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Abstract. We propose a new method for solving optimal stopping problems (such as American

option pricing in finance) under minimal assumptions on the underlying stochastic process X. We
consider classic and randomized stopping times represented by linear and non-linear functionals

of the rough path signature X<∞ associated to X, and prove that maximizing over these classes of
signature stopping times, in fact, solves the original optimal stopping problem. Using the algebraic

properties of the signature, we can then recast the problem as a (deterministic) optimization

problem depending only on the (truncated) expected signature E
[
X≤N
0,T

]
. By applying a deep

neural network approach to approximate the non-linear signature functionals, we can efficiently

solve the optimal stopping problem numerically. The only assumption on the process X is that

it is a continuous (geometric) random rough path. Hence, the theory encompasses processes such
as fractional Brownian motion, which fail to be either semi-martingales or Markov processes, and

can be used, in particular, for American-type option pricing in fractional models, e.g. on financial

or electricity markets.
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1. Introduction

The theory of rough paths, see, for instance, [LCL07, FV10, FH14], provides a powerful and elegant
pathwise theory of stochastic differential equations driven by general classes of stochastic processes
– or, more precisely, rough paths. One of the benefits of the theory is that the resulting solution
maps are continuous rather than merely measurable as in the Itō version. This property has lead to
many important theoretical progresses, most notably perhaps Hairer’s theory for singular non-linear
SPDEs.

In addition to the theoretical advances, tools from rough path analysis – specifically, the path
signature – play an increasingly prominent role in applications, most notably in machine learning,
see, e.g., [AGG+18]. Intuitively, the signature X<∞ of a path X : [0, T ]→ Rd denotes the (infinite)
collection of all iterated integrals of all components of the path against each other, i.e., of the form∫

0<t1<···<tn<T
dXi1

t1 · · · dX
in
tn ,

i1, . . . , in ∈ {1, . . . , d}, n ≥ 0. To better understand the importance of the signature, let us first
recall that the signature X<∞ determines the underlying path X (up to “tree-like excursions”),
which was first proved in [HL10] for paths X of bounded variation and later extended to less
regular paths. This implies that, in principle, we can always work with the signature rather than
the path. (A somewhat dubious proposition, as we merely replace one infinite dimensional object
by another one.) However, the signature is not an arbitrary encoding of the path. Rather, Lyons’
universal limit theorem suggests that the solution of a differential equation driven by a rough path
X can be approximated with high accuracy by relatively few terms of the signature X<∞. In that
sense, an appropriately truncated signature can be seen as a highly efficient compression of X, at
least in the context of dynamical systems. And, indeed, there is now ample evidence of the power
of the signature as a feature in the sense of machine learning.

This paper is motivated by another recent application of signatures, namely the solution of sto-
chastic optimal control problems in finance. We follow the presentation of [KLPA20], where a
signature-based approach for solving optimal execution problems is developed. In a nutshell, the
strategy can be summarized as follows:

(1) Trading strategies for execution of a position can be understood as (continuous) functionals
φ(X|[0,t]) of the price path, and, hence, as functionals θ(X<∞0,t ) of the signature (at least

approximately).

(2) Taking advantage of the algebraic structure of the signature (see Section 2 below), we
may efficiently approximate continuous functionals θ(X<∞0,t ) by linear functionals 〈l, X<∞0,t 〉,
which further extends to the whole value function.

(3) Taking advantage of the linearity, we may interchange the expectation with the linear
functional, thereby reducing the optimal control problem to a problem of maximizing l 7→
〈l, E[X<∞0,t ]〉 over some set of dual elements l.

(4) Truncate the expected signature to a finite level N .

The above strategy, in principle, only imposes very mild conditions on the underlying process X,
mainly that it is continuous but possibly rough. In particular, X does not need to be a Markov
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process or a semi-martingale. For this reason, we may consider the approach to be model-free.1

Note, however, that the assumption of the existence of the expected signature E[X<∞0,t ] is a rather
strong assumption – in particular, ruling out many stochastic volatility models, such as the Heston
model.

[KLPA20] contains extensive numerical examples, indicating the method’s excellent performance in
various scenarios and models, often beating benchmark methods from the financial literature. On
the other hand, theoretical justification of the different approximation steps summarized above is
largely missing.

We extend the method of [KLPA20] to another important control problem in finance, namely the
optimal stopping problem, or, in more financial terms, the pricing of American options, for which
we provide rigorous theory. More specifically, we are concerned with the problem of computing

(1.1) sup
τ∈S

E [Yτ∧T ] ,

where Y denotes a process adapted to the filtration (Ft)t∈[0,T ] generated by a rough path process
(Xt)t∈[0,T ], and S denotes the set of all stopping times w.r.t. the same filtration. In a financial
context, Y usually denotes a reward process discounted with respect to some numéraire. At first
glance the optimal stopping problem (1.1) may seem unsuitable for the signature-based approach,
as typical candidate stopping times are hitting times of sets, which are generally discontinuous
w.r.t. the underlying path. We solve this issue by using randomized stopping times, see [BTW20].
Note that extending the set S to also include randomized stopping times does not change the value
of (1.1). In the end, we are able to prove that replacing proper stopping times by signature stopping
times – i.e., stopping times given in terms of linear functionals of the signature X<∞ – does not
change the value of the optimal stopping problem either. More precisely, we have

Theorem 1.1. Assume that E[‖Y ‖∞] <∞. Then,

sup
τ∈S

E[Yτ∧T ] = sup
τl

E[Yτl∧T ],

where the supremum on the right-hand-side ranges over stopping times τl := inf{t ∈ [0, T ] :

〈l, X̂<∞0,t 〉 ≥ 1} connected with linear functionals l on the signature process X̂<∞0,t (we refer to Sec-

tions 2 and 4 for precise definitions).

The theorem is presented as Proposition 5.5 below. We note that, following [KLPA20], we extend

the path X by adding running time as an additional component. X̂<∞ denotes the signature of the
extended path.

In the next step we need to actually compute a maximizing signature stopping time. In this context,

this most importantly implies replacing the full signature X̂<∞ by a truncated version X̂≤N . Using
some further technical assumptions, Proposition 6.5 provides convergence of the corresponding
approximations to the value of (1.1) as N →∞.

Assuming that Y is a polynomial function of X – or, more generally, of X<∞ – we can derive
an approximation formula in terms of an optimization problem involving linear functionals of the

1The full expected signature E[X<∞] typically characterizes the distribution of the process X, see [CL16]. In

that sense, we would hesitate to regard methods relying on the full (rather than truncated) expected signature as
“model-free”.
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expected signature E[X̂≤N ] rather than the expectation of some functional of the signature. See
Corollary 6.6 for details.

While this approach undoubtedly has many attractive features, very deep truncation levels N might
be needed for complicated optimal stopping problems. Hence, we also consider stopping rules
which are parameterized by non-linear functionals of the (truncated) signature. More precisely, we
consider stopping rules represented by deep neural networks (DNNs) applied to the log-signature.
DNNs are well known for their combination of high expressiveness, especially in high dimensions,
relative ease of training, and wide availability of efficient software implementations. On the other
hand, the log-signature removes linear redundancies from the full signature, and, therefore, provides
a compressed but equivalent representation of the data contained in the signature. We prove the
following analogue to Theorem 1.1, see Proposition 7.4 for details of the construction and the proof.

Theorem 1.2. Let Tlog denote the set of DNNs θ of a suitable chosen architecture, chosen such

that θ accepts a truncated log-signature log⊗ X̂≤N0,s truncated at some level N = N(θ), N = 1, 2, . . ..
Define the deep, randomized signature stopping rule

τ rθ := inf

{
t ≥ 0 :

∫ t

0

θ
(

log⊗ X̂≤N0,s

)2
ds ≥ Z

}
,

for an independent r.v. Z ∼ Exp(1). Assuming that E [‖Y ‖∞] <∞, we then have

sup
τ∈S

E [Yτ∧T ] = sup
θ∈Tlog

E
[
Yτrθ∧T

]
.

Finally, Section 8 contains extensive numerical examples of both the linearized and the deep log
signature method. We consider two models. Motivated by [BCJ19] we consider the problem of
optimally stopping a fractional Brownian motion. In this example, we find excellent performance
of the deep signature stopping approach. En passant, we provide explicit formulas for the limiting
case H → 0. We also consider an example from optimal control in an electricity market with the
price function modeled by a fractional Brownian motion, as motivated by [Ben17].

Outline of the paper. Section 2 recalls basic definitions from the theory of rough paths and
provides the algebraic and analytic setting of signatures. A framework for studying stopped rough
paths is presented in Section 3. Stopping times based on continuous functionals on rough paths
and their randomized counter-parts are introduced and discussed in Section 4. The special case
of linear functionals of the signature is studied in Section 5. The following Section 6 contains a
fully linear approximation to the optimal stopping problems in terms of the expected truncated
signature. Deep signature stopping rules are introduced in Section 7. Finally, numerical examples
are presented in Section 8.

2. Preliminaries

We start by introducing the basic definitions needed for understanding signatures and their algebraic
and – in the context of rough paths – analytic properties. These definitions are standard in the
rough path literature, we refer to [LCL07, FH14, FV10] for a more detailed exposition.
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2.1. The tensor algebra. Let V be a finite-dimensional R-vector space with basis {e1, . . . , ed}.
The dual space is denoted by V ∗ with dual basis {e∗1, . . . , e∗d}. We define the tensor algebra and the
extended tensor algebra by setting

T (V ) :=

∞⊕
n=0

V ⊗n and T ((V )) :=

∞∏
n=0

V ⊗n

where V ⊗n denotes the n-th tensor power of V with the convention V ⊗0 := R, V ⊗1 := V . Note
that there is a natural pairing between T ((V )) and T (V ∗) which we denote by

〈·, ·〉 : T (V ∗)× T ((V ))→ R.

We define sum and product of two elements a = (an)∞n=0,b = (bn)∞n=0 ∈ T ((V )) by setting

a + b := (an + bn)∞n=0,

a⊗ b := (
∑
i+j=n

ai ⊗ bj)∞n=0.

For λ ∈ R, we define λa := (λan)∞n=0. We also let 0 := (0, 0, . . .) and 1 := (1, 0, 0, . . .). Note that

1⊗ a = a⊗ 1 = a

for every a ∈ T ((V )). The truncated tensor algebra is defined by

TN (V ) :=

N⊕
n=0

V ⊗n.

