: apart from the regularity assumptions of the Koksma–Hlawka inequality, let us
point out that logpMqd{M "M´1{2 for all reasonably sized M even in fairly moderate dimensions
d; see also Figure 3.3. For instance, in dimension d “ 8, we only have

logpMqd{M ďM´1{2, for M ě 1.8ˆ 1029.

Remarks on Quasi Monte Carlo

Low dimensionality

It is generally difficult to construct good sequences of low discrepancy in high dimensions, i.e. for
d " 1. Indeed, even for the available sequences, it is usually true that the “level of even distri-
bution” often deteriorates in the dimension in the sense that, e.g., the projection on the first two
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Figure 3.2: Pairs of one-dimensional Sobol numbers

coordinates px1
i , x

2
i qiPN will often have better uniformity properties than the projections on the last

two coordinates pxd´1
i , xdi q. Moreover, the theory suggests that functions need to be more and more

regular in higher dimensions. So why does QMC work so well especially in higher dimensions?
One explanation is that many high-dimensional functionals f , especially those used in finance,

often depend mostly on few dimensions, in the sense that in an ANOVA decomposition (of f into
functions depending only on a few coordinates)

fpx1, . . . , xdq “
d
ÿ

k“0

ÿ

pi1ăi2ă¨¨¨ăikqPt1,...,du
k

f pi1,...,ikqpxi1 , . . . , xikq

the functions f pi1,...,ikq with big k only contribute little to the values of f . In many cases, the
“low-dimensionality” of a function f can be improved by applying suitable transformations, thus
improving the accuracy of the Quasi Monte Carlo method.

Randomized QMC

We have seen before that the QMC method generally converges faster than plain Monte Carlo
simulation, but lacks good error control. On the other hand, the Monte Carlo method allows for
very good error controls (with only very little before-hand information necessary), even though
these are only random. So why not combine Monte Carlo and Quasi Monte Carlo?

Let x “ pxiqiPN denote a sequence of low discrepancy in dimension d. We can randomize this
sequence, for example by applying a random shift, i.e., for a d-dimensional uniform random variable
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Figure 3.3: Comparison of the theoretical convergence rate for the Monte Carlo and Quasi Monte
Carlo methods, up to dimension three. We can observe that, for a relatively small number of
simulations (up to 104), MC converges faster (in theory) than QMC in dimension 3.
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Figure 3.4: A call option in the Black-Scholes model using Monte Carlo and Quasi Monte Carlo
simulation. Red: MC simulation, blue: QMC simulation, black: Reference lines proportional to 1{M
and 1{

?
M .

U consider

(3.4) X :“ pxi ` U pmod 1qqiPN .
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Figure 3.5: An Asian option using Monte Carlo and Quasi Monte Carlo simulation (Solid lines:
QMC simulation, dashed lines: MC simulation; Red: normal simulation, blue: antithetic variates,
green: control variates, black: references line proportional to 1{M .

Other possible randomizations are presented in L’Ecuyer [35]. Let JM rf ;Xs denote the QMC esti-
mate (3.2) based on the randomized sequence X, that is

JM rf ;Xs “
1

M

M
ÿ

i“1

fpxi ` U pmod 1qq.

Now fix a number m P N and generate m independent realizations Xl of X by sampling m inde-
pendent realizations Ul of U , 1 ď l ď m. Then we estimate Irf s by the randomized Quasi Monte
Carlo (RQMC) estimate

(3.5) JRM ;mrf s :“
1

m

m
ÿ

l“1

JM rf ;Xls. “
1

m

m
ÿ

l“1

1

M

M
ÿ

i“1

fpxi ` Ul pmod 1qq.

Now we can use the sharp error estimate of Proposition 2.21 based on varpJM rf ;Xsq, that is

RMSErJRM ;ms “
varpJM rf ;Xsq

?
m

.

By the good convergence of the QMC estimator JM rf s, we can expect JM rf s to be close to Irf s for
most realizations X. Thus, varpJM rf ;Xsq will be small. This means that, from the point of view
of the Monte Carlo method, RQMC can be seen as another variance reduction technique! L’Ecuyer
[35] reports tremendous improvements of the variance as compared to the plain MC or even MC
with traditional variance reduction.

Remark 3.11. How should we divide the computational work between m and M? The purpose
of m is mostly to compute the error estimate, whereas M controls the error itself. Therefore, in
applications m should be chosen quite small, L’Ecuyer suggests m ď 25. On the other hand, for
theoretical purposes, e.g., for comparison of RQMC to other methods, the error control might be
more important and might require higher m.
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Exercise 3.1. Solve Exercises 2.7, 2.9, 2.10 using Quasi Monte Carlo simulation. Report the results
and compare the speed of convergence with the one obtained by Monte Carlo simulation.

Exercise 3.2. Solve Exercise 2.7 using RQMC. Report the results and the reduction in the variance.
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Chapter 4

Sample path generation

4.1 Brownian motion

The generation of sample paths from a stochastic process is the topic of the next section. On the
one hand, a stochastic differential equation (SDE) describes the dynamics of a stochastic process
in terms of a generating signal, usually a Brownian motion or, more generally, a Lévy process.
Thus, in order to solve SDEs numerically we shall first discuss how to (effectively) sample from the
driving signal. On the other hand, the generation of sample paths is important for the pricing of
path-dependent options, e.g. Asian or barrier options.

In what follows, B denotes a one-dimensional Brownian motion. This restriction is imposed
purely for convenience: all the methods hold, mutatis mutandis, also for a multi-dimensional Brow-
nian motion.

Clearly, we cannot sample the full path pBtqtPr0,T s, since it is an infinite-dimensional object.
Instead, we concentrate on a finite-dimensional “skeleton” pBt1 , . . . , Btnq based on a partition 0 “
t0 ă t1 ă ¨ ¨ ¨ ă tn “ T of the interval r0, T s. If we need an approximation to the true sample
path, we can interpolate – note that interpolation makes the path non-adapted! For instance, if we
want to simulate the payoff of a path-dependent option (in the Black-Scholes model), we can use
interpolation of the sample path of the underlying Brownian motion to compute the exact payoff
given by the interpolated finite-dimensional sample, or we can compute an approximate payoff
directly from the sample. (In many cases, the two alternatives will actually coincide, think of Asian
options, where the first method using linear interpolation of the finite sample coincides with a
trapezoidal approximation of the integral.)

Example 4.1. We can, of course, sample from the paths of the stock prices S in the Samuelson
model by applying any of the sampling techniques for the Brownian motion and then transforming
via

St “ S0 exp

ˆ

σBt `

ˆ

µ´
σ2

2

˙

t

˙

.

4.1.1 Cholesky factorization

The first method for generating sample paths from the finite dimensional skeleton pBt1 , . . . , Btnq is
based on the following property of Brownian motion:

pBt1 , . . . , Btnq „ N p0,Σq, with Σi,j “ minpti, tjq, 1 ď i, j ď n.

Moreover, in Remark 2.20 we have indicated how to sample from a general, multi-dimensional Gaus-
sian distribution: given n independent one-dimensional normal random variables X “ pX1, . . . , Xnq,
we obtain an n-dimensional normal random vector with covariance matrix Σ by AX, where Σ “
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AAT . In this particular case, it is easy to find the Cholesky factorization A by

(4.1) A “

¨

˚

˚

˚

˝

?
t1 0 . . . 0

?
t1

?
t2 ´ t1 . . . 0

...
...

. . .
...

?
t1

?
t2 ´ t1 . . .

?
tn ´ tn´1

˛

‹

‹

‹

‚

.

4.1.2 Random walk approach
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Figure 4.1: Brownian motion simulated using the random walk approach

An alternative way to sample pBt1 , . . . , Btnq is using the independence of the increments of
Brownian motion. Indeed, Bt1 can be directly sampled. Given Bt1 , we have Bt2 “ Bt1`pBt2´Bt1q,
where the two summands Bt1 and Bt2 ´Bt1 are independent of each other and both have a normal
distribution. We continue iteratively until we reach Btn “ Btn´1

` pBtn ´ Btn´1
q. Thus, we have

seen that we only have to sample the increments ∆B1 :“ Bt1p“ Bt1 ´ Bt0q, ∆B2 :“ Bt2 ´ Bt1 ,
. . . ∆Bn :“ Btn ´Btn´1 . Denoting ∆t1 :“ t1, ∆t2 :“ t2 ´ t1, . . . , ∆tn :“ tn ´ tn´1, this is achieved
by

(4.2) ∆B1 “
a

∆t1X1, . . . ,∆Bn “
a

∆tnXn,

where X again denotes an n-dimensional standard normal random variable. A closer look at the
simulation using the Cholesky factorization (4.1) and the simulation of the increments (4.2) shows
that both methods give exactly the same samples from the Brownian motion if we start with the
same standard normal sample X. Thus, (4.2) (with the additional summation of the increments
∆B) can be seen as an efficient implementation of the matrix multiplication AX.
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4.1.3 Brownian bridge construction

Instead of starting with the first random variable Bt1 , let us start with the last one, Btn “ BT „
N p0, T q. Obviously, we can directly sample from this random variable. Next fix some k such that
tk « T {2. We want to continue by sampling Btk . But how? We cannot proceed by considering the
corresponding increment, as before. However, the conditional distribution of Btk given Btn is well
known as Brownian bridge1. Indeed, let u ă s ă t, then the conditional distribution of Bs given
that Bu “ x and Bt “ y is

(4.3) pBs|Bu “ x, Bt “ yq „ N
ˆ

pt´ sqx` ps´ uqy

t´ u
,
ps´ uqpt´ sq

t´ u

˙

,

see e.g. Karatzas and Shreve [30, §5.6B]. Thus, starting with BT , we can sample the remaining
values Bt1 , . . . , Btn´1

iteratively and in any order. For instance, we could sample the value of the
Brownian motion at time tk closest to T {2 first, then continue with the values closest to T {4 and
3T {4, respectively. While we can still represent the final sample pBt1 , . . . , Btnq as a deterministic
function of an n-dimensional standard normal random variable X, this time the functional will not
coincide with the functionals in the first two methods. However, the sampling is still exact, i.e., the
sample pBt1 , . . . , Btnq constructed by Brownian bridges has the correct distribution.

Remark 4.2. Why should we use this complicated approach instead of the much simpler construc-
tion based on the increments? Note that the Brownian bridge construction starts by a very coarse
approximation, which is more and more refined. Therefore, in many applications the final value
of the quantity of interest (e.g., of the payoff of an option) depends much stronger on the coarse
structure of the underlying path then on the details – think of a barrier option in the Black-Scholes
model. Thus, if we write our option payoff as a functional fpX1, X2, . . . , Xnq of the normal random
variables used for the Brownian bridge construction of the Brownian path (in the right order, i.e.,
X1 is used to sample BT and so on), then f will typically vary much stronger in the first variables
than in the variables with high index. Thus, the Brownian bridge construction can be seen as a
dimension-reduction technique, as discussed in the context of QMC.

4.1.4 Karhunen-Loève expansion

The Karhunen-Loève expansion is a type of Fourier expansion of the Brownian motion. Thus, it
differs from the previous approximations by actually giving a sequence of continuous processes in
time. Consider the eigenvalue problem for the covariance operator of the Brownian motion on the
interval r0, 1s, i.e.,

(4.4)

ż 1

0

minps, tqψpsqds “ λψptq.

Let λi denote the sequence of eigenvalues and ψi the corresponding sequence of eigenfunctions.
Then we have the equality

(4.5) Bt “
8
ÿ

i“0

a

λiψiptqZi,

with Zi denoting a sequence of independent standard normal random variables. Since we can solve
the eigenvalue problem explicitly, with

λi “

ˆ

2

p2i` 1qπ

˙2

, ψiptq “
?

2 sin

ˆ

p2i` 1qπt

2

˙

,

this leads to an exact approximation of Brownian motion by (random) trigonometric polynomials.

1More precisely, the Brownian bridge is a Brownian motion on the interval r0, 1s conditioned on B1 “ 0. It is a
simple exercise to express the above conditional distribution in terms of the distribution of a Brownian bridge.
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Figure 4.2: Brownian motion constructed by the Brownian bridge approach. Dashed lines correspond
to the newly inserted Brownian bridge

4.1.5 Wavelet constructions

Finally, we present a family of constructions which are both general and easy to implement based
on wavelets. Note that the previous Karhunen-Loève construction was based on an orthonormal
basis of L2 pr0, 1sq, specifically the eigenbasis of the covariance operator associated to the Brownian
motion. However, similar constructions work for any orthonormal basis.

For sake of concreteness, let us employ the arguably simplest such basis, comprising of Haar
wavelets. Those are defined in terms of a single “mother” wavelet

(4.6) ψptq :“

$

’

&

’

%

1, 0 ď t ă 1
2 ,

´1, 1
2 ď t ă 1,

0, else.

The basis functions are now defined by shifting and rescaling the mother wavelet ψ. More specifically,
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fix n P NY t0u and 0 ď k ď 2n ´ 1 and define

(4.7) ψn,kptq :“ 2n{2ψ p2nt´ kq .

Note that the support of ψn,k is of size 2n whereas the amplitude is of size 2n{2. For fixed n and
different ks, the Haar functions have disjoint support. it is easy to see that the set of functions ψn,k
forms an orthonormal basis of L2 pr0, 1sq, as claimed.

Starting from Lévy [37], this basis has been used to give a very explicit and simple construction
of the Brownian motion. Indeed, let X0 and Xn,k, n ě 0, 0 ď k ď 2n ´ 1, be a sequence of
i.i.d. standard normal random variables, then

(4.8) Bt :“ X0t`
8
ÿ

n“0

2n´1
ÿ

k“0

Xn,kΨn,kptq, t P r0, 1s,

defines a Brownian motion, where

(4.9) Ψn,kptq :“

ż t

0

ψn,kpsqds “ 2´n{2Ψp2nt´ kq,

are tent functions. Here, Ψptq “
şt

0
ψpsqds. The interpretation is clear: the terms with low n describe

the “macroscopic” behaviour of the Brownian motion, whereas the terms with large n provide fine
resolution, see Figure 4.3 for a plot of the integrated Haar basis of orders 0 and 1 and Figure 4.4
for paths generated by wavelets at different resolutions.
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(a) Haar basis up to order n “ 1
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(b) Alpert-Rokhlin basis of degree q “ 2 up to order
n “ 1, see Example 4.3

Figure 4.3: Integrated wavelet basis functions

Of course, for actual applications, we have to truncate (4.8) at some point, giving us an approx-
imation

(4.10) B
pNq
t :“ X0t`

N
ÿ

n“0

2n´1
ÿ

k“0

Xn,kΨn,kptq, t P r0, 1s.

Note that by construction we have that

B
pNq
t “ Bt for t P DpNq :“

 

k2´N´1
ˇ

ˇ 0 ď k ď 2N`1
(

,

i.e., the approximate Brownian motion B
pNq
t is exact at all points contained in the dyadic grid of

level N . This fact can be easily seen noting that Ψn,kptq “ 0 for t P DpNq and n ą N .
The Haar basis is probably the simplest and most popular wavelet basis in the context of the

construction of Brownian motion, but other wavelets can be used, as well. In particular, the recent
review article [24] advocates the use of the (higher order) Alpert-Rokhlin multiwavelet basis. For
any q P N, this basis consists of piecewise polynomial functions of order q´1 generated by q mother
wavelets ψq,1, . . . , ψq,q, which are polynomials of order q ´ 1 on r0, 1{2s and r1{2, 1s, respectively.
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(b) Alpert-Rokhlin wavelets of degree q “ 2, see Ex-
ample 4.3

Figure 4.4: Approximate Brownian motion B
pNq
t , 0 ď t ď 1, for N “ 10 (blue) and N “ 2 (red)

superimposed

Example 4.3. At order two, the Alpert-Rokhlin multiwavelet basis consists of piecewise linear
functions. The mother wavelets are given by

ψ2,1ptq :“

$

’

&

’

%

?
3p1´ 4tq, 0 ď t ă 1

2 ,?
3p4t´ 3q, 1

2 ď t ă 1,

0, else,

ψ2,2ptq :“

$

’

&

’

%

6t´ 1, 0 ď t ă 1
2 ,

6t´ 5, 1
2 ď t ă 1,

0, else.

The anti-derivatives are then given by the piecewise quadratic polynomials

Ψ2,1ptq :“

$

’

&

’

%

?
3tp1´ 2tq, 0 ď t ă 1

2 ,?
3p1´ tqp1´ 2tq, 1

2 ď t ă 1,

0, else,

Ψ2,2ptq :“

$

’

&

’

%

tp3t´ 1q, 0 ď t ă 1
2 ,

pt´ 1qp3t´ 2q, 1
2 ď t ă 1,

0, else.

Similarly to the Haar case, the Brownian motion is given by

Bt “ X0t`X1

?
3tp1´ tq `

8
ÿ

n“0

2n´1
ÿ

k“0

2
ÿ

p“1

Xn,k,pΨ
2,p
n,kptq,

where the random variables X0, X1, Xn,k,p, n “P NYt0u, k “ 0, . . . , 2n´1, p “ 1, 2, are independent
standard normals and

Ψ2,p
n,kptq :“ 2´n{2Ψ2,pp2nt´ kq.

Remark 4.4. Different wavelets basis can lead to very different approximation qualities of the
corresponding approximate Brownian paths BpNq at a resolution N to the true path B, as can be
seen from Figure 4.4. However, in terms of numerical analysis, this comparison is questionable, as
the computational work needs to be considered, as well. From that side, the simplicity of the basis
function, as well as the actual number of terms involved at scale N matters, and the optimal choice
of wavelet basis will depend on the problem at hand.

4.2 Lévy processes

A Lévy process is a process with stationary and independent increments, and the simplest way
to sample its trajectory is the random walk approach used for Brownian motion, see 4.1.2, where
the normal distribution shall now be replaced by the corresponding infinitely divisible distribution.
This is not as straightforward forward as it sounds, since infinitely divisible distributions may not
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be closed under convolution; in other words, while the law of Xt follows a given law, the law of the
increment Xtk{n´Xtpk´1q{n will not necessarily follow the same law. A popular distribution that can
be simulated using the random walk approach is the normal inverse Gaussian (NIG) distribution.

Exercise 4.1. Show that the NIG distribution is closed under convolution and simulate a trajectory
of the NIG Lévy process.

The Poisson process

Many models in mathematical finance include jump processes, which are usually Lévy processes.
The numerical treatment of these jump components is quite simple, provided that the have finite
activity, i.e., only finitely many jumps in compact intervals. In this case, they are, in fact, compound
Poisson processes, i.e., processes of the form

(4.11) Zt “ Z0 `

Nt
ÿ

i“1

Xi,

where Nt denotes a (homogeneous) Poisson process and pXiq
8
i“1 are independent samples of the

jump distribution. This motivates the need to sample trajectories of the Poisson process. For what
follows, Nt will denote a Poisson process with parameter λ ą 0.

Sampling values of a Poisson process

We have (at least) two different possibilities if we want to sample the vector pNt1 , . . . , Ntnq. In
full analogy to the first method for sampling a Brownian motion, we can use independence of the
increments of a Poisson process: Nt1 has a Poisson distribution with parameter λt1, Nt2 ´Nt1 has
a Poisson distribution with parameter λpt2 ´ t1q and is independent of Nt1 and so forth. Note that
samples from a Poisson distribution can be generated using the inversion method.

On the other hand, there is also a Poisson bridge. Indeed, given Nt “ n, we know that Ns has
a binomial distribution with parameters n and p “ s{t, 0 ă s ă t.

Sampling the true trajectory

Unlike in the case of a Brownian motion, we can actually sample the true trajectory of a Poisson
process on an interval r0, ts. Indeed, the trajectory is piecewise constant, so it suffices to sample the
jump times within the interval, which is easily possible since there can only be finitely many such
jumps. Again, two methods exist for sampling the jump times of a Poisson process. Let us denote
the jump times of the Poisson process by Tn, n ě 1. Thus, we have to construct the finite sequence
pT1, . . . , TNtq.

(i) Note that the inter-arrival times τn :“ Tn´Tn´1 (with T0 :“ 0) of the jumps are independent
of each other and have an exponential distribution with parameter λ. Therefore, we can start
with T0 “ 0 and can iteratively produce τn and set Tn “ Tn´1 ` τn and stop when Tn ą t.
Obviously, the algorithm stops in finite time with probability one.

(ii) Given Nt “ n, the jump times pT1, . . . , Tnq are uniformly distributed on the interval r0, ts.
More precisely, they are the order statistics of n independent uniforms on r0, ts. Thus, we
can sample the jump times of the Poisson process by first sampling the number of jumps Nt,
then taking a sequence of independent uniforms ptU1, . . . , tUNtq (the Uns are from a uniform
distribution on r0, 1s) and finally ordering them in the sense that T1 “ minptU1, . . . , tUNtq,
. . . , TNt “ maxptU1, . . . , tUNtq.

Example 4.5. Already in the seventies Merton introduced a jump diffusion into financial modelling.
He proposed to model the stock price process by the SDE

(4.12) dSt “ µSt´dt` σSt´dBt ` St´dJt,
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Figure 4.5: Trajectory of Merton’s jump diffusion, see Example 4.5.

where Jt denotes a compound Poisson process which we denote by

Jt “
Nt
ÿ

j“1

pXj ´ 1q,

where the Xj are independent samples from a distribution supported on the positive half-line.
Moreover, we assume that the Poisson process N is independent of the Brownian motion B. In this
case, it is possible to understand the SDE (4.12) without appealing to general stochastic integration.
Indeed, between two jump times Tn and Tn`1 of the underlying Poisson process, the stock price
evolves according to the SDE of a geometric Brownian motion, i.e.,

St “ STn exp

ˆ

σpBt ´BTnq `

ˆ

µ´
σ2

2

˙

pt´ Tnq

˙

, Tn ď t ă Tn`1.

At the time of the jump of the Poisson process, the stock price jumps as well. By convention, we
require S to be right-continuous, i.e., we assume that St is the value of S just after the jump occurs,
if there is a jump at time t. Now at time t “ Tn`1, we read (4.12) to mean that

St ´ St´ “ St´pXn`1 ´ 1q,

i.e., S jumps at time t and the value after the jump is given by St “ St´Xn`1. Summarising, we
see that we can actually solve (4.12) explicitly:

St “ S0 exp

ˆ

σBt `

ˆ

µ´
σ2

2

˙

t

˙ Nt
ź

j“1

Xj .

If we want to sample trajectories of the Merton jump diffusion, we need to combine the sampling
techniques for the Brownian motion and the Poisson process – of course, we also need to sample the
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jumps Xj . Since these three components are assumed to be independent, no special care is necessary.
We can sample pSt1 , . . . , Stnq on a pre-defined grid by sampling the Brownian motion pBt1 , . . . , Btnq
and the Poisson process pNt1 , . . . , Ntnq along the grid and additionally sampling pX1, . . . , XNtn

q

from the jump distribution. Or we can sample the stock prices on a random grid containing the
jump times. Note that in the original model by Merton, the jump heights Xj were assumed to have
a log-normal distribution.

The variance gamma model

In mathematical finance, a very popular class of models for the stock price are the exponential Lévy
processes, i.e., the stock price is given by St “ S0 exppZtq for some Lévy process Zt. By the very
definition of a Lévy process as a process with stationary, independent increments, we know that
the general strategy for sampling used for Brownian motion can also be applied for more general
Lévy processes, i.e., if we want to sample pZt1 , . . . , Ztnq, we can do so by sampling the increments
pZt1 , Zt2 ´ Zt1 , . . . , Ztn ´ Ztn´1

q, which are independent. Moreover, in the case of a homogeneous
grid ∆t1 “ ¨ ¨ ¨ “ ∆tn, we also know that, in fact, all the increments ∆Zi “ Zti ´ Zti´1

have the
same distribution.

Moreover, any Lévy process Z can be decomposed into a sum of a deterministic drift, a Brownian
motion (in fact, a Brownian motion multiplied with a constant) and a pure jump process independent
of the Brownian motion. If the process has finite activity, i.e., jumps only finitely often in each finite
interval, then the pure jump process is a compound Poisson process. This case was, in fact, already
treated in Example 4.5. However, in many popular models, the Lévy process has infinite activity,
and is, in fact, a pure jump process, without Brownian component. One of these models will be
presented a bit more detailed in this section.

One particular pure-jump exponential Lévy model is the variance gamma model. In this model,
Z is the difference of two independent gamma processes, Zt “ Ut ´Dt. A gamma process is a Lévy
processes, whose increments satisfy the gamma distribution.2 More precisely, a gamma process
is a Lévy process whose marginals satisfy the gamma distribution with constant scale parameter
θ and linear shape parameter, i.e., Zt „ Γkt,θ, k P Rą0. Therefore, also the increments satisfy
Zt ´ Zs „ Γkpt´sq,θ. Notice that the gamma process is a subordinator (i.e., a process with non-
decreasing sample paths) of infinite activity.

Obviously, sampling from the variance gamma process is easy once we can sample the gamma
process – after all, U and D are independent. In order to sample trajectories of the gamma pro-
cess, we sample the increments, which have the gamma distribution. Sampling from the gamma
distribution can be done by the acceptance-rejection method. The density of a Γk,θ-distribution is

fpxq “ xk´1 e´x{θ

θkΓpkq
, x ą 0.

