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The Model

Let Bt = (B1
t , . . . ,Bd

t ), t ∈ [0,T ], be a d-dimensional Brownian
motion on the Wiener space (Ω,F ,P). Ft denotes the filtration
generated by B and we assume that F = FT . We model a
financial market, in which n + 1 assets are traded, n ≤ d .

S0
t , t ∈ [0,T ], is the “bank account” earning a risk free

interest rate r > 0 (continuous compounding).

St = (S1
t , . . . ,Sn

t ) gives the risky assets (“stocks”).

For bounded, measurable functions a : [0,T ]× Rn → Rn and
σ : [0,T ]× Rn → Rn×d we set

dS0
t = rS0

t dt

dS i
t = ai (t,St)S

i
tdt +

∑d

j=1
σij(t,St)S

i
tdB j

t , i = 1, . . . , n.
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Strategies

A strategy describes the amount of money invested in each
available asset at any given time t ∈ [0,T ].

Definition

A (self-financing) strategy is a predictable, Rn-valued process π
such that “all of the following integrals are well-defined”.

Remark

The strategy is self-financing, because we neither allow
consumption nor external money entering the financial
market. Thus, strategies are determined by n coordinates.

All positions are allowed to be negative (short selling).
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The Wealth Process of a Portfolio

The wealth process X x ,π with initial capital x associated to the
strategy π is defined by X x ,π

0 = x and its dynamics

dX x ,π
t =

n∑
i=1

πi
t

S i
t

dS i
t +

X x ,π
t −

∑n
i=1 πi

t

S0
t

dS0
t .

Definition

A strategy is admissible if the corresponding wealth process is
bounded from below by some fixed real number.

The restriction to admissible strategy is economically sensible and
disallows “doubling strategies”.
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No Arbitrage

Definition

An arbitrage opportunity is an admissible strategy π such that
P

(
X 0,π

T ≥ 0
)

= 1 and P
(
X 0,π

T > 0
)

> 0.

Definition

Let Q be a probability measure on (Ω,F) equivalent to P. Q is
called equivalent (local) martingale measure if the discounted price
process S̃t = e−rtSt , t ∈ [0,T ], is a (local) martingale under Q.

Remark

The Fundamental Theorem of Asset Pricing roughly says that the
existence of (local) martingale measures is equivalent to the
non-existence of arbitrage opportunities.
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No Arbitrage – 2

Proposition

Assume there exists a predictable, Rd -valued process θ such that

(i) ai (t,St)− r =
∑d

j=1 σij(t,St)θ
j(t), i = 1, . . . , n,

(ii)
∫ T
0 ‖θ(t)‖2 dt < ∞ a. s.,

(iii) E
(
exp

(
−

∫ T
0 〈θ(t),dBt〉 − 1

2

∫ T
0 ‖θ(t)‖2 dt

))
= 1.

Then our model is free of arbitrage and the probability measure Q

with density ZT = exp
(
−

∫ T
0 〈θ(t),dBt〉 − 1

2

∫ T
0 ‖θ(t)‖2 dt

)
is a

martingale measure.

Consequently, the dynamics of the model under Q are given by

dS i
t = rS i

tdt +
∑d

j=1
σij(t,St)S

i
tdW j

t , i = 1, . . . , n,

where W denotes a Brownian motion under Q.
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Complete and Incomplete Markets

Definition

A contingent claim is an FT -measurable, Q-absolutely integrable
random variable. A contingent claim Y is attainable or replicable if
there is an admissible, self-financing portfolio π and a number x
such that X x ,π

T = Y a. s. π is called replicating portfolio for Y .

Definition

A financial market is complete, if every contingent claim is
replicable. Otherwise, it is called incomplete.

Proposition

Our market is complete if and only if n = d and σ(t,St(ω)) is
invertible for dt ⊗ P - a. e. (t, ω) ∈ [0,T ]× Ω.
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Complete and Incomplete Markets – 2

Remark

Under realistic conditions, completeness is a very strong property.
Many experts agree that realistic models are not complete.

Assumptions

From now on, we assume that our model is arbitrage-free and
complete.
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Pricing Contingent Claims

Definition

x ∈ R is an arbitrage-free price of a contingent claim Y if there is
an admissible strategy π such that Y = X x ,π

T a. s.