We define maps πn : T ((V )) → V ⊗n and π≤N : T ((V )) → TN (V ) by πn(a) = an and π≤N (a) =
(a0, . . . , aN ) where a = (an)∞n=0. We will sometimes abuse notation and write 0 and 1 for the
elements π≤N (0) and π≤N (1) in the truncated tensor algebra.

Next, we consider norms on T ((V )) and T (V ∗). On V , we choose the l∞-norm, i.e. for v = λ1e1 +
. . .+λded, we set |v| := maxi |λi|. For elements in V ∗, we use the l1-norm, i.e. |v∗| := |λ1|+. . .+|λd|
for v∗ = λ1e

∗
1+. . .+λde

∗
d. On the tensor powers of V resp. V ∗, we use the corresponding norms, too.

Note that the norms on the tensor products V ⊗n are admissible, meaning that if v = a1 ⊗ . . .⊗ ak
and σv := aσ(1) ⊗ . . .⊗ aσ(k) for a permutation σ, |σv| = |v|, and |v ⊗ w| ≤ |v||w|. We set

|a| := sup
i∈N0

|ai| ∈ [0,∞] for a = (ai)
∞
i=0 ∈ T ((V ))

and

|b| :=
∞∑
i=0

|bi| ∈ [0,∞) for b = (bi)
∞
i=0 ∈ T (V ∗).

Note that we always have

|〈b,a〉| ≤ |b||π≤N (a)| ≤ |b||a|

where N = max{i ∈ N0 : bi 6= 0}.
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2.2. Shuffles. In the following, calculations will mainly be performed in the space T (V ∗). In order
to simplify notations, we will replace expressions like e∗i1 ⊗ · · · ⊗ e∗in by the much simpler form
i1 · · · in. More precisely, let W(Ad) be the linear span of words composed by the letters in the
dictionary Ad = {1, . . . , d}. The empty word is denoted by ∅ ∈ W(Ad). We can naturally define
the sum l1 + l2 and the scalar product λl for elements l, l1, l2 ∈ W(Ad) and λ ∈ R. If w = i1 · · · in
and v = j1 · · · jm are two words, the concatenation is defined by

wv := i1 · · · inj1 · · · jm.

This operation is extended bi-linearly to elements in W(Ad). The basis elements {e∗i1 ⊗ · · · ⊗ e
∗
in

:

i1, . . . , in ∈ {1, . . . , d}} in (V ∗)⊗n can be identified with words via the map

e∗i1 ⊗ · · · ⊗ e
∗
in 7→ i1 · · · in

which induces an isomorphism T (V ∗) ∼= W(Ad). We can also think of W(Ad) as the space of
non-commutative polynomials where the unknown are given by the letters {1, . . . , d}. For a word
w = i1 · · · in, set deg(w) := n and deg(∅) := 0. If l = λ1w1 + . . .+λnwn ∈ W(Ad) with λ1, . . . , λn ∈
R \ {0} and w1, . . . , wn words, we define

deg(l) := max
i=1...,n

deg(wi).

Apart from concatenation, there is a second important product defined on W(Ad) which is called
shuffle product : For a word w, we set

w�∅ := ∅� w := w.

If wi and vj are words and i, j ∈ Ad are letters, we recursively define wi� vj ∈ W(Ad) by

wi� vj := (w� vj)i+ (wi� v)j.

This operation is extended bi-linearly to a product � : W(Ad) ×W(Ad) → W(Ad). Note that �
is associative, commutative and distributive over +. If P ∈ R[x] is a commutative polynomial with
unknown variable x, i.e. P (x) = λ0 + λ1x+ . . . λnx

n, we define P� : W(Ad)→W(Ad) by setting

(2.1) P�(l) := λ0∅ + λ1l + λ2(l� l) + . . .+ λnl
�n,

where l�k denotes k-th shuffle product of l ∈ W(Ad) with itself.

We define

(2.2) G(V ) := {a ∈ T ((V )) \ {0} : 〈l1 � l2,a〉 = 〈l1,a〉〈l2,a〉 for every l1, l2 ∈ T (V ∗)}
and call it the set of group-like elements. Note that π0(g) = 1 for every g ∈ G(V ). One can show
that (G(V ),⊗) is a group with identity 1 and inverse given by

g−1 =
∑
n≥0

(1− g)⊗n.

We also set GN (V ) := π≤N (G(V )) which is a free nilpotent group of order N with respect to the
“truncated multiplication” a⊗GN (V ) b := πN (a ⊗ b), for a,b ∈ GN (V ). However, we will not

distinguish between the multiplication symbols on GN (V ) and G(V ) and use ⊗ in both cases.

Remark 2.1. The relation 〈l1 � l2,a〉 = 〈l1,a〉〈l2,a〉 for a ∈ G(V ) implies that

P (〈l,a〉) = 〈P�(l),a〉(2.3)
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for any polynomial P . This is really the justification for introducing the shuffle product, as it
provides an explicit linearization of polynomials in the signature.

2.3. Rough paths and their signatures. Now that the algebraic setting for signatures is de-
veloped (for the purposes of this paper), we can finally consider the analytic properties of (rough)
paths. More concretely, given a path X : [0, T ]→ V (of sufficient regularity), we will associate to it
a function X taking values in the truncated tensor algebra, which is the fundamental building block
of rough path theory. Set ∆T := {(s, t) ∈ [0, T ]2 : 0 ≤ s ≤ t ≤ T}. For a map X : ∆T → TN (V ),
we define its p-variation

‖X‖p−var;[s,t] := max
k=1,...,N

sup
D⊂[s,t]

(∑
ti∈D
|πk(Xti,ti+1

)|
p
k

) k
p

where the supremum ranges over all partitions D of [s, t]. We will use the notation ‖X‖p−var :=
‖X‖p−var;[0,T ]. For X,Y : ∆T → TN (V ), we define the p-variation distance

dp−var;[s,t](X,Y) := ‖X− Y‖p−var;[s,t]
and set dp−var(X,Y) := dp−var;[0,T ](X,Y). A weakly geometric p-rough path X is a continuous path

X : [0, T ] → Gbpc(V ) with X0 = 1 and ‖X‖p−var < ∞ where we set Xs,t := X−1s ⊗ Xt for s ≤ t.
Note that Xt = X0,t. We denote the space of weakly geometric p-rough paths by WΩpT and equip
it with the distance dp−var. If X : [0, T ]→ V is a continuous path of bounded variation, we define
its signature X<∞ : [0, T ]→ T ((V )) by

πk(X<∞t ) :=

∫
0<t1<...<tk<t

dXt1 ⊗ · · · ⊗ dXtk .

The truncated signature X≤N : [0, T ]→ TN (V ) is defined by X≤N := π≤N (X<∞). It can be checked
that X<∞ takes values in G(V ) and we set X<∞s,t := (X<∞s )−1 ⊗ X<∞t so that

πk(X<∞s,t ) =

∫
s<t1<...<tk<t

dXt1 ⊗ · · · ⊗ dXtk .

One can also show that X≤N is an element in WΩpT for every p ≥ 1 with N = bpc.

A geometric p-rough path X is a weakly geometric rough path X ∈ WΩpT for which there exists

a sequence of piecewise smooth paths (Xn) such that dp−var(X,X≤bpcn ) → 0 as n → ∞. The
space of geometric rough paths is denoted by ΩpT . It can be shown that the inclusion ΩpT ⊂ WΩpT
is strict and that ΩpT is a Polish space. From Lyons’ Extension theorem [LCL07, Theorem 3.7],
every geometric rough path X ∈ ΩpT has a unique lift X<∞ which is a path in G(V ), satisfying
‖π≤N (X<∞)‖p−var <∞ for every N ≥ 1 and π≤bpc(X<∞) = X. We call X<∞ the signature of the

rough path X and X≤N := π≤N (X<∞) its truncated signature.

Similarly, for V = R1+d, we define the space Ω̂pT as the closure of rough path lifts X̂≤bpc in the

p-variation distance where X̂t = (t,Xt) ∈ R1+d and X is piecewise smooth. It follows that Ω̂pT is
Polish.

Remark 2.2. Following the notation introduced above, the letter 1 corresponds to the running time

component t of the path X̂, whereas the components of X correspond to the letters 2, . . . , d+ 1,
respectively.
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Example 2.3 (Brownian motion as a rough path). Let X be a d-dimensional Brownian motion.
In this case a natural lift to a geometric rough path X ∈ ΩpT with p ∈ (2, 3) is given by

Xs,t =

(
1, Xs,t,

∫ t

s

Xs,u ⊗ ◦dXu

)
, 0 ≤ s ≤ t ≤ T

where Xs,t = Xt −Xs and for all i, j ∈ Ad the tensor valued Stratonovich integral is given by〈
ij,

∫ t

s

Xs,u ⊗ ◦dXu

〉
=

∫ t

s

Xi
s,u ◦ dXj

u =

∫ t

s

Xi
s,udX

j
u +

1

2
[Xi, Xj ]s,t.

Indeed, to see that X ∈ WΩpT , one may readily check that Xs,t ∈ G2(V ) is an immediate consequence
of the product rule and the rough path regularity of X follows from a generalized Kolmogorov
criterion (see [FH14, Theorem 3.1]). As it is well known that the integral with respect to the
piecewise linear approximation of Brownian motion converges to the Stratonovich integral a.s., we
also see that X ∈ ΩpT . The signature X<∞ of the enhanced Brownian motion X is then given by
the iterated integrals of all orders, i.e. for any word w = i1 · · · ik ∈ W(Ad) we have

〈i1 · · · ik,X<∞0,t 〉 =

∫
0<t1<...<tk<t

◦dXi1
t1 · · · ◦ dX

ik
tk
.

An explicit form of the expected signature is also known due to Fawcett [Faw02]

E(X<∞0,t ) = exp⊗

(
1

2
t

d∑
i=1

ei ⊗ ei

)
=

∞∑
n=0

1

n!

tn

2n

(
d∑
i=1

ei ⊗ ei

)⊗n
.

Note that this construction of a geometric rough path works in principle for all continuous semi-
martingales and we refer to [FV10, Section 14] for more detail.