Various complimentary distributions have been suggested. First of all note that we may assume
that θ “ 1: if X „ Γk,1, then θX „ Γk,θ. Then [13, Theorem IX.3.2] shows that the density of the
Γk,1-distribution converges to a standard Gaussian density. Therefore, for the sampling algorithm
to work equally well for all values of k, the complimentary density g should be close to a normal
density. On the other hand, the gamma distribution has fatter tails than the normal distribution,
i.e., the value of the density converges much slower to 0 for x Ñ 8 than for the normal density.
Therefore, we cannot choose a normal distribution as complimentary distribution. By this reasoning,
combinations of the densities of normal and exponential distributions have been suggested, as well
as many other distributions. (Note that we will usually only need small values of k if we sample the
increments.)

2Recall that the sum of n independent gamma-distributed random variables Xi „ Γki,θ has a gamma distribution
Γř

i ki,θ
. Thus, the gamma distribution is infinitely divisible, which implies that there is a Lévy process with gamma

distributed marginals.
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Figure 4.6: Trajectory of the variance-gamma process

Remark 4.6. If the scale and shape parameters θU , θD and kU , kD of the two gamma processes U
and D satisfy kU “ kD “: 1{θ, then we can represent the variance gamma process Zt “ Ut ´Dt as

Zt “WGt ,

where G is a gamma process with parameters θ and k “ 1{θ and W is a Brownian motion with
drift, more precisely

Wt “ µt` σBt, µ “
θU ´ θD

θ
, σ2 “ 2

θUθD
θ

for a standard Brownian motion B independent of G. This gives another method of sampling the
variance gamma process: instead of sampling from two gamma processes, we can also sample from
one gamma process and one Brownian motion. Note that this representation motivates the name
“variance gamma process”: conditional on Gt, Zt is Gaussian with variance σ2Gt. Moreover, this
type of construction (log-stock-price as a random time-change (or subordination) of a Brownian
motion) is often used in financial modelling.

Approximation of Lévy processes

In the previous sections, we have seen how to sample from compound Poisson processes (or, more
generally, jump diffusions, i.e., finite activity Lévy processes). Moreover, we have also seen that we
can sample the gamma process (and variants like the variance gamma process), a special example
of an infinite activity Lévy process. However, in general we do not know how to sample increments
of a Lévy process, if we only know its characteristic triple. In the case of a finite Lévy measure ν, we
know that the Lévy process is a compound Poisson process (modulo a Brownian motion), and then
the problem is reduced to the problem of sampling random variables with distribution νp¨q{νpRq –
which might be easy or not. In this section, we concentrate on the case of infinite activity.
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For the rest of this section, let us assume that the Lévy process Z under consideration does not
have a Brownian component, i.e., that it has the characteristic triple pγ, 0, νq. By Theorem B.4, we
can write Z as a sum of a compound Poisson process and a process of (compensated) jumps of size
smaller than ε. In fact, we have

Zt “ γt`
ÿ

0ăsďt

∆Zs1|∆Zs|ě1 ` lim
εÑ0

N ε
t , N ε

t :“
ÿ

0ăsďt

∆Zs1εď|∆Zs|ă1 ´ t

ż

εď|z|ď1

zνpdzq.

Thus, we may approximate Z by fixing a finite ε in the above formula, i.e., by discarding all jumps
smaller than ε:

(4.13) Zεt :“ γt`
ÿ

0ăsďt

∆Zs1|∆Zs|ě1 `N
ε
t

for some fixed ε ą 0. Obviously, Zε is a compound Poisson process with drift, therefore we can –
in principle – sample from this process (even the paths). It is not surprising that the error of the
approximation depends on the Lévy measure ν. Indeed, one can show (see Cont and Tankov [9,
Section 6.3, 6.4]) that

(4.14) varrZt ´ Z
ε
t s “ t

ż

|z|ăε
z2νpdzq “: tσpεq2.

This is also relevant for weak approximation in the following sense: assume that f is a differentiable
function whose derivative f 1 is bounded by a constant C. Then one can show([9, Proposition 6.1])
that

|ErfpZtqs ´ ErfpZεt qs| ď Cσpεq
?
t.

The error Zt´Z
ε
t consists of all small jumps of Z. It seems naturally to suggest that these small jumps

might, in turn, be approximated by a Brownian motion. This is indeed the case, but only under
certain assumptions on the Lévy measures. Asmussen and Rosinski [1] show that σpεq´1pZ ´ Zεq
converges to a Brownian motion if and only if

σpεq

ε
ÝÝÝÑ
εÑ0

8

(provided that ν has no atoms in a neighborhood of 0). This leads to a jump diffusion approximation

(4.15) Zt « Zεt ` σpεqBt,

which also improves the weak convergence. Let us conclude with a few examples taken from [9].

Example 4.7. Symmetric stable Lévy processes are one-dimensional pure jump processes with Lévy
measure νpdxq “ C{ |x|1`α for some 0 ă α ă 2. (Their characteristic function is then expp´σα |u|αq
at t “ 1 for some positive constant σ.) In this case, σpεq „ ε1´α{2. Moreover, the intensity λε of the
approximating compound Poisson process Zε satisfies λε „ ε´α. This in particular implies that here
the approximation can be further improved by adding a Brownian motion σpεqB, since the error of
the approximation is asymptotically a Brownian motion.

These results can be extended to tempered stable processes, i.e., pure jump processes with Lévy
measure

νpdxq “
C´e

´λ´|x|

|x|1`α´
1xă0dx`

C`e
´λ`|x|

|x|1`α`
1xą0dx.

In finance, St “ exppZtq is often used as model for stock prices, when Z is a tempered stable process.
In particular, the prominent CGMY-model, see Carr, Geman, Madan and Yor [8], is a special case
with C´ “ C` and α´ “ α`. Note that in for stable or tempered stable processes simulation of
the compound Poisson process Zε is straightforward, by the acceptance-rejection method, while
simulation of the increments of the true process Z is difficult.

Example 4.8. In the case of the gamma process, we have σpεq „ ε. This means on the one hand,
that the quality of the approximation by the compound Poisson process Zε is already very good.
On the other hand, the error does not converge to a Brownian motion, thus the jump diffusion
approximation will not improve the quality even more. Here, the intensity of Zε satisfies λε „
´ logpεq.

42



Chapter 5

Discretization of stochastic
differential equations

5.1 The Euler method

Many financial models are (entirely or partly) determined in terms of a stochastic differential equa-
tion. Therefore, a major area of computational finance is the numerical approximation of solutions
of SDEs. To fix ideas, let us start with a general n-dimensional SDE driven by a d-dimensional
Brownian motion B, i.e.,

(5.1) dXt “ V pXtqdt`
d
ÿ

i“1

VipXtqdB
i
t,

for some vector fields V, V1, . . . , Vd : Rn Ñ Rn, which we assume to be uniformly Lipschitz and
linearly bounded (with the same constant K) – these are the usual assumptions for existence and
uniqueness of the solution of (5.1). Notice that the above formulation includes non-autonomous
SDEs, i.e., SDEs where the vector fields depend explicitly on time. However, since regularity re-
quirements are usually less stringent on the time-dependence than on the space-dependence, this
formulation will not yield sharp results for the non-autonomous case. See Appendix A for a collec-
tion of basic facts and examples of SDEs in finance. Moreover, we shall assume that the initial value
X0 “ x P Rn is a constant. This is mainly for convenience, the theory is not more difficult as long
as the random initial value X0 is independent of the noise.

Of course, we can also consider SDEs driven by more general processes than Brownian motion,
for instance an SDE driven by a Lévy process,

dXt “ V pXtqdt`
d
ÿ

i“1

VipXtqdZ
i
t

for a d-dimensional Lévy process Z, or even by a general semi martingale. We will not treat the
case of a semimartingale noise, but we will give some results for SDEs driven by Lévy noise. The
main focus – and also the main theoretical difficulty – is however on diffusions of the type (5.1).

So, the goal of the next part of the course is to derive, for a fixed time interval r0, T s, ap-
proximations X to the solution X. These approximations will be based on a time grid D “

t0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T u with size N . We denote

|D| :“ max
1ďiďN

|ti ´ ti´1|

the mesh of the grid, and we define the increments of time and of any process Y (which will usually
be either X, B, or Z) along the grid by

∆ti :“ ti ´ ti´1, ∆Yi :“ Yti ´ Yti´1 , 1 ď i ď N.
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Moreover, for t P r0, T s we set ttu “ sup t ti | 0 ď i ď N, ti ď t u. We will define the approximation

along the grid, i.e., we will define the random variables Xi “ Xti , 0 ď i ď N . We will write X
D

if we want to emphasise the dependence on the grid. The first natural question arising from this
program is in which sense X should be an approximation to X. The two most important concepts
are strong and weak approximation.

Definition 5.1. The scheme X
D

converges strongly to X if

lim
|D|Ñ0

E
”
∣∣∣XT ´X

D
T

∣∣∣ı “ 0.

Moreover, we say that the scheme X
D

has strong order γ if (for |D| small enough)

E
”∣∣∣XT ´X

D
T

∣∣∣ı ď C |D|γ

for some constant C ą 0, which does not depend on γ ą 0.

Definition 5.2. Given a suitable class G of functions f : Rn Ñ R, we say that the scheme X
D

converges weakly (with respect to G) if

@f P G : lim
|D|Ñ0

E
”

f
´

X
D
T

¯ı

“ ErfpXT qs.

Moreover, we say that X
D

has weak order γ ą 0 if for every f P G there is a constant C (not
depending on |D|) such that ∣∣∣E ”

f
´

X
D
T

¯ı

´ ErfpXT qs

∣∣∣ ď C |D|γ

provided that |D| is small enough.

The class of functions G in Definition 5.2 should reflect the applications we have in mind. Of
course, there is a strong link between strong and weak convergence. For instance, if a scheme
converges strongly with order γ, then we can immediately conclude that it will also converge weakly
with order γ, provided that all the functions in G are uniformly Lipschitz. In principle, however,
there is a big difference between these concepts: for instance, a strong scheme must be defined on
the same probability space as the true solution X, which is clearly not necessary in the weak case.
Moreover, since most approximation problems in finance are of the weak type, this notion seems to
be the more relevant to us.

The classical reference for approximation of SDEs is the book by Kloeden and Platen [31].

The Euler-Maruyama method

Fix a grid D and an SDE driven by a Brownian motion, i.e., of type (5.1). We hope to get some
insight into how to approximate the solution by taking a look at a deterministic ODE

(5.2) 9xptq “ V pxptqq, xp0q “ x0 P Rn.

The simplest method of approximating a value xptiq given the value xpti´1q is by doing a first order
Taylor expansion around xpti´1q, giving

xptiq “ xpti´1q ` 9xpti´1q∆ti `Op∆t2i q “ xpti´1q ` V pxpti´1qq∆ti `Op∆t2i q.

So, the Euler scheme for SDEs is defined by x0 “ x0 and xi “ V pxi´1q∆ti, 1 ď i ď N . Since we
have to add up the individual error contributions, we get the global error

|xpT q ´ xN | “
N
ÿ

i“1

Op∆t2i q ď Op|D|qT.
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Therefore, the deterministic Euler scheme has order one.
The Euler scheme for SDEs (also known as Euler-Maruyama scheme) is defined in complete

analogy, i.e., we set X0 “ x and then continue by

(5.3) Xi “ Xi´1 ` V pXi´1q∆ti `
d
ÿ

j“1

VjpXi´1q∆B
j
i , 1 ď i ď N.

Moreover, we extend the definition of Xi “ Xti for all times t P r0, T s by some kind of stochastic
interpolation between the grid points, more precisely by

(5.4) Xt “ Xttu ` V pXttuqpt´ ttuq `
d
ÿ

i“1

VipXttuqpB
i
t ´B

i
ttuq.

Notice, however, that we should not expect the Euler scheme to converge with order one as in the
ODE setting: the increments of a Brownian motion are much bigger than the increment of time, since
∆Bji „

?
∆ti, and this is indeed the correct strong order of convergence. Note that the heuristic

convergence argument for the Euler method for ODEs would, in fact, not give convergence for a
scheme with local order Op

?
∆tiq. Convergence is rather obtained as the “offending” term driven

by Brownain motion is a martingale.
Before presenting the main theorem, we recall two fundamental lemmas from analysis and prob-

ability theory essential for the proof.

Lemma 5.3 (Grönwall’s inequality). Let u be a real-valued, continuous function and let α, β ě 0.
Assuming that for all 0 ď t ď T we have

uptq ď α` β

ż t

0

upsqds,

then we get
uptq ď αeβt, 0 ď t ď T.

Lemma 5.4 (Doob’s inequality, L2 case). Let pMtqtPr0,T s be a square integrable martingale. Then
we have

E

„

sup
0ďtďT

|Mt|2


ď 4E
”

|MT |2
ı

.

Theorem 5.5. Suppose that the coefficients of the SDE (5.1) have a uniform Lipschitz constant
K ą 0 and satisfy the linear growth condition with the same constant. Then the Euler-Maruyama
approximation X satisfies

E

„

sup
0ďtďT

∣∣Xt ´Xt

∣∣ ď C
a

|D|

for some constant C only depending on the coefficients, the initial value and the time horizon T . In
particular, the Euler-Maruyama method has strong order 1{2.

Proof. In this proof, C denotes a constant that may change from line to line, but never in a way
depending on the partition. Moreover, for this proof only, we set V0 :“ V , B0

t :“ t.

We know from the existence and uniqueness proof of the SDE (5.1) that E
”

sup0ďtďT |Xt|2
ı

ď

Cp1 ` |x|2q, and in the same fashion we can prove the analogous inequality for X replaced by X.
Now fix some 0 ď t ď T . We want to estimate

et :“ E

„

sup
0ďsďt

∣∣Xs ´Xs

∣∣2 .
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First note that we have the representation

Xs ´Xs “

ż s

0

`

V pXuq ´ V pXtuuq
˘

du`
d
ÿ

i“1

ż s

0

`

VipXuq ´ VipXtuuq
˘

dBiu

“

d
ÿ

i“0

ż s

0

`

VipXuq ´ VipXtuuq
˘

dBiu

“

d
ÿ

i“0

"
ż s

0

`

VipXuq ´ VipXtuuq
˘

dBiu `

ż s

0

`

VipXtuuq ´ VipXtuuq
˘

dBiu

*

.

Therefore, we can bound et by

et ď C
d
ÿ

i“0

#

E

«

sup
0ďsďt

∣∣∣∣ż s
0

`

VipXuq ´ VipXtuuq
˘

dBiu

∣∣∣∣2
ff

` E

«

sup
0ďsďt

∣∣∣∣ż s
0

`

VipXtuuq ´ VipXtuuq
˘

dBiu

∣∣∣∣2
ff+

“: C
d
ÿ

i“0

pcit ` d
i
tq.

Let us start with bounding the term d0. Note that Jensen’s inequality implys for any integrable
function g that ∣∣∣∣ż s

0

gpuqdu

∣∣∣∣2 “ s2

∣∣∣∣1s
ż s

0

gpuqdu

∣∣∣∣2 ď s

ż s

0

|gpuq|2 du.

Applying this inequality to the integral inside d0 and using the Lipschitz continuity of V , we obtain

d0
t ď E

„

sup
0ďsďt

s

ż s

0

∣∣V pXtuuq ´ V pXtuuq
∣∣2 du

ď K2TE

„
ż t

0

∣∣Xtuu ´Xtuu

∣∣2 du
ď K2T

ż t

0

esds.

On the other hand, for 1 ď i ď d we can directly appeal to Doob’s inequality (Lemma 5.4)
together with the Itô isometry, obtaining

dit ď 4E

«∣∣∣∣ż t
0

`

Vi
`

Xtuu

˘

´ Vi
`

Xtuu

˘˘

dBiu

∣∣∣∣2
ff

“ 4E

„
ż t

0

∣∣Vi `Xtuu

˘

´ Vi
`

Xtuu

˘
∣∣2 du

ď 4K2

ż t

0

esds.

Summarizing, we get

(5.5) dit “ E

«

sup
0ďsďt

∣∣∣∣ż s
0

`

VipXtuuq ´ VipXtuuq
˘

dBiu

∣∣∣∣2
ff

ď

#

K2T
şt

0
esds, i “ 0,

4K2
şt

0
esds, 1 ď i ď d.

For c0t , a similar calculation as before (using Jensen’s inequality once more) leads us to

c0t ď K2T

ż t

0

E
”∣∣Xu ´Xtuu

∣∣2ı du
“ K2T

ż t

0

E

»

–

∣∣∣∣∣
ż u

tuu

V pXsqds`
d
ÿ

i“1

ż u

tuu

VipXsqdB
i
s

∣∣∣∣∣
2
fi

fl du.
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Noting that for any vectors |x1 ` ¨ ¨ ¨ ` xn|2 ď n
´

|x1|2 ` ¨ ¨ ¨ ` |xn|2
¯

, we further get

c0t ď K2pd` 1q

ż t

0

¨

˝E

»

–

∣∣∣∣∣
ż u

tuu

V pXsqds

∣∣∣∣∣
2
fi

fl`

d
ÿ

i“1

E

»

–

∣∣∣∣∣
ż u

tuu

VipXsqdB
i
s

∣∣∣∣∣
2
fi

fl

˛

‚du

ď C

ż t

0

˜

E

«

pu´ tuuq

ż u

tuu

|V pXsq|2 ds

ff

`

d
ÿ

i“1

E

«

ż u

tuu

|VipXsq|2 ds

ff¸

du

ď CK2

ż t

0

˜

pu´ tuuq

ż u

tuu

E
”

p1` |Xs|2q
ı

ds` d

ż u

tuu

E
”

p1` |Xs|2q
ı

ds

¸

du

ď Cp1` |x|2q
ż t

0

`

pu´ tuuq2 ` dpu´ tuuq
˘

du

ď TCp1` |x|2qp|D|` dq |D| .

A similar computation for cit gives the common bound

(5.6) cit ď

#

TCp1` |x|2q |D| , i “ 0,

Cp1` |x|2q |D| , 1 ď i ď d.

Combining the bounds (5.5) and (5.6), we obtain

et ď C |D|` C
ż t

0

esds,

and Grönwall’s inequality (Lemma 5.3) implies

et ď C |D| ,

giving the statement of the theorem by taking the square root and applying the Hölder inequality.

Remark 5.6. Note that the constant C in Theorem 5.5 depends exponentially on T—as becomes
apparent in the proof.

In fact, the proof of Theorem 5.5 can be turned into a proof of existence and uniqueness of
solutions of SDEs. We give a sketch of the argument. First of all, we shall assume without proof
that there is a constant C ą 0 (independent of the grid D) such that

E

„

sup
0ďtďT

∣∣∣XD
t

∣∣∣2 ď C
´

1` |x|2
¯

.

This estimate can be proved by localization and a careful estimation along the iterative construction

of X
D

.
i) Uniqueness: Theorem 5.5 directly implies uniqueness of solution (within the class of square-
integrable processes).
ii) An estimate: A simple adaptation of the above proof shows that for two grids D and D1 we have

E

„

sup
0ďtďT

∣∣∣XD
t ´X

D1
t

∣∣∣2 ď C max
`

|D| ,
∣∣D1∣∣˘ .

Indeed, we may assume that D Ă D1, i.e., D1 is finer than D. Then we repeat the argument, replacing

the true solution by X
D1

.
iii) Existence of a limit: It follows that there is a unique limit process

rX :“ lim
|D|Ñ0

X
D
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in the above sense.
iv) The limit solves the SDE: Using similar estimations as in the proof, for any X “ X

D
we see

that

E

«

sup
0ďtďT

∣∣∣∣ż t
0

´

VipXtsuq ´ Vip rXsq

¯

dBis

∣∣∣∣2
ff

ď C |D| , i “ 1, . . . , d,

E

«

sup
0ďtďT

∣∣∣∣ż t
0

´

V pXtsuq ´ V p rXsq

¯

ds

∣∣∣∣2
ff

ď C |D| .

Hence, we obtain

E

»

– sup
0ďtďT

∣∣∣∣∣
˜

ż t

0

V pXtsuqds`
d
ÿ

i“1

ż t

0

VipXtsuqdB
i
s

¸

´

˜

ż t

0

V p rXsqds`
d
ÿ

i“1

ż t

0

Vip rXsqdB
i
s

¸∣∣∣∣∣
2
fi

fl

ď C

#

E

«

sup
0ďtďT

∣∣∣∣ż t
0

´

V pXtsuq ´ V p rXsq

¯

ds

∣∣∣∣2
ff

`

d
ÿ

i“1

E

«

sup
0ďtďT

∣∣∣∣ż t
0

´

VipXtsuq ´ Vip rXsq

¯

dBis

∣∣∣∣2
ff+

ď C |D| .

Finally, note that for any grid D,

E

«

sup
0ďtďT

∣∣∣∣∣ rXt ´

˜

x`

ż t

0

V p rXsqds`
d
ÿ

i“1

ż t

0

Vip rXsqdB
i
s

¸∣∣∣∣∣
ff

ď C

"

E

„

sup
0ďtďT

∣∣∣ rXt ´Xt

∣∣∣`
` E

»

– sup
0ďtďT

∣∣∣∣∣
˜

ż t

0

V pXtsuqds`
d
ÿ

i“1

ż t

0

VipXtsuqdB
i
s

¸

´

˜

ż t

0

V p rXsqds`
d
ÿ

i“1

ż t

0

Vip rXsqdB
i
s

¸
∣∣∣∣∣
2
fi

fl

*

ď C |D| ,

implying that

rXt “ x`

ż t

0

V p rXsqds`
d
ÿ

i“1

ż t

0

Vip rXsqdB
i
s.

Weak convergence of the Euler method

Next we discuss the weak convergence of the Euler method. While the strong convergence problem
might seem more natural to consider, in most applications we are actually mainly interested in weak
convergence. This is especially true for mathematical finance, where the option pricing problem is
precisely of the form introduced in Definition 5.2. Moreover, weak approximation of SDEs can be
used as a numerical method for solving linear parabolic PDEs. Indeed,

(5.7) upt, xq :“ E rfpXT q|Xt “ xs

satisfies the Kolmogorov backward equation associated to the generator L “ V0 `
1
2

řd
i“1 V

2
i , i.e.,

the Cauchy problem

(5.8)

$

&

%

B

Bt
upt, xq ` Lupt, xq “ 0,

upT, xq “ fpxq,

a PDE known as Black-Scholes PDE in finance. (For details and more precise statements see Ap-
pendix A.) Note that similar stochastic representations also exist for the corresponding Dirichlet
and Neumann problems.
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On the other hand, strong convergence implies weak convergence. Indeed, assume that f is
Lipschitz, with Lipschitz constant denoted by ‖∇f‖8. Then we have

(5.9)
∣∣∣E ”

f
´

X
D
T

¯ı

´ E rf pXT qs

∣∣∣ ď ‖∇f‖8E
”
∣∣∣XT ´X

D
T

∣∣∣ı ď C ‖∇f‖8
a

|D|,

by Theorem 5.5. Thus, the Euler scheme has (at least) weak order 1{2 for all Lipschitz functions
f – which includes most, but not all the claims used in finance. However, in many situations the
weak order is actually better than the strong order. In the following, we shall first present (and
prove) “the typical situation” under unnecessarily restrictive regularity assumptions, before we
state sharper results (without proofs). Our presentation is mainly based on Talay and Tubaro [56].
For our discussion we assume that the grids D are homogeneous, i.e., ∆ti “ h :“ T {N for every i.
Of course, the results hold (with minor corrections) also in the general case, with h being replaced
by |D|.

Theorem 5.7. Assume that the vector fields V, V1, . . . , Vd are C8-bounded, i.e., they are smooth
and the vector fields together with all there derivatives are bounded functions. Moreover, assume
that G consists of smooth, polynomially bounded functions. Then the Euler method has weak order
one. Moreover, the error

epT, h, fq :“ E
”

f
´

X
D
T

¯ı

´ up0, xq

for the weak approximation problem started at t “ 0 at X0 “ X0 “ x P Rn has the representation

(5.10) epT, h, fq “ h

ż T

0

Erψ1ps,Xsqsds` h
2e2pT, fq `Oph3q,

where ψ1 is given by

ψ1pt, xq “
1

2

n
ÿ

i,j“1

V ipxqV jpxqBpi,jqupt, xq `
1

2

n
ÿ

i,j,k“1

V ipxqajkpxqBpi,j,kqupt, xq`

`
1

8

n
ÿ

i,j,k,l“1

aijpxqa
k
l pxqBpi,j,k,lqupt, xq `

1

2

B2

Bt2
upt, xq`

`

n
ÿ

i“1

V ipxq
B

Bt
upt, xqBiupt, xq `

1

2

d
ÿ

i,j“1

aijpxq
B

Bt
upt, xqBpi,jqupt, xq,

where BI “
B
k

Bxi1 ¨¨¨Bxik
for a multi-index I “ pi1, . . . , ikq and aijpxq “

řd
k“1 V

i
k pxqV

j
k pxq, 1 ď i, j ď n.

Remark 5.8. The result also holds for the non-autonomous case, i.e., for f “ fpt, xq and the vector
fields also depending on time.

We will prove the theorem by a succession of lemmas, starting by a lemma whose proof is obvious
by differentiating inside the expectation (5.7).

Lemma 5.9. Under the assumptions of Theorem 5.7, the solution u of (5.8) is smooth and all its
derivatives have polynomial growth.

In the next lemma, we compute the local error of the Euler scheme, i.e., the weak error coming
from one step of the Euler scheme.

Lemma 5.10. Again under the assumptions of Theorem 5.7, we have

E
“

upti`1, Xi`1q
ˇ

ˇXi “ x
‰

“ upti, xq ` h
2ψ1pti, xq `Oph3q.