Proposition

In a complete, arbitrage-free model, any claim Y has a unique
arbitrage-free price x = EQ

(
e−rTY

)
, where Q is the unique

e. m. m.

Remark

In incomplete markets, there is, in general, no replicating
portfolio, only super-replicating ones.

Typically, there is an interval of arbitrage-free prices bounded
by the super replication prices of the buyer and of the seller.
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Black-Scholes PDE

For simplicity, we pass to the discounted model by setting
S̃0

t = 1 and S̃ i
t = e−rtS i

t , i = 1, . . . , n.

For a European contingent claim of the form Y = f (ST ), let
C (t, x) denote the price of Y at time t given St = x ,
i. e. C (t, x) = EQ

(
e−r(T−t)f (ST )

∣∣St = x
)
.

By the Feynman-Kac formula, C satisfies the PDE

∂

∂t
C (t, x) + LtC (t, x) = rC (t, x), t ∈ [0,T ], x ∈ Rn,

with C (T , x) = f (x). Here, the infinitesimal generator is

Ltg(x) =
n∑

i=1

rx i ∂g

∂x i
(x) +

1

2

n∑
i ,j=1

(
σσT

)ij
(t, x)x ix j ∂2g

∂x i∂x j
(x).
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Delta Hedging

Proposition (Delta Hedging)

The replicating portfolio for the discounted, European claim
e−rTY = e−rT f (ST ) is given by πi

t = ∂C
∂x i (t,St), i = 1, . . . , n:

e−rTY = C (0,S0) +

∫ T

0

〈
∇xC (t,St),dS̃t

〉
.

Proof.

Apply Itô’s formula to the process e−rtC (t,St). Note that we have
to use the risk-neutral dynamics.

In particular, ∀t ∈ [0,T ] : X
C(0,S0),π
t = e−rtC (t,St).
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Delta Hedging – 2

1 The derivative of the price with respect to the price of the
underlying is called the Delta of a derivative, e. g. ∇xC (t, x).

2 We can construct a self-financing portfolio as follows.

t Y S̃0 S̃ i

0 −1 C (0,S0) 0

t −1 C (t,St)−
〈
∇xC (t,St),S̃t

〉
∂C
∂x i (t,St)

T −1 Y 0

3 The term “Delta hedging” comes from the fact that this
portfolio is Delta neutral, i. e. the Delta of the portfolio is 0.
Note, however, that the portfolio requires continuous trading!
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The Greeks

Definition

The derivatives of the price of a contingent claim with respect to
model parameters are called the Greeks.

Remark

1 The Greeks are generally used to “hedge against risks”.

2 Some of the risks – like the “risk” of changing prices of the
underlying (Delta hedging) – are inherent to the model.

3 Other risks are inherent to real-life restrictions: e. g., an
investor implementing Delta hedging can only trade at
discrete times. The corresponding risk can be countered by
“Delta-Gamma-hedging”.

4 There are also risks concerning changes of model parameters.
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The Greeks – 2

Remark

In reality, hedging is usually very expensive. Therefore, the Greeks
are rather used to monitor the development of a portfolio.

A non-exhaustive list of Greeks:

Delta: derivative w. r. t. the price of the underlying.

Gamma: second derivative w. r. t. the price of the underlying.

Vega: derivative w. r. t. the volatility.

Rho: derivative w. r. t. the interest rate.

Theta: derivative w. r. t. time.
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Finite Differences

In very few models like the classical Black-Scholes model
explicit formulas for the option prices exist. Of course, these
formulas can be differentiated to get formulas for the Greeks.

Numerical differentiation is one method for calculation of the
Greeks. Let u(α) denote the dependence of the price u of a
derivative on some parameter α and choose ε > 0 small
enough. Use

u(α + ε)− u(α)

ε

as an approximation of du
dα .