Example 2.4 (Fractional Brownian motion). Let X be a one-dimensional fractional Brownian
motion with Hurst parameter H ∈ (0, 1), i.e. X is a zero mean Gaussian process with covariance
function

E(XsXt) =
1

2

(
|s|2H + |t|2H − |t− s|2H

)
, 0 ≤ s ≤ t.(2.4)

Recall that the sample paths of X are a.s. (H−ε)-Hölder continuous for any ε > 0. In case H = 1/2
X is just a standard Brownian motion, in case H 6= 1/2, however, X is not a Markov process and
not a semimartingale. However, since X is one-dimensional (V = R) there is a trivial lift to a
geometric rough path X ∈ ΩpT for any p ∈ (1/H, 1 + 1/H) given by

Xs,t =

(
1, Xs,t,

1

2
(Xs,t)

⊗2, ...,
1

bpc!
(Xs,t)

⊗bpc
)
≡ exp⊗bpc(Xs,t) ∈ Gbpc(V ), 0 ≤ s ≤ t ≤ T.

As we will see in the next section, we are particulary interested in the process X̂ defined by

X̂t = (t,Xt) ∈ R2. The first component of X̂ is of locally bounded variation and therefore it can be

lifted to a geometric rough path X̂ ∈ Ω̂pT (see [FV10, Theorem 9.26]). Intuitively speaking we can

make use of the abundant regularity of the first component X̂ in order to define iterated integrals
by imposing the integration by parts rule. More precisely in case p > 2 we have

〈12, X̂s,t〉 = 〈2, X̂s,t〉〈1, X̂s,t〉 − 〈21, X̂s,t〉 = Xs,t(t− s)−
∫ t

s

Xs,udu,
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and the right hand side is clearly well defined. Using the shuffle identity, this reasoning can be

carried on to express all components of the signature X̂<∞ in terms of increments of X, finite-
variation integrals and products thereof.

3. The space of stopped rough paths

We will now consider rough paths Z defined on some intervals [0, s] ⊂ [0, T ]. In order to naturally
model the notion of adaptedness to a filtration, we will consider functionals of the restriction of
a rough path Z to a subinterval of its domain. Hence, the analysis of the corresponding control
problem requires us to define a distance of rough paths with different domains. Following [KLPA20],
we will use a distance motivated by Dupire’s functional Itō calculus, see [Dup19, CF10]. This means,
when we compare a path Z1 defined on [0, s] and another path Z2 defined on [0, t] with s < t, we will
extend Z1 to [0, t] by Z1

u := Z1
s for s ≤ u ≤ t. We will, in principle, use the same construction for

rough paths, but recall that we are considering paths u 7→ (u,Xu) in our framework, and extending
the time component of such a path in a constant way does not make much sense. Instead, we will
apply Dupire’s extension to the X-component, but use the linear extension (i.e., the exact one) for
the time component.

More precisely, let Z|[0,s] ∈ Ω̂ps and s ≤ t. By definition, there exists a sequence Znu = (u,Xn
u ) where

Xn : [0, s] → Rd is a piecewise smooth path such that dp−var;[0,s](Z|[0,s],Zn;≤bpc) → 0 as n → ∞.

Set X̃n
u := Xn

u∧s for u ∈ [0, t] and Z̃nu := (u, X̃n
u ). One can check that Z̃n;≤bpc is a Cauchy sequence

in Ω̂pt , and we denote the limit by Z̃|[0,t]. One can also check that the definition of Z̃|[0,t] does not

depend on the choice of the sequence Xn. By construction we have that Z̃|[0,s] = Z|[0,s], which
motivates the following definition.

Definition 3.1. For T > 0, we set ΛT :=
⋃
t∈[0,T ] Ω̂pt and call it the space of stopped rough paths.

We equip it with the metric

d(X|[0,t],Y|[0,s]) := dp−var;[0,t](X|[0,t], Ỹ|[0,t]) + |t− s|

where we assume s ≤ t and Ỹ|[0,t] is the stopped rough path constructed as explained above.

Let us mention that ΛT is Polish. For this and related simple technical facts about the topology
of ΛT , we refer to the Appendix A. Later on we will use that 1{τ(ω)≤t} can be represented as a
measurable map of the restricted rough path.

Lemma 3.2. Let X̂ be a stochastic process in Ω̂pT and set Ft := σ(X̂0,s : 0 ≤ s ≤ t) = σ(X̂|[0,t]).
Let τ be a stopping time with respect to (Ft). Then there is a Borel measurable map θ : ΛT → {0, 1}
such that

θ(X̂(ω)|[0,t]) = 1{τ(ω)≤t}

for every ω ∈ Ω.

Proof. For every t ∈ [0, T ], {τ ≤ t} is σ(X̂|[0,t])-measurable, hence there is a set At ∈ B(Ω̂pt ) such

that (X̂|[0,t])−1(At) = {τ ≤ t}. It follows that

1{τ(ω)≤t} = 1At(X̂(ω)|[0,t])(3.1)
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for every ω ∈ Ω. Define φ : ΛT → [0, T ] × Ω̂pT as φ(X|[0,t]) = (t, X̃|[0,T ]) where X̃|[0,T ] denotes the
stopped process defined in Definition 3.1 . Note that φ is continuous, thus measurable. Define

f : [0, T ] × Ω̂pT → R as f(t, X̂) := 1At(X̂|[0,t]). For fixed t, X̂ → X̂|[0,t] is continuous and X̂|[0,t] 7→
1At(X̂|[0,t]) is measurable, therefore X̂ 7→ f(t, X̂) is measurable. For n ∈ N, define Ink := [k/2nT, (k+
1)/2nT ) for k = 0, . . . , 2n − 2, In2n−1 := [(2n − 1)/2nT, T ] and tnk := k/2nT . Set

fn(t, X̂) :=

2n−1∑
k=0

f(tnk , X̂)1Ink (t)

which is measurable for every n ∈ N. Set

f̃(t, X̂) := lim sup
m→∞

lim sup
n→∞

fn(t+ 1/m, X̂) and θ(X̂|[0,t]) := (f̃ ◦ φ)(X̂|[0,t]).

The map θ is thus measurable and satisfies

θ(X̂(ω)|[0,t]) = lim sup
m→∞

lim sup
n→∞

2n−1∑
k=0

1{τ(ω)≤tnk}1I
n
k

(t+ 1/m) = 1{τ(ω)≤t}. �

4. Randomized stopping times

In Lemma 3.2 we have seen that a stopping time can be represented by a stopping policy of the
form θ : ΛT → {0, 1}. In the next step, we reverse the order and define stopping times associated
to continuous stopping policies of the form θ : ΛT → R. Of course, for a given stopping time,
there is no reason why it should be representable by a continuous stopping policy. Indeed, relevant
stopping times – such as hitting times of even nice sets – are often discontinuous functions of the
underlying path. We will see, however, that stopping times, in particular the optimal stopping
times for our problem, can be approximated by stopping times induced by continuous policies, in
the sense that the corresponding value functions converge. Later, in Section 5 and Section 7 we will
see that this is also true when we restrict to the subclasses of continuous stopping policies given by
linear functionals respectively deep neural networks applied to the signature.

Let (Ω,F ,P) be a probability space. In this and the following sections, X̂ denotes a stochastic

process in Ω̂pT and Y : [0, T ]×Ω→ R is a real-valued continuous stochastic process adapted to the

filtration (Ft), Ft = σ(X̂0,s : 0 ≤ s ≤ t). Denote by S the space of all (Ft)-stopping times. We are
trying to solve the optimal stopping problem for Y , i.e., in a financial context Y corresponds to a
cash-flow process. For simplicity, we assume that X0 = 0.

We consider randomized stopping times, which relax proper stopping times and lead to much more
regular approximation problems. We note that similar techniques have been used in [BTW20] in
the context of numerical methods for American option pricing.

Definition 4.1. We set T := C(ΛT ,R) and call it the space of continuous stopping policies. Let Z

be a non-negative random variable independent of X̂ and such that P(Z = 0) = 0. For a continuous
stopping policy θ ∈ T , we define the randomized stopping time by

τ rθ := inf

{
t ≥ 0 :

∫ t∧T

0

θ(X̂|[0,s])2 ds ≥ Z

}
(4.1)

where inf ∅ = +∞.
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Next we prove that stopping times can be approximated by randomized stopping times based on
continuous stopping policies.

Proposition 4.2. For every stopping time τ ∈ S, there exists a sequence θn ∈ T such that
the randomized stopping times τ rθn satisfy τ rθn → τ almost surely as n → ∞. In particular, if
E[‖Y ‖∞] <∞, then

sup
θ∈T

E[Yτrθ∧T ] = sup
τ∈S

E[Yτ∧T ].

Proof. Let τ be a stopping time. From Lemma 3.2, we know that there is a measurable map
θ : ΛT → {0, 1} such that

θ(X̂|[0,t]) = 1{τ≤t}.

Using [Wís94, Theorem 1], we can find a sequence of continuous functions θ̃n ∈ T such that

θ̃n(X̂|[0,t])→ 1{τ≤t} almost surely w.r.t. λ|[0,T ] ⊗ P where λ|[0,T ] denotes the Lebesgue measure on

[0, T ]. W.l.o.g, we may assume that 0 ≤ θ̃n ≤ 1. Set θn := (2θ̃n)n. Then

lim
n→∞

θn(X̂|[0,t])→

{
+∞ if t ≥ τ
0 if t < τ.

It follows that τ rθn → τ almost surely as n → ∞. Using the dominated convergence theorem, this
implies that

sup
θ∈T

E[Yτrθ∧T ] ≥ sup
τ∈S

E[Yτ∧T ].

To show the converse inequality, take θ ∈ T . From independence,

E[Yτrθ∧T | X̂] =

∫ ∞
0

Yτz∧T PZ(dz)

where

τz := inf

{
t ≥ 0 :

∫ t∧T

0

θ(X̂|[0,s])2 ds ≥ z

}
.

Note that this is a stopping time for every z ≥ 0. Taking expectation, it follows that

E[Yτrθ∧T ] =

∫ ∞
0

E[Yτz∧T ]PZ(dz) ≤ sup
τ∈S

E[Yτ∧T ]

which implies the claim. �

Note that we cannot generally assume that θn → θ implies τ rθn → τ rθ , as is shown by the following
counter-example. So even randomized stopping times are not continuous w.r.t. the underlying
stopping policies.