Proof. Obviously, we may restrict ourselves to i “ 0, i.e., we only need to show that

E
“

uph,X1q
ˇ

ˇX0 “ x
‰

“ up0, xq ` h2ψ1p0, xq `Oph3q,
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since the general situation works precisely the same way. Taylor expansion of uph, x`∆xq in h and
∆x around up0, xq gives

uph, x`∆xq “ up0, xq ` hBtup0, xq `
1

2
h2Bttup0, xq ` h

n
ÿ

i“1

∆xiBtup0, xqBiup0, xq`

`
1

2
h

n
ÿ

i,j“1

∆xi∆xjBtup0, xqBpi,jqup0, xq

`

4
ÿ

k“1

1

k!

n
ÿ

i1,...,ik“1

∆xi1 ¨ ¨ ¨∆xikBpi1,...,ikqup0, xq `Oph∆x3q `Op∆x5q,

where Op∆xkq means that the term is Op∆xi1 ¨ ¨ ¨∆xikq for any multi-index pi1, . . . , ikq. Now insert

∆X “ V pxqh`
d
ÿ

i“1

Vipxq∆B
i
1

in place of ∆x and take the expectation. First we note that there are no terms of order k{2 for
odd numbers k, because they can only appear as odd moments of the Brownian increment ∆B1 „

N p0, hIdq, which vanish. Moreover, E
”

O
´

h∆X
3
¯ı

“ Oph3q, since ∆Bi1 „ N p0, hq, and, similarly,

E
”

O
´

∆X
5
¯ı

“ Oph3q. Let us know collect all the terms of order one in h. Apart from the

deterministic term hBtup0, xq “ ´hLup0, xq (since u solves (5.8)), we have the drift term from the
first order Taylor term (in ∆x) (note that the diffusion part in the first order term vanishes since
Er∆Bi1s “ 0), and the diffusion terms from the second order Taylor term, more precisely, the term
of order h is given by

´hLup0, xq ` h
n
ÿ

i“1

V ipxqBiup0, xq `
1

2
h

n
ÿ

i,j“1

d
ÿ

k“1

V ik pxqV
j
k pxqBpi,jqup0, xq “ 0,

by the definition of the partial differential operator L. Here, we only used that

Er∆X
i
∆X

j
s “ h2V ipxqV jpxq ` h

d
ÿ

k“1

V ik pxqV
j
k pxq.

This shows the main point of the lemma, namely that the local error is of order two in h. Figuring
out the precise form of the leading order error term as given above (i.e., figuring out ψ1) is done by
computing all the expectations of the terms of the above Taylor expansion using the moments of
∆X, and is left to the reader.

Proof of Theorem 5.7. By the final condition of (5.8), we may express the error of the Euler scheme
(for approximating up0, xq) as

E
“

fpXN q
‰

´ up0, xq “ E
“

upT,XN q ´ up0, xq
‰

“

N´1
ÿ

i“0

E
“

upti`1, Xi`1q ´ upti, Xiq
‰

“

N´1
ÿ

i“1

 

h2E
“

ψ1pti, Xiq
‰

`Oph3q
(

.(5.11)

Therefore, we have reduced the global error to the sum of the local errors, whose leading order
terms are given by the expectations of ψ1. By Lemma 5.9, ψ1 has polynomial growth. Moreover, we
know that X has bounded moments – see the proof of Theorem 5.5. This implies the bound∣∣Erψ1pti, Xiqs

∣∣ ď C
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by a constant C only depending on the problem and on T , but not on h. Thus, we have

∣∣E “

fpXN q
‰

´ up0, xq
∣∣ ď C

N´1
ÿ

i“0

ph2 `Oph3qq “ CNph2 `Oph3qq “ CT ph`Oph2qq,

implying that the Euler method has weak order one.
All that is left to prove for the error representation is an integral representation for the error

term (5.11). Consider∣∣∣∣∣hN´1
ÿ

i“1

E
“

ψ1pti, Xiq
‰

´

ż T

0

Erψ1pt,Xtqsdt

∣∣∣∣∣ ď h
N´1
ÿ

i“0

∣∣E “

ψ1pti, Xiq
‰

´ Erψ1pti, Xtiqs
∣∣`

`

∣∣∣∣∣hN´1
ÿ

i“0

Erψ1pti, Xtiqs ´

ż T

0

Erψ1pt,Xtqsdt

∣∣∣∣∣ .
For the first term, note that

∣∣E “

ψ1pti, Xiq
‰

´ Erψ1pti, Xtiqs
∣∣ “ Ophq for each 0 ď i ď N´1, because

ψ1pti, ¨q satisfies the assumptions imposed on the function f , therefore we can use the already proved
first order weak convergence for f “ ψ1pti, ¨q. Thus, the first term is Ophq. For the second term,
note that the function t ÞÑ gptq :“ Erψ1pt,Xtqs is continuously differentiable, and it is a simple
calculus exercise to show that ∣∣∣∣∣hN´1

ÿ

i“0

gptiq ´

ż T

0

gptqdt

∣∣∣∣∣ “ Ophq

for C1-functions g. Therefore, also the second term can be bounded by Ophq. Inserting these results
into (5.11), we indeed obtain

E
“

fpXN q
‰

´ up0, xq “ E
“

upT,XN q ´ up0, xq
‰

“ h

ż T

0

Erψ1pt,Xtqsdt`Oph2q.

The higher order expansion can now be obtained by continuing the Taylor expansion of Lemma 5.10
to higher order terms.

Remark 5.11. The error expansion of Theorem 5.7 now allows us to use Richardson extrapolation
(also known as Romberg extrapolation). Given a numerical method for approximating a quantity of
interest denoted by A producing approximations Aphq based on steps of size h such that we have
an error expansion of the form

A´Aphq “ anh
n `Ophmq, an ‰ 0, m ą n.

Then we can define an approximation Rphq to A by

Rphq “ Aph{2q `
Aph{2q ´Aphq

2n ´ 1
“

2nAph{2q ´Aphq

2n ´ 1
,

leading to a new error A´Rphq “ Ophmq.
In the case of the Euler method, this means that we can obtain a method of order two by

combining Euler estimates based on step-size h and h{2. Indeed, in the setting of Theorem 5.7 even
more is true: we could iterate the Richardson extrapolation similar to Romberg’s integration rule
and obtain numerical methods of arbitrary order. However, higher order extrapolation is usually
not considered practical.

Remark 5.12. In the derivation of Theorem 5.7, we have never relied on the fact that the increments
∆Bji of the Brownian motion have a normal distribution. All we used to get the first order error
representation (and thus the weak order one) was that the first five (mixed) moments of p∆Bij : 1 ď
i ď d, 1 ď j ď Nq coincide with those of the increments of a Brownian motion, i.e., with a collection

51



of d ˆ N independent Gaussian random variables with mean zero and variance h. Therefore, we
could choose any such sequence of random variables ∆Bij , in particular we could use independent

discrete random variables such that ∆Bij has the same first five moments as N p0, hq. The simplest

possible choice is ∆Bij “
?
hY ij , where the Y ij are independent copies of the random variable Y

defined by

Y “

$

’

&

’

%

?
3, with probability 1{6,

0, with probability 2{3,

´
?

3, with probability 1{6.

While this remark also holds true under the assumptions of Theorem 5.13, it is not true for Theo-
rem 5.14, which does depend on particular properties of the normal distribution.

Notice that our proof of Theorem 5.7 mainly relied on smoothness of the solution upt, xq of the
Kolmogorov backward equation. (More precisely, we used that the solution was twice differentiable
in time and four times differentiable in space and that theses derivatives are polynomially bounded
in order to show that the Euler scheme has weak order one.) In Theorem 5.7, these properties
were verified by direct differentiation inside the expectation – using smoothness of f and of the
coefficients, via existence of the first and higher variations of the SDE. Of course, this approach can
still be done under weaker assumptions. Kloeden and Platen [31, Theorem 14.5.1] is based on this
type of arguments:

Theorem 5.13. Assume that f and the coefficients of the SDE are four times continuously differ-
entiable with polynomially bounded derivatives. Then the Euler method has weak order one.

It is clear that this method of proof must fail if the payoff function f does not satisfy basic
smoothness assumption as in Theorem 5.13. However, there is a second method to get smoothness
of u, based on the smoothing property of the heat kernel, see Section A.4. The following result is
[2, Theorem 3.1].

Theorem 5.14. Assume that the vector fields are smooth and all their derivatives, but not necessar-
ily the vector fields themselves, are bounded. Moreover, assume they satisfy the uniform Hörmander
condition, cf. Definition A.9. Then, for any bounded measurable function f , the Euler scheme con-
verges with weak order one. Indeed, the error representation (5.10) holds with the same definition
of the function ψ1.

Comparing Theorem 5.14 and Theorem 5.13, we see that the latter has some smoothness as-
sumptions on both the vector fields and the functional f , whereas the former does not impose any
smoothness assumption on f , while imposing quite severe assumptions on the vector fields.

Example 5.15. Let us consider an example, where the Euler method actually only converges
with order 1{2 – as guaranteed by the strong convergence. Let the vector fields in Stratonovich
formulation be linear, Vipxq “ Aix, i “ 0, 1, 2, with

A0 “ 0, A1 “

¨

˝

0 1 1
´1 0 1
´1 ´1 0

˛

‚, A2 “

¨

˝

0 1
2 ´ 1

2
´ 1

2 0 1
2

1
2 ´ 1

2 0

˛

‚.

Note that the matrices are antisymmetric, i.e., ATi ` Ai “ 0, implying that the vector fields are
tangent to the unit sphere D “

 

x P R3
ˇ

ˇ |x| “ 1
(

in R3. Since we are using the Stratonovich
formulation, this means that the solution Xt will always stay on the unit sphere provided that the
starting value x is chosen from D. Now consider fpxq “ p|x| ´ 1q`, clearly a Lipschitz continuous
but otherwise non-smooth function. The vector fields, on the other hand, are smooth, all derivatives
are bounded, but they do not satisfy the uniform Hörmander condition. Take the starting value
x “ p1, 0, 0q, time horizon T “ 1. Then the exact value is ErfpXT qs “ 0. The weak error from
the Euler scheme (together with the Milstein scheme treated later in these notes) is plotted in
Figure 5.1. We clearly see the order of convergence 1{2.
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Figure 5.1: Weak error for Example 5.15

In many situations, we can expect the Euler scheme to converge with weak order one, even if the
assumptions of neither Theorem 5.13 nor Theorem 5.14 are satisfied. This is especially true, if the
process “does not see” the singularities, e.g., because they are only met with probability zero. This
is the case in many financial applications, involving standard payoffs like the call or put options.
The point of Example 5.15 is that here the functional f is non-smooth on the unit sphere, i.e., the
set of points, where f is not smooth has probability one under the law of the solution of the SDE.

The Euler-Monte-Carlo method

The Euler method only solves half the problem in determining the quantity ErfpXT qs, when XT

is given as the solution of an SDE. Indeed, it replaces the unknown random variable XT by a
known random variable XN , which we can sample in a straightforward way – assuming that we can
sample the increments of the driving Lévy process. Therefore, we want to approximate ErfpXT qs

by ErfpXN qs. This leaves us with an integration problem as treated in Chapter 2. Of course, in
most cases we cannot integrate f explicitly with respect to the law of XN , so we will use (Quasi)
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Monte Carlo simulation.

Remark 5.16. Given an SDE driven by a d-dimensional Lévy process (assuming that no component
is deterministic), XN is a function of the increments p∆Zinqi“1,...,d;n“1,...,N . Thus, the integration
problem to compute E

“

f
`

XN

˘‰

presents itself naturally as an integral on RNd (with respect to
the law of p∆Zinq. Therefore, the dimension of the integration problem can be large, even if the
dimension of the model itself is small, if we have to choose N large.

In the end, we approximate our quantity of interest ErfpXT qs by a weighted average of copies
of fpXN q, which are either chosen to be random, independent of each other in the case of Monte
Carlo simulation, or deterministic according to a sequence of low discrepancy in the case of Quasi
Monte Carlo. Of course, this gives us a natural decomposition of the (absolute) computational error
into two parts:

(5.12) Error “

∣∣∣∣∣ErfpXT qs ´
1

M

M
ÿ

i“1

f
´

X
piq

N

¯

∣∣∣∣∣
ď

∣∣ErfpXT qs ´ E
“

f
`

XN

˘‰
∣∣` ∣∣∣∣∣E “

f
`

XN

˘‰

´
1

M

M
ÿ

i“1

f
´

X
piq

N

¯

∣∣∣∣∣ .
The first part captures the error caused by the approximation method to the SDE, therefore, we call
it the discretization error. The second part corresponds to the error of our numerical integration
method used to integrate f with respect to the law of XN . Therefore we call it integration error. (If
we use the Monte Carlo method, we might also think about the second part as a statistical error.
For the Quasi Monte Carlo method, this name would not make much sense, however.) Having fixed
the discretization method (Euler or higher order as presented below) and the integration method
(MC or QMC), the Euler Monte Carlo scheme has only two parameters left: the number of paths
M for the integration part and the time grid for the discretization of the SDE. For simplicity,
let us work with homogeneous grids only. Then the time grid is uniquely specified by the grid
size N (in the sense that the corresponding grid is t0 “ t0 ă t1 “ T {N ă ¨ ¨ ¨ ă tN “ T u). Ignoring
possible cancellation effects, it is clear that the computational error will be decreased by increasing
M (reducing the integration error) and N (reducing the discretization error). On the other hand,
it would not be efficient, say, to choose N very large, if M is chosen comparatively small, so that
the discretization error is completely overshadowed by the integration error: in an efficient setup,
both error contributions should have the same order of magnitude. This suggests that we should
not choose M and N independent of each other.

Let us make a more careful analysis. Depending on whether we use MC or QMC, the integration
error satisfies

ErrorIntpMq ď CIM
´q, q P

"

1

2
, 1´ δ

*

,

for any δ ą 0. Moreover, assume that the discretization error is bounded by

ErrorDiscpNq ď CDN
´p.

For the Euler method, p is either one or 1{2. In the sequel, we will also present other discretization
methods with higher order p. A priori, CI will depend on N – in the case of the Monte Carlo
simulation, it is the standard deviation of fpXN q. However, asymptotically it is equal to a constant
independent of N , namely the standard deviation of fpXT q. So we assume that both CI and CD
are independent of N and M . In the following, “«” will mean equality up to a constant. In a real
life computation, we want to obtain the quantity of interest ErfpXT qs with an error tolerance ε.
(In many cases, the error tolerance would be understood with respect to the relative error, not the
absolute one. On the other hand, these two concepts are roughly equivalent, if we know the order
of magnitude of the quantity of interest before hand, an assumption which we make here.) On the
other hand, we want to reach this objective using as little computer time as possible. Obviously, the
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computational work for the Euler Monte Carlo method is proportional to MN . These considerations
have, thus, led us to a constraint optimization problem of finding

(5.13) min
 

MN
ˇ

ˇ CIM
´q ` CDN

´p ď ε
(

.

The Lagrangian of this optimization problem is given by

F pM,N, λq “MN ` λpCIM
´q ` CDN

´p ´ εq.

The condition BF
BN “ 0 leads to M « λN´pp`1q. In order to obtain λ, we set BF

BM “ 0, giving us

λ « Np`1`p{q, M « Np{q.

Inserting this in the error bound, reveals that both the integration and the discretization error or of
order N´p, as we have already hinted above. More precisely, we see that ε « N´p, implying that we
need to choose N « ε´1{p and M « ε´1{q. Then, the computational cost to compute the quantity
of interest with a error bounded by ε is proportional to ε´p1{p`1{qq. We summarize our results as a
proposition.

Proposition 5.17. Given a discretization scheme with weak order p and an integration method with
order q the optimal choice of the number of timesteps N and the number of paths M is to choose M
(asymptotically) proportional to Np{q. Moreover, the computational cost for obtaining the quantity
of interest with a computational error bounded by a tolerance ε is (asymptotically) proportional to

ε´p
1
p`

1
q q.

If the work in order to guarantee an error bounded by ε is proportional to ε´k, then one might
call k the order of complexity of the problem. The consequence is clear: in order to reduce the
computational error by a factor c, the computational cost will grow by a factor ck. In Table 5.1

Problem description p q MpNq k
Euler (Lipschitz) + MC 1{2 1{2 N 4

Euler (Lipschitz) + QMC 1{2 1´ δ N1{2`δ 3` δ
Euler (regular) + MC 1 1{2 N2 3
Order p + MC p 1{2 N2p 2` 1{p

Table 5.1: Complexity of the Euler Monte Carlo method

we have collected the order of complexity for certain scenarios. For instance, if the payoff and/or
the vector fields are so irregular that the Euler method only has weak order 1{2, and we use the
MC simulation for integration, then M and N should be chosen proportionally to each other and
the overall order of complexity is four. In the generic case, i.e., when the Euler method has weak
order one, the order of complexity is three and M is chosen to be proportional to N2. The table
also shows that higher order discretization schemes for the SDE cannot really improve the overall
computational cost significantly, when combined with a low order integration method. For instance,
if we use Monte Carlo simulation, then increasing the weak order from 1{2 to 1 decreases the order
of complexity from 4 to 3. But then a further increase of the weak order to 2, 3 and 4 will only
lead to decreases of the order of complexity to 2.5, 2.33 and 2.25, respectively. Given that higher
order methods are usually more difficult to implement and computationally more costly (thereby
possibly increasing the constant in the complexity), it might not be worthwhile to implement such
methods, if we are only using Monte Carlo simulation. (In principle, the same holds true for QMC,
but then second order methods might still be a good choice.). Of course, this is only a very rough
comparison, and in special applications we might get a completely different picture.
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5.2 Advanced methods

Multilevel Monte Carlo simulation

In typical situations, the computational work necessary to achieve an (absolute) error bounded by
ε using the Euler Monte Carlo method is of order Opε´3q, as we have seen in Proposition 5.17.
Giles [21], [22] has constructed a method, which leads to a considerably smaller order of complexity,
by a clever combination of simulation of the Euler scheme (or more general schemes) at different
time grids. More precisely, fix a time horizon T and consider homogeneous grids given by the time
increment h “ ∆t. Let Xt denote the solution of an SDE (5.1) driven by a Brownian motion. We
want to compute ErfpXT qs for a given functional of the solution of the SDE. We approximate

X by approximations X
phq

based on the grid with increments h. Instead of simply applying the

Monte Carlo method for the random variable f
`

X
phq˘

, our estimate for ErfpXT qs will be based on

a combination of samples from the random variables X
ph1q

, . . . , X
phLq

for a sequence h1 ą ¨ ¨ ¨ ą hL,
in such a way that the bias of the estimate, i.e., the discretization error, is given by the discretization
error on the finest level, i.e., the discretization error corresponding to hL, whereas the computational
work is some average of the computational works associated to the different grids. This should give
the same error as the method based on hL, whereas the computational work is strongly reduced.

In order to understand the idea of multilevel Monte Carlo, let us remember the control variates
technique for reducing the variance in an ordinary Monte Carlo problem (to compute ErfpXqs).
There the idea was to find a random variable Y which is similar to X and a function g such that
Irg;Y s “ ErgpY qs is explicitly known. (It turned out that “similarity” meant that the correlation of
fpXq and gpY q was high.) Then fpXq is replaced by fpXq´λpgpY q´ Irg;Y sq, which has the same
expected value, but much smaller variance, if Y and g were wisely chosen. In our case, we want

to compute the expectation of f
`

X
phLq˘

– which is itself a biased estimate of ErfpXT qs. How can
we find another random variable Y “close” to X with known expectation ErfpY qs? If we believe

in the (strong) convergence of our method, we also believe that X
phLq

and X
phL´1

should be close,

which implies that the covariance of f
`

X
phLq˘

and f
`

X
phL´1q˘

is high, but this choice does not seem

to qualify since we do not know the expectation of f
`

X
phL´1q˘

. Notice, however, that it is much

cheaper to sample f
`

X
phL´1q˘

as opposed to f
`

X
phLq˘

, since the grid corresponding to hL contains
hL´1{hL more points than the grid corresponding to hL´1. Therefore, Monte Carlo simulation to

get a good estimate of the expectation of f
`

X
phL´1q˘

is much cheaper. Therefore, the first step for
multilevel Monte Carlo is:

1. Compute an estimate of E
“

f
`

X
phL´1q˘‰

using Monte Carlo simulation.

2. Compute an estimate for E
“

f
`

X
phLq˘‰

using variance reduction based on f
`

X
phL´1q˘

.

Methods of this form are also known as “quasi control variates”. Now we iterate the idea, by using

variance reduction based on f
`

X
phL´2q˘

in order to compute E
“

f
`

X
phL´1q˘‰

, which we need for the

computation of E
“

f
`

X
phLq˘‰

. We shall see below that this method is, indeed, more efficient than
simple Monte Carlo simulation at the finest grid.

Before we go on, let us first reflect for a moment on the relation between X
phLq

and X
phL´1q

.
Usually, we only cared about the law of our approximations, not on the approximations as actual
random variables. Here we have to treat them as random variables, because we need to sample

X
phLq

pωq and X
phL´1q

pωq for the same ω in the control variates technique. This can be easily

achieved in the following way: sample the Brownian motion on the finer grid and compute X
phLq

based on the sampled Brownian increments. If the coarser grid is actually contained in the finer
grid (as will be the case below), then add the Brownian increments along the fine grid to obtain the

corresponding increments on the coarse grid, and use them to obtain X
phL´1q

. Otherwise, we need
to use a Brownian bridge construction to obtain the Brownian increments on the coarse grid based
on those along the fine grid.
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Before finally formulating the main result of multilevel Monte Carlo, let us first introduce some
notation. Fix some N P N, N ą 1, and define the step sizes hl :“ N´lT , l “ 0, . . . , L. Let

Pl :“ fpX
phlq
q denote the payoff given by the numerical approximation along the grid with step-size

hl. Moreover, let Il denote the Monte Carlo estimator based on Ml samples P
piq
l ´P

piq
l´1 of Pl´Pl´1

for l ą 0 and on P0 for l “ 0, i.e.,

Il :“ IMl
rPl ´ Pl´1s “

1

Ml

Ml
ÿ

i“1

´

P
piq
l ´ P

piq
l´1

¯

.

We assume the estimators Il to be independent of each other.

Theorem 5.18. Assume that there are constants α ě 1{2, C1, C2, β ą 0 such that ErfpXT q´Pls ď

C1h
α
l and varrIls ď C2h

β
lM

´1
l . Then there is L P N and there are choices M0, . . . ,ML such that the

multilevel estimator I :“
řL
l“0 Il satisfies

a

E rpI ´ ErfpXT qsq
2s ď ε

and the computational work C is bounded by

C ď

$

’

&

’

%

C3ε
´2, β ą 1,

C3ε
´2plog εq2, β “ 1,

C3ε
´2´p1´βq{α, 0 ă β ă 1.

Corollary 5.19. Assume that the Euler method has weak order 1 and strong order 1{2 for the

problem at hand. Choose L “ logpε´1
q

logN `Op1q in ε and choose Ml proportional to ε´2pL`1qhl. Then

the multilevel estimator has computational error Opεq, while the computational cost is Opε´2plog εq2q.

Proof. Note that the corollary follows from the theorem by choosing α “ 1 and β “ 1. However, for
simplicity we only give (sketch of) a proof of the corollary, but not of the theorem.

Let L be defined by

L :“

R

logp
?

2C1Tε
´1q

logN

V

implying that ε{p
?

2Mq ă C1hL ď ε{
?

2, and thus

pErIs ´ ErfpXT qsq
2
ď
ε2

2
.

Moreover, choosing
Ml :“

P

2ε´2pL` 1qC2hl
T

, l “ 0, . . . , L,

we have

varrIs “
L
ÿ

l“0

varrIls ď
L
ÿ

l“0

C2
hl
Ml

ď
1

2
ε2.

Thus, the means square error satisfies

E
“

pI ´ ErfpXT qq
2s
‰

“ ErI2s ´ 2ErIsErfpXT qs ` ErfpXT qs
2

“ varrIs ` pErIs ´ ErfpXT qsq
2
ď ε2,

and we are only left to compute the computational cost C.
We assume ε to be small enough. Then L ` 1 ď C logpε´1q for some constant C varying from

line to line. Moreover, we bound Ml ď 2ε´2pL` 1qC2hl ` 1. Then

C ď C
L
ÿ

l“0

Ml

hl
ď

L
ÿ

l“0

`

2ε´2pL` 1qC2 ` h
´1
l

˘

ď 2ε´2pL` 1q2C2 `

L
ÿ

l“0

h´1
l

ď 2ε´2 logpε´1q2C2 `

L
ÿ

l“0

h´1
l .
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By the geometric series, an elementary inequality and the definition of L, we have

L
ÿ

l“0

h´1
l “ h´1

L

L
ÿ

l“0

N´l “ h´1
L

N´pL`1q ´ 1

N´1 ´ 1
ă h´1

L

N

N ´ 1

ď
N2

N ´ 1

?
2C1ε

´1 ď
N2

N ´ 1

?
2C1ε

´2,

provided that N ą 1. This implies that

C ď Cε´2 logpε´1q2.
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Chapter 6

Numerical methods for PDEs

6.1 The Black–Scholes PDE

We start by revisiting the partial differential equations (PDEs) associated with option pricing in
the Black–Scholes model, before proceeding to their numerical solution. In what follows, we mainly
follow Seydel [55]. For the theoretical part see also the notes of Kohn on PDEs for finance.

Using the Feynman–Kac formula, see (A.11) for the diffusion case and (B.3) for the case of an
SDE driven by a Lévy process, the price of a European option upt, xq as a function of calendar time
t and stock price St “ x satisfies a parabolic partial differential equation. In fact, similar relations
also hold for more exotic options, like path dependent options – by enhancing the state space –
and American options. For simplicity, let us work in the simplest possible stock price model, the
Black-Scholes model

dSt “ rStdt` σStdBt, S0 “ s P R`.