Even more elaborate methods for numerical differentiation
often do not give satisfactory results in this context.
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The Logarithmic Trick

Given a family of random variables Xα, α ∈ R, having densities
p(α, x), x ∈ R, α ∈ R, C 1 in α, and a bounded, measurable
function f .

d

dα
E (f (Xα)) =

d

dα

∫
R

f (x)p(α, x)dx

=

∫
R

f (x)
∂p
∂α(α, x)

p(α, x)
p(α, x)dx

=

∫
R

f (x)
∂ log(p(α, x))

∂α
p(α, x)dx = E

(
f (Xα)πα),

where πα = ∂
∂α log(p(α, Xα)) does not depend on f .
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The First Variation Process

Let X x
t , x ∈ Rn, t ∈ [0,T ], be the solution of the SDE

dX x
t = a(X x

t )dt + σ(X x
t )dBt (1)

with X x
0 = x . Here, a : Rn → Rn and σ : Rn → Rn×d are C 1

functions with linear growth.
The first variation process is the n× n-dimensional process given by

dJ0→t(x) = da(X x
t ) · J0→t(x)dt +

d∑
i=1

dσi (X x
t ) · J0→t(x)dB i

t , (2)

and J0→0(x) = In, where σi denotes the ith column of σ.
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Properties of the First Variation

1 If the coefficients of the SDE (1) are C 1+ε, then there is a
version of the solution X x

t which is differentiable in x . In this
case, the first variation is its Jacobian, i. e.

J0→t(x) = dxX
x
t .

.

2 The first variation is almost surely invertible. In fact, it is not
difficult to find the SDE for J0→t(x)−1.
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The Malliavin Derivative

Without getting into details, we present the formal set-up of
Malliavin calculus.

The Malliavin derivative is a closed operator D : D(D) ⊂
L2(Ω,F ,P) → L2([0,T ]× Ω,B([0,T ])⊗F , dt ⊗ P; Rd). We
write DsF (ω) = DF (s, ω), F ∈ D(D).

The dual map δ is called Skorohod stochastic integral,
i. e. δ : D(δ) ⊂ L2([0,T ]× Ω,B([0,T ])⊗F , dt ⊗ P; Rd) →
L2(Ω,F ,P) satisfies

E (F δ(u)) = E
(∫ T

0
〈DsF ,us〉Rd ds

)
, (3)

where F ∈ D(D) ⊂ L2(Ω) and u ∈ D(δ) ⊂ L2([0,T ]× Ω).
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The Malliavin Derivative – 2

Remark

Usually, calculation of Malliavin derivatives or Skorohod integrals is
a hard problem. There are, however, some important special cases.

1 For the process X x solution of (1), the Malliavin derivative is
given by

DsX
x
t = J0→t(x)J0→s(x)−1σ(X x

s )1[0,t](s). (4)

2 For a predictable process u, the Skorohod integral coincides
with the Itô integral.

3 Let F = (F 1, . . . ,Fm), F i ∈ D(D), and ϕ ∈ C 1(Rm), then
ϕ(F ) ∈ D(D) and Dϕ(F ) = 〈∇ϕ(F ),DF 〉Rm .
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Malliavin Weights

Definition

For a given stochastic process X x
t , t ∈ [0,T ], as in (1) and a fixed

time t, a Malliavin weight is a (sufficiently regular) random
variable π such that

∇xE (f (X x
t )) = E (f (X x

t )π) (5)

for all, say, bounded, measurable f : Rn → R.

Remark

By the “logarithmic trick”, Malliavin weights exist for all
hypo-elliptic diffusions.

For simplicity, we concentrate on the Delta.
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Bismut-Elworthy-Li Formula

Theorem

Assume that σ(X x
t (ω)) has a right-inverse Rt(ω) ∈ Rd×n for

dt ⊗ P a. e. (t, ω) such that RtJ0→t(x)i ∈ L2([0,T ]× Ω),
i = 1, . . . , n, where J0→t(x)i denotes the ith column of J0→t(x).
Then for every bounded, measurable f : Rn → R,

∇xE (f (X x
T )) = E

(
f (X x

T )

∫ T

0

1

T
RtJ0→t(x)dBt

)
. (6)

Remark

The assumption is satisfied (with Rs = σ−1(X x
s )) if d = n, and σ

is uniformly elliptic, i. e. ∃ε > 0 s. t.