Example 4.3. Consider ϑ, ϑn : [0, 3]→ [0,∞) defined by

ϑ(t) =


1− t if t ∈ [0, 1]

0 if t ∈ [1, 2]

t− 2 if t ∈ [2, 3]

and ϑn(t) =


(1− 1

n )(1− t) if t ∈ [0, 1]

0 if t ∈ [1, 2]

t− 2 if t ∈ [2, 3].
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Although ϑn → ϑ as n→∞, we have

inf

{
t ≥ 0 :

∫ t∧3

0

ϑ(s) ds ≥ 1

2

}
= 1 and inf

{
t ≥ 0 :

∫ t∧3

0

ϑn(s) ds ≥ 1

2

}
> 2

for all n ≥ 1.

As mentioned above, randomized stopping times regularize the optimal stopping problem. Indeed,
given a randomized stopping time τ rθ defined in terms of an independent random variable Z as in
Definition 4.1, if we integrate the stopped process Yτrθ∧T w.r.t. Z, we obtain a smooth function of
θ – which is clearly not true without regularization, see Remark 4.5 below.

Proposition 4.4. Let S be an (Ft)-stopping time and let FZ denote the cumulative distribution
function of Z. Then

E[Yτrθ∧S | X̂] =

∫ S

0

Yt dF̃ (t) + YS(1− F̃ (S)) =

∫ S

0

(1− F̃ (t)) dYt + Y0

where the second integral is implicitly defined by integration by parts and

F̃ (t) := FZ

(∫ t

0

θ(X̂|[0,s])2 ds
)
.

In particular, if Z has a density %,

E[Yτrθ∧S ] = E

[∫ S

0

Ytθ(X̂|[0,t])2%
(∫ t

0

θ(X̂|[0,s])2 ds
)
dt+ YS(1− F̃ (S))

]
.

Proof. Recall that τ rθ ∈ [0, T ] ∪ {∞}. For t ∈ [0,∞), we have

P(τ rθ ≤ t | X̂) = P

(∫ t∧T

0

θ(X̂|[0,s])2 ds ≥ Z | X̂

)
= FZ

(∫ t∧T

0

θ(X̂|[0,s])2 ds

)
= F̃ (t)

and

P(τ rθ =∞| X̂) = P

(∫ T

0

θ(X̂|[0,s])2 ds < Z | X̂

)
= 1− F̃ (T ).

It follows that for f : [0,∞]→ R integrable,

E[f(τ rθ ) | X̂] =

∫ T

0

f(t) dF̃ (t) + f(∞)(1− F̃ (T ))

and therefore

E[Yτrθ∧S | X̂] =

∫ T

0

Yt∧S dF̃ (t) + YS(1− F̃ (T )) =

∫ S

0

Yt dF̃ (t) + YS(1− F̃ (S)).

�

Remark 4.5. In the deterministic case Z = z > 0 almost surely, we have

F̃ (t) = 1[z,∞)

(∫ t

0

θ(X̂|[0,s])2 ds
)
,
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thus

E[Yτrθ∧T ] = E

[∫ T

0

1[0,z)

(∫ t

0

θ(X̂|[0,s])2 ds
)
dYt

]
+ E[Y0].

5. Linear signature stopping policies

Using the regularization by randomization we will prove that it is enough to use stopping policies
that are linear functionals of the signature.

Definition 5.1. The space of linear signature stopping policies Tsig ⊂ T is defined as

Tsig =
{
θ ∈ T : ∃l ∈ T ((R1+d)∗) such that θ(X̂|[0,t]) = 〈l, X̂<∞0,t 〉 ∀X̂|[0,t] ∈ ΛT

}
.

Note that every l ∈ T ((R1+d)∗) defines a θl ∈ T by setting θl(X̂|[0,t]) := 〈l, X̂<∞0,t 〉. Let Z be as in
Definition 4.1, then we introduce the following notation for randomized stopping times associated
to linear signature stopping policies

τ rl := τ rθl = inf

{
t ≥ 0 :

∫ t∧T

0

〈l, X̂<∞0,s 〉2 ds ≥ Z

}
.(5.1)

As a consequence of the Stone-Weierstrass theorem, Tsig is dense in T . More precisely, we have

Lemma 5.2. Let P be a probability measure on (Ω̂pT ,B(Ω̂pT )). Then, for every ε > 0, there is a

compact set K ⊂ Ω̂pT such that

(1) P(K) > 1− ε,

(2) Tsig, restricted of K, is dense in T . More precisely, for every θ ∈ T there is a sequence
θn ∈ Tsig such that

sup
X̂∈K; t∈[0,T ]

|θn(X̂|[0,t])− θ(X̂|[0,t])| → 0

as n→∞.

Proof. [KLPA20, Lemma B.3]. �

The main result of this section is the following

Proposition 5.3. Assume that Z has a continuous density % and that E[‖Y ‖∞] <∞. Then

sup
θ∈T

E[Yτrθ∧T ] = sup
θ∈Tsig

E[Yτrθ∧T ].

It follows that

sup
θ∈T

E[Yτrθ∧T ] = sup
l∈T ((R1+d)∗)

E[Yτrl ∧T ].
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Proof. It is enough to show that supθ∈T E[Yτrθ∧T ] ≤ supθ∈Tsig E[Yτrθ∧T ]. Let θ ∈ T . From Lemma

5.2, we know that for every ε > 0, there is a compact set K ⊂ Ω̂pT such that for A := {X̂ ∈ K}, we
have P(A) ≥ 1− ε, and a sequence θn ∈ Tsig such that

lim
n→∞

sup
X∈K;t∈[0,T ]

|θn(X|[0,t])− θ(X|[0,t])| = 0.(5.2)

Let K be such a compact set, the precise choice will be made later. Set

F̃n(t) = FZ

(∫ t

0

θn(X̂|[0,s])2 ds
)

and F̃ (t) = FZ

(∫ t

0

θ(X̂|[0,s])2 ds
)
.

Then,

|E[YT (1− F̃n(T )) ; A]− E[YT (1− F̃ (T )) ; A]|

≤ E[|YT ||F̃n(T )− F̃ (T )| ; A]

≤ E[|YT |] sup
X∈K

∣∣∣∣∣FZ
(∫ T

0

θn(X|[0,s])2 ds

)
− FZ

(∫ T

0

θ(X|[0,s])2 ds

)∣∣∣∣∣ .
Since FZ is continuous and uniformly continuous on compact sets,

sup
X∈K

∣∣∣∣∣FZ
(∫ T

0

θn(X|[0,s])2 ds

)
− FZ

(∫ T

0

θ(X|[0,s])2 ds

)∣∣∣∣∣→ 0

as n→∞. Indeed: we first show that

sup
X∈K;t∈[0,T ]

|θn(X|[0,t])2 − θ(X|[0,t])2| → 0(5.3)

as n→∞. Since supn≥1 supX∈K;t∈[0,T ] |θn(X|[0,t])| <∞, the functions θ and θn take their values in

a compact set, hence (5.3) follows from (5.2). Property (5.2) also implies that

sup
X∈K

∣∣∣∣∣
∫ T

0

θn(X|[0,s])2 ds−
∫ T

0

θ(X|[0,s])2 ds

∣∣∣∣∣→ 0

as n → ∞. Using continuity of FZ and uniform continuity on compact sets implies the claim. It
follows that

lim
n→∞

|E[YT (1− F̃n(T )) ; A]− E[YT (1− F̃ (T )) ; A]| = 0.

Since |F̃n(T )− F̃ (T )| ≤ 2,

|E[YT (1− F̃n(T )) ; Ac]− E[YT (1− F̃ (T )) ; Ac]| ≤ 2E[|YT | ; Ac]

and this quantity can me made arbitrarily small by the choice of K.

With the same arguments, we can show that∣∣∣∣∣E
[∫ T

0

Yt

(
θn(X̂|[0,t])2%

(∫ t

0

θn(X̂|[0,s])2 ds
)
− θ(X̂|[0,t])2%

(∫ t

0

θ(X̂|[0,s])2 ds
))

dt

]∣∣∣∣∣
→ 0

as n→∞ which implies the claim. �
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Finally, we note that we do not need randomization for the approximation by stopping times based
on signature stopping policies to work.

Definition 5.4. For l ∈ T ((R1+d)∗) define the hitting time of the signature against the half-plane
orthogonal to l by

τl := inf
{
t ∈ [0, T ] : 〈l, X̂<∞0,t 〉 ≥ 1

}
.

Proposition 5.5. Given E[‖Y ‖∞] <∞, we have

sup
l∈T ((R1+d)∗)

E[Yτl∧T ] = sup
τ∈S

E[Yτ∧T ].

Proof. Using Proposition 4.2 and 5.3, it suffices to show that

sup
l∈T ((R1+d)∗)

E[Yτrl ∧T ] ≤ sup
l∈T ((R1+d)∗)

E[Yτl∧T ].

Choose l ∈ T ((R1+d)∗). Then

E[Yτrl ∧T | X̂] =

∫ ∞
0

Yτz∧T PZ(dz)

where

τz := inf

{
t ≥ 0 :

∫ t∧T

0

〈l, X̂<∞0,s 〉2 ds ≥ z

}
= inf

{
t ∈ [0, T ] : 〈(l� l)1/z, X̂<∞0,t 〉 ≥ 1

}
which is a signature hitting time for every z > 0 in the sense of the above definition. Taking
expectation, we obtain

E[Yτrl ∧T ] =

∫ ∞
0

E[Yτz∧T ]PZ(dz) ≤ sup
`∈T ((Rd)∗)

E[Yτ`∧T ]

as claimed. �

Remark 5.6. In the case of X being a standard Markov process in Rd and Yt = G(t,Xt) for a
continuous function G, it is known that

sup
τ∈S

E[Yτ∧T ] = sup
τ∈D

E[Yτ∧T ]

where D denotes the set of all hitting times of closed sets in R1+d of the process t 7→ (t,Xt)
[Shi08, Corollary 3 on p. 129]. Our Theorem can be seen as an extension of this classical result to
non-Markovian processes.