Then, by (A.11), the price upt, xq “ E
“

e´rpT´tqfpST q
ˇ

ˇSt “ x
‰

of a European option with payoff
function f satisfies

(6.1)
B

Bt
upt, xq `

1

2
σ2x2 B

2

Bx2
upt, xq ` rx

B

Bx
upt, xq ´ rupt, xq “ 0,

with terminal value upT, xq “ fpxq. In the sequel, we assume that f is a call or put option with
strike price K.

One of the advantages of the PDE point of view is that it is relatively straightforward to treat
American options. Indeed, consider an American put option (in our setting without dividends the
American call option would coincide with the European one). Then its price rupt, xq (again, at
time t with St “ x, provided that the option has not been exercised before) satisfies the following
conditions:

B

Bt
rupt, xq `

1

2
σ2x2 B

2

Bx2
rupt, xq ` rx

B

Bx
rupt, xq ´ rrupt, xq ď 0,(6.2a)

rupt, xq ě pK ´ xq`,(6.2b)

rupT, xq “ pK ´ xq`,(6.2c)

where we have equality in (6.2a) whenever there is a strict inequality in (6.2b). It can be shown that
problem (6.2) is a free boundary problem, i.e. there exists an (unknown) value x0 “ x0ptq such that
ru solves the PDE (6.2a) with equality (i.e. the classical Black-Scholes PDE) on the domain sx0,8r
and rupt, xq “ pK ´ xq` whenever x ď x0. Thus, it is optimal to exercise the American option iff
x ă x0ptq, and to wait in the other case. If we are above the exercise boundary x0, the American
option (locally) behaves like a European option, and thus also satisfies the Black-Scholes PDE.

If we want to solve the problems (6.1) or (6.2) numerically, we should first try to simplify the
PDEs. Introduce some new variables, namely y “ logpx{Kq (the log-moneyness), τ “ 1

2σ
2pT ´ tq,
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q “ 2r{σ2and

(6.3) vpτ, yq :“
1

K
exp

ˆ

1

2
pq ´ 1qy `

ˆ

1

4
pq ´ 1q2 ` q

˙

τ

˙

upt, xq,

and obtain rvpτ, yq in the same way from rupt, xq. It is easy to see that the transformed European
option price v now satisfies the heat equation and to figure out the new boundary condition. For a
European put option they read:

(6.4)
B

Bτ
vpτ, yq “

B2

By2
vpτ, yq, vp0, yq “

´

e
1
2 pq´1qy ´ e

1
2 pq`1qy

¯

`
.

Moreover, one can see that (again for a put option)

(6.5) vpτ, yq “ exp

ˆ

1

2
pq ´ 1qy `

1

4
pq ´ 1q2τ

˙

for y Ñ ´8, vpτ, yq “ 0 for y Ñ8.

In the case of an American put option one can show that rvpτ, yq is solution to the following problem:

let gpy, τq :“ exp
`

1
4 pq ` 1q2τ

˘

´

e
1
2 pq´1qy ´ e

1
2 pq`1qy

¯

`
, then

ˆ

B

Bτ
rvpτ, yq ´

B2

By2
rvpτ, yq

˙

prvpτ, yq ´ gpτ, yqq “ 0,
B

Bτ
rvpτ, yq ´

B2

By2
rvpτ, yq ě 0,(6.6a)

rvpτ, yq ě gpτ, yq, rvp0, yq “ gp0, yq,(6.6b)

rvpτ, yq “ gpτ, yq for y Ñ ´8, rvpτ, yq “ 0 for y Ñ8.(6.6c)

Moreover, one needs to require rv to be continuously differentiable.

Exercise 6.1. Show that indeed (6.4) is equivalent to the Black–Scholes PDE (6.1) under the given
transformations.

6.2 The finite difference method

Now, we change back notation to the more familiar upt, xq – instead of vpτ, yq. That is, we consider
the heat equation

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

B

Bt
upt, xq “

B2

Bx2
upt, xq, 0 ă t ď T, x P R,

up0, xq “
´

e
1
2 pq´1qx ´ e

1
2 pq`1qx

¯

`
, x P R,

upt, xq „ exp

ˆ

1

2
pq ´ 1qx`

1

4
pq ´ 1q2t

˙

for xÑ ´8, upt, xq „ 0 for xÑ8,

i.e. we consider the transformed European put-option as described in the last subsection. The general
idea of the finite difference method is to replace partial derivatives by finite difference quotients along
a grid, thereby transforming a PDE into a difference equation.

There are several different choices of difference quotients that will be used in the sequel. They
are motivated by the Taylor expansion, and we have:

forward difference: f 1pxq “
fpx` hq ´ fpxq

h
`Ophq

backward difference: f 1pxq “
fpxq ´ fpx´ hq

h
`Ophq

while combining these two yields

central difference: f 1pxq “
fpx` hq ´ fpx´ hq

2h
`Oph2q.
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Moreover, for the second derivatives we will use the central difference:

f2pxq “
fpx` hq ´ 2fpxq ` fpx´ hq

h2
`Oph2q.

In addition, we need to discretize time and space, i.e. we need to have a time grid and a space
grid. For simplicity, let us work with homogeneous grids only. Then the time grid is determined by
its size N , i.e. we set ∆t :“ T {N and define the grid points ti :“ i∆t, i “ 0, . . . , N . For the space
grid, we first have to turn our infinite domain R into a finite domain ra, bs. Then the grid is again
determined by its size M by setting ∆x :“ pb ´ aq{M and then xj :“ a ` j∆x, j “ 0, . . . ,M . The
goal of the finite difference method is to determine approximations vi,j , 0 ď i ď N , 0 ď j ď M , of
the values ui,j :“ upti, xjq.

Remark 6.1. Note that the values of u for large values of |x| will be necessary to set the (approx-
imately) correct boundary conditions at x “ a and x “ b. They are not necessary for the PDE on
the domain R.

Remark 6.2. In a multi-dimensional setting, the same construction applies. Note, however, that
a grid in Rn with the same mesh ∆x has Mn nodes. Therefore, we need to compute NMn values
ui,j1,...,jn . This is the curse of dimensionality: the computational work for the same accuracy grows
exponentially fast in the dimension.

On the other hand, during our finite difference calculation, we compute the option prices upt, xq
for all times ti and all stock prices xj , not just the price for one particular time t and one particular
stock price x as in the Euler Monte Carlo scheme. It depends on the application, whether this
constitutes a (possibly big) advantage or not.

Explicit finite differences

The next step is to replace all derivatives in (6.4) by difference quotients. In the explicit finite
difference scheme we use forward differences to discretize the time derivative, that is we approximate

(6.7)
B

Bt
upti, xjq “

ui`1,j ´ ui,j
∆t

`Op∆tq,

while for the space derivative we choose the approximation

(6.8)
B2

Bx2
upti, xjq “

ui,j`1 ´ 2ui,j ` ui,j´1

∆x2
`Op∆x2q.

Combining these approximations and solving for ui`1,j (or rather its approximation vi`1,j), we
obtain

vi`1,j “ vi,j `
∆t

∆x2
pvi,j`1 ´ 2vi,j ` vi,j´1q.

Thus, we use the approximations at time ti to compute the approximations at time ti`1, and we
do so in an explicit and linear way. Note that the approximations at time t0 “ 0 are given by the
initial condition of the PDE, i.e. we set v0,j :“ up0, xjq, with up0, xq given by (6.4). Obviously, the
above iteration is not well defined for j “ 0, since this would require us to use a value vi,´1 outside
of our grid. Here the boundary conditions (6.5) come into play: we treat a as being close to ´8,
and use the corresponding boundary value. We obtain vi,M in a similar way by treating b “ xM
as being close to `8. Combining these considerations and using the notation λ :“ ∆t{p∆xq2, we
obtain:

v0,j “

´

e
1
2 pq´1qxj ´ e

1
2 pq`1qxj

¯

`
, j “ 0, . . . ,M,(6.9a)

vi`1,j “ vi,j ` λpvi,j`1 ´ 2vi,j ` vi,j´1q, i “ 0, . . . , N ´ 1, j “ 1, . . . ,M ´ 1,(6.9b)

vi`1,0 “ exp

ˆ

1

2
pq ´ 1qa`

1

4
pq ´ 1q2ti`1

˙

, vi`1,M “ 0, i “ 0, . . . , N ´ 1.(6.9c)
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In order to do numerical analysis, it is useful to obtain a more ‘compact’ notation for the
scheme (6.9). To this end, let us ignore the boundary conditions (6.9c) and just implement the
iterations step (6.9b). Let vpiq “ pvi,1, . . . , vi,M´1q denote the vector of values along the whole space
grid (except for the boundary points) for one fixed time node ti. Then we can express the iteration
as

(6.10) vpi`1q “ Avpiq, A :“

¨

˚

˚

˚

˚

˚

˚

˚

˝

1´ 2λ λ 0 ¨ ¨ ¨ 0

λ 1´ 2λ
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . λ

0 ¨ ¨ ¨ 0 λ 1´ 2λ

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Therefore, the bulk of the computations in the explicit finite difference scheme (6.9) consists of
matrix multiplications vpi`1q “ Avpiq with a tridiagonal matrix A. (Strictly speaking, this is only
true for zero boundary conditions. However, the analysis remains correct even for our non-trivial
boundary conditions (6.9c).)

Example 6.3. Consider the following problem (Seydel [55], Beispiel 4.1): let u solve the heat
equation with up0, xq “ sinpπxq on the space domain r0, 1s with boundary condition upt, 0q “
upt, 1q “ 1. It is easy to see that the explicit solution for this problem is

upt, xq “ sinpπxqe´π
2t.

In particular, we obtain up0.5, 0.2q “ 0.004227. Next we are going to calculate this value using the
finite difference scheme. We fix the space grid by ∆x “ 0.1. First we choose a time grid ∆t “ 0.0005,
i.e., up0.5, 0.2q “ u1000,2, and we obtain a reasonably good approximation v1000,2 “ 0.00435. Next,
we choose a coarser time grid given by ∆t “ 0.01. In this case, we have up0.5, 0.2q “ u50,2 and the
explicit finite difference scheme gives a value v50,2 “ ´1.5ˆ 108.

Obviously, the second choice of parameters makes the explicit finite difference scheme (6.9)
unstable, i.e., round-off errors propagate and explode by iterated multiplication with the matrix A.
(In this case, the boundary values are in fact trivial.)

It is easy to see that the map x ÞÑ Ax is stable in the sense that round-off errors fade out iff the
spectral radius of A is smaller than one. By a tedious calculation, one can show that the eigenvalues
of A have the form

(6.11) σk “ 1´ 2λ

ˆ

1´ cos

ˆ

kπ

M

˙˙

, k “ 1, . . . ,M ´ 1.

Thus, the spectral radius is smaller than one if λ ď 1{2. Thus, we have (partially) proved the
following

Theorem 6.4. If we choose the time mesh ∆t and the space mesh ∆x in such a way that ∆t ď
1
2∆x2, then the explicit finite difference method is stable and converges with error Op∆tq`Op∆x2q,
provided that the given boundary conditions are exact.

Remark 6.5. Given N «M2, we have an error proportional to M´2 and the computational work
is proportional to M3. Thus, the computational work needed to get the result with error tolerance
ε is proportional to ε´3{2, which is much better than any of the complexity estimates given in
Table 5.1 for the Euler method or even the complexity estimate in Theorem 5.18 for the multi-level
Monte Carlo method. However, the picture changes dramatically in dimension n ą 1. In this case,
the error is still proportional to M´2, but the work is now proportional to M2`n. Thus, we obtain
a complexity

Work « ε´p2`nq{2.

One can see that already in dimension n ą 4 this crude estimate is much worse than plain Euler
Monte Carlo.
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Implicit finite differences

We can also use the backward difference to disretize the time derivative in (6.4), i.e.

(6.12)
B

Bt
upti, xjq “

ui,j ´ ui´1,j

∆t
`Op∆tq,

while retaining (6.8) for the space derivative. This leads to the following approximation:

vi´1,j “ vi,j `
∆t

∆x2

`

´ vi,j`1 ` 2vi,j ´ vi,j´1

˘

.(6.13)

This scheme is not explicit anymore, because only the value vi´1,j is known from the previous step
of the iteration, while the right hand side contains three unknown values that should be computed.
This is an example of the implicit scheme, where a system of equations has to be solved at each
time step. The iteration step of this scheme can be represented in matrix notation as follows:

(6.14) Avpiq “ vpi´1q, A :“

¨

˚

˚

˚

˚

˚

˚

˚

˝

1` 2λ ´λ 0 ¨ ¨ ¨ 0

´λ 1` 2λ
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . ´λ

0 ¨ ¨ ¨ 0 ´λ 1` 2λ

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Moreover, using similar methods as for the explicit finite difference method, one can prove the
following result (see Seydel [55, Example 4.2]).

Theorem 6.6. The implicit finite difference method is unconditionally stable for ∆t ą 0. Moreover,
it converges with error Op∆t2q `Op∆x2q, provided that the boundary conditions are exact.

Crank-Nicolson

The right hand side of (6.7) can be interpreted both as a forward difference quotient for B
Btupti, xjq,

involving the values ui`1,j and ui,j and as a backward difference quotient,

B

Bt
upti`1, xjq “

ui`1,j ´ ui,j
∆t

`Op∆tq

for B
Btupti`1, xjq. Both of them agree. If we use the central difference quotient (6.8) for the sec-

ond derivative of u at pti, xjq and pti`1, xjq, equate them to the respective forward and backward
difference quotients and average these two equations, we obtain the Crank-Nicolson scheme

(6.15)
vi`1,j ´ vi,j

∆t
“

1

2∆x2
pvi,j`1 ´ 2vi,j ` vi,j´1 ` vi`1,j`1 ´ 2vi`1,j ` vi`1,j´1q .

This is again an explicit scheme, since values of v at time ti`1 appear on both sides of the equation.
In fact, on the right hand side we even have three different values vi`1,j´1, vi`1,j and vi`1,j`1. As
a consequence, (6.15) should be understood as a linear equation for pvi`1,jq

M´1
j“1 given all the values

of vi,j . The iteration step of the Crank-Nicolson scheme can be represented in matrix notation as
follows:

Avpi`1q “ Bvpiq,(6.16)

where

A :“

¨

˚

˚

˚

˚

˚

˚

˚

˝

1` λ ´λ
2 0 ¨ ¨ ¨ 0

´λ
2 1` λ

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . ´λ

2

0 ¨ ¨ ¨ 0 ´λ
2 1` λ

˛

‹

‹

‹

‹

‹

‹

‹

‚

, B :“

¨

˚

˚

˚

˚

˚

˚

˚

˝

1´ λ λ
2 0 ¨ ¨ ¨ 0

λ
2 1´ λ

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . λ

2

0 ¨ ¨ ¨ 0 λ
2 1´ λ

˛

‹

‹

‹

‹

‹

‹

‹

‚

(6.17)
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Finally, using similar methods as for the explicit finite difference method, one can prove the
following theorem (see Seydel [55, Satz 4.4]).

Theorem 6.7. Assume that the solution u of the heat equation with the given initial and boundary
conditions is four times continuously differentiable. Then the solution of the Crank-Nicolson method
is stable for every choice of ∆x and ∆t. Moreover, the solution converges and the approximation
error of the solution of the Crank-Nicolson method is Op∆t2q `Op∆x2q.

6.3 The finite element method

The finite element method (FEM) is an elegant numerical method for solving linear PDEs based on
the variational formulation of the PDE. While PDEs in finance, in particular in option pricing, are
usually of the time-dependent, parabolic variety, FEM is more transparent for time-independent,
elliptic problems. Hence, we shall first consider elliptic problems, before coming back to parabolic
problems at the end.

6.3.1 A step-by-step guide to the finite element method

We start by a hands-on introduction to the finite element method based on a simple, one-dimensional
example. Consider

`

´apxqu1pxq
˘1
` rpxqupxq “ fpxq, x P p0, 1q,(6.18a)

upxq “ 0, x P t0, 1u .(6.18b)

For the equation to be well-defined we assume that a ą 0 and r ě 0. Regularity assumptions will
be discussed later.

Step 1: A variational formulation

As already indicated, the finite element method is based on the variational formulation of the PDE.
To this end, we first have to define the natural space on which to consider the PDE. Formally, (6.18)
requires two derivatives to exist. Nonetheless, we shall see that we can make sense of the equation
provided that only one (weak) derivative exists. We refer to Appendix D for a short introduction
to weak derivatives and Sobolev spaces.

Hence, consider
(6.19)

V :“ H1
0 pp0, 1qq “

"

v : r0, 1s Ñ R
ˇ

ˇ

ˇ

ˇ

‖v‖2
V :“

ż 1

0

´

vpxq2 `
“

v1pxq
‰2
¯

dx ă 8, vp0q “ vp1q “ 0

*

.

Elements of V are called test functions.
In order to get the variational formulation, we now formally multiply the PDE (6.18a) by a test

function v P V and integrate from 0 to 1. Note that test functions are, in fact, regular enough that
integration by parts can be justified. Starting on the right hand side, we simply obtain

(6.20) Lpvq :“

ż 1

0

fpxqvpxqdx,

which we consider as a linear functional L : V Ñ R. For the right hand side, we have

ż 1

0

”

`

´apxqu1pxq
˘1
` rpxqupxq

ı

vpxqdx

“
“

´apxqu1pxqvpxq
‰1

0
`

ż 1

0

“

apxqu1pxqv1pxq ` rpxqupxqvpxq
‰

dx.
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As v P V , it vanishes at the boundary of the domain, i.e., at t0, 1u. Hence, the first term above
vanishes and the left hand side of (6.18a) corresponds to

(6.21) Apu, vq :“

ż 1

0

“

apxqu1pxqv1pxq ` rpxqupxqvpxq
‰

dx,

which we will understand as a bi-linear form A : V ˆ V Ñ R. Hence, the variational formulation of
the elliptic problem (6.18) is

(6.22) @v P V : Apu, vq “ Lpvq

for a solution u P V .

Remark 6.8. If u P C2 pr0, 1sq is a (classical) solution of (6.18), then it is also a solution of the
variational formulation (6.22). Indeed, first of all such a u is, in fact, an element of V , and the
above formal calculation holds. Conversely, suppose that u P V X C2 pr0, 1sq solves the variational
formulation (6.22). Then we can undo the integration by parts and obtain

@v P V :

ż 1

0

”

`

´apxqu1pxq
˘1
` rpxqupxq ´ fpxq

ı

vpxqdx “ 0.

This immediately implies that the integrand vanishes for any x P p0, 1q and, hence, u is a classical
solution to (6.18). On the other hand, depending on the regularity of the coefficients a, r, f , there
may exist (unique) solutions u of (6.22) which are not twice differentiable and, hence, cannot be
classical solutions of (6.18). This means, the solution concept discussed here is weaker than the
concept of classical solutions.

Remark 6.9. The key point of the above construction is the fact that the partial integration
against test functions allows us to define solutions (or candidates for solutions) which are only once
(weakly) differentiable. Of course, it would also be possible to define a variational formulation based
on the bi-linear form

pu, vq ÞÑ

ż 1

0

”

`

´au1
˘1
` ru

ı

vdx.

However, that form requires more smoothness. Moreover, (and more importantly, perhaps) A is
symmetric, whereas the above form is not.

Remark 6.10. Here, we have a form A : V ˆ V Ñ R, i.e., the space of test functions is the same
as the space of solutions. This is not always possible, and there are also approaches to allow using
different spaces for test functions and solutions.

Step 2: Projection onto a finite-dimensional subspace

In the second step, we choose a subspace Vh Ă V of V with finite dimension. We choose the symbol
Vh to allude that this subspace corresponds to the discretization of the problem — and, indeed,
Vh usually depends on a real parameter “h” in some form. Vh is the actual collection of “finite
elements”. In the current context, we choose a space of piece-wise linear functions based on a grid
0 “ x0 ă x1 ă ¨ ¨ ¨ ă xN`1 “ 1. More precisely, let

(6.23) Vh :“
!

v P C pr0, 1sq
ˇ

ˇ

ˇ
@i P t0, . . . , Nu : v|rxi,xi`1s

is affine, vp0q “ vp1q “ 0
)

.

It is easy to check that Vh Ă V and that dimVh “ N . Other polynomial spline spaces may also be
useful.

We now consider the project problem of finding uh P Vh such that

(6.24) @v P Vh : Apuh, vq “ Lpvq.

Clearly, there is no reason why the true solution u P V of the variational formulation of our PDE
(provided it exists, is unique etc.) is contained in Vh. Hence, uh ‰ u in general, and the projection
step induces an error in the finite element method.
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Step 3: Basis of Vh

Note that (6.24) is linear in both uh and in v. Hence, we can replace the infinite system of equa-
tions (6.24) by a finite system of equations by running only through a set of vs forming a basis
of Vh. While there are many possible bases of Vh, it is advantageous to choose a basis which is
well-adapted to the problem at hand. For variational problems as considered here, a good choice
is one such that the supports of the basis functions have minimal intersection—this will become
transparent in the final step below. Hence, we an obvious choice of basis for Vh consists of “tent
functions”, i.e., functions φi P Vh, i “ 1, . . . , N , defined by the constraint that

φipxjq “ δi,j , j “ 0, . . . , N ` 1, , i “ 1, . . . , N.

This basis leads to an extremely simple representation of general elements of Vh as linear combination
of basis vectors. Indeed, for v P Vh we have

vpxq “
N
ÿ

i“1

vpxiqφipxq, x P r0, 1s.

Hence, we are now left with the finite, linear system of equation to find uh P Vh such that

(6.25) @i P t1, . . . , Nu : Apuh, φiq “ Lpφiq.

Step 4: Solving the linear system

The last step is now almost trivial: we need to solve the system of equations (6.25). We will describe
the procedure in some detail, mostly to introduce some names.

First, we represent the approximate solution uh in terms of the basis,

uh “
N
ÿ

i“1

ξiφi.

Defining the stiffness matrix A P RNˆN and the load vector L P RN by

Ai,j :“ Apφi, φjq, Li :“ Lpφiq,

for i, j P t1, . . . , Nu, we end up with the system

Aξ “ L, ξ “ pξ1, . . . , ξN q
J
.

Note that the special structure of the basis functions induces sparsity in A. Indeed, if φi and φj
have disjoint support, then it is easy to see that Ai,j “ 0.

Exercise 6.2. Set up the matrix A and the vector L in the model problem (6.18). Convince yourself
of the sparsity of A.

6.3.2 Existence and uniqueness of solutions to the variational problem

Here we consider the general problem (6.22). I.e., we assume that we are given a Hilbert space V and
a bi-linear form A : V ˆV Ñ R and a linear form L : V Ñ R. The existence and uniqueness theorem
for such problems is a classical (and surprisingly simple) theorem of functional analysis, which we
are going to present below. But first we need an auxiliary result, providing a helpful reformulation
of the variational formulation of a PDE in terms of a minimization problem.

Lemma 6.11. Assume that the bi-linear form A is symmetric and positive semi-definite, i.e.,

@v, w P V : Apv, wq “ Apw, vq,

@v P V : Apv, vq ě 0.

Then u P V satisfies (6.22) if and only if u is a minimizer of the functional F pvq :“ 1
2Apv, vq´Lpvq,

v P V .
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Proof. “ñ:” If u solves the variational problem and v P V is arbitrary, we need to show that
F puq ď F pvq. Let w :“ v´u

ε P V for some ε P R. We have that

F pvq “ F pu` εwq “

ˆ

1

2
Apu, uq ´ Lpuq

˙

looooooooooomooooooooooon

“F puq

`ε pApu,wq ´ Lpwqq
loooooooooomoooooooooon

“0

`
1

2
ε2Apw,wq
looomooon

ě0

ě F puq.

“ð:” Suppose that u is a minimizer of F and take any w P V . Consider gpεq :“ F pu`εwq, g : RÑ R.
As g is a smooth function taking its minimum at ε “ 0, we have

0 “ g1p0q “ Apu,wq ´ Lpwq.

As w was arbitrary, u solves the variational problem.

Theorem 6.12 (Lax-Milgram Lemma). Let V be a Hilbert space with norm ‖¨‖V . Assume that the
bi-linear functional A : V ˆ V Ñ R and the linear functional L : V Ñ R satisfy:

(i) A is symmetric;

(ii) A is elliptic, i.e., Dα ą 0 @v P V : Apv, vq ě α ‖v‖2
V ;

(iii) A is continuous, i.e., DC ą 0 @v, w P V : |Apv, wq| ď C ‖v‖V ‖w‖V ;

(iv) L is continuous, i.e, DΛ ą 0 @v P V : |Lpvq| ď Λ ‖v‖V .

Then there is a unique u P V such that

@v P V : Apu, vq “ Lpvq.

Moreover, we have the a-priori estimate ‖u‖V ď
Λ
α .

Proof. By Lemma 6.11 we have to show that there is a unique u P V with F puq “ infvPV F pvq.
Define the energy norm ‖v‖ :“

a

Apv, vq, v P V . We note that ‖¨‖ is equivalent to ‖¨‖V as

α ‖v‖2
V ď Apv, vq “ ‖v‖2

ď C ‖v‖2
V .

Step 1: The minimum of F is finite.
Let β :“ infvPV F pvq. Note that

F pvq “
1

2
‖v‖2

´ Lpvq ě
1

2
‖v‖2

´ Λ ‖v‖ .

Hence, β ě infxPR
1
2x

2 ´ Λx “ ´ 1
2Λ2 ą ´8.