ξTσ(x)Tσ(x)ξ ≥ ε |ξ|2 , ∀x , ξ ∈ Rn.
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Proof of the Bismut-Elworthy-Li Formula

∇xE (f (X x
T )) =

E
( 1

T

∫ T

0
∇f (X x

T )T J0→T (x) J0→t(x)−1σ(X x
t )RtJ0→t(x)︸ ︷︷ ︸

=In

dt
)

The chain rule for Malliavin derivatives implies

Dt f (X x
T ) = ∇f (X x

T )TDtX
x
T = ∇f (X x

T )T J0→T (x)J0→t(x)−1σ(X x
t )

and we get

∇xE (f (X x
T )) = E

(∫ T

0
〈Dt f (X x

T ),RtJ0→t(x)/T 〉 dt
)

= E (f (X x
T )δ(t 7→ RtJ0→t(x)/T ))
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Bismut-Elworthy-Li Formula for a Parameter

Theorem

Let a, σ depend on a real parameter α and assume that σ is
uniformly elliptic (in particular, d = n). Then

∂

∂α
E (f (X x

T )) = E (f (X x
T )δ(t 7→ H(t,T , α))), (7)

with H(t,T , α) = 1
T σ(X x

t , α)−1J0→t(x)J0→T (x)−1 ∂X x
T

∂α .

Proof.

Proceed similarly to the first proof using

∇f (X x
T )T = Dt f (X x

T )σ(X x
t , α)−1J0→t(x)J0→T (x)−1.
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Remarks on the Bismut-Elworthy-Li Formula

Similar formulas are also possible in a hypo-elliptic set up.

In general, the Malliavin weight is defined as Skorohod
integral of some process. Note that – unlike the Itô integral –
the definition of the Skorohod integral is essentially
non-constructive.

Consequently, formulas for Malliavin weights especially in
non-elliptic situations are often not directly usable for
computational purposes.
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Example: Delta of a Digital in the Bates Model
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Example: Delta of a Call in the Merton Model
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The Greeks, sensitivities of option prices with respect to
model parameters, are not only important for computational
issues, but also because of their rôle in hedging strategies.

Calculation using finite differences is often inefficient.

Malliavin weights provide an alternative, in many situations
superior method. In general, they are only given in a
non-constructive way.

Extending the theory to more general models, e. g. models
driven by jump-diffusions, is a popular research topic.
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Rewriting the Equation

We rewrite equation (1) as

dX x
t = V0(X

x
t )dt +

d∑
i=1

Vi (X
x
t ) ◦ dB i

t =
d∑

i=0

Vi (X
x
t ) ◦ dB i

t , (8)

where ◦dB i
t denotes the Stratonovich stochastic integral and we

use the notation “◦dB0
t = dt”. Vi (x) = σi (x), i = 1, . . . , d and

V0(x) = a(x)− 1
2

∑d
i=1 dVi (x) · Vi (x).

Remark

We understand vector fields V : Rn → Rn as functions and as
differential operators acting on C∞(Rn; R) by

Vf (x) = df (x) · V (x), f ∈ C∞(Rn; R), x ∈ Rn.
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Assumptions on the Data

The vector fields V0, . . . ,Vd are smooth and C∞-bounded,
i. e. their derivatives of order greater than 0 are bounded.

The vector fields satisfy a uniform Hörmander condition, see
[Kusuoka 2002] for details. Consequently, the corresponding
diffusion X is hypo-elliptic.
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Stochastic Taylor Expansion

We define a degree on the set of multi-indices
A =

⋃
k∈N{0, . . . , d}k by deg((i1, . . . , ik)) = k + #{j |ij = 0},

i. e. 0s are counted twice.

Theorem

Fix m ∈ N and f ∈ C∞(Rn). Then

f (X x
t ) =

∑
α=(i1,...,ik )∈A

deg(α)≤m

Vi1 · · ·Vik f (x)

∫
0<t1<···<tk<t

◦dB i1
t1 ◦· · ·◦dB ik

tk

+ Rm(f , t, x),

with
√

E (Rm(f , t, x)2) = O(t(m+1)/2).
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Proof of the Stochastic Taylor Expansion

Proof.

By Itô’s formula, we get

f (X x
t ) = f (x) +

d∑
i=0

∫ t

0
Vi f (X x

s ) ◦ dB i
s .