6. Linearization of the optimal stopping problem

In this section, we will study randomized signature stopping times associated to linear stopping
policies in Tsig and a exponentially distributed random variable Z ∼ Exp(1). From Proposition 4.4
we have
(6.1)

sup
τ∈S

E[Yτ∧T ] = sup
l∈T ((R1+d)∗)

E[Yτrl ∧T ] = sup
l∈T ((R1+d)∗)

E

[∫ T

0

exp

(
−
∫ t

0

〈l, X̂<∞0,s 〉2 ds
)
dYt

]
+ E[Y0].
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Recall that for group-like elements a ∈ G(V ) as defined in (2.2), polynomials of linear functionals
in a can be expressed in terms of shuffle products of the linear functionals themselves, see (2.3).
Consider the main term on the right-hand side of (6.1):

• The innermost term 〈l, X̂<∞0,s 〉2 is a polynomial of a linear functional of the signature. It can,

therefore, be expressed as a linear functional of the signature, more precisely, 〈l, X̂<∞0,s 〉2 =

〈l� l, X̂<∞0,s 〉.

• Given an element of the signature, integrating against a component of the underlying path
produces another element of the signature. Concretely,∫ t

0

〈l, X̂<∞0,s 〉2ds = 〈(l� l)1, X̂<∞0,t 〉,

recalling that the time-component of our driving path X̂t = (t,Xt) was associated with the
letter 1, see Remark 2.2.

• Next we need to apply the exponential function to 〈(l � l)1, X̂<∞0,t 〉. Unfortunately, the
exponential function is not a polynomial, so we cannot directly apply the shuffle product.
However, as we shall see below, there is a corresponding exponential shuffle, which comes
with certain restrictions. Nonetheless, we shall see that we will still obtain a linear functional
of the signature for our purposes.

• Finally, we integrate against Y and take the expectation. If Y can itself be represented as
a linear functional of the signature, integrating another linear functional of the signature
against Y will result in yet another linear functional of the signature. In this case, we can
finally interchange the expectation, and the right-hand side of (6.1) can be represented as

a sup over a linear functional of the expected signature E[X̂<∞0,T ] of X̂.

In the remainder of this section, we will follow through with this program.

We start with a definition of an exponential function based on the shuffle product.

Definition 6.1. For l ∈ T (V ∗) with l = a0∅ + l̃ and 〈l̃,1〉 = 0 we define the exponential shuffle

(6.2) exp�(l) := exp(a0) exp�(l̃), where exp�(l̃) :=

∞∑
r=0

1

r!
l̃�r.

Since obviously π≤N (l̃�r) = 0 for r > N, the infinite sum is well defined as an element in the

extended tensor algebra T ((V ∗)). One may easily check that exp�(l̃1 + l̃2) = exp�(l̃1) exp�(l̃2) for

l̃1, l̃2 ∈ T (V ∗) such that 〈l̃1,1〉 = 〈l̃2,1〉 = 0. Thus, in particular, one has

exp�(l1 + l2) = exp�(l1) exp�(l2) for all l1, l2 ∈ T (V ∗).(6.3)

Note also that

exp�(l) =

∞∑
r=0

1

r!
l�r

for every l ∈ T (V ∗).
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We can now prove that the exponential shuffle linearizes the exponential function for group-like
elements. In this context, keep in mind that exp�(l) /∈ T (V ∗) and, hence, it is not a well-defined
linear functional on T ((V )). It is, however, trivially well-defined as a linear functional on T (V ),
and, hence, can be applied to any projection π≤N (v), v ∈ T ((V )). In addition, as the lemma shows,
we can apply exp�(l) to group-like elements.

Lemma 6.2. Let l ∈ T (V ∗) and g ∈ G(V ). One then has

|exp(〈l,g〉)− 〈exp�(l), π≤N (g)〉| ≤ 4 exp(〈l, 1〉)
(
|l||π≤deg(l)(g)|

)bN/ deg(l)c+1

(bN/deg(l)c+ 1)!

for N > 2 deg(l)|l||π≤deg(l)(g)|.

Proof. Let us write l = a0∅ + l̃ with 〈l̃,1〉 = 0, where for mutually different words w1, ..., wn,

l̃ = λ1w1 + ...+ λnwn, and set M := deg(l) = max
1≤i≤n

deg(wi), m := min
1≤i≤n

deg(wi) ≥ 1.

We then have

π≤N

(
exp�(l̃)

)
=

bN/Mc∑
r=0

l̃�r

r!
+ πN

 bN/mc∑
r=bN/ deg(l)c+1

l̃�r

r!

 ∈ TN (V ∗) for any N ≥ 1.

Hence,

〈π≤N (exp�(l)) ,g〉 = exp(a0)

bN/Mc∑
r=0

〈l̃,g〉r

r!
+ exp(a0)

bN/mc∑
r=bN/Mc+1

1

r!
〈πN

(
l̃�r
)
,g〉

=: exp(a0)

bN/Mc∑
r=0

〈l̃,g〉r

r!
+R

(1)
N ,

and since g ∈ G(V ) it holds that

〈π≤N
(
l̃�r
)
,g〉 =

n∑
i1,...,ir=1

deg(wi1 )+...+deg(wir )≤N

λi1 ...λir 〈wi1 � ...� wir ,g〉

=

n∑
i1,...,ir=1

deg(wi1 )+...+deg(wir )≤N

〈λi1wi1 ,g〉 ... 〈λirwir ,g〉 .

Hence we have∣∣∣〈π≤N (l̃�r) ,g〉∣∣∣ ≤ n∑
i1,...,ir=1

|〈λi1wi1 ,g〉| ... |〈λirwir ,g〉| =

(
n∑
i=1

|〈λiwi,g〉|

)r
≤ |l̃|r

∣∣π≤deg(l)(g)
∣∣r , and so

∣∣∣R(1)
N

∣∣∣ ≤ exp(a0)

∞∑
r=bN/Mc+1

|l̃|r
∣∣π≤deg(l)(g)

∣∣r
r!

≤ 2 exp(a0)

(
|l̃||π≤deg(l)(g)|

)bN/Mc+1

(bN/Mc+ 1)!
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for N > Nl,g := 2M ||l̃|π≤deg(l)(g)|. One further has (note that g0 = 1), due to a similar estimation,

exp(〈l,g〉) = exp(a0) exp(〈l̃,g〉) = exp(a0)

bN/Mc∑
r=0

〈l̃,g〉r

r!
+R

(2)
N with

∣∣∣R(2)
N

∣∣∣ ≤ 2 exp(a0)

∣∣∣〈l̃,g〉∣∣∣bN/Mc+1

(bN/Mc+ 1)!
≤ 2 exp(a0)

(∣∣∣l̃∣∣∣ |π≤deg(l)(g)|
)bN/Mc+1

(bN/Mc+ 1)!

for N > Nl,g. Finally, by noting that 〈π≤N (exp�(l)) ,g〉 = 〈exp�(l), π≤N (g)〉 , and then taking all
together we obtain the stated result. �

Remark 6.3. The equation 〈exp�(l),g〉 = exp(〈l,g〉) is confusing at first glance, because g 7→
〈exp�(l),g〉 seems linear, whereas g 7→ exp(〈l,g〉) clearly is not. Note, however, that exp�(l) ∈
T ((V ∗)) and, hence, does not define a linear map on T ((V )). Indeed, the group G(V ) is not closed
under linear combination, and, hence, Lemma 6.2 does simply not apply to a linear combination of
elements g1,g2 ∈ G(V ).

The exponential shuffle satisfies a differential equation, which we shall use later. Note that terms

of the form 〈exp�(l1), X̂≤N0,t 〉 are (classically) differentiable in t.

Lemma 6.4. For every polynomial l = λ1w1 + . . .+ λnwn ∈ T ((R1+d)∗),

d

dt
〈exp�(l1), X̂≤N0,t 〉 =

n∑
i=1

〈λiwi, X̂<∞0,t 〉〈exp�(l1), X̂≤N−deg(wi)−10,t 〉.

Proof. Note that

d

dt
〈w1, X̂<∞0,t 〉 =

d

dt

∫ t

0

〈w, X̂<∞0,s 〉 ds = 〈w, X̂<∞0,t 〉

for every word w. Hence, for l = λ1w1 + . . .+ λnwn, one always has 〈l1,1〉 = 0 and so by (6.2),

d

dt
〈exp�(l1), X̂≤N0,t 〉

=
d

dt

∑
0≤k1 deg(w11)+...+kn deg(wn1)≤N

〈λ1w11, X̂<∞0,t 〉k1

k1!
· · ·
〈λnwn1, X̂<∞0,t 〉kn

kn!

=
∑

0≤k1 deg(w11)+...+kn deg(wn1)≤N

〈λ1w1, X̂<∞0,t 〉
〈λ1w11, X̂<∞0,t 〉k1−1

(k1 − 1)!

〈λ2w21, X̂<∞0,t 〉k2

k2!
· · ·
〈λnwn1, X̂<∞0,t 〉kn

kn!

+ . . .+ 〈λnwn, X̂<∞0,t 〉
〈λ1w11, X̂<∞0,t 〉k1

k1!
· · ·
〈λn−1wn−11, X̂<∞0,t 〉kn−1

kn−1!

〈λnwn1, X̂<∞0,t 〉kn−1

(kn − 1)!
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and ∑
0≤k1 deg(w11)+...+kn deg(wn1)≤N

〈λ1w11, X̂<∞0,t 〉k1−1

(k1 − 1)!

〈λ2w21, X̂<∞0,t 〉k2

k2!
· · ·
〈λnwn1, X̂<∞0,t 〉kn

kn!

=
∑

0≤(k1+1) deg(w11)+...+kn deg(wn1)≤N

〈λ1w11, X̂<∞0,t 〉k1

k1!

〈λ2w21, X̂<∞0,t 〉k2

k2!
· · ·
〈λnwn1, X̂<∞0,t 〉kn

kn!

= 〈exp�(l1), X̂≤N−deg(w11)
0,t 〉. �

We are now ready to formulate the main result of this section. Consider the optimization prob-
lem (6.1), which we modify by expressing the exponential by the exponential shuffle. Then we
obtain convergence to the value of the optimal stopping problem. The proof requires us to lo-
calize w.r.t. the rough path metric. Other than that, the below formulation is now essentially
implementable: In particular, the result is formulated in terms of truncated signatures, which is
necessary also from a numerical point of view.

Proposition 6.5. For given κ > 0, we define the stopping time

S = Sκ = inf{t ≥ 0 : ‖X̂‖p−var;[0,t] ≥ κ} ∧ T.