Step 2: Minimizing sequences are Cauchy.
Let pvnqnPN denote a minimizing sequence, i.e., F pvnq Ñ β as nÑ8. Then

‖vn ´ vm‖2
“ ‖vn‖2

` ‖vm‖2
´ 2Apvn, vmq

“ 2 ‖vn‖2
` 2 ‖vm‖2

´ ‖vn ` vm‖2

“ 2 ‖vn‖2
´ 4Lpvnq ` 2 ‖vm‖2

´ 4Lpvmq ´ 4

˜∥∥∥∥vn ` vm2

∥∥∥∥2

´ 2L

ˆ

vn ` vm
2

˙

¸

“ 4F pvnq ` 4F pvmq ´ 8F

ˆ

vn ` vm
2

˙

looooooomooooooon

ěβ

ď 4F pvnq ` 4F pvmq ´ 8β
m,nÑ8
ÝÝÝÝÝÑ 0.

Step 3: Existence of a minimizer and stability estimate.
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Fix any minimizing sequence pvnqnPN and define u :“ limnÑ8 vn. Note that

|F pvnq ´ F puq| “
∣∣∣∣12 ´

‖vn‖2
´ ‖u‖2

¯

´ Lpvn ´ uq

∣∣∣∣
ď

∣∣∣∣12Apvn ´ u, vn ` uq
∣∣∣∣` |Lpvn ´ uq|

ď
1

2
C ‖vn ´ u‖V ‖vn ` u‖V ` Λ ‖vn ´ u‖V .

By equivalence of norms, we have ‖vn ´ u‖V Ñ 0 while ‖vn ` u‖V is bounded. Hence, F puq “
limnÑ8 F pvnq “ β.

As a minimizer, u solves the variational problem. Hence, we have

α ‖u‖2
V ď Apu, uq “ Lpuq ď Λ ‖u‖V ,

or ‖u‖V ď
Λ
α .

Step 4: Uniqueness.
Assume that there are two solutions u1, u2 P V . Then for any v P V we have

Apu1, vq “ Lpvq “ Apu2, vq.

This implies that Apu1 ´ u2, vq “ 0 for any v P V . In particular, for v “ u1 ´ u2 we get Apu1 ´

u2, u1 ´ u2q “ 0, and by ellipticity ‖u1 ´ u2‖2
V “ 0. Hence, u1 “ u2.

Example 6.13. We show that (6.20) together with (6.21) satisfies the conditions of Theorem 6.12
provided that

‖a‖8 ă 8, ‖r‖8 ă 8, ‖f‖8 ă 8, inf
xPr0,1s

apxq ą 0.

(The latter condition corresponds to ellipticity and is the important condition. All norms are consid-

ered on p0, 1q.) Recall that ‖v‖2
V “ ‖v‖2

L2`‖v1‖2
L2 in this example. Before verifying the assumptions,

note that ‖v‖2
V ď 2 ‖v1‖2

L2 , since (by Jensen’s inequality)

ż 1

0

vpxq2dx “

ż 1

0

¨

˝ vp0q
loomoon

“0

`

ż x

0

v1pyqdy

˛

‚

2

dx ď

ż 1

0

x

ż x

0

`

v1pyq
˘2
dydx

“

ż 1

0

`

v1pyq
˘2

ż 1

y

x dx dy ď
1

2

ż 1

0

`

v1pyq
˘2
dy,

or, more compactly,

(6.26) ‖v‖2
L2 ď

1

2

∥∥v1∥∥2

L2 .

Note that (6.26) is a special case of the Pincaré–Friedrichs inequality.
We now verify the four assumptions of the theorem. Symmetry of A is clear. For ellipticity, note

that

Apv, vq “

ż 1

0

apxq
`

v1pxq
˘2
dx`

ż 1

0

rpxqvpxq2dx ě pinf aq
∥∥v1∥∥2

L2 ě
1

2
pinf aq ‖v‖2

V .

For continuity of A note that

|Apv, wq| ď
ż 1

0

|apxq|
∣∣v1pxqw1pxq∣∣ dx` ż 1

0

|rpxq| |upxqvpxq|

ď ‖a‖8
∥∥v1w1∥∥

L1 ` ‖r‖8 ‖vw‖L1

ď ‖a‖8
∥∥v1∥∥

L2

∥∥w1∥∥
L2 ` ‖r‖8 ‖v‖L2 ‖w‖L2

ď p‖a‖8 ` ‖r‖8q ‖v‖V ‖w‖V .

Continuity of L follows in the same way.
Note that we therefore obtain existence and uniqueness of solutions without any smoothness

assumptions on the coefficients.
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6.3.3 Error estimates

In general, as made precise by the following theorem, the error in the finite element method depends
on

• the smoothness of the true solution;

• the approximation quality of Vh Ă V .

Theorem 6.14. Assume the conditions of Theorem 6.12. Moreover, let π : V Ñ Vh be a projection.
Then for the solution u and the corresponding finite element approximation uh of the variational
problem based on Vh Ă V , we have

‖u´ uh‖V “ ‖u´ uh‖H1 ď

c

C

α
‖u´ πu‖V

Proof. By definition, we have

@v P V : Apu, vq “ Lpvq,

@v P Vh : Apuh, vq “ Lpvq.

Hence, the error e :“ u´ uh is orthogonal to Vh in terms of the energy norm, as

@v P Vh : Apu´ uh, vq “ 0.

We have

Ape, eq “ Ape, u´ πuq `Ape, πu´ uh
looomooon

PVh

q

“ Ape, u´ πuq

ď ‖e‖ ‖u´ πu‖ .

Dividing by ‖e‖, squaring and using the continuity of A we get

‖e‖2
V ď

1

α
‖e‖2

ď
1

α
Apu´ πu, u´ πuq ď

C

α
‖u´ πu‖2

V .

Error estimates therefore require two pieces of information: how smooth is the true solution,
and how well can such a function be approximated by functions in Vh. We come back to our one-
dimensional example. We first discuss the latter question.

Lemma 6.15. For V and Vh defined in (6.19) and (6.23), respectively, let π : V Ñ Vh be defined

by πvpxq :“
řN
i“1 vpxiqφipxq, based on the basis φi of tent-functions. Let v P V be such that v2 exists

in a weak sense and is square-integrable. Then we have

‖v ´ πv‖V ď Ch, h :“ max
i“0,...,N

|xi`1 ´ xi| .

Proof. We first compute ‖pv ´ πvq1‖2
L2 . For x P pxi, xi`1q we have

pπvq1pxq “
vpxi`1q ´ vpxiq

xi`1 ´ xi
“ v1pξq

for some ξ P pxi, xi`1q. (Note that ξ does not depend on x.) Hence,

v1pxq ´ pπvq1pxq “ v1pxq ´ v1pξq “

ż x

ξ

v2psqds.
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Using Jensen’s inequality, we further obtain

ż xi`1

xi

∣∣v1pxq ´ pπvq1pxq∣∣2 dx “ ż xi`1

xi

∣∣∣∣ż x
ξ

v2psqds

∣∣∣∣2 dx
ď

ż xi`1

xi

|x´ ξ|
ż x

ξ

pv2psqq2dsdx

ď hpxi`1 ´ xiq

ż xi`1

xi

pv2psqq2ds

ď h2

ż xi`1

xi

pv2psqq2ds.

Adding up the integrals, we obtain

∥∥v1 ´ pπvq1∥∥2

L2 “

N
ÿ

i“0

ż xi`1

xi

∣∣v1pxq ´ pπvq1pxq∣∣2 dx ď h2

ż 1

0

pv2psqq2ds.

Similarly, for x P pxi, xi`1q we get

vpxq ´ πvpxq “ rvpxiq ´ πvpxiqs `

ż x

xi

“

v1psq ´ pπvq1psq
‰

ds “

ż x

xi

“

v1psq ´ pπvq1psq
‰

ds.

Hence,

ż xi`1

xi

|vpxq ´ πvpxq|2 dx “
ż xi`1

xi

∣∣∣∣ż x
xi

“

v1psq ´ pπvq1psq
‰

ds

∣∣∣∣2 dx
ď h

ż xi`1

xi

ż x

xi

“

v1psq ´ pπvq1psq
‰2
dsdx

ď h

ż xi`1

xi

dx
looomooon

ďh

ż xi`1

xi

“

v1psq ´ pπvq1psq
‰2
ds

looooooooooooooooomooooooooooooooooon

ďh2
şxi`1
xi

pv2psqq2ds

ď h4

ż xi`1

xi

pv2psqq2ds.

Summing up, we get

‖v ´ πv‖2
L2 ď h4

ż 1

0

pv2psqq2ds.

Regarding regularity of the solution, note that smoothness of the solution to (6.18) follows from
the “elliptic regularity theorem”. More precisely, if (in addition to the conditions in Example 6.13)
a is continuously differentiable and f is square integrable, then we indeed have u2 P L2. In fact, we
can bound ‖u‖H2 ď C ‖f‖L2 .

Theorem 6.14 together with Lemma 6.15 give us the error estimate

(6.27) ‖u´ uh‖H1 ď const
∥∥u2∥∥

L2 h

provided that u is twice weakly differentiable. By definition of the ‖¨‖H1 this means that both u´uh
and u1´u1h have an error of order h in the L2 sense. However, in many situations we might only be
interested in estimates for the L2-error of the solution u, uh rather then its derivative. The following
result shows that the error estimate can be improved in this case.

Lemma 6.16 (Aubin–Nitsche duality). Under the conditions of Lemma 6.15 we have ‖u´ uh‖L2 ď

C ‖u‖H2 h2.
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Proof. The constant C can change from occurrence to occurrence in this proof. With e :“ u´ uh P
V “ H1

0 pp0, 1qq, we consider the dual problem of finding φ P V s.t.

@v P V : Apφ, vq “ xe , vyL2 ,

i.e., the original problem with f replaced by e. From our previous results, we know that there is a
unique solution φ P V , and since e P H1

0 Ă L2, we also have elliptic regularity.
Recall that Céa’s lemma implies that e is orthogonal to Vh w.r.t. the energy norm. Hence, using

the particular test function v “ e P V , we have

‖e‖2
L2 “ xe , eyL2 “ Apφ, eq “ Ape, φ´ πφq ď ‖e‖ ‖φ´ πφ‖ .

Lemma 6.15, we have
‖φ´ πφ‖ ď Ch ‖φ‖H2 ď Ch ‖e‖L2 .

Inserting into the above inequality, dividing by ‖e‖L2 , and using equivalence of ‖¨‖ and ‖¨‖H1 as
well as (6.27), we obtain

‖e‖L2 ď Ch ‖e‖ ď Ch ‖e‖H1 ď Ch2 ‖u‖H2 .

6.3.4 FEM for parabolic equations

For simplicity, we only consider the one-dimensional heat equation with vanishing Dirichlet bound-
ary condition, i.e,

Btupt, xq “ ∆upt, xq ` fpt, xq, 0 ă x ă 1, 0 ă t ď T,(6.28a)

up0, xq “ u0pxq, 0 ď x ď 1, upt, 0q “ upt, 1q “ 0, 0 ď t ď T,(6.28b)

where ∆ “ B2
x only acts on the space variable x.

We will not develop a proper solution theory for (6.28). Rather we assume that there is a unique
solution in the following sense: Consider t ÞÑ upt, ¨q. Then the classical derivative t ÞÑ Btupt, ¨q exists
and u P L2

`

r0, T s;H1
0 pGq

˘

with Btu P L
2
`

r0, T s;H´1pGq
˘

with, in our case, G “ p0, 1q, and satisfies:

(6.29) @0 ă t ď T, @v P H1
0 pGq : xBtupt, ¨q , vyH´1pGq;H1

0 pGq
`Apu, v; tq “ Lpv; tq, up0, ¨q “ u0.

Remark 6.17. For the heat equation (6.28), the bi-linear form Apw, vq “ xw1 , v1yL2 is indepen-
dent of t, and we chose L ” 0. In addition, it is natural to assume that Btupt, ¨q P H´1pGq,

since, by the equation, Btupt, c9q “ ∆upt, ¨q, i.e., taking one time derivative corresponds to tak-
ing two space derivatives. In this context, H´1pGq is, in fact, the dual sppace of H1

0 pGq, and
x¨ , ¨yH´1pGq;H1

0 pGq
denotes the duality bracket between H´1pGq and H1

0 pGq. For our purposes, we

will act as if this bracket coincides with the L2pGq-inner product x¨ , ¨yL2 , although H´1pGq Ľ L2pGq.
For instance, as H1

0 pp0, 1qq Ă Cpr0, 1sq, the point-evaluation functional, i.e., the delta distribution
δx P H

´1pp0, 1qqzL2pp0, 1qq, 0 ă x ă 1.

An important property of the heat equation is energy dissipation.

Theorem 6.18 (Energy dissipation). There is a constant K s.t. the solution u of the heat equa-
tion (6.28) satisfies

‖upt, ¨q‖2
L2 ď e´Kt ‖u0‖2

L2 `
1

K

ż t

0

e´Kpt´sq ‖fps, ¨q‖2
L2 ds.

Proof for the case f ” 0. We test Btupt, ¨q against the test function upt, ¨q using thatApupt, ¨q, upt, ¨qq “

‖Bxupt, ¨q‖2
L2 ě 2 ‖upt, ¨q‖2

L2 and obtain

1

2

d

dt
‖upt, ¨q‖2

L2 ` 2 ‖upt, ¨q‖2
L2 “ xBtupt, ¨q , upt, ¨qyL2 ` 2 ‖upt, ¨q‖2

L2 ď 0.

This implies that
d

dt

´

e4t ‖upt, ¨q‖2
L2

¯

ď 0.
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We now add time-discretization in the form of the Euler scheme. For simplicity, we only consider
uniform grids, i.e., space grids xj :“ jh, 0 ď j ď N ` 1, which are used to define Vh as in (6.23),
h :“ 1{pN ` 1q. We also consider a uniform time grid tm :“ m∆t, 0 ď m ď M , with ∆t :“ T {M .
For arbitrary functions w “ wpt, xq of pt, xq we introduce the notation

(6.30) wm :“ wptm, ¨q, m “ 0, . . . ,M.

We obtain the forward and backward Euler methods by replacing the time-derivative in (6.29) by a
forward and backward difference quotient, respectively, and restricting the test functions to Vh Ă V .

Definition 6.19. Consider a sequence umh P Vh, m “ 0, . . . ,M , such that u0
h is obtained as L2-

projection of u0 on Vh, i.e., @v P Vh :
@

u0
h ´ u0 , v

D

L2 “ 0. pumh q
M
m“0 is the forward Euler approxi-

mation of the heat equation (6.28) iff

@v P Vh :

B

um`1
h ´ umh

∆t
, v

F

L2

`Apumh , vq “ xf
m , vyL2 , m “ 0, . . . ,M ´ 1.

pumh q
M
m“0 is the backward Euler approximation of the heat equation (6.28) iff

@v P Vh :

B

um`1
h ´ umh

∆t
, v

F

L2

`Apum`1
h , vq “

@

fm`1 , v
D

L2 , m “ 0, . . . ,M ´ 1.

These equations can be reformulated as

(6.31) @v P Vh :
@

um`1
h , v

D

L2 “ xu
m
h , vyL2 ´∆tApumh , vq `∆t xfm , vyL2 , m “ 0, . . . ,M ´ 1,

for the forward Euler method and

(6.32) @v P Vh :
@

um`1
h , v

D

L2`∆tApum`1
h , vq “ xumh , vyL2`∆t

@

fm`1 , v
D

L2 , m “ 0, . . . ,M´1,

for the backward Euler method. We also define the general θ-scheme in a similar way as for finite
difference methods. Let us introduce another short-hand notation: for a function w “ wpt, xq in
pt, xq and 0 ď θ ď 1, define

(6.33) wm`θ :“ θwptm`1, ¨q ` p1´ θqwptm, ¨q, m “ 0, . . . ,M ´ 1,

such that wm and wm`1 in the sense of wm`θ for θ “ 0 or θ “ 1, respectively, coincide with the
original definitions in (6.30).

Definition 6.20. Consider a sequence umh P Vh, m “ 0, . . . ,M , such that u0
h is obtained as L2-

projection of u0 on Vh, i.e., @v P Vh :
@

u0
h ´ u0 , v

D

L2 “ 0, and fix 0 ď θ ď 1. Then pumh q
M
m“0 is the

solution of the θ-scheme iff
B

um`1
h ´ umh

∆t
, v

F

L2

`Apum`θh , vq “
@

fm`θ , v
D

L2 , m “ 0, . . . ,M ´ 1.

We note that the θ-scheme with θ “ 0 coincides with the forward Euler scheme and the θ-scheme
with θ “ 1 coincides with the backward Euler scheme.

We next study stability of the Euler schemes. As in the case of finite difference scheme, it turns
out that the backward Euler scheme is stable regardless of the choices of h and ∆t, whereas the
forward Euler scheme is only stable provided that ∆t is sufficiently small for given h. More generally,
we have

Theorem 6.21. For 1{2 ď θ ď 1 the θ–scheme is unconditionally stable, i.e., its solution pumh q
M
m“0

satisfies

max
1ďmďM

‖umh ‖2
L2 ď

∥∥u0
h

∥∥2

L2 `∆t
M´1
ÿ

m“0

∥∥fm`θ∥∥2

L2 .
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For 0 ď θ ă 1{2 the θ-scheme is stable provided that for some 0 ă ε ă 1 we have ∆t ď h2

6p1´2θq p1´εq.

In this case, its solution pumh q
M
m“0 satisfies

max
1ďmďM

‖umh ‖2
L2 ď

∥∥u0
h

∥∥2

L2 ` cε∆t
M´1
ÿ

m“0

∥∥fm`θ∥∥2

L2 , cε :“
1

4ε2
`∆tp1´ 2θqp1` 1{εq.

Proof of the case 1{2 ď θ ď 1. We test the scheme given in Definition 6.20 with v :“ um`θh P Vh,
and obtain

(6.34)

B

um`1
h ´ umh

∆t
, um`θh

F

L2

`
∥∥∇um`θh

∥∥2

L2 “
@

fm`θ , um`θh

D

L2 .

Note that

um`θh “ θum`1
h `p1´θqum “ pθ´1{2qpum`1

h ´umh q`
um`1
h ` umh

2
“ ∆tpθ´1{2q

um`1
h ´ umh

∆t
`
um`1
h ` umh

2
.

Plugging this into the left-most term in (6.34), we obtain

∆tpθ ´ 1{2q

∥∥∥∥um`1
h ´ umh

∆t

∥∥∥∥2

L2

`
1

2∆t

´∥∥um`1
h

∥∥2

L2 ´ ‖umh ‖2
L2

¯

`
∥∥∇um`θh

∥∥2

L2 “
@

fm`θ , um`θh

D

L2 .

As θ ě 1{2, the first term above is non-negative and can therefore be omitted for a lower bound∥∥um`1
h

∥∥2

L2 ´ ‖umh ‖2
L2

2∆t
`
∥∥∇um`θh

∥∥2

L2 ď
∥∥fm`θ∥∥

L2

∥∥um`θh

∥∥
L2 .

The Poincaré–Friedrichs inequality (6.26) as well as the trivial bound ab ď pa2 ` b2q{2 imply that∥∥um`1
h

∥∥2

L2 ´ ‖umh ‖2
L2

2∆t
` 2

∥∥um`θh

∥∥2

L2 ď
1

2

∥∥fm`θ∥∥2

L2 `
1

2

∥∥um`θh

∥∥2

L2 ,

which, in turn, gives

(6.35)

∥∥um`1
h

∥∥2

L2 ´ ‖umh ‖2
L2

2∆t
ď

1

2

∥∥fm`θ∥∥2

L2 .

We next come to the actual convergence result. We will restrict ourselves to the backward Euler
scheme and the error in the L2-sense, i.e., we formulate the analogue of Lemma 6.16.

Theorem 6.22. Consider the solution u of the heat equation (6.28) and its backward Euler ap-
proximation pumh q

M
m“0. In addition to our standing assumptions, we assume that for all t P r0, T s

we have
sup
tPr0,T s

∥∥B2
t upt, ¨q

∥∥
L2 ă 8, sup

tPr0,T s

‖Btupt, ¨q‖H2 ă 8.

Then there is a constant C ą 0 such that

max
m“0,...,M

‖um ´ umh ‖L2 ď C
`

∆t` h2
˘

.

Proof. Let Ph : V Ñ Vh denote the orthogonal projection w.r.t. the energy norm ‖v‖ “
a

Apv, vq,
and denote emh :“ um ´ umh P V . We consider the error decomposition

(6.36) emh “ ηm ` ξm, ηm :“ um ´ Phum P V, ξm :“ Phum ´ umh P Vh.

By definition, @v P Vh : Apum ´ Phum, vq “ 0, i.e., Galerkin orthogonality holds for Phum. Recall
that Galerkin orthogonality was the basis of the whole error analysis for the elliptic case. Hence, we

73



obtain the error results of Lemma 6.15 and Lemma 6.16 for u replaced by um and uh replaced by
Phum. Hence, we have

(6.37) ‖ηm‖L2 ď const ‖um‖H2 h
2, m “ 0, . . . ,M.

(Regarding m “ 0, we refer to the proof of Lemma 6.15.) A similar calculation shows that the same
estimate holds for the difference quotient, i.e.,

(6.38)

∥∥∥∥ηm`1 ´ ηm

∆t

∥∥∥∥
L2

ď const

∥∥∥∥um`1 ´ um

∆t

∥∥∥∥
H2

h2, m “ 0, . . . ,M ´ 1.

We next come to the estimation of ξm, starting with m “ 0. As e0
h is L2-orthogonal to Vh, we

have
@

ξ0 , v
D

L2 “
@

e0
h ´ η

0 , v
D

L2 “ ´
@

η0 , v
D

L2 , v P Vh.

Choosing v “ ξ0 P Vh and applying Cauchy–Schwarz, we obtain

(6.39)
∥∥ξ0

∥∥
L2 ď

∥∥η0
∥∥
L2 ď const ‖u0‖H2 h

2.

Moving on to 1 ď m ďM , an elementary computation gives that

@v P Vh :

B

ξm`1 ´ ξm

∆t
, v

F

L2

`Apξm`1, vq “

B

um`1 ´ um

∆t
´ Btu

m`1 ´
ηm`1 ´ ηm

∆t
, v

F

L2

,

i.e., ξm is itself the solution of a backward Euler discretization of a heat equation with right hand
side given by

rfm`1 :“
um`1 ´ um

∆t
´ Btu

m`1 ´
ηm`1 ´ ηm

∆t
.

By Theorem 6.21, we have

(6.40) max
1ďmďM

‖ξm‖2
L2 ď

∥∥ξ0
∥∥2

L2 `∆t
M´1
ÿ

m“0

∥∥∥ rfm`1
∥∥∥2

L2
,

and we are left to estimate∥∥∥ rfm`1
∥∥∥
L2
ď

∥∥∥∥um`1 ´ um

∆t
´ Btu

m`1

∥∥∥∥
L2

`

∥∥∥∥ηm`1 ´ ηm

∆t

∥∥∥∥
L2

“: I ` II.

Regarding the estimation of I, Taylor’s formula implies that

um`1pxq ´ umpxq

∆t
´ Btu

m`1pxq “ ´
1

∆t

ż tm`1

tm
pt´ tmqB2

t upt, xqdx,

further giving us

I2 ď
1

∆t

ż 1

0

ż tm`1

tm
pt´ tmq2
loooomoooon

ď∆t2

∣∣B2
t upt, xq

∣∣2 dt dx ď ∆t

ż tm`1

tm

∥∥B2
t upt, ¨q

∥∥2

L2 dt.

Regarding the estimation of II, a similar calculation based on (6.38) shows that

II “

∥∥∥∥ηm`1 ´ ηm

∆t

∥∥∥∥
L2

ď const

∥∥∥∥um`1 ´ um

∆t

∥∥∥∥
H2

h2

“ const

∥∥∥∥∥ 1

∆t

ż tm`1

tm
Btupt, ¨qdt

∥∥∥∥∥
H2

h2

ď const

˜

ż tm`1

tm
‖Btupt, ¨q‖2

H2 dt

¸1{2
h2

?
∆t

.
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Combining the estimates for I and II, we obtain

∥∥∥ rfm`1
∥∥∥2

L2
ď const

˜

∆t

ż tm`1

tm

∥∥B2
t upt, ¨q

∥∥2

L2 dt`
h4

∆t

ż tm`1

tm
‖Btupt, ¨q‖2

H2 dt

¸

,

implying that

∆t
M´1
ÿ

m“0

∥∥∥ rfm`1
∥∥∥2

L2
ď const

˜

∆t2
ż T

0

∥∥B2
t upt, ¨q

∥∥2

L2 dt` h
4

ż T

0

‖Btupt, ¨q‖2
H2 dt

¸

ď constp∆t2 ` h4q.

Plugging the estimate into (6.40) and combining it with (6.39), we obtain

max
m“0,...,M

‖ξm‖L2 ď constp∆t` h2q,

which finishes the proof.

Remark 6.23. For the Crank–Nicolson scheme, i.e., the θ-scheme with θ “ 1{2, one can prove
(under similar conditions) an L2-error of order ∆t2 ` h2.
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Chapter 7

Fourier methods for option pricing

In Chapters 2 and 5 we have studied probabilistic numerical methods for the valuation of derivatives,
while in Chapters 3 and 6 we have discussed deterministic numerical schemes. This chapter continues
the study of deterministic methods for option pricing by introducing Fourier transform methods.