Now we apply Itô’s formula to Vi f (X x
s ), i = 0, . . . , d , and obtain

f (X x
t ) = f (x) +

d∑
i=0

∫ t

0

(
Vi f (x) +

d∑
j=0

∫ s

0
VjVi f (X x

u ) ◦ dB j
u

)
◦ dB i

s .

Iterate this procedure and then apply Itô’s lemma to get the order
estimate for the rest term.
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Remark

1 The stochastic Taylor expansion is the starting point for many
applications in stochastic analysis and for several numerical
methods, including

Stochastic Taylor schemes and
Cubature on Wiener space, a method based on Terry Lyon’s
theory of rough paths.

2 Following the latter concept, we interpret the process
(Bα

t )α∈A, deg(α)≤m, t ∈ [0,T ], as the “probabilistic core” of
the solution of the SDE.

3 Consequently, a better understanding of this process might
yield methods to calculate the non-constructive
Malliavin-weight formulas presented in the last section.

Christian Bayer University of Technology, Vienna Calculation of Greeks



Universal Malliavin Weights
Approximate Weights

Summary

Stochastic Taylor Expansion
Nilpotent Lie Groups
Iterated Stratonovich Integrals on Gm

d,0
Universal Malliavin Weights

Passing to the Algebraic Framework

In order to study the stochastic process given by the iterated
Stratonovich integrals up to order m, we embed it into an
appropriate algebraic/geometric framework.

We additionally assume that the Stratonovich drift vanishes,
i. e. V0 = 0. This assumption simplifies the notation and
allows us to use the usual degree deg((i1, . . . , ik)) = k for
(i1, . . . , ik) ∈ {1, . . . , d}k . Furthermore, it will allow us to
omit some subtle restrictions in the following.

We stress that the results remain essentially true for V0 6= 0.
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The Free, Nilpotent Algebra

Let Am
d ,0 be the space of all non-commutative polynomials in

e1, . . . , ed of degree less than or equal to m.

Define a non-commutative multiplication on Am
d ,0 by cutting

off all monomials of higher degree than m. Am
d ,0 becomes the

free associative, non-commutative, step-m nilpotent real
algebra with unit in d generators e1, . . . , ed .

Let W0 denote the linear span of the unit element 1 of Am
d ,0,

i. e. W0 is the space of all polynomials of degree 0. We
identify W0 ' R and denote by x0 the projection of x ∈ Am

d ,0

on W0.
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The Free, Nilpotent Algebra – 2

exp : Am
d ,0 → Am

d ,0 is defined by exp(x) = 1 +
∑∞

i=1
x i

i! .

The logarithm is defined for x0 6= 0 by

log(x) = log(x0) +
∞∑
i=1

(−1)i−1

i

(x − x0

x0

)i

= log(x0) +
m∑

i=1

(−1)i−1

i

(x − x0

x0

)i
.

Am
d ,0 equipped with the commutator bracket [x , y ] = xy − yx ,

x , y ∈ Am
d ,0, is a Lie algebra.
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The Free, Nilpotent Lie Group

Let gm
d ,0 denote the free, step-m nilpotent Lie algebra

generated by {e1, . . . , ed}, i. e.

gm
d ,0 =

〈
{ei , [ei , ej ], [ei , [ej , ek ]], . . . | i , j , k = 1, . . . , d}

〉
.

We define the step-m nilpotent free Lie group as the
exponential image of gm

d ,0, i. e. Gm
d ,0 = exp(gm

d ,0).

Gm
d ,0 is a Lie group and gm

d ,0 is its Lie algebra, which can be
seen by the Campbell-Baker-Hausdorff formula

exp(x) exp(y) = exp
(
x+y+

1

2
[x , y ]+

1

12
([x , [x , y ]]−[y , [y , x ]])+· · ·

)
.

Note that exp : gm
d ,0 → Gm

d ,0 and log : Gm
d ,0 → gm

d ,0 define a
global chart of the Lie group.
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Example: The Heisenberg Group

The Heisenberg group is the group G 2
2,0, a 3-dimensional

submanifold of A2
2,0 ' R7.

It allows the following representation as a matrix group:

G 2
2,0 =

{(
1 a c
0 1 b
0 0 1

) ∣∣∣ a, b, c ∈ R
}

.