Assume Z ∼ Exp(1) and E [‖Y ‖∞] <∞. Then

sup
l∈T ((R1+d)∗)

E[Yτrl ∧T ] = lim
κ→∞

lim
K→∞

lim
N→∞

sup
|l|+deg(l)≤K

E

[∫ Sκ

0

〈exp�(−(l� l)1), X̂≤N0,t 〉 dYt

]
+ E[Y0]

(6.4)

where the first two limit signs may be interchanged.

Proof. To ease notation, assume that Y0 = 0. Since

|Yτl∧T − Yτl∧S | ≤ sup
|t−s|≤T−S

|Yt − Ys| → 0

for every l as κ→∞ and

lim
K→∞

sup
|l|+deg(l)≤K

E[Yτl∧Ŝ ] = sup
l∈T ((R1+d)∗)

E[Yτl∧Ŝ ],

with Ŝ being either S or T , it follows that

sup
l∈T ((R1+d)∗)

E[Yτl∧T ] = lim
κ→∞

lim
K→∞

sup
|l|+deg(l)≤K

E[Yτl∧S ] = lim
K→∞

lim
κ→∞

sup
|l|+deg(l)≤K

E[Yτl∧S ].(6.5)

Now fix κ, K and l with |l|+ deg(l) ≤ K. Recall the estimate∣∣∣∣∣
∫ T

0

f(s) dg(s)

∣∣∣∣∣ ≤ T‖f ′‖∞‖g‖∞ + |f(T )g(T )− f(0)g(0)|.

Note that

exp

(
−
∫ t

0

〈l, X̂<∞0,s 〉2 ds
)

= exp(−〈(l� l)1, X̂<∞0,t 〉).
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Fix N . Then∣∣∣∣∣E
[∫ S

0

exp(−〈(l� l)1, X̂<∞0,t 〉) dYt

]
− E

[∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉 dYt

]∣∣∣∣∣
≤ (1 + T )E

[
‖Y ‖∞‖ exp(−〈(l� l)1, X̂<∞0,· 〉)− 〈exp�(−(l� l)1), X̂≤N0,· 〉‖C1[0,S]

]
.

Using Lemma 6.2,

‖ exp(−〈(l� l)1, X̂<∞0,· 〉)− 〈exp�(−(l� l)1), X̂≤N0,· 〉‖∞;[0,S] ≤ 4 sup
t∈[0,S]

(|(l� l)1||X̂≤2 deg(l)+1
0,t |)M

M !
.

where M = bN/(2 deg(l) + 1)c+ 1 provided N is sufficiently large. Clearly, |(l� l)1| ≤ CK . Using
Lyons’ Extension theorem [LCL07, Theorem 3.7], we can estimate

sup
t∈[0,S]

|X̂≤2 deg(l)+1
0,t | ≤ ‖X̂≤2 deg(l)+1‖p−var;[0,S] ≤ C(1 + ‖X̂‖p−var;[0,S])2K+1 = C(1 + κ)2K+1.

Therefore, we obtain an estimate of the form

‖ exp(−〈(l� l)1, X̂<∞0,· 〉)− 〈exp�(−(l� l)1), X̂≤N0,· 〉‖∞;[0,S] ≤
CM

M !

for a deterministic constant C.

Next, we consider the derivatives. Set l̃ = −(l� l) and assume l̃ = λ1w1 + . . .+ λkwk. Clearly,

d

dt
exp(〈l̃1, X̂<∞0,t 〉) = 〈l̃, X̂<∞0,t 〉 exp(〈l̃1, X̂<∞0,t 〉)

and Lemma 6.4 shows that

d

dt
〈exp�(l̃1), X̂≤N0,t 〉 =

k∑
i=1

〈λiwi, X̂<∞0,t 〉〈exp�(l̃1), X̂≤N−deg(wi)−10,t 〉.

Thus for t ∈ [0, S],∣∣∣∣ ddt (exp(〈l̃1, X̂<∞0,t 〉)− 〈exp�(l̃1), X̂≤N0,t 〉
)∣∣∣∣

≤
k∑
i=1

|〈λiwi, X̂<∞0,t 〉|
∣∣∣exp(〈l̃1, X̂<∞0,t 〉)− 〈exp�(l̃1), X̂≤N−deg(wi)−10,t 〉

∣∣∣ .
Using Lyons’ Extension theorem,

|〈λiwi, X̂<∞0,t 〉| ≤ C|λi|‖X̂‖
deg(wi)
p−var;[0,S] ≤ C|λi|

for a deterministic constant C > 0. Lemma 6.2 implies that for N sufficiently large,∣∣∣exp(〈l̃1, X̂<∞0,t 〉)− 〈exp�(l̃1), X̂≤N−deg(wi)−10,t 〉
∣∣∣ ≤ CM

M !

for a deterministic constant C > 0 and M →∞ as N →∞. It follows that also∥∥∥∥ ddt (exp(−〈(l� l)1, X̂<∞0,t 〉)− 〈exp�(−(l� l)1), X̂≤N0,t 〉
)∥∥∥∥
∞;[0,S]

≤ CM

M !
.
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This implies that

sup
|l|+deg(l)≤K

∣∣∣∣∣E
[∫ S

0

exp(−〈(l� l)1, X̂<∞0,t 〉) dYt

]
− E

[∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉 dYt

]∣∣∣∣∣→ 0

as N →∞ and, in particular,

lim
N→∞

sup
|l|+deg(l)≤K

E

[∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉 dYt

]

= sup
|l|+deg(l)≤K

E

[∫ S

0

exp(−〈(l� l)1, X̂<∞0,t 〉) dYt

]
= sup
|l|+deg(l)≤K

E[Yτrl ∧S ].

Together with (6.5), this proves (6.4). �

Often, one is interested to solve the stopping problem for specific functionals of the underlying
process X. In the next corollary, we consider a particular example. To simplify the exposition, we
will consider the case d = 1 only. The generalization to arbitrary dimensions d is straightforward.

Corollary 6.6. Assume d = 1 and that

Yt = G(Xt) +

∫ t

0

L(Xs) ds

for polynomials G and L. Then

sup
l∈T ((R1+d)∗)

E[Yτrl ∧T ]

= lim
κ→∞

lim
K→∞

lim
N→∞

sup
|l|+deg(l)≤K

〈(exp�(−(l� l)1)�G
′
�(2))2 + (exp�(−(l� l)1)� L�(2))1,E[X̂≤N0,S ]〉

+ E[Y0].

In particular, if d = 1 and X0 = 0,

sup
l∈T ((R2)∗)

E[Xτrl ∧T ] = lim
κ→∞

lim
K→∞

lim
N→∞

sup
|l|+deg(l)≤K

〈exp�(−(l� l)1)2,E[X̂≤N0,S ]〉.(6.6)

Proof. We have∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉 dYt =

∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉G′(Xt) dXt

+

∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉L(Xt) dt.
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Since G′ is a polynomial,∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉G′(Xt) dXt =

∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉〈G
′
�(2), X̂<∞0,t 〉 dXt

=

∫ S

0

〈π≤N (exp�(−(l� l)1))�G
′
�(2), X̂<∞0,t 〉 dXt

=

∫ S

0

〈π≤N+deg(G′)(exp�(−(l� l)1)�G
′
�(2)), X̂<∞0,t 〉 dXt

= 〈(exp�(−(l� l)1)�G
′
�(2))2, X̂≤N+deg(G′)+1

0,S 〉.
Similarly, since V is a polynomial,∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉L(Xt) dt = 〈(exp�(−(l� l)1)� L�(2))1, X̂≤N+deg(V )+1
0,S 〉.

Taking expectation, we obtain

E

[∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉 dYt

]
= 〈(exp�(−(l� l)1)�G

′
�(2))2,E[X̂≤N+deg(G′)+1

0,S ]〉

+ 〈(exp�(−(l� l)1)� L�(2))1,E[X̂≤N+deg(V )+1
0,S ]〉.

Using Theorem 6.5, we can deduce the result. �

Remark 6.7. Once a Monte Carlo simulation of the expected signature of the rough path is gener-
ated, the optimization problems corresponding to the suprema in Corollary 6.6 are purely determin-
istic. Indeed, the objective function that needs to be maximized is a polynomial in the coefficients
of the word l. In Section C.3 we discuss the implementation details for this step.

Remark 6.8. When the payoff process Y is a martingale then it follows from Doob’s optional
sampling theorem that optimal stopping value is zero. It is instructive to demonstrate how this
fact can be observed in the form of the optional stopping problem in Corollary 6.6. When Y is a
continuous martingale then it also admits a lift to a geometric rough path and therefore we may
assume that X = Y . Now let w be an arbitrary word, then it holds

〈w12, X̂<∞0,t 〉 =

∫ t

0

(∫ s

0

〈w, X̂<∞0,u 〉du
)
◦ dXs =

∫ t

0

(∫ s

0

〈w, X̂<∞0,u 〉du
)
dXs,

where we have used that the Stratonovich-Itō correction is zero due to the finite variation of the
integrand. By the martingale property of the integral in the above right hand side it follows that

〈w12,E[X̂≤N0,S ]〉 = 0 for all N ≥ 1. Therefore, we see that all terms in the supremum in the right

hand side of (6.6) vanish.

Remark 6.9. Note that similar formulas are available whenever Y is roughly given as a polynomial
of the signature. We restrict ourselves to a representative class of examples below. We note here
that payoffs of American options usually cannot be exactly represented in such a way. In particular,
for the standard American (put) option, we have Yt = (K−Xt)+ for some K > 0, where X denotes
the underlying asset price process. If we want to price American options using signature stopping
policies, we have two possible remedies. We can approximate the payoff function by polynomials,
which would allow us to directly apply Corollary 6.6. Alternatively, we can attach Y to the path
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X, i.e., consider X̃t ≡ (t,Xt, Yt). Then, the corollary applies trivially, but at the price of increasing
the dimension of the state space. The same strategy also works for more complicated functionals

of the rough path X̂. For instance, Y can be of the form Yt = g(t, Ỹt) where Ỹ solves a rough
differential equation

dỸt = b(Ỹt) dt+ σ(Ỹt) dXt.

If g is sufficiently smooth, Y is controlled by X (cf. [FH14]) which guarantees that X̃t ≡ (t,Xt, Yt)
can be lifted to a rough paths valued process.