Let us recall that we are interested in computing the expectation of fpXq, i.e. ErfpXqs. Fourier
and other transform methods for option pricing can be schematically represented as follows:

ErfpXqs “
ż

fpxqPXpdxq ÝÝÝÝÑ
ż

T´1
`

T pfq
˘

pxqPXpdxq ÝÝÝÝÑ ErfpXqs “
ż

T pfqpuqT pPXqpuqdu,

(7.1)

where T is a suitable transformation and T´1 its inverse. The most popular choices for the trans-
formation T are the Fourier and Laplace transforms (Carr and Madan [7], Raible [48]), the Hilbert
transform (Feng and Linetsky [19]), and the cosine series expansion (Fang and Oosterlee [18]).

These methods should be used when the computation of the right hand integral in (7.1) is
(much) simpler than the computation of the left hand one; in particular, when the functions T pfq
and T pPXq are well-defined and known explicitly. Let us point out that there are many examples
in mathematical finance where PX is not known explicitly, while its transform T pPXq is known;
think, for example, of Lévy and affine processes where the probability density function is typically
unknown while the characteristic function is provided by the Lévy–Khintchine formula, resp. the
solution of the generalized Riccati ODEs. In the sequel, we will provide explicit conditions such
that these quantities are well-defined and discuss when it is advantageous to use Fourier transform
methods for option pricing.

7.1 The Fourier transform

We will first provide a short and self-contained introduction to the Fourier transform following
Deitmar [12] and Rudin [50], before proceeding with applications in mathematical finance.

Let us denote by L1pRq the space of all functions f : RÑ C with finite L1-norm, i.e. such that

}f}L1 “

ż

R
|fpxq|dx ă 8,

while L1
bcpRq denotes the space of functions in L1pRq which are continuous and bounded.

Definition 7.1. Let f P L1pRq, then define its Fourier transform by

pfpuq “

ż

R
eiuxfpxqdx, u P R.(7.2)

We extend the definition to u P C provided that the integral above exists.
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Remark 7.2. The following simple estimate shows that the Fourier transform is bounded for every
f P L1pRq:

| pfpuq| ď

ż

R
|eiux||fpxq|dx ď }f}L1 ă 8.(7.3)

The next result shows that the Fourier transform of a function, apart form being bounded, is
also continuous and vanishes at infinity. The latter is also known as the Riemann–Lebesgue Lemma.
Let C0 denote the space of continuous functions vanishing at infinity.

Theorem 7.3. Let f P L1pRq, then pf P C0.

Proof. Let un Ñ u, then

ˇ

ˇ pfpunq ´ pfpuq
ˇ

ˇ ď

ż

R
|eiunx ´ eiux||fpxq|dx ď 2}f}L1 ă 8,

and by the dominated convergence theorem we get that

pfpunq ÝÝÝÑ
nÑ8

pfpuq,

hence pf is a continuous function. Moreover, using that eiπ “ ´1, we get that

pfpuq “

ż

R
eiuxfpxqdx “ ´

ż

R
eiux`iπfpxqdx “ ´

ż

R
eiupx`πu qfpxqdx

“ ´

ż

R
eiuxf

´

x´
π

u

¯

dx.

Therefore, we have that

pfpuq “
1

2

ż

R
eiux

´

fpxq ´ f
´

x´
π

u

¯¯

dx

thus, writing fπ{upxq “ fpx´ π{uq, we get that

ˇ

ˇ pfpuq
ˇ

ˇ ď
1

2

›

›f ´ fπ{u
›

›

L1 ÝÝÝÝÑ
|u|Ñ8

0,

since the mapping u ÞÑ fπ{u is uniformly continuous (cf. [50, Thm. 9.5]).

Next, we shall derive several useful properties of the Fourier transform. More precisely, the
Fourier transform converts multiplication by a character, i.e. by eiux, into translation and vice versa,
while it converts convolutions into pointwise products. Moreover, the Fourier transform converts
differentiation into multiplication by ´iu and vice versa, a fact that is very usefull in the study of
differential equations.

Theorem 7.4. Let f P L1pRq.

(i) If gpxq “ fpxqeiax for a P R, then pgpuq “ pfpu` aq.

(ii) If gpxq “ fpx´ aq for a P R, then pgpuq “ eiua
pfpuq.

(iii) If gpxq “ fpxλ q for λ P R`, then pgpuq “ λ pfpλuq.

(iv) If gpxq “ fp´xq, then pgpuq “ pfpuq.

(v) If g P L1pRq and h “ f ˚ g, then phpuq “ pfpuqpgpuq.
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(vi) If gpxq “ ixfpxq and g P L1pRq, then pf is continuously differentiable with
´

pf
¯1

puq “ pgpuq.

(vii) Let f P C1pRq and assume that f, f 1 P L1
bcpRq. Then

pf 1puq “ ´iu pfpuq

and, in particular, u pfpuq is bounded.

(viii) Let f P C2pRq and assume that f, f 1, f2 P L1
bcpRq. Then pf P L1

bcpRq.

Proof. piq, piiq, piiiq and pivq follow directly from Definition 7.1.
pvq The operation f ˚ g is called convolution and is defined via

pf ˚ gqpxq “

ż

R
fpyqgpx´ yqdy.

Then, using Fubini’s theorem we get that

}f ˚ g}L1 “

ż

R

ˇ

ˇ

ˇ

ż

R
fpyqgpx´ yqdy

ˇ

ˇ

ˇ
dx

ď

ż

R

ż

R

ˇ

ˇfpyqgpx´ yq
ˇ

ˇdydx

“

ż

R
|fpyq|dy

ż

R
|gpxq|dx “ }f}L1}g}L1 ă 8.

Moreover, using Fubini’s theorem once again, as well as the translation invariance of the Lebesgue
measure, we have that

{pf ˚ gqpuq “

ż

R
eiuxpf ˚ gqpxqdx

“

ż

R
eiux

ż

R
fpyqgpx´ yqdydx

“

ż

R
eiuyfpyqdy

ż

R
eiupx´yqgpx´ yqdx “ pfpuqpgpuq.

pviq Observe that

pfpvq ´ pfpuq

v ´ u
“

ż

R
eiux eipv´uqx ´ 1

v ´ u
fpxqdx.(7.4)

Let ϕpx, uq “ 1
u pe

iux ´ 1q, then |ϕpx, uq| ď |x| for all u ‰ 0 and

ϕpx, uq Ñ ix as uÑ 0,

where the convergence is locally uniform in x. Therefore, using the dominated convergence theorem,
as v Ñ u we get from (7.4) that

´

pf
¯1

puq “

ż

R
eiuxixfpxqdx “ pgpuq.

pviiq Since f is integrable, there exist sequences An, Bn Ñ 8 such that fp´Anq, fpBnq Ñ 0.
Then, using integration by parts, we have that

pf 1puq “ lim
nÑ8

ż Bn

´An

eiuxf 1pxqdx

“ lim
nÑ8

!

eiuBnfpBnq ´ e´iuAnfp´Anq
)

´ lim
nÑ8

ż Bn

´An

iueiuxfpxqdx

“ ´iu pfpuq.
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The boundedness of u pfpuq follows from the previous equality and Remark 7.2.
pviiiq Since f, f 1, f2 are integrable and f is two times continuously differentiable, applying pviiq

twice yields that xf2puq “ ´u2
pfpuq. Moreover, from the latter result together with Remark 7.2 we

get that p1` u2q pfpuq is a bounded function. Hence, we arrive at the following:

ż

R
| pfpuq|du ď const ¨

ż

R

1

1` u2
du ă 8.

We have shown that certain operations on functions correspond nicely to operations on their
Fourier transforms. This correspondence would be of great interest if there was a way to return from
the transform to the function itself, in other words, if there was an inversion formula. The inversion
formula obviously involves the inverse Fourier transform whose definition is provided below and
shows that, apart from a constant and a sign change, the Fourier transform is inverse to itself.

Definition 7.5. Let g P L1pRq, then the inverse Fourier transform of g is defined as

p

gpuq “
1

2π

ż

R
e´iuxgpxqdx, u P R.

In order to prove the inversion formula, we need some auxiliary definitions and results. Define,
for λ P R` and x P R

hλpxq “
1

2π

ż

R
e´λ|u|e´iuxdu,(7.5)

and note that

0 ă e´λ|u| ď 1 and e´λ|u| ÝÝÝÑ
λÑ0

1.

Lemma 7.6. We have that

hλpxq “
λ

πpx2 ` λ2q
and

ż

R
hλpxqdx “ 1.(7.6)

Moreover, hλpxq “
1
λh1p

x
λ q for every λ ą 0.

Exercise 7.1. Show that
ş

R
1

x2`λ2 dx “ π
λ and prove Lemma 7.6.

Lemma 7.7. Let f P L1
bcpRq, then for every λ ą 0

pf ˚ hλqpxq “
1

2π

ż

R
e´λ|u|e´iux

pfpuqdu.

Proof. Using Fubini’s theorem, we can compute directly

pf ˚ hλqpxq “

ż

R
fpyqhλpx´ yqdy

“

ż

R
fpyq

1

2π

ż

R
e´λ|u|e´iupx´yqdudy

“
1

2π

ż

R
e´λ|u|e´iux

ˆ
ż

R
eiuyfpyqdy

˙

du,

which yields the result.

Lemma 7.8. Let f P L1
bcpRq, then for every x P R we have

lim
λÑ0

pf ˚ hλqpxq “ fpxq.
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Proof. Since
ş

R hλpxqdx “ 1, using a change of variables we get that

pf ˚ hλqpxq ´ fpxq “

ż

R
fpyqhλpx´ yqdy ´

ż

R
fpxqhλpyqdy

“

ż

R
pfpx´ yq ´ fpxqqhλpyqdy

“

ż

R
pfpx´ yq ´ fpxqq

1

λ
h1

´ y

λ

¯

dy

“

ż

R
pfpx´ λyq ´ fpxqqh1pyqdy.

Since f P L1
bcpRq, there exists a C ą 0 such that |fpxq| ď C for every x P R. Hence, the integrand

is dominated by 2Ch1pyq. Moreover, as λ Ñ 0 then fpx ´ λyq Ñ fpxq, thus by the dominated
convergence theorem we get the result.

Theorem 7.9 (Inversion Theorem). Let f P L1
bcpRq and assume that pf P L1pRq. Then, for every

x P R, we have

fpxq “
1

2π

ż

R
e´iux

pfpuqdu i.e. fpxq “

p

pfpxq.(7.7)

Proof. We have shown, for λ ą 0, that

pf ˚ hλqpxq “
1

2π

ż

R
e´λ|u|e´iux

pfpuqdu.

The left hand side tends to fpxq as λ Ñ 0, cf. Lemma 7.8, while the integrand on the right hand

side is dominated by | pfpuq|. Hence, the claim follows from the dominated convergence theorem.

7.2 The Fourier method for the computation of expectations
and option prices

We will start by showing how to compute integrals of the form Irf ;Xs “ ErfpXqs using the Fourier
transform. Let PX denote the law and MX the (extended) moment generating function of the
random variable X; that is

MXpuq “ E
“

euX
‰

for suitable u P C such that the expectation is finite. We associate a dampened function fR to any
function f , defined via

fRpxq “ e´Rxfpxq, x P R,(7.8)

for some R P R. Moreover, we define the following sets:

I :“
 

R P R : fR P L
1
bcpRq and xfR P L

1pRq
(

and J :“
 

R P R : MXpRq ă 8
(

.(7.9)

Theorem 7.10. Assume that R :“ I X J ‰ H and let R P R. Then, the expectation Irf ;Xs is
provided by

Irf ;Xs “
1

2π

ż

R
MXpR´ iuq pfpu` iRqdu.(7.10)

Proof. Using the definition of the dampened function (7.8) we have that

Irf ;Xs “

ż

R
fpxqPXpdxq “

ż

R
eRxfRpxqPXpdxq.(7.11)
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Take an R P R ‰ H, then we have that fR P L
1
bcpRq and its Fourier transform xfR is well defined for

every u P R and is also continuous and bounded. Additionally, xfR P L
1
bcpRq. Therefore, using the

Inversion Theorem, cf. Theorem 7.9, xfR can be inverted and fR can be represented, for all x P R,
as

fRpxq “
1

2π

ż

R
e´ixu

xfRpuqdu.(7.12)

Now, returning to the integration problem (7.11) we get that

Irf ;Xs “

ż

R
eRx

˜

1

2π

ż

R
e´ixu

xfRpuqdu

¸

PXpdxq

“
1

2π

ż

R

˜

ż

R
epR´iuqxPXpdxq

¸

xfRpuqdu

“
1

2π

ż

R
MXpR´ iuq pfpu` iRqdu,(7.13)

where for the second equality we have applied Fubini’s theorem, while for the last one we have

xfRpuq “

ż

R
eiuxe´Rxfpxqdx “ pfpu` iRq.

Finally, the application of Fubini’s theorem is justified since

ż

R

ż

R
eRx|e´iux||xfRpuq|duPXpdxq ď

ż

R
eRx

ˆ
ż

R
|xfRpuq|du

˙

PXpdxq

ď const ¨MXpRq ă 8,

where we have used again that xfR P L
1pRq and MXpRq is finite for R P R.

Remark 7.11 (Dual assumptions). Assumption R “ I X J ‰ H implies in particular that the
function f is continuous. However, dealing with discontinuous functions in this framework is also
of significant interest; think, for example, of the function fpxq “ 1txďbu which corresponds to the
payoff of a digital option in mathematical finance. In that case we can work with the ‘dual’ sets

I 1 :“
 

R P R : fR P L
1pRq

(

and J 1 :“
 

R P R : MXpRq ă 8 and MXpR´ i¨q P L1pRq
(

,(7.14)

and assume that R P R1 :“ I 1XJ 1 ‰ H. This assumption yields that eR¨PX possesses a continuous
bounded Lebesgue density, say ρ; cf. Breiman [4, Theorem 8.39]. Then, we can identify ρ, instead
of fR, with the inverse of its Fourier transform, i.e. with the inverse of the characteristic function of
the random variable X, and the proof goes through with the obvious modifications. This statement
is almost identical to Theorem 3.2 in Raible [48]. Let us point out that there is an interesting trade-
off of continuity between the function f and the distribution of X; or, equivalently, a trade-off of
integrability between pf and MX .

Remark 7.12 (Minimal assumptions). The minimal assumptions for the existence of a Fourier
integration formula are the following: R P Imin X Jmin ‰ H, where

Imin :“
 

R P R : fR P L
1pRq

(

and Jmin :“
 

R P R : MXpRq ă 8
(

,(7.15)

and the formula exists as a pointwise limit; cf. Eberlein et al. [16, Theorem 2.7].

The prerequisites of Theorem 7.10 are quite easy to check in specific cases, apart from the
condition fR P L1

bcpRq. In general, it is also an interesting question to know when the Fourier
transform of an integrable function is integrable. This problem is well understood for smooth (C2

or C8) functions, see e.g. Deitmar [12], but the functions we are dealing with are typically not
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smooth. Hence, we will provide below an easy-to-check condition for a non-smooth function to have
an integrable Fourier transform, which generalizes Theorem 7.4(viii).

Let us consider the Sobolev space H1pRq, with

H1pRq “
!

g P L2pRq
ˇ

ˇ

ˇ
Bg exists and Bg P L2pRq

)

,

where Bg denotes the weak derivative of a function g; see e.g. Sauvigny [52]. Let g P H1pRq, then
from Proposition 5.2.1 in Zimmer [61] we get that

xBgpuq “ ´iupgpuq(7.16)

and pg,xBg P L2pRq.

Lemma 7.13. Let g P H1pRq, then pg P L1pRq.

Proof. Using the above results, we have that

8 ą

ż

R

´

ˇ

ˇ

pgpuq
ˇ

ˇ

2
`
ˇ

ˇxBgpuq
ˇ

ˇ

2
¯

du “

ż

R

ˇ

ˇ

pgpuq
ˇ

ˇ

2`
1` |u|2

˘

du.(7.17)

Now, by the Hölder inequality, using that p1` |u|q2 ď 3p1` |u|2q and (7.17), we get

ż

R

ˇ

ˇ

pgpuq
ˇ

ˇdu “

ż

R

ˇ

ˇ

pgpuq
ˇ

ˇ

1` |u|

1` |u|
du

ď

ˆ
ż

R

ˇ

ˇ

pgpuq
ˇ

ˇ

2
p1` |u|q2du

˙
1
2
ˆ
ż

R

1

p1` |u|q2
du

˙
1
2

ă 8,

and the result is proved.

7.2.1 Applications in option pricing

Let us now turn our attention to the computation of option prices using Fourier methods. In the
sequel we will work in the following framework: Let S “ pStqtě0 denote the price of a financial asset
which is modeled as an exponential semimartingale, i.e.

St “ S0eXt , t ě 0,(7.18)

assuming that S is a martingale under some probability measure P, while the interest rate equals
zero for simplicity. We want to compute the price of a European option with payoff F pST q and
assume we can rewrite this in terms of the log-price X; then it follows:

F pST q “ fpXT ` sq and ErF pST qs “ ErfpXT ` sqs “: Irf ;Xs,(7.19)

where s “ logS0 and X “ XT ` s. We call f the payoff function and X the payoff variable. Then,
using Theorem 7.10 we get immediately that the price of this option is provided by

ErfpXT ` sqs “
1

2π

ż

R
SR´iu

0 MXT pR´ iuq pfpu` iRqdu,(7.20)

for a suitable R P R. Indeed, in order to arrive at this formula from (7.10) it suffices to note that

MXpuq “ E
“

eupXT`sq
‰

“ Su0 MXT puq.

Remark 7.14. We consider a European ‘vanilla’ option for the sake of simplicity, i.e. an option
that cannot be exercised early and depends only on the value of S at time T . We can also consider
exotic, path-dependent options in the same framework, assuming that the payoff variable X takes
values on a space of paths and its moment generating function is known; cf. [16, p. 5].
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Figure 7.1: Call payoff function in log-price (left) and its dampened counterpart (right).

Remark 7.15. There are many different ways to derive the Fourier formula for option pricing in
(7.20), see Schmelzle [53] for a comprehensive overview of the related literature.

Example 7.16 (Call option). The payoff of the standard call option with strike K P R` is fpxq “
pex´Kq`. Let z P C with =z P p1,8q, then the Fourier transform of the payoff function of the call
option is

pfpzq “

ż

R
eizxpex ´Kq`dx “

ż 8

lnK

ep1`izqxdx´K

ż 8

lnK

eizxdx

“ ´K1`iz 1

1` iz
`KizK

iz
“

K1`iz

izp1` izq
.(7.21)

Now, regarding the dampened payoff function of the call option, we easily get for R P p1,8q that
fR P L

1
bcpRq X L2pRq. The weak derivative of fR is

BfRpxq “

"

0, if x ă lnK,
e´Rxpex ´Rex `RKq, if x ą lnK.

(7.22)

Again, we have that BfR P L
2pRq. Therefore, fR P H

1pRq and using Lemma 7.13 we can conclude

that xfR P L
1pRq. Summarizing, the Fourier transform of the call payoff function is provided by

(7.21) and I “ p1,8q.
Let us point out here that the call payoff function is neither integrable nor bounded as required

in order to apply the Fourier transform method. The role of the dampening parameter R is exactly
to make this function integrable and bounded; see Figure 7.1 for an illustration.

Exercise 7.2. Show that the Fourier transform of the put payoff function fpxq “ pK´ exq` is also
provided by (7.21) and that I “ p´8, 0q.

Exercise 7.3. Compute the Fourier transforms and the sets I or I 1 for the following payoff func-
tions: (i) digital 1txďbu, (ii) double digital 1taďxďbu, (iii) asset-or-nothing digital ex1txďbu, (iv) self-
quanto call expex ´Kq`, and (v) power call rpex ´Kq`s2.

Example 7.17. Fourier methods for option pricing are particularly well-suited for the class of
models known in mathematical finance as exponential Lévy models, i.e. when the semimartingale
X in (7.18) is actually a Lévy process; see Appendix B for a brief introduction to Lévy processes.
This class of models is very broad and contains, among many others, the VG and CGMY processes
(Madan and Seneta [40], Carr et al. [8]), the generalized hyperbolic and normal inverse Gaussian
(NIG) distributions (Eberlein and Prause [15], Barndorff-Nielsen [3]), as well as the Meixner pro-
cess (Schoutens [54]). The density function is typically not known in these models, however the
characteristic function of Lévy processes admits an explicit representation via the Lévy-Khintchine
formula in terms of the Lévy triplet; see Theorem B.5. Consider now a Lévy process X “ pXtqtě0

with triplet pb, c, νq and assume that its moment generating function is finite for all u P ra, bs. Then,
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we can show, cf. Exercise 7.5, that the extended moment generating function is well-defined on the
strip tu P C : a ď <u ď bu and equals

MX1
puq “ exp

"

bu`
cu

2
`

ż

R
peux ´ 1´ uxq νpdxq

*

.(7.23)

In other words, for exponential Lévy models we get that J “ ra, bs, and we can use Fourier methods
for computing, for example, the price of a call option as long as ra, bs X p1,`8q ‰ H.

Exercise 7.4. Prove that the set ra, bs above contains r0, 1s. (Hint: S is a martingale.)

Exercise 7.5. Let ρ be a measure on the space pR,BpRqq, define its characteristic function via
pρpuq “

ş

eiuxρpdxq for u P R, and assume that
ş

euxρpdxq ă 8 for all u P ra, bs. Show that the
characteristic function pρ has an extension that is continuous in p´8,8qˆ ir´b,´as and is analytic
in the interior of this strip, i.e. in p´8,8q ˆ ip´b,´aq.

Example 7.18. Fourier methods are also well-suited for affine models, see Appendix C for an
introduction, since the moment generating is provided by the solution of a system of (generalized)
Riccati ODEs, see (C.1) and (C.2). Many stochastic volatility models are of affine form, i.e. the
log-price is given as the first component of an n-dimensional affine process, while the other compo-
nents are interpreted as some sort of volatility, e.g. volatility, volatility of volatility and so on. The
interpretation of the Heston model as an affine process is provided in Example C.6.

7.2.2 Computation of Greeks by Fourier methods

The structure of the asset price model as an exponential semimartingale (7.18), and the resulting
structure of the option price function (7.20), allow us to easily derive general formulas for the
sensitivities of the option price with respect to model parameters. In this subsection we will focus
on the delta, the sensitivity of the option price with respect to the initial value, while sensitivities
with respect to other parameters can be derived analogously.

The delta (∆) of an option price is the partial derivative of the price with respect to the initial
value S0. Therefore, for a generic option with payoff function f and payoff variable X, we have that

∆f pX;S0q “
B

BS0
ErfpXT ` logS0qs.(7.24)

The following theorem provides a formula for the computation of the delta based on Fourier trans-
forms.

Theorem 7.19. Assume that the asset price process is an exponential semimartingale as in (7.18)
and the price of an option with payoff function f and payoff variable X is given by (7.20). Moreover,
assume that one of the following holds:

(i) |u||MXT pR´ iuq| is integrable and pfp¨ ` iRq is bounded;

(ii) |u|| pfpu` iRq| is integrable and MXT pR´ i¨q is bounded.

Then, the delta of the option price is provided by

∆f pX;S0q “
1

2π

ż

R
SR´1´iu

0 MXT pR´ iuq
pfpu` iRq

pR´ iuq´1
du.(7.25)

Proof. Assuming we can exchange integration and differentiation, it follows easily that

∆f pX;S0q “
B

BS0
ErfpXT ` sqs

“
1

2π

ż

R

B

BS0
SR´iu

0 MXT pR´ iuq pfpu` iRqdu

“
1

2π

ż

R
SR´1´iu

0 MXT pR´ iuq
pfpu` iRq

pR´ iuq´1
du.
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Now we have to justify this operation. Using Elstrodt [17, Satz IV.5.7] and the elementary inequality
|Imf | ` |Ref | ď 2|f |, we get that we can differentiate under the integral sign if there exists an
integrable function ` such that for all u P R and all S0 ą 0

ˇ

ˇ

ˇ

B

BS0
Gpu, S0q

ˇ

ˇ

ˇ
ď `puq,

where

Gpu, S0q “ SR´iu
0 MXT pR´ iuq pfpu` iRq.

Now we can estimate the partial derivative of the function G:

ˇ

ˇ

ˇ

B

BS0
Gpu, S0q

ˇ

ˇ

ˇ
“ |epR´1´iuq logS0 ||R´ iu||MXT pR´ iuq pfpu` iRq|

ď cp1` |u|q|MXT pR´ iuq|| pfpu` iRq| “: `puq.(7.26)

Sufficient conditions for the function ` in (7.26) to be integrable are provided by conditions piq and
piiq in the statement above.

Remark 7.20. Let us point out that the first condition implies that the measure PXT has a density
of class C1; see Sato [51, Prop. 28.1]. Moreover, both conditions highlight once again the interplay
between the properties of the measure and of the payoff function.

7.2.3 The multi-dimensional case

Let us now consider the multi-dimensional case, i.e. let f : Rd Ñ R be a d-dimensional payoff
function and X be a d-dimensional payoff variable. The Fourier transform of the function f P
L1pRdq is defined as pfpuq “

ş

Rd eixu,xyfpxqdx for u P Rd, the dampened function fR is defined

via fRpxq “ exR,xyfpxq for all x P Rd and some R P Rd, while the (extended) moment generating
function of X is defined as MXpuq “ Erexu,Xys for suitable u P Cd. Consider also the following sets:

I :“
 

R P Rd : fR P L
1
bcpRdq and xfR P L

1pRdq
(

and I 1 :“
 

R P R : fR P L
1pRdq

(

J :“
 

R P Rd : MXpRq ă 8
(

and J 1 :“
 

R P Rd : MXpRq ă 8 and MXpR´ i¨q P L1pRdq
(

.