The Lie algebra – as tangent space at I3 ∈ G 2
2,0 – is

g2
2,0 =

{(
0 x z
0 0 y
0 0 0

) ∣∣∣ x , y , z ∈ R
}

.

An isomorphism is given by e1 =
(

0 1 0
0 0 0
0 0 0

)
, e2 =

(
0 0 0
0 0 1
0 0 0

)
.
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Encoding Iterated Stratonovich Integrals

Definition

For y ∈ Am
d ,0 we define a stochastic process Y y

t , t ∈ [0,T ], by

Y y
t = y

(∑
α∈A, deg(α)≤m

Bα
t eα

)
,

where eα = ei1 · · · eik for α = (i1, . . . , ik), e∅ = 1, and Bα
t denotes

the corresponding iterated Stratonovich integral, i. e.
Bα

t =
∫
0<t1<···<tk<t ◦dB i1

t1 · · · ◦ dB ik
tk .

Remark

Y 1
t is the vector of the iterated Stratonovich integrals written in

the canonical basis of Am
d ,0.
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The Geometry of the Iterated Integrals

Theorem

Define vector fields Di (x) = xei , x ∈ Am
d ,0, i = 1, . . . , d.

1 Y y
t is solution of the SDE

dY y
t =

∑d

i=1
Di (Y

y
t ) ◦ dB i

t , Y y
0 = y .

2 Given y ∈ Gm
d ,0, we have Y y

t ∈ Gm
d ,0 a. s. for all t ∈ [0,T ].

3 By the Feynman-Kac formula,

E (Y y
t ) = y exp

( t

2

∑d

i=1
e2
i

)
.
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The Geometry of the Iterated Integrals

Theorem

Define vector fields Di (x) = xei , x ∈ Am
d ,0, i = 1, . . . , d.

1 Y y
t is solution of the SDE

dY y
t =

∑d

i=1
Di (Y

y
t ) ◦ dB i

t , Y y
0 = y .

2 Given y ∈ Gm
d ,0, we have Y y

t ∈ Gm
d ,0 a. s. for all t ∈ [0,T ].

3 By the Feynman-Kac formula,

E (Y y
t ) = y exp

( t

2

∑d

i=1
e2
i

)
.
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The Geometry of the Iterated Integrals

Theorem

Define vector fields Di (x) = xei , x ∈ Am
d ,0, i = 1, . . . , d.

1 Y y
t is solution of the SDE

dY y
t =

∑d

i=1
Di (Y

y
t ) ◦ dB i

t , Y y
0 = y .

2 Given y ∈ Gm
d ,0, we have Y y

t ∈ Gm
d ,0 a. s. for all t ∈ [0,T ].

3 By the Feynman-Kac formula,

E (Y y
t ) = y exp

( t

2

∑d

i=1
e2
i

)
.
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The Geometry of the Iterated Integrals – 2

Remark

1 The formula (3) allows efficient calculation of all moments of
iterated Stratonovich integrals. Observe that E (Y 1

t ) /∈ Gm
d ,0.

2 By Statement 2, we can carry out all relevant calculations for
iterated Stratonovich integrals in the vector space gm

d ,0 by

passing to the process Zt = log(Y 1
t ).

Example

For m = d = 2, we get Zt = B1
t e1 + B2

t e2 + At [e1, e2], where At

denotes Lévy’s area

At =
1

2

∫ t

0
B1

s ◦ dB2
s −

1

2

∫ t

0
B2

s ◦ dB1
s .
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Malliavin Weights on Gm
d ,0

Proposition

Fix w ∈ gm
d ,0 and t ∈ [0,T ]. There is a non-adapted, Skorohod

integrable, Rd -valued process as , 0 ≤ s ≤ T such that for any
bounded, measurable function f : Gm

d ,0 → R and any y ∈ Gm
d ,1

∂

∂ε

∣∣∣∣
ε=0

E (f (Y y+εw
t )) = E (f (Y y

t )πm
d ,0),

where πm
d ,0 = δ(a).

Proof.