7. Deep signature stopping policies

In the two preceding sections we focused on stopping policies θ that are linear functionals of the
signature. Proposition 5.3 shows that this class of policies is sufficient to approximate a optimal
stopping policy. Regarding numerical approximation and in order to obtain reasonable results it
might however be necessary to step deeply into the signature, that is to approximate the signature
upto a high truncation level. In this section we propose a different model for the stopping policy,
in which the signature serves as an input feature to a deep neural network. Proposition 4.4 from
above is the key link for defining a smooth loss-function for these models, which will be discussed in
more detail in Section C.4. In this framework, the shuffle property of the signature is not directly
needed and therefore it is reasonable to replace the signature by the log-signature, which allows for
a low dimensional representation as explained below.

We will again assume throughout the section that X ∈ ΩpT and that Y = (Yt)0≤t≤T is a real-valued
continuous process adapted to the filtration generated by X.

Definition 7.1 (Log-signature). We define the log-signature L<∞ : [0, T ]→ T ((V )) by

L<∞t = log⊗(X<∞t ), 0 ≤ t ≤ T,

where log⊗ is the tensor logarithm defined by

log⊗(1 + a) =

∞∑
k=0

(−1)k+1

k
a⊗k ∈ T ((V )), a ∈ T ((V )), 〈∅,a〉 = 0.

We will also write L̂<∞ = log⊗(X̂<∞) for the log-signature of the time-augmented path X̂. Recall
that the signature is an element of the group G(V ). Therefore, the log-signature takes values in
the set

g(V ) := log⊗(G(V )) =
{

log⊗(g) | g ∈ G(V )
}
⊂ T ((V )),

which forms a Lie-algebra with the bracket given by the commutator

[a,b] = a⊗ b− b⊗ a.

In fact, g(V ) is the free Lie-algebra over V (see e.g. [FV10, Section 7.3]) and therefore the log-
signature can be expressed in terms of iterated Lie brackets of the basis elements {e1, · · · , ed}, i.e.
there exists explicit coefficients (λi1,...,in(t)) such that

L<∞0,t =

∞∑
n=1

d∑
i1,...,in=1

λi1,...,in(t)[ei1 , [ei2 , [. . . , [ein−1 , ein ] . . . ]].
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d = 1 d = 2 d = 3 d = 4

σd,N ηd,N σd,N ηd,N σd,N ηd,N σd,N ηd,N
N = 1 1 1 2 2 3 3 4 4

N = 2 2 1 6 3 12 6 20 10

N = 3 3 1 14 5 39 14 84 30

N = 4 4 1 30 8 120 32 340 90

N = 5 5 1 62 14 363 80 1364 294

N = 6 6 1 126 23 1092 196 5460 964

Table 1. Comparisons of the dimensionality of the representations of the trun-
cated signature σd,N and truncated log-signature ηd,N . (Values taken from [Rei17].)

This result already goes back to [Che57]. However, the above representation is not very efficient,
due to linear dependencies (e.g. [e1, e2] = −[e2, e1]). An efficient basis is given by the Lyndon basis
or more generally by a Hall basis. We refer to [Reu93] for a construction of such a basis. Define

gN (V ) = π≤N (g(V )) = log⊗(GN (V )),

the free step-N nilpotent Lie-algebra, then we have the following

Proposition 7.2. For N ∈ {1, 2, . . . } the dimension of gN (Rd) as a linear vector space is given by

ηd,N :=

N∑
n=1

1

n

∑
k|n

µ(n/k)dk,(7.1)

where the inner sum is taken over all divisors k of n and µ is the Möbius function.

Proof. The statement directly follows from the existence of a Hall basis of the free Lie-algebra and
its dimensionality, which can be found in [Reu93, Theorem 6]. �

Note that dimension of the truncated tensor algebra TN (Rd) is given by (dN+1 − 1)/(d− 1). Since
the truncated signature always starts with 1, its representation in the linear space is effectively of
dimension σd,N = (dN+1−d)/(d−1). In Table 1 we compare the values σd,N and ηd,N for different
values of d and N . While both values have the same asymptotic growth when N →∞, the efficient
representation of the log-signature allows for numerical tractability up to higher truncations levels
N . Finally note that the Baker-Campbell-Hausdorff formula, and therefore the log-signature of a
piecewise linear path, can be directly calculated in a Hall basis. For an algorithm see for instance
[CM08] and the summarizing note [Rei17].

We are now ready to present our class of deep signature stopping policies.

Definition 7.3. Define Tlog ⊂ T to be the set of continuous stopping policies θ : ΛT → R of the
form

θ(X̂|[0,t]) =
(
θlog ◦ log⊗

)
(X̂≤N0,t ),

for some N ∈ {1, 2, . . . } and where θlog : gN (Rd+1)→ R is a deep neural network of the form

θlog = A0 ◦ ϕ ◦A1 ◦ ϕ ◦ · · · ◦AI ,(7.2)
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where AI : gN (Rd+1) → Rq, Ai : Rq → Rq, 1 ≤ i < I, A0 : Rq → R, are affine maps for
some q, I ∈ {1, 2, . . . } and ϕ is an activation function, i.e. continuous and not a polynomial (e.g.
ϕ(x)i = max{xi, 0} for 1 ≤ i ≤ q and x ∈ Rq).

The following proposition, which is a consequence of Proposition 4.2, Proposition 5.3 and the
universal approximation theorem for neural networks, states that the optimization over stopping
policies in the class Tlog is sufficient.

Proposition 7.4. Given E[‖Y ‖∞] <∞, we have

sup
θ∈Tlog

E[Yτrθ∧T ] = sup
τ∈S

E[Yτ∧T ].

Proof. Since Tlog ⊂ T it follows from Proposition 4.2 and 5.3 that it suffices to show that

sup
θ∈Tsig

E[Yτrθ∧T ] ≤ sup
θ∈Tlog

E[Yτrθ∧T ].

Therefore, let θ ∈ Tsig, i.e. there exists some l ∈ T ((Rd+1)∗) such that

θ(X|[0,t]) = 〈l, X̂<∞0,t 〉 = 〈l, X̂≤N0,t 〉,

where N := max{deg(l), [p]}. We equip GN (Rd+1) ⊂ TN (Rd+1) with the subspace topology. Note
that the inverse of the tensor logarithm log⊗ is the tensor exponential map exp⊗, which is defined
analogously by its power series expansion (see also Example 2.3). Now define the continuous map

ψ : gN (Rd+1)→ R, x 7→ 〈l, exp⊗(x)〉

Let K ⊂ GN (Rd+1) be an arbitrary compact set and define K ′ := log⊗(K) ⊂ gN (Rd+1), which
is also compact. From [LLPS93, Theorem 1] it follows that there exists as sequence of functions
(ψn)n≥1 of the form (7.2) that converge uniformly on K ′ towards ψ. Hence, it also follows that the

sequence of maps (ψn ◦ log⊗)n≥1 converge uniformly on K towards the map 〈l, ·〉 : GN (Rd+1)→ R.

Next, note that the Lyons-lift map

ΛT → GN (Rd+1), X̂|[0,t] 7→ X̂≤N0,t

is continuous (see [FV10, Section 9.1]) and therefore it follows from above that for any compact set

K ⊂ Ω̂pT , there exists a sequence (θn)∞n=1 ⊂ Tlog such that

lim
n→∞

sup
X∈K,t∈[0,t]

|θn(X|[0,t])− θ(X|[0,t])| = 0.

The rest of the proof is now completely analogous to proof of Proposition 5.3. �

8. Numerical Examples

In this section we are going to evaluate the performance of the signature stopping methodology for
the numerical approximation of the optimal stopping value. We have particularly chosen examples
in which the underlying rough path is non-Markov. The technical steps that are necessary to
implement a Monte-Carlo simulation are discussed in detail in Appendix C.
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8.1. Optimal stopping of fractional Brownian motion. Let XH be a fractional Brownian
motion with Hurst parameter H ∈ (0, 1] and recall from Example 2.4 that the time augmented

process X̂H has a lift to a geometric rough path. Also recall that in the case H = 0.5 the process
XH is a standard Brownian motion and otherwise it is not a semimartingale and not a Markov
process. We are considering the optimal stopping problem with the payoff given by the underlying
process itself, i.e. Y ≡ XH . The payoff clearly satisfies the condition E(‖Y ‖∞;[0,T ]) < ∞ for any
T <∞ and therefore our approximation results apply. We set T = 1 and use a time discretization
with J = 100 steps for Monte-Carlo simulation of the payoff and the signature (see Section C.1 for
more detail).

This example was recently studied in [BCJ19] and we will use the there presented values as bench-
marks. The methodology in [BCJ19] was developed for Markov processes and is based on a
parametrization of the optimal stopping policy by deep neural networks, one for each time in
the discretization grid. The networks are then trained in a backwards induction using the dynamic
programming principle. The methodology was applied to the fractional Brownian motion example
by lifting the time-discretized process to a 100-dimensional Markov process including the entire
past of the process.

Theoretical observations. Before evaluating the numerical results we present a few theoretical
observations about the value of the optimal optimal stopping problem of the fractional Brownian
motion.

In the case H = 0.5, the payoff process Y is a standard Brownian motion and hence a martingale.
Therefore it follows from Doob’s optional sampling theorem that the true value of the optimal
stopping problem is zero.

The inclusion of the case H = 1 in the definition of the fractional Brownian motion is a matter
of convention, in any case, the right-hand side of (2.4) defines the positive semidefinite covariance
kernel ρ1(s, t) = s · t for s, t ≥ 0. The process X := (t · ξ)t≥0 with a standard normal distributed
random variable ξ admits this covariance structure. Since the sample paths of this process are
given by straight lines, one can easily verify that an optimizing sequence of stopping times (τn)n≥1
is given by

τn =

{
T, X1/n > 0

1/n, X1/n ≤ 0
, n = 0, 1, 2, . . .

The optimal stopping value for H = 1 is therefore given by limn→∞ E[Yτn ] = E[T · (ξ)+] = T/
√

2π.
Furthermore, we also see that the value of the time discretized problem is given by E[YτJ ] =

0.99/
√

2π ≈ 0.395 for J = 100 and T = 1. We point out that this discussion of the case H = 1 was
already presented in [BCJ19].

On the other side of the spectrum, that is when H approaches 0, the covariance kernel of the
fractional Brownian motion (2.4) converges pointwise to the following kernel

ρ0(s, t) =

 0, t = 0 ∨ s = 0.
1, t = s ∧ s > 0,
1
2 , else.