Then, a result analogous to Theorem 7.10 holds true.

Theorem 7.21. Assume that either R “ I X J ‰ H or R1 “ I 1 X J 1 ‰ H and let R P R YR1.
Then, the expectation Irf ;Xs “ ErfpXqs is provided by

Irf ;Xs “
1

p2πqd

ż

Rd
MXpR´ iuq pfpu` iRqdu.(7.27)

Proof. See Eberlein et al. [16, Thm. 3.2]

Now, let S1, . . . , Sd denote asset price processes that are modeled as exponential semimartingales,
i.e.

Sit “ Si0 exppXi
tq, t ě 0.

Assume that the processes S1, . . . , Sd are martingales with respect to a (common) probability mea-
sure P, while the interest rate is zero for simplicity. Consider an option on the assets S1, . . . , Sd

with payoff F pS1
T , . . . , S

d
T q, that can be written in terms of the log-prices, i.e. F pS1

T , . . . , S
d
T q “

fpX1
T ` s

1
0, . . . , X

d
T ` s

d
0q, where si0 “ logSi0. Then, analogously to (7.20), the price of this option is

provided by

ErfpXT ` sqs “
1

p2πqd

ż

Rd
exR´iu,s0yMXT pR´ iuq pfpu` iRqdu,(7.28)

for a suitable R P Rd such that the assumption of Theorem 7.21 is satisfied. Here s0 “ ps
1
0, . . . , s

d
0q.
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Figure 7.2: A graphical representation of the set I 1 for the call option on the minimum of two assets.

Remark 7.22 (Curse of dimensionality). The numerical integration in (7.27) suffers obviously from
the curse of dimensionality, and does not lead to a competitive numerical scheme in dimensions
higher than two or three.

Example 7.23. The payoff function of a call option on the minimum of d assets is

fpxq “ pex1 ^ ¨ ¨ ¨ ^ exd ´Kq`,

for x P Rd, where a^ b “ minta, bu. The Fourier transform of this payoff function is

pfpzq “ ´
K1`i

řd
k“1 zk

p´1qdp1` i
řd
k“1 zkq

śd
k“1pizkq

,(7.29)

for z P Cd with =zk ą 0 for 1 ď k ď d and =p
řd
k“1 zkq ą 1; for more details we refer to Eberlein et al.

[16, Appendix A]. Then, we can easily deduce for the dampened payoff function that fR P L
1
bcpRdq

for R P
 

R P Rd : Ri ą 0, 1 ď i ď d;
řd
i“1Ri ą 1

(

“: I 1.

Exercise 7.6. The payoff function of the put option on the maximum of d assets is

fpxq “ pK ´ ex1 _ ¨ ¨ ¨ _ exdq`,

for x P Rd, where a_ b “ maxta, bu. Show that its Fourier transform equals

pfpzq “
K1`i

řd
k“1 zk

p1` i
řd
k“1 zkq

śd
k“1pizkq

(7.30)

and that I 1 “
 

R P Rd : Ri ă 0, 1 ď k ď d
(

.

Example 7.24. The payoff function of the basket put option on d assets has the form

fpx1, . . . , xdq “

˜

1´
d
ÿ

l“1

exl

¸`

,(7.31)

for x P Rd. The Fourier transform of this payoff function has been derived by Hubalek and Kallsen
[26], see also Hurd and Zhou [27], and we get that

pfpzq “

śd
l“1 Γpizlq

Γ
`

i
řd
l“1 zl ` 2

˘
,(7.32)

for z P Cd with =z ă 0, where Γ denotes the Gamma function. Then, we can easily deduce for the
dampened payoff function that fR P L

1
bcpRdq for R P

 

R P Rd : Ri ă 0, 1 ď i ď d
(

“: I 1.

Exercise 7.7. Let f : Rd Ñ R, fi : R Ñ R for all 1 ď i ď d, and define fpxq “
śd
i“1 fipxiq.

Determine its Fourier transform and show that I 1 Ą
śd
i“1 I 1i.
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7.3 The fast Fourier transform (FFT)

In the previous section we derived concrete formulas for computing option prices in terms of an
inverse Fourier transform. Now we would like to discuss how to implement these formulas on a
computer. Recall that the price of an option with payoff fpXT ` sq, expressed below as a function
of the log-initial value s “ logS0, equals

Of psq “
1

2π

ż

R
epR´iuqsMXT pR´ iuq pfpu` iRqdu “:

eRs

2π

ż

R
e´iusψpuqdu.(7.33)

In order to implement this integration on a computer, we first have to truncate the indefinite integral
in order to obtain an integral on a finite domain, and then to discretize the integral on the finite
domain.

We are left with a problem of the form

(7.34) Of psq «
eRs

2π

ż b

a

e´iusψpuqdu.

As a first step, let us apply the trapezoidal rule to the above integral, using a uniform grid ul :“ a`ηl
for a constant η and for 0 ď l ď N ´ 1, implying that b´ a “ ηpN ´ 1q. Therefore we approximate

ż b

a

e´iusψpuqdu « η

˜

e´iasψpaq

2
`

N´2
ÿ

l“1

e´iulsψpulq `
e´ibsψpbq

2

¸

“: η
N´1
ÿ

l“0

e´iulsψ1pulq,

where ψ1puq “ ψpuq for all u P pa, bq and ψ1puq “ ψpuq{2 for u P ta, bu. This approximation requires
computational work proportional to N .

Now, assume that we do not only want to compute the price at one log-initial value s, but for
a whole variety of log-initial values — or, equivalently, for a whole variety of strikes, as is the case
in a typical calibration situation. We choose a uniform grid again in the log-S0 domain, i.e. we set
sj :“ ´β ` λj where β :“ λN{2. Thus, we want to compute the values

N´1
ÿ

l“0

e´ipa`ηlqλjeiβulψpulqη, j “ 0, . . . , N ´ 1.

Next, we choose the grid parameters η and λ such that the Nyquist relation λη “ 2π{N holds.
Then, the computational problem can be expressed in terms of

(7.35) Φj “
N´1
ÿ

l“0

e´i 2πN ljφl, j “ 0, . . . , N ´ 1,

where φl :“ eiβulψpulq. Indeed, the option price with log-initial value sj is approximated by

Of psjq «
eβR´λjpR´iaq

2π
ηΦj .

We have used all these assumptions and notation, because the vector Φ defined in (7.35) is the
discrete Fourier transform of the vector φ, and there is a very efficient numerical algorithm for
computing discrete Fourier transforms. The computational cost of a usual implementation of (7.35)
is proportional to N2, but the so-called fast Fourier transform (FFT) reduces the work to N log2pNq.

Let ωN :“ e´2πi{N and define the N ˆN -matrix TN by

TN :“

¨

˚

˚

˚

˚

˚

˚

˝

ω0
N ω0

N ω0
N ¨ ¨ ¨ ω0

N

ω0
N ω1

N ω2
N ¨ ¨ ¨ ωN´1

N

ω0
N ω2

N ω4
N ¨ ¨ ¨ ω

2pN´1q
N

...
...

...
. . .

...

ω0
N ωN´1

N ω
2pN´1q
N ¨ ¨ ¨ ω

pN´1qpN´1q
N

˛

‹

‹

‹

‹

‹

‹

‚

.

Then we can obviously express the discrete Fourier transform (7.35) as Φ “ TNφ.
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Lemma 7.25. Let φ P C2N and let Φ :“ T2Nφ denote its discrete Fourier transform. Denote by φ1 :“
pφ1, φ3, . . . , φ2N´1q and by φ2 :“ pφ2, φ4, . . . , φ2N q, and furthermore denote by Φ1 :“ pΦ1, . . . ,ΦN q
and by Φ2 :“ pΦN`1, . . . ,Φ2N q. Moreover, denote DN :“ diagpω0

2N , . . . , ω
N´1
2N q, c :“ TNφ

1 and
d :“ DNTNφ

2. Then
Φ1 “ c` d and Φ2 “ c´ d.

Proof. Simple calculation using ωjlN “ ω2jl
2N .

Lemma 7.25 forms the basis of a classical divide-and-conquer algorithm, the celebrated FFT.

Algorithm 7.26 (FFT). Assume that N “ 2J , J ě 1. Given φ P CN , apply the following recursive
algorithm to compute its discrete Fourier transform Φ “ TNφ:

1. If N “ 2 go to 2, otherwise: split φ into φ1 and φ2 as in Lemma 7.25, apply the FFT to
compute c “ TN{2φ

1, d “ DN{2TN{2φ
2 and return Φ “ pΦ1,Φ2q given by Φ1 “ c ` d and

Φ2 “ c´ d.

2. If N “ 2 compute Φ “ T2φ directly.

It can be easily shown that the computational effort to compute the discrete Fourier transform
using Algorithm 7.26 is, indeed, proportional to N log2pNq.

Lemma 7.27. Let N be a power of 2. Let C denote the computational work of a floating point
operation (addition, subtraction, multiplication). Then the computational work WpNq of the FFT
can be bounded by

WpNq ď C

ˆ

3

2
log2pNq `

1

2

˙

N.

Proof. From Lemma 7.25 we see that for an FFT in dimension N we need two FFTs in dimen-
sion N{2, one vector addition and one vector subtraction in dimension N{2 and one element-wise
multiplication of two vectors in dimension N{2. In total, this means

WpNq ď 2WpN{2q ` 3{2CN, Wp2q ď 4C.

Let wpNq :“WpNq{pCNq, we get the recursion

wpNq ď 2wpN{2q ` 3{2N, wp2q ď 2,

which gives wpNq ď 1{2` 3{2 log2pNq.

Remark 7.28. In the same way, we can compute the inverse discrete Fourier transform.

Remark 7.29. Many variants of FFT exist. Although most variants assume N to be a power of
2 (or even 4 or 8 for higher efficiency), there are also other variants without these requirements.
Historically, the FFT was invented and implemented or used by many people, the first one probably
being Gauss in 1805. However, it only became popular and widely used after its re-discovery by
Cooley and Tukey [11]. Today, there are many different variants and even more different imple-
mentations. It is probably one of the most important algorithms, widely used in signal analysis,
electrical engineering and even algebra (for the fast evaluation of polynomials).

Remark 7.30. Although Carr and Madan [7] use FFT for evaluating the option price formula based
on the Fourier transform, other authors like Kahl and Lord [28] advocate alternative specialized
algorithms or classical quadrature because strike prices in practical calibration scenarios are usualy
not uniformly arranged.
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7.4 Cosine-series expansions

For even functions f , the Fourier transform specializes to the cosine transform,

f̂pzq “ 2

ż 8

0

fpxq cospxzqdx.

In particular, by shifting variables, the Fourier transform of any function with bounded support
can be expressed by its cosine transform. Since the density of log-spot prices sT usually decays very
fast to zero when the log-spot price approaches ˘8, we may assume that this is the case for the
European option pricing problem. Starting from this idea, Fang and Oosterlee [18] have constructed
a very fast method based on cosine expansions.

Before going into details, let us present the idea of Fang and Oosterlee in an abstract form.
Assume that the density q “ qT of the log-spot price decays very fast to 0, so that we may truncate
it and treat it as a function with compact support, w.l.o.g., supppqq Ă r0, πs with qpπq “ 0. Now,
Pontryagin duality, as a starting point see [58], tells us that the “right” notion of a Fourier transform
of a function defined on a finite subset of the real line is the Fourier series.

Consider a locally compact abelian group G. Then the dual group Ĝ is the set of all characters
of G, i.e., of all continuous group homomorphisms from G with values in T, the unit circle of C.
Here we are interested in two special cases:

1. if G “ R, then Ĝ » R and the characters take the form χpxq “ eiux, for u P R;

2. if G “ r´π, πs (which is isomorphic to T), then Ĝ » Z and characters take the form χpxq “
einx, n P Z.

Let µ denote the Haar measure of the group G. Then the Fourier transform f̂ of an integrable
function f : GÑ C is a bounded continuous function on Ĝ defined by

f̂pχq “

ż

G

fpxqχpxqµpdxq.

Inserting the representations of characters for the groups R and r´π, πs as seen above, we see that
the abstract Fourier transform boils down to the following special cases:

1. if G “ R, the Haar measure is the Lebesgue measure and we obtain the classical Fourier
transform f̂puq “

ş

R e
´iuxfpxqdx;

2. if G “ r´π, πs, the Haar measure is again the Lebesgue measure, possibly with normalization,

and f̂ is the sequence of classical Fourier coefficients cn :“ 1
2π

şπ

´π
fpxqe´inxdx, n P Z.

Finally, note that the Fourier series of an even function f : r´π, πs Ñ R actually is a cosine
series, i.e., all the sine-parts vanish. Thus, we may represent a function f : r0, πs Ñ R as a cosine
series, under some mild regularity conditions.

Coming back to the concrete problem, let q : r0, πs Ñ R. Then, under certain conditions, q is
represented by its cosine expansion

qpθq “

8
ÿ1

k“0

Ax cospkθq, Ak :“
2

π

ż π

0

qpθq cospkθqdθ,

where
ÿ1

signifies that the first summand is taken with weight 1
2 . For entire functions, the conver-

gence of the cosine series is exponential. If the function f is defined on a finite interval ra, bs, then
the cosine expansion instead reads (by a change of variables)

(7.36) qpxq “

8
ÿ1

k“0

Ak cos

ˆ

kπ
x´ a

b´ a

˙

, Ak :“
2

b´ a

ż b

a

qpxq cos

ˆ

kπ
x´ a

b´ a

˙

dx.
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Now, let us suppose that we know the Fourier transform φ “ q̂ of q but not necessarily q itself – as
is the case in many financial models, when q represents the density of the log-spot price. We want
to express the coefficients Ak of the cosine expansion in terms of φ. In the first step, we need to
replace the infinite domain of q by a finite domain, i.e., we consider

φ1puq :“

ż b

a

eiuxqpxqdx « φpuq.

Taking real parts, we immediately obtain
(7.37)

Ak “
2

b´ a
<
ˆ

φ1

ˆ

kπ

b´ a

˙

exp

ˆ

´i
kaπ

b´ a

˙˙

«
2

b´ a
<
ˆ

φ

ˆ

kπ

b´ a

˙

exp

ˆ

´i
kaπ

b´ a

˙˙

“: Fk.

Numerically, we cannot add infinitely many numbers, thus we have to truncate the summation after
N summands. Hence, we approximate

(7.38) qpxq « q1pxq :“

N´1
ÿ1

k“0

Fk cos

ˆ

kπ
x´ a

b´ a

˙

.

Note that q1 is explicitly available if φ is explicitly given.

Remark 7.31. There are three different approximation errors in (7.38). First, we have truncated
the integral, i.e., the domain of the density, in order to be able to do the cosine expansion in the first
place. Then we replaced the Fourier transform of the truncated density by the Fourier transform of
the true density and used this to obtain the coefficients of the cosine expansion. Finally, we replaced
the infinite sum by a finite sum.

In the next step, we truncate the domain of integration in the option valuation formula

CpS0, T q “ e´rT
ż 8

´8

fpxqqT pxqdx

and then replace qT by its approximation (7.38) (where we drop the subscript T ). Thus, we obtain
the approximation

(7.39) CpS0, T q « C1pS0, T q :“ e´rT
N´1
ÿ1

k“0

<
ˆ

φT

ˆ

kπ

b´ a

˙

e´ikπ
a
b´a

˙

Ck,

where

(7.40) Ck :“
2

b´ a

ż b

a

fpxq cos

ˆ

kπ
x´ a

b´ a

˙

dx.

Notice that φT is the Fourier transform of sT given that the spot-price at time 0 is S0.
If we want to use the approximation (7.39) for pricing option, we only have to compute the coef-

ficients Ck of the cosine expansion of the payoff function f . Fortunately, these are known explicitly
for vanilla option.

Example 7.32. Consider a call option with payoff function fpxq “ pKpex ´ 1qq` in terms of
log-moneyness x “ logpST {Kq. Then the corresponding coefficient Ck is given by

Ccall
k “

2

b´ a
Kpχkp0, bq ´ ψkp0, bqq,

with

χkpc, dq :“
1

1`
´

kπ
b´a

¯2

«

cos

ˆ

kπ
d´ a

b´ a

˙

ed ´ cos

ˆ

kπ
c´ a

b´ a

˙

ec`

`
kπ

b´ a
sin

ˆ

kπ
d´ a

b´ a

˙

ed ´
kπ

b´ a
sin

ˆ

kπ
c´ a

b´ a

˙

ec

ff
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and

ψkpc, dq :“

#

´

sin
´

kπ d´ab´a

¯

´ sin
´

kπ c´ab´a

¯¯

b´a
kπ , k ‰ 0,

d´ c, k “ 0.

For the put-option, we obtain

Cput
k “

2

b´ a
Kpψkpa, 0q ´ χkpa, 0qq.

We remark here that these formulas are valid for the call and put options written in log-moneyness.
Thus, we also have to use the density ψT pxq of log-moneyness, and likewise for the characteristic
function φT .

Fang and Oosterlee [18] also analyse the error of the approximation (7.39), and find that the
error mostly depends on the smoothness of the density. While this does not effect two of the error
terms (corresponding to truncation of the integration domain and replacing Ak by Fk), the error
of the truncation of the infinite series converges exponentially, i.e., like e´pN´1qν for some ν, if the
truncated density is smooth on ra, bs, or it converges algebraically, i.e., like pN ´ 1q´β with β larger
or equal to the order of the first derivative of the density with a discontinuity on ra, bs. Thus, at
least for smooth densities, we have rapid convergence of the expansion (7.39), implying that we only
need to compute a few of the coefficients. In fact, in the numerical experiments presented in the
paper, they observe that N « 60 is usually enough to get a relative error of around 10´3 even in
cases where FFT requires many more grid points due to high oscillations.

Fang and Oosterlee also comment on the truncation domain ra, bs, and suggest to choose it
depending on the cumulants cn of the distribution. More precisely, they suggest

(7.41) a “ c1 ´ L
b

c2 `
?
c4, b “ c1 ` L

b

c2 `
?
c4

with L “ 10.
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Appendix A

Stochastic differential equations

A.1 Existence and uniqueness

We start by a very general existence and uniqueness result for SDEs driven by general semimartin-
gales, which, in particular, covers the case of SDEs driven by Lévy processes. The following theorem
is a special case of Protter [47, Theorem V.7].

Theorem A.1. Let Z be a d-dimensional càdlàg semimartingale with Z0 “ 0 and let F : Rě0 ˆ

Rn Ñ Rnˆd be Lipschitz in the sense that for every t ě 0 there is a constant Kt such that

@x, y P Rn : |F pt, xq ´ F pt, yq| ď Kt |x´ y| .

Then the stochastic differential equation

Xt “ X0 `

ż t

0

F ps,Xs´q dZs

admits a unique solution X which is again a semimartingale.

We can also formulate everything in terms of the Stratonovich integral. Recall that for two given
semimartingales H and Z, the the quadratic covariation satisfies

rH,Zst “ H0Z0 ` lim
|D|Ñ0

ÿ

tiPD
pHti`1 ´HtiqpZti`1 ´ Ztiq.

Let rH,Zsc denote the continuous part of the quadratic covariation. Then the Stratonovich integral
of H with respect to Z is defined by

(A.1)

ż t

0

Hs´ ˝ dZs :“

ż t

0

Hs´dZs `
1

2
rH,Xsct .

The advantage of the Stratonovich integral is that Ito’s formula holds in a much simpler form: let
f : Rě0 ˆ Rn Ñ Rn be C1 in the first and C2 in the second component. Then

(A.2) fpt, Ztq “ fp0, Z0q `

ż t

0

Btfps, Zs´qds`

ż t

0`

∇fpZs´q ¨ ˝dZs

`
ÿ

0ăsďt

pfpZsq ´ fpZs´q ´∇fpZs´q ¨∆Zsq .

The following existence and uniqueness result for Stratonovich SDEs is a special case of Prot-
ter [47, Theorem V.22].

92



Theorem A.2. Assume that F : Rě0 ˆ Rnˆd Ñ Rn satisfies the following conditions: F “ F pt, xq
is C1 in t, F is C1 in x and the Jacobian DF is C1 in t and for every t both x ÞÑ F pt, xq and
x ÞÑ DFipt, xqFipt, xq are Lipschitz, i “ 1, . . . , d, where Fipt, xq “ pF pt, xqji q

n
j“1. Then there is a

unique semimartingale X solving

Xt “ X0 `

ż t

0

F ps,Xs´q ˝ dZs.

Moreover, X is also the unique solution of the Ito SDE

Xt “ X0 `

ż t

0

F ps,Xs´qdZs `
1

2

d
ÿ

i“1

ż t

0

DFips,Xs´qFips,Xs´qdrZ,Z
iscs,

where rZ,Zis “ prZj , Zisqdj“1.

We will mostly consider SDEs driven by a d-dimensional Brownian motion B, i.e., SDEs of the
form

(A.3) Xt “ X0 `

ż t

0

V pXsqds`
d
ÿ

i“1

ż t

0

VipXsqdB
i
s,

where V, V1, . . . , Vd : Rn Ñ Rn are vector fields and we have restricted ourselves to the autonomous
case for simplicity. In this case, the change from the Ito formulation to the Stratonovich formulation
corresponds to a change of the drift from V to

(A.4) V0pxq :“ V pxq ´
1

2

d
ÿ

i“1

DVipxqVipxq,

i.e., X solves the Stratonovich equation

(A.5) Xt “ X0 `

ż t

0

V0pXsqds`
d
ÿ

i“1

ż t

0

VipXsq ˝ dB
i
s.

In the Brownian case we also have that the solution to the SDE will have finite pth moments
provided that X0 already has them.

Example A.3. The Heston model is a stochastic volatility model, i.e., the volatility of the the stock
price is itself the solution of a stochastic differential equation. Since the volatility must be positive
(or at least non-negative), we either have to choose an SDE for the volatility that is guaranteed to
stay positive, or the volatility can be given as a deterministic, positive function of the solution of an
SDE. A popular choice of a diffusion (i.e., a solution of an SDE driven by Brownian motion alone)
that stays positive is the square root process (in finance well known as Cox-Ingersoll-Ross model
for the short interest rate), and the corresponding stochastic volatility model is the Heston model,
see Heston [25]. More precisely, the stock price and its instantaneous variance solve the following
two-dimensional SDE

dSt “ µStdt`
a

VtStdB
1
t(A.6a)

dVt “ κpθ ´ Vtqdt` ξ
a

Vt

´

ρdB1
t `

a

1´ ρ2dB2
t

¯

,(A.6b)

with parameters κ, θ, ξ ą 0. The correlation ρ is typically negative. Obviously, this SDE fails to
satisfy the Lipschitz condition of the existence and uniqueness theorem. More sophisticated, but
still standard techniques (Feller’s test of explosions, see Karatzas and Shreve [30, Theorem 5.5.29])
show that a unique solution does, indeed, exist. Under the obvious condition V0 ą 0, the variance
component Vt stays non-negative, and it even stays strictly positive if 2κθ ě ξ2, a condition that is
often assumed for Heston’s model. Positivity of the stock price is obvious.
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Example A.4. The SABR model is similar to Heston’s model. More precisely, we have

dSt “ VtS
β
t dB

1
t ,(A.7a)

dVt “ αVt

´

ρdB1
t `

a

1´ ρ2dB2
t

¯

.(A.7b)

Example A.5. The Stein-Stein model is more regular than Heston’s model or the SABR model.
Here, positivity of the stochastic volatility is simply assured by taking the absolute value (of an
Ornstein-Uhlenbeck process). More precisely, the model satisfies

dSt “ µStdt` |Vt|StdB1
t ,(A.8a)

dVt “ qpm´ Vtqdt` σdB
2
t .(A.8b)

Example A.6. A different class of models are local volatility models. The idea is that the volatility
smile can be exactly reproduced by choosing a peculiar state dependence of the volatility in the
Black-Scholes model, i.e., choose some function σpt, xq and let the stock price be given as solution
to

(A.9) dSt “ rStdt` σpt, StqStdBt.

Let CpT,Kq denote the price of a European call option as a function of the strike price K and the
time to maturity T . If the local volatility σ satisfies Dupire’s formula

(A.10)
BC

BT
“

1

2
σ2pT,KqK2 B

2C

BK2
´ rK

BC

BK
,

then the local volatility model (A.9) produces the right prices for these call options, thus reproduces
the volatility surface. Of course, one might also impose a local volatility function σpt, xq for more
fundamental modelling purposes.

A.2 The Feynman-Kac formula

Assume that the vector fields V, V1, . . . , Vd driving the SDE (A.3) are uniformly Lipschitz. Given
three continuous and polynomially bounded functions f : Rn Ñ R, g : r0, T s ˆ Rn Ñ R and
k : r0, T s ˆ Rn Ñ Rě0, consider the Cauchy problem

(A.11)

$

&

%

B

Bt
upt, xq ` Lupt, xq ` gpxq “ kpt, xqupt, xq, pt, xq P r0, T q ˆ Rn,

upT, xq “ fpxq, x P Rn.

Here, L denotes the second order linear partial differential operator defined by L “ V0`
1
2

řd
i“1 V

2
i ,

with the usual identification of vector fields V with linear first order differential operators via
V fpxq “ ∇fpxq ¨V pxq. Assuming that a C1,2 and polynomially bounded solution u of (A.11) exists,
then it can be expressed as
(A.12)

upt, xq “ E

«

fpXT q exp

˜

´

ż T

t

kps,Xsqds

¸

`

ż T

t

gps,Xsq exp

ˆ

´

ż s

t

kpv,Xvqdv

˙

ds

ˇ

ˇ

ˇ

ˇ

ˇ

Xt “ x

ff

.