The proof is very similar to the proof for the existence of Malliavin
weights in a general, hypo-elliptic setting. See [Teichmann 06].
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Malliavin Weights on Gm
d ,0 – 2

Remark

1 The strategy a is universal in the sense that it does only
depend on m, d, t and – in a linear way – w.

2 Yet again, the Malliavin weight is given in an essentially
non-constructive way due to the Skorohod integration. Note
that even calculation of the strategy a is difficult. However,
approximation of the weight πm

d ,0 turns out to be possible.
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Approximation with Universal Weights

Theorem

Fix x , v ∈ Rn, t ∈ [0,T ] and m ≥ 1 such that v can be written as

v =
∑

α∈A\{∅}, deg(α)≤m−1

wα[Vi1 , [Vi2 , [· · · ,Vik ] · · · ](x)

for some wα ∈ R. Define w =
∑

wα[ei1 , [ei2 , [· · · , eik ] · · · ] ∈ gm
d ,0

and let πm
d ,0 denote the corresponding universal Malliavin weight.

Then for any C∞-bounded function f : Rn → R we have

∂

∂ε

∣∣∣∣
ε=0

E (f (X x+εv
t )) = E (f (X x

t )πm
d ,0) +O(t(m+1)/2).

We note that the constant in the leading order term in the error
estimate depends only on the first derivative of f .
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Cubature

Definition

Given a finite Borel measure µ on Rn with finite moments of order
up to m ∈ N. A cubature formula of degree m is a collection of
weights λ1, . . . , λk > 0 and points x1, . . . , xk ∈ supp(µ) ⊂ Rn such
that the following equality holds for any polynomial f on Rn of
degree less or equal m:∫

Rn

f (x)µ(dx) =
k∑

i=1

λi f (xi ).
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Chakalov’s Theorem

Theorem

For any Borel measure µ on Rn with finite moments of order up to
m there is a cubature formula with size k ≤ dim Polm(Rn), the
space of polynomials on Rn of order up to m.

Remark

Chakalov’s Theorem is non-constructive, and construction of
efficient cubature formulas remains a non-trivial problem in
higher dimensions.

The bound on the size is a consequence of Caratheodory’s
Theorem.
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Cubature Formulas for the Universal Weight

Theorem

Fix t ∈ [0,T ] and w ∈ gm
d ,0. There are points x1, . . . , xr ∈ Gm

d ,0 and
weights ρ1, . . . , ρr 6= 0 such that

E (Y 1
t πm

d ,0) = w exp
( t

2

d∑
i=1

e2
i

)
=

r∑
j=1

ρjxj .

Furthermore, we may choose r ≤ 2 dim Am
d ,0 + 2.
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Proof of Cubature for the Universal Weight

Proof.

The first equality is an easy consequence of

E (Y y
t ) = y exp

( t

2

∑d

i=1
e2
i

)
, y ∈ Am

d ,0.

Now define two positive measures on the Wiener space by
dQ+

dP = (πm
d ,0)+ and dQ−

dP = (πm
d ,0)−. By absolute continuity of Q±

w. r. t. P, Y 1
t ∈ Gm

d ,0 Q±-a. s.. Chakalov’s Theorem applied to the

laws of Y 1
t under Q+ and Q− yields

EP(Y 1
t πm

d ,0) = EQ+(Y 1
t )− EQ−(Y 1

t ) =
∑r

j=1
ρjxj .
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A Reformulation of Cubature

A theorem from sub-Riemannian geometry (Chow’s Theorem)
implies that any x ∈ Gm

d ,0 can be joined to 1 by the the
solution of the ODE

ẋt =
d∑

i=1

Di (xt)ω̇i (t) =
d∑

i=1

xtei ω̇i (t)

for some paths of bounded variation ωi : [0,T ] → R,
i = 1, . . . , d , i. e. x0 = 1 and xt = x .
We denote the solution to the above ODE for some path ω of
bounded variation by Y 1

s (ω), s ∈ [0,T ].
Consequently, there are ωj ∈ Cbv ([0,T ]; Rd), j = 1, . . . , r ,
s. t.