Similar stochastic representations exist for the corresponding Dirichlet and Neumann problems.

A.3 The first variation

Let Xx
t , x P Rn, t ě 0, denote the solution to the Brownian stochastic differential equation (A.3)

started at Xx
0 “ x. As indicated by the notation, we now consider Xx

t as a function of its initial
value x. Under the assumptions of the existence and uniqueness Theorem A.1, for almost all ω P Ω

94



and all t ě 0, the map x ÞÑ Xx
t pωq is a homeomorphism of Rn Ñ Rn – see [47, Theorem V.46]. In

particular, the map is bijective. Thus Xx gives a flow of homeomorphisms of Rn (indexed by t). If
we impose more smoothness on the driving vector fields, then the map x ÞÑ Xx

t pωq is differentiable
(for almost all ω) and the Jacobian can be obtained by solving an SDE. This Jacobian is known
as the first variation, and we will denote it by J0Ñtpxqpωq. More precisely, assume that the vector
fields V, V1, . . . , Vd are C1 with bounded and uniformly Lipschitz derivatives. Then the first variation
process exists and is the unique solution of the SDE

(A.13) dJ0Ñtpxq “ DV pXx
t qJ0Ñtpxqdt`

d
ÿ

i“1

DVipX
x
t qJ0ÑtpxqdB

i
t,

with initial value JoÑ0pxq “ In, the n-dimensional unit matrix. Notice that (A.13) alone does not
fully specify an SDE, only an SDE along Xx. To get a true SDE, we have to consider the system
consisting of (A.13) together with (A.3). Further note that J0Ñtpxq is an invertible matrix, and the
inverse also solves an SDE, which can be easily obtained by Ito’s formula.

If, moreover, the vector fields V, V1, . . . , Vd are smooth (with bounded first derivative), then one
can show that x ÞÑ Xx

t even gives (almost surely) a diffeomorphism, i.e., a bijective smooth map,
with smooth inverse.

If we replace the driving Brownian motion by a continuous semimartingale, then the above
results remain true without any necessary modifications. If we use a general semimartingale with
jumps as our driving signal, however, then the results only remain true as regards differentiability
of the flow. If we want x ÞÑ Xx

t to be bijective, we would have to add more conditions on the vector
fields. For more information, see Protter [47, Section V.7 – V.10].

A.4 Hörmander’s theorem

Hörmander’s theorem is a result on the smoothness of the transition density of the solution of an
SDE – at least, that is the probabilistic interpretation of the result. For more information see the
book of Nualart [44]. For the application to numerics of SDEs we refer to Bally and Talay [2].

Consider the SDE (A.3) and assume that the vector fields V, V1, . . . , Vd : Rn Ñ Rn are smooth
and all their derivatives are bounded functions (but not necessarily the vector fields themselves).
Given two smooth vector fields V and W , recall that the Lie bracket is the vector field defined by

rV ,W s “ DV ¨W ´DW ¨ V,

where DV denotes the Jacobian matrix of V . Moreover, for a multi-index I “ pi1, . . . , ikq P

t0, 1, . . . , du
k
, |I| :“ k P N, we define the iterated Lie brackets for |I| “ 1 by Vrpiqs “ Vi if i ‰ 0 and

Vrp0qs “ V , and recursively for I “ pi1, . . . , ik`1q by

VrIs “

#

“

Vi1 , Vrpi2,...,ik`1qs

‰

, i1 ‰ 0,
“

V , Vrpi2,...,ik`1qs

‰

, i1 “ 0.

Definition A.7. The vector fields V, V1, . . . , Vd satisfy Hörmander’s condition at a point x P Rn if
the vector space generated by the set of n dimensional vectors

ď

kPN

!

VrIspxq
ˇ

ˇ

ˇ
I P t0, 1, . . . , du

k
, ik ‰ 0

)

is equal to Rn.

Note that the drift vector field plays a special role here, as it does not appear in the start
(|I| “ 1) of the recursive construction of the above set, but only by taking Lie brackets. The reason
for this is that only the diffusion vector fields contribute to the smoothing effect.

Let ptpx, yq denote the transition probability density of the solution Xt of the SDE, i.e., ptpx, ¨q
is the density of Xt conditioned on X0 “ x.
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Theorem A.8 (Hörmander’s theorem). If the driving vector fields satisfy Hörmander’s condition
at a point x P Rn, then the transition probability density ptpx, ¨q is smooth.

In its probabilistic proof, the theorem is obtained by showing that Xt is smooth in the sense of
Malliavin derivatives. In fact, one can even get further by imposing a uniform version of Hörmander’s
condition.

Definition A.9. For K P N and η P Rn define the quantities

CKpx, ηq :“
K
ÿ

k“1

ÿ

IPt0,...,duk, ik‰0

pVrIspxq ¨ ηq
2, CKpxq :“ inf

|η|“1
CKpx, ηq, CK :“ inf

xPRn
CKpxq.

We say that the uniform Hörmander condition (UH) holds if there is a K P N such that CK ą 0.

Remark A.10. Note that the uniform Hörmander condition is considerably weaker than uniform
ellipticity, a condition often imposed in PDE theory. Uniform ellipticity for a linear parabolic oper-

ator Lfpxq “
ř

k,j ak,jpxq
B
2

BxkBxj
fpxq `

ř

j b
jpxq B

Bxj fpxq means that there is a constant C ą 0 such
that

n
ÿ

k,j“1

ak,jpxqη
kηj ě C |η|2

for every η P Rn. But the relation between a and the vector fields is given by aj,kpxq “
řd
i“1 V

j
i pxqV

k
i pxq,

therefore the above bound means that

d
ÿ

i“1

pVipxq ¨ ηq
2 ě C |η|2 ,

which is satisfied iff C :“ C1 ą 0.

Under the UH condition, there is an explicit exponential bound on the derivatives of any order
of ptpx, yq in all the variables t, x, y (provided that t ą 0 of course), see Kusuoka and Stroock [33].
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Appendix B

Lévy processes

TO BE REVISED.
We cite a few facts about Lévy processes. For more information about Lévy processes and their

stochastic analysis we refer to Cont and Tankov [9] and Protter [47].

Definition B.1. A stochastic process pXtqtě0 is called a Lévy process if

(i) X has independent increments, i.e., Xt´Xs is independent of Fs, the natural filtration of X,

(ii) X has stationary increments, i.e., Xt`h ´Xt has the same distribution as Xh, h ą 0,

(iii) X is continuous in probability, i.e., limsÑtXs “ Xt, if the limit is understood in probability.

Example B.2. If a Lévy process X is even continuous almost surely, then it is a Brownian motion
with drift (i.e., Xt “ µ` σBt for a standard Brownian motion B). On the other hand, every Lévy
process has a càdlàg modification.

Example B.3. If X is a Lévy process, then the law of Xt is infinitely divisible for every t, i.e.,
for every n P N we can find independent and identically distributed random variables Y1, . . . , Yn
such that Xt has the same distribution as Y1 ` ¨ ¨ ¨ ` Yn. Conversely, given any infinitely divisible
distribution µ, there is a Lévy process X such that µ is the law of X1. This gives rise to plenty
of examples. Since the Poisson distribution is infinitely divisible, there is a Lévy process Nt such
that N1 has the Poisson distribution Pλ. Indeed, since the sum of n independent random variables
Yi „ Pλi is again Poisson distributed with parameter λ1 ` ¨ ¨ ¨ ` λn, we have Nt „ Pλt, implying
that N is the Poisson process.

The last example shows that Lévy processes actually can have jumps. We say that a Lévy process
has finite activity if only finitely many jumps occur in every bounded interval with probability one,
and infinite activity in the contrary case. The Lévy-Ito decomposition is a decomposition of a Lévy
process into a diffusion, a process of finite activity, and a process of infinite activity. More precisely,
we have

Theorem B.4. Given a Lévy process X, we can find three independent Lévy processes Xp1q, Xp2q

and Xp3q such that X “ Xp1q `Xp2q `Xp3q and

• Xp1q is a Brownian motion with drift,

• Xp2q is a compound Poisson process (the finite activity part),

• Xp3q is a pure jump martingale, with jumps bounded by a fixed number ε ą 0 (the infinite
activity part).

So we can approximate Lévy processes by sums of a Brownian motion with drift and a compound
Poisson process.
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Theorem B.5 (Lévy-Khintchine formula). Given a (d-dimensional) Lévy process X. Then there
is an α P Rd, a positive semi-definite matrix Σ P Rdˆd and a measure ν satisfying νpt0uq “ 0,

νpAq ă 8,
ş

Bp0,1q
|x|2 νpdxq ă 8 (Bp0, 1q denotes the unit ball) such that

Erexppiu ¨Xtqs “ expp´tψpuqq,

where

ψpuq “ ´iu ¨ α`
1

2
Σu ¨ u´

ż

Rd

`

exppiu ¨ xq ´ 1´ iu ¨ x1|x|ď1

˘

νpdxq.

We call pα,Σ, νq the characteristic triplet of X.
Conversely, for every such characteristic triplet, there exists a corresponding Lévy process X.

Any Lévy process is a Markov process and the generator Lfpxq “ limtÑ0
Ptfpxq´fpxq

t for Ptfpxq “
ErfpXtq|X0 “ xs is given (for bounded C2-functions f on Rd) by

(B.1) Lfpxq “ ∇fpxq ¨ α` 1

2

d
ÿ

j,k“1

Σj,k
B2

BxjBxk
fpxq`

`

ż

Rd

`

fpx` yq ´ fpxq ´∇fpxq ¨ y1|y|ď1

˘

νpdyq.

Notice that L is an integro-differential operator. Indeed, if f is constant around x, then

Lfpxq “

ż

Rd
pfpx` yq ´ fpxqqνpdyq.

This formula has a very intuitive meaning, noting that ν describes the distribution of jumps of a
Lévy process (in the sense that the jumps form a Poisson point process with intensity measure ν).
If f is constant around x, then it can change values within an infinitesimal time interval only by
an instantaneous jump out of the region where fpyq “ fpxq. Therefore, the Kolmogorov backward
equation

B

Bt
upt, xq “ Lupt, xq

for upt, xq “ Ptfpxq is a PIDE (partial integro-differential equation).
Note that if the Lévy measure ν is a finite measure (with λ :“ νpRdq), then Zt is the sum

of a Brownian motion (with drift) and a compound Poisson process with intensity λ and jump
distribution 1

λν.
In Theorem A.1 we have formulated the existence and uniqueness statement for SDEs driven by

general semimartingales. This, of course, also includes Lévy processes as drivers. Let σ : Rn Ñ Rnˆd
satisfy the assumptions of Theorem A.1 and let Zt denote a d-dimensional Lévy process with
characteristic triplet given in Theorem B.5, and consider the SDE

(B.2) dXt “ σpXs´qdZs.

Then, given some boundedness and regularity conditions on f : Rn Ñ R, upt, xq :“ E rfpXT q|X0 “ xs
satisfies the PIDE

(B.3)
B

Bt
upt, xq “ Aupt, xq`

`

ż

Rd

`

upt, x` σpxqzq ´ upt, xq ´ pσpxqzq ¨∇upt, xq1|σpxqz|ď1

˘

νpdzq,

where

Agpxq “ ∇gpxq ¨ pσpxqαq ` 1

2

n
ÿ

i,j“1

B2

BxiBxj
gpxqpσpxqΣσpxqT qi,j .
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Appendix C

Affine processes

Affine processes are very popular in mathematical finance because they can combine realistic fea-
tures, such as stochastic volatility and jumps, with efficient computations using Fourier methods, see
Section 7. The authorative reference on affine processes is Duffie, Filipovic and Schachermayer [14],
while Filipović [20, Chapter 10] offers a very nice introduction to affine diffusion processes.

Definition C.1. A stochastically continuous, time-homogeneous Markov process X “ pXtqtě0 with
state space D “ Rmě0 ˆ Rn is called affine iff the logarithm of the characteristic function is affine
in the initial state X0 “ x. More precisely, if there exist functions φpt, uq taking values in C and
ψpt, uq taking values in Cd, d “ m` n, such that

Exre
u¨Xts “ exp

`

φpt, uq ` x ¨ ψpt, uq
˘

for all u P Cd such that the expectation is finite. Here, x ¨ y “
řd
j“1 xjyj for x, y P Cd.

The popularity of affine processes for numerical applications is due to the fact that there exist
tractable equations for the characteristic exponent, i.e. for the functions φ and ψ. In particular,
they are solutions to the generalized Riccati equations

B

Bt
φpt, uq “ F pψpt, uqq, φp0, uq “ 0,(C.1a)

B

Bt
ψpt, uq “ Rpψpt, uqq, ψp0, uq “ u,(C.1b)

where the right hand side is given by

F puq “
1

2
pauq ¨ u` b ¨ u´ c`

ż

D

`

eξ¨u ´ 1´ hF pξq ¨ u
˘

mpdξq,(C.2a)

Ripuq “
1

2
pαiuq ¨ u` βi ¨ u´ γi `

ż

D

`

eξ¨u ´ 1´ hiRpξq ¨ u
˘

µipdξq,(C.2b)

with F : Cd Ñ C and R “ pR1, . . . , Rdq : Cd Ñ Cd, for all i “ 1, . . . , d.
The parameters pa, αi, b, βi, c, γi,m, µiq1ďiďd should satisfy the admissibility conditions: Let I “

t1, . . . ,mu, J “ tm` 1, . . . , du and write x “ pxI , xJq for x P Rd. The parameters are admissible if

• a, αi are positive semi-definite dˆd matrices, b, βi P Rd, c, γi ě 0, m and µi are Lévy measures
on D;

• akk “ 0 for k P I, αj “ 0 for j P J , αikl“0 whenever i P I and k P Iz tiu or l P Iz tiu;

• b P D, βik ě 0 for i P I and k P Iz tiu, βjk “ 0 for j P J and k P I;

• γj “ 0 for j P J ;
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•
ş

Dzt0u
min

´

|xI |` |xJ |2 , 1
¯

mpdxq ă 8, µj “ 0 for j P J ;

•
ş

Dzt0u
min

´∣∣xIztiu∣∣` ∣∣xJYtiu∣∣2 , 1¯µipdxq ă 8 for i P I.

Moreover, hF and hiR are truncation functions as in the Lévy–Khintchine formula.

Remark C.2. The admissibility conditions ensure that the affine process is well-defined, in the
sense that the process exists and does not leave the state space D “ Rmě0 ˆ Rn.

Example C.3. In order to gain an intuitive understanding of the admissibility conditions and the
interplay with the geometry of the state space, let us look at a simple example, a 1D affine diffusion
process. This is given by the SDE

dXt “ pb` βXtqdt`
a

a` αXtdWt, X0 “ x P D,(C.3)

where W is a standard Brownian motion. If the state space is D “ R, then we can directly deduce
that the process will be well-defined in the sense above if

b P R, β P R, a P Rě0 and α “ 0.

On the other hand, if the state space is D “ Rě0 we can equally easily deduce that the process will
be well-defined if

b P Rě0, β P R, a “ 0 and α P Rě0.

Now one can check that these conditions coincide with the admissibility conditions for the respective
states spaces. Let us also mention that in the first case the process is an Ornstein–Uhlenbeck (OU)
process, while in the second case it is a square root diffusion (also know as CIR process).

The infinitesimal generator L of an affine process X admits also an explicit expression in terms
of the admissible parameters. Indeed, it has the form

(C.4) Lfpxq “
1

2

d
ÿ

k,l“1

˜

akl `
m
ÿ

i“1

αiklxi

¸

B2

BxkBxl
fpxq `

˜

b`
d
ÿ

i“1

βixi

¸

¨∇fpxq`

` c`
d
ÿ

i“1

γixi `

ż

Dzt0u

pfpx` ξq ´ fpxq ´ hF pξq ¨∇fpxqqmpdξq`

`

m
ÿ

i“1

xi

ż

Dzt0u

`

fpx` ξq ´ fpxq ´ hiRpξq ¨∇fpxq
˘

µipdξq.

Conversely, given admissible parameters there exists an affine process with generator (C.4).

Remark C.4. Another characterization of affine processes as semimartingales can be given in terms
of the (local) semimartingale characteristics, see Kallsen [29].

Example C.5. The previous example on affine diffusion processes yields immediately that the
Brownian motion is an affine process. More generally, every Lévy process X with characteristic
exponent κ is an affine process and the functions φ and ψ are provided by

φpt, uq “ tκpuq and ψpt, uq “ u.

This follows directly from the Lévy–Khintchine formula.

Example C.6. Consider the Heston stochastic volatility model presented in Example A.3 under a
risk neutral measure, i.e. we set µ “ r in (A.6a). We change variables to the log-price X :“ logS,
hence the dynamics are provided by the SDE

dXt “

´

r ´
1

2
Vt

¯

dt`
a

VtdB
1
t , X0 “ x P R

dVt “ κpθ ´ Vtqdt` η
a

Vt

´

ρdB1
t `

a

1´ ρ2dB2
t

¯

, V0 “ v P Rě0.
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We can deduce that pV,Xq is an affine process on Rě0ˆR by calculating its infinitesimal generator
and comparing it with (C.4). Another way is to use the characterization of affine diffusion processes
in [20]. In both cases, we have the following: there are no jumps, hence the integral terms vanish.
The drift term is clearly affine in pv, xq and the parameters are provided by

b “

ˆ

κθ
r

˙

, β1 “

ˆ

´κ
´ 1

2

˙

and β2 “ 0.

Similarly, the diffusion term is affine of the form apv, xq “ a ` α1 ¨ v ` α2 ¨ x since the volatilities
are linear in the square root of the state, with

a “ 0, α1 “

ˆ

η2 ηρ
ηρ 1

˙

and α2 “ 0.

The right hand sides of the Riccati equations (C.1) are provided by replacing the parameters above
to (C.2), and we get that

F pu1, u2q “ κθu1 ` ru2

Rpu1, u2q “ ´κu1 ´
1

2
u2 `

1

2
u2

2 `
1

2
η2u2

1 ` ηρu1u2.
(C.5)

Therefore, the characteristic function of the log-spot price Xt is provided by

ExrexppuXtqs “ exp
`

φpt, 0, uq ` xψpt, 0, uq
˘

.

Several generalizations of the Heston model like the Bates model, a stochastic volatility model with
jumps, are affine processes, too.

Example C.7. Next, we consider a fairly general jump-diffusion model. Let Z be a pure-jump
semi-martingale with state-dependent intensity λpxq and jump measure ν. Consider the SDE

dXt “ bpXtqdt` σpXtqdBt ` dZt,

with b : Rd Ñ Rd and σ : Rd Ñ Rdˆd, both smooth enough. Thus, the generator of the Markov
process X is given by

Lfpxq “ bpxq ¨∇fpxq ` 1

2
trace

`

σpxqσpxqTHfpxq
˘

`

` λpxq

ż

Rn
pfpx` ξq ´ fpxq ´ hF pξq∇fpxqq νpdξq,

where Hf denotes the Hessian matrix of f . Comparing this generator with the generic generator
of an affine process given in (C.4), we see that X is affine if and only if the drift µpxq is an affine
function in x, the jump intensity λpxq is an affine function in x and the diffusion matrix is such
that σpxqσpxqT is an affine function in x. In other words, the relationship between the coefficients
pb, σ, λ, νq of the jump-diffusion process X and the corresponding admissible parameters is

bpxq “ b`
d
ÿ

i“1

βixi

σpxqσpxqT “ a`
d
ÿ

i“1

αixi

λpxq “ l `
d
ÿ

i“1

λixi,

where l, λ1, . . . , λn P Rě0 and

mpdξq “ lνpdξq and µipdξq “ λiνpdξq, 1 ď i ď d.
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Appendix D

Weak derivatives and Sobolev
spaces

Let G Ă Rd be open and let

C80 pGq :“ t f P C8pGq | supp f Ă G and bounded u ,

where supp f denotes the largest closed set (in Rd) outside which f vanishes. Integration by parts
implies for any u P CkpGq and any test function v P C80 pGq and any multi-index α P Nd, |α| :“
řd
i“1 αi ď k, we have

ż

G

Dαupxqvpxq dx “ p´1q|α|
ż

G

upxqDαvpxq dx,

where

Dαfpxq :“
B|α|

Bxα1
1 ¨ ¨ ¨ Bxαdd

fpxq.

Hence, integration by parts allows us to shift derivatives from u to v, provided that both u and v are
sufficiently regular. The idea of a weak derivative of u is now to define a derivative of a function u
lacking classical differentiability by shifting the derivatives on smooth test functions. More precisely,
let u be locally integrable, i.e., u P L1

locpGq – as usual, in this section we omit the sigma algebra
BpGq as well as the Lebesgue measure dx from the notation – which means that the restriction of
u to any compact set K Ă G is integrable.

Definition D.1. Let u P L1
locpGq, α P Nd. If there is a function wα P L

1
locpGq such that

@v P C80 pGq :

ż

G

wαpxqvpxq dx “ p´1q|α|
ż

G

upxqDαvpxq dx,

then u is called weakly differentiable (at order α), and wα is called its weak derivative, symbolically
Dαu :“ wα.

We give two examples, whose (elementary) proofs are left to the reader.

Example D.2. Let G “ R and upxq :“ p1´ |x|q`. Then u is once weakly differentiable, with weak
derivative

u1pxq “

$

’

&

’

%

0, |x| ą 1,

1, ´1 ă x ă 0,

´1, 0 ă x ă 1.

However, u is not twice weakly differentiable.
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Example D.2 shows a case of an absolutely continuous function u, and verifies that it is weakly
differentiable. We will see in Example D.3 that weakly differentiable functions may fail to be abso-
lutely continuous, or even continuous.

Example D.3. Consider u : Rd Ñ R, x ÞÑ |x|´α, α ą 0. Note that this function is discontinuous
at 0. If α` 1 ă d, then u is weakly differentiable with weak derivatives

B

Bxi
upxq “ ´α

xi

‖x‖α`2 “

ˆ

´α
xi
|x|

˙

|x|´pα`1q
, i “ 1, . . . , d.

As a hint for the proof, recall that
´

´α xi
|x|

¯

is bounded, and that the d-dimensional volume element

in spherical coordinates „ rd´1dr.

We now define Sobolev spaces, the natural spaces for solving partial differential equations, in
essence the “convenient” counterparts of the classical Ck spaces.

Definition D.4. For 1 ď p ă 8 and k P N we define

W k
p pGq :“ t u P LppGq | @ |α| ď k : Dαu P LppGq u ,

W k
8pGq :“ t u P L8pGq | @ |α| ď k : Dαu P L8pGq u ,

which we endow with the norms

‖u‖Wk
p

:“

¨

˝

ÿ

|α|ďk
‖Dαu‖pLp

˛

‚

1{p

, ‖u‖Wk
8

:“ max
|α|ďk

‖Dαu‖L8 .

Note that for 1 ď p ď 8 Kk
p pGq is a Banach space. In the case p “ 2 the Sobolev space is even

a Hilbert space. Due to its special importance, a special notation is usually used.

Definition D.5. We set HkpGq :“W k
2 pGq, which is endowed with the inner product

xu , vyHk :“
ÿ

|α|ďk
xDαu ,DαvyL2 , u, v P HkpGq.

We further define Hk
0 pGq as the closure of C80 pGq Ă HkpGq w.r.t. the topology of HkpGq. It is a

Hilbert space with x¨ , ¨yHk .

Note that intuitively u P Hk
0 pGq if u P HkpGq and u vanishes on the boundary BG. Recall,

however, from Example D.3 that u P HkpGq does not, in general, imply that u is continuous. Hence,
the notion of “evaluating u at BG” may not be well defined. We note that there are ways – involving
the trace – of defining such point evaluations in the context of Hk

0 pGq-spaces rigorously.

Remark D.6. The above paragraph touches on the question when a Sobolev space “contains”
only continuous functions. More precisely, there is a big literature devoted to the question when a
Sobolev space W k

p pGq can be continuously embedded into spaces such as LqpGq, Wm
q pGq, C

n,αpGq
– the latter understood in the sense of Cn-functions with α-Hölder nth derivatives.

Remark D.7. Recall that the Fourier transform of the derivative of a function u can be expressed
by multiplying the Fourier transform of u by a polynomial in the Fourier variable ξ. Hence, the
above Sobolev norms can be expressed in terms of integrals of p1 ` |ξ|2qk{2pupξq, where pu denotes
the Fourier transform of u. Clearly, this definitions can be extended to non-integer k P R, leading
to defintions for spaces W k

p pGq, k P R. In addition, Sobolev spaces with negative index k ă 0 often

allow an interpretation as dual spaces of W
|k|
p pGq.
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[14] D. Duffie, D. Filipović, and W. Schachermayer. Affine processes and applications in finance.
Ann. Appl. Probab., 13(3):984–1053, 2003.

[15] E. Eberlein and K. Prause. The generalized hyperbolic model: financial derivatives and risk
measures. In H. Geman, D. Madan, S. Pliska, and T. Vorst, editors, Mathematical Finance –
Bachelier Congress 2000, pages 245–267. Springer, 2002.

[16] E. Eberlein, K. Glau, and A. Papapantoleon. Analysis of Fourier transform valuation formulas
and applications. Appl. Math. Finance, 17:211–240, 2010.

[17] J. Elstrodt. Maß- und Integrationstheorie. Springer, 2nd edition, 1999.

104

http://cg.scs.carleton.ca/~luc/rnbookindex.html


[18] F. Fang and C. W. Oosterlee. A novel pricing method for European options based on Fourier-
cosine series expansions. SIAM J. Sci. Comput., 31(2):826–848, 2008/09.

[19] L. Feng and V. Linetsky. Pricing discretely monitored barrier options and defaultable bonds
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