E (Y 1
t πm

d ,0) =
r∑

j=1

ρjY
1
t (ωj).
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Malliavin Weights by Cubature

Theorem

Fix x , v ∈ Rn, t ∈ [0,T ] and m ≥ 1 such that v can be written as

v =
∑

α∈A\{∅}, deg(α)≤m−1
wα[Vi1 , [Vi2 , [· · · ,Vik ] · · · ](x)

for some wα ∈ R. Define w =
∑

wα[ei1 , [ei2 , [· · · , eik ] · · · ] ∈ gm
d ,0

and let ρj , ωj , j = 1, . . . , r , denote the cubature formula for the
corresponding weight πm

d ,0. Then

∂

∂ε

∣∣∣∣
ε=0

E (f (X x+εv
t )) =

∑r

j=1
ρj f (X x

t (ωj)) +O(t(m+1)/2),

where
dX x

t (ωj )
dt =

∑d
i=1 Vi (X

x
t (ωj))ω̇

i
j (t) with X x

0 (ωj) = x.
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Remarks

The above formula is some kind of finite difference formula!
Instead of solving the PDE problem for different starting
points, we solve the SDE problem for different trajectories ω
of the Brownian motion.

The same procedure without πm
d ,0 gives a method for

calculation of E (f (X x
t )) ≈

∑l
j=1 λj f (X x

t (ω̃j)). This method –
introduced by T. Lyons and N. Victoir – is known as
“Cubature on Wiener space”.

For actual computations, it is necessary to iterate the
procedure along a partition 0 = t0 < t1 < · · · < tk = t of
[0, t]. This is possible using cubature on Wiener space,
yielding, at least in theory, a method of order m−1

2 for
approximation of Greeks.
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The Heat Kernel on Gm
d ,0

Definition

The density pt(x), x ∈ Gm
d ,0, of the process Y 1

t with respect to the
Haar measure on the Lie group is called heat kernel.

Remark

1 The name comes from the fact that pt is the fundamental
solution of the heat equation with respect to the sub-Laplacian
L = 1

2

∑d
i=1 D2

i , the infinitesimal generator of Y 1
t .

2 We can equivalently study the density of Zt = log(Y 1
t ) with

respect to the Lebesgue measure on gm
d ,0.

3 In the setting without drift, the heat kernel always exists as a
Schwartz function. With non-vanishing drift, we need to
factor out the direction in gm

d ,1 corresponding to t.
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Approximation of the Heat Kernel

We want to find polynomial approximations of the heat kernel
pt or the Malliavin weight d log pt ◦ Y 1

t . In the following we
concentrate on the former problem and tacitly switch to gm

d ,0

using the same notation pt for the density of Zt on gm
d ,0.

Choose a suitable (Gaussian) measure Qt with density rt on
gm
d ,0 and let hα(t, ·) denote the corresponding family of

orthonormal (Hermite) polynomials.

We need to calculate the integral∫
gm
d,0

pt(z)

rt(z)
hα(t, z)Qt(dz) =

∫
gm
d,0

pt(z)hα(t, z)dz = E (hα(t,Zt)).
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Approximation of the Heat Kernel – 2

This procedure will give us an approximation

pt(z)

rt(z)
=

∑
α

aα
t hα(t, z)

valid in L2(gm
d ,0,Qt), where aα

t = E (hα(t,Zt)).

Note that hα(t,Zt) is a (time dependent) polynomial in the
iterated Stratonovich integrals of order up to m. Calculation
of aα

t is enabled by

E (Ỹ 1
t ) = expm̃

( t

2

∑d

i=1
e2
i

)
,

where Ỹ denotes the process of iterated integrals in Am̃
d ,0 with

m̃ > m large enough.

The use of Qt instead of dz is preferable because polynomials
are not dz-square integrable.
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Applications of Approximate Heat Kernels

Approximate heat kernels can be used to make higher order
Taylor schemes for approximation of SDEs feasible.

In the context of Mallivin weights, they provide
approximations to the universal Malliavin weights defined
before.

Finally, the subject of heat kernels on Lie groups is a
well-established subject of mathematical research in its own
right.
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Summary

By using Stochastic Taylor expansion, we constructed
universal Malliavin weights, which yield approximations to the
Greeks for a very general class of (d-dimensional) problems.

Cubature formulas for Greeks – in combination with cubature
on Wiener space – yield high-order methods for the
calculation of the Greeks, even in situations, where no direct
formula for the Greeks is possible.

There are still many open problems regarding actual usability
of this theory for computations.
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