, t, s ≥ 0.(8.1)

The Kolmogorov extension theorem implies that a Gaussian process with this covariance structure
exist, however such a process is not measurable in the usual sense of stochastic processes (see [Sto14,
Section 19.5]) and therefore the associated optimal stopping problem is not well defined. See also
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[FKS16], [NR18], [HN20] and [BHP20] for regularizations and normalizations of the fractional
Brownian motion and the convergence as H approaches 0. For the comparison with numerical
approximations it is nevertheless interesting to study the discrete time optimal stopping problem of
a process with the covariance structure ρ0. Let (ξ0, ξ1, . . . , ξJ) be a finite sequence of independent
standard normal distributed random variables and note that the process

Ỹj := (ξj − ξ0)/
√

2, j = 0, 1, . . . , J,

has the covariance structure

E
[
ỸiỸj

]
= ρ0(i, j) = ρ0(ti, tj), i, j ∈ {0, 1, . . . , J}, tj = Tj/J.

In Appendix B we present an explicit solution to the discrete time optimal stopping problem

associated to the process Ỹ . For J = 100 the optimal stopping value is approximately given by
1.5830 and for J → ∞ the value converges to infinity (see Proposition B.3 and Remark B.4).
At this point, let us also mention that the value of the discrete time stopping problem depends
continuously on the Hurst parameter H ∈ [0, 1]. Indeed, one has to verify that the distribution of
the process (XH

tj )j=0,1,...,J depends continuously on H in the weak adapted topology (see [BBBE20]).
However, this is a consequence of the fact that the process is Gaussian and the densities of the law
(receptively conditional laws) are everywhere continuous in H. Since the value of the discrete time
optimal stopping problem is a lower-bound to the value of the continuous time problem we have
the following

Proposition 8.1. The value of the optimal stopping problem of the fractional Brownian motion
(XH

t )0≤t≤T diverges as H → 0, more precisely we have

lim
H→0

sup
τ∈S

E
[
XH
τ∧T

]
=∞.

Evaluation of the numerical results. We have approximated the value of the optimal stopping
problem using both linear signature stopping policies (Tsig) and deep signature stopping policies
(Tlog), for Hurst parameters H ∈ {0.1, 0.2, . . . , 1.0} and H = 0 (in the sense of the theoretical
observations above). The resulting low-biased estimates are presented in Table 2 (see Section C.5
for a description of the calculation of low-biased estimates). The values associated to the linear
stopping policy presented in Table 2 are obtained using a stochastic gradient decent method based
one the form of the expected payoff given in Proposition 4.4. The technical details for this procedure
can be found in Section C.4. We have used 219 = 524, 288 samples for the optimization and
223 = 8, 388, 608 samples for the resimulation. The values associated to the deep stopping policy
were obtained using a network architecture consisting of I = 2 hidden layers, q = η2,N + 30
neurons for each layer, depending on the truncation level N of the log-signature, and relu activation
function. The networks were trained with 221 = 2, 097, 152 samples and the loss-function presented
in Section C.4. For the resimulation we used again 223 samples.

Comparing the values in Table 2, it is not very surprising that we observe a worse performance
of the linear method compared with the non-linear method using the same truncation level. The
values obtained with the deep signature policies achieve the exact values for H = 1 and H = 0 (see
the theoretical observations above) and come reasonably close to he low-biased values presented
[BCJ19], already for a truncation level N = 2. This observation becomes more impressing when we
recall from Tabel 1 that the dimension of the log-signature for d = 2 and N = 2, 3, 4, 5 is given by
η2,N = 3, 5, 8, 14. These dimensions must be seen in contrast to the 100-dimensional input features
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lin. signature policies deep signature policies BCJ
H N = 3 N = 4 N = 5 N = 1 N = 2 N = 3 N = 4 N = 5 low up
0.0 1.161 1.331 1.430 1.384 1.582 1.583 1.583 1.583 - -
0.1 0.760 0.858 0.916 0.929 1.030 1.038 1.042 1.043 1.048 1.049
0.2 0.468 0.523 0.553 0.584 0.637 0.646 0.649 0.651 0.658 0.659
0.3 0.257 0.285 0.293 0.329 0.355 0.361 0.363 0.364 0.369 0.380
0.4 0.107 0.116 0.118 0.140 0.149 0.152 0.152 0.153 0.155 0.158
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005
0.6 0.081 0.084 0.085 0.106 0.112 0.113 0.114 0.114 0.115 0.118
0.7 0.146 0.152 0.154 0.191 0.198 0.201 0.201 0.202 0.206 0.207
0.8 0.199 0.207 0.208 0.263 0.269 0.272 0.273 0.273 0.276 0.278
0.9 0.247 0.256 0.258 0.328 0.332 0.334 0.334 0.334 0.336 0.339
1.0 0.296 0.307 0.309 0.395 0.395 0.395 0.395 0.395 0.395 0.395

Table 2. Low-biased estimates to the optimal stopping value of the fractional
Brownian motion for different Hurst parameters H, obtained with linear (Tsig)
and deep (Tlog) signature stopping policies. N is the truncation level of the log-
/signature. For the deep signature stopping policies we used neural networks with
I = 2 hidden layers and q = η2,N + 30 neurons. The values in the two rightmost
columns are the low- and upper-biased estimates obtained in [BCJ19]. The overall
Monte-Carlo error in the resimulation is below 0.0004. The definition of the discrete
time optimal stopping problem corresponding to the case H = 0.0 was discussed
in the theoretical observations above.

used in [BCJ19]. This suggests that also in the context of optimal stopping of non-Markov processes
the log-signature can serve as an efficient compression of the path.

Figure 1 visualizes low-biased estimates to the value of optimal stopping problem of the fractional
Brownian motion using time discretizations with J = 100 and J = 1000 steps. The values were
obtained using a deep signature stopping policy with a signature truncation level N = 3 and the
network configuration I = 2, q = 35. Note that the dimension of the (log-)signature obviously does
not depend on the size of the time discretization grid. Therefore, the number of model parameters
of the signature stopping policy does not change when increasing J . We see that the approximate
values for H � 0.5 are significantly higher when using the finer discretization grid. An observation
of this sort was already foreshadowed by the divergence of the optimal stopping value for H → 0
from Proposition 8.1.

Linearization. Before closing this section, we are going to discuss the numerical application of
the results from Section 6. Since the payoff coincides with the underlying path itself, Corollary 6.6
applies and after estimating the expected signature for some truncation level, this allows to approx-
imate the value of the optimal stopping problem by a numerical approximation of the supremum
in the right-hand side of (6.6). Section C.3 describes the technical details for this step. How-
ever, it turned out that the values obtain with this procedure are drastically worse then the values
obtained with any of the other methods that we have studied. The difficulty lies in the tradeoff
between the optimisation constrained {l ∈ T (V ∗) | deg(l)+ |l| ≤ K} and the truncation level of the
signature. More precisely, we understand from the estimate in Lemma 6.2 that choosing K large
requires to also choose the truncation level N large in order to decrease the error that is introduced
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Figure 1. A visualization of lower biased estimates to the optimal stop-
ping value of fractional Brownian motion for different Hurst parameters H ∈
{0.0, 0.1, . . . , 1.0}, using time discretization grids with J = 100 and J = 1000
steps. The values were calculated with the deep signature stopping rule using a
truncation level N = 3 for the log-signature and a neural network with I = 2
hidden layers and q = 5 + 30 nodes per layer.

from replacing the exponential with the shuffle exponential. However, increasing N also increases
computational costs and, for this example, the limits of our computational resources were reached
before obtaining reasonable results.

8.2. An American put option in a rough electricity market. We consider the following
rough model for the spot electricity prices S proposed in [Ben17]

St = exp(Xt) = exp(Λt + Zt), 0 ≤ t ≤ T,
where lambda Λ is a seasonality component and Z is the rough base signal. Note that we have
refrained from using a spike signal in the model for instructive reasons. Since we are interested in
pricing an option on S and in this context prices are usually corrected for seasonality influences,
we will assume without much loss of generality that

Λ ≡ x0 ∈ R+.

Regarding the rough component, we follow the propositions in [Ben17] and finally choose the fol-
lowing model for the log-price

Xt = x0 +
σ

cα

∫ t

−∞
(t− s)αe−λ(t−s)dWs, 0 ≤ t ≤ T,
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K N = 1 N = 2 N = 3 N = 4 EUR
80 3.923 4.062 4.076 4.073 0.516
90 9.841 10.185 10.206 10.228 2.139
100 17.753 18.279 18.341 18.363 5.770
110 26.679 27.352 27.397 27.423 11.580
120 36.099 36.854 36.945 36.898 19.128

Table 3. Low-biased estimates of the value of the American put option with
T = 1.0 and different strikes K on the energy spot price with model parameters
x0 = 100, α = −0.4, λ = 0.02, σ = 0.2 and r = 0.05. A time discretization
grid with J = 100 points was used. The values were obtained with deep signature
stopping policies using I = 2 hidden layer and q = ηN + 30 neurons per layer. The
rightmost column represents the prices of the European option. The overall Monte
Carlo error in the resimulation is below 0.0005.

where α ∈ (−1/2, 1/2), λ, σ > 0, cα is a normalizations constant such that E(X2
t ) = σ2 and W is

a two sided standard Brownian motion. Note that X is a stationary Gaussian process and has the
following auto-correlation function (see [BN12])

Corr(Xt, Xt+h) =
2−α+

1
2

Γ(α+ 1
2 )

(λh)
α+ 1

2 K̃α+ 1
2
(λh)

where K̃ν(x) = e−xKν(x) and Kν is the modified Bessel function of the second kind. One can easily
verify that the paths of X are γ-Hölder continuous for any γ < α+ 1/2 (see e.g. [Ben20]). Hence,

by the same arguments as in Example 2.4, it follows that X and the time augmented process X̂
have a lift to a geometric rough path.

We are interested in approximating the price of an American put option on S, which is given by

sup
τ∈S

E
[
e−rτ (K − Sτ∧T )+

]
,

where K > 0 is the strike and r ≥ 0 is an interest rate. Hence, the payoff process of the
corresponding optimal stopping problem is a continuous functional of underlying path given by
Yt = e−rt(K − exp(Xt))+.

We set T = 1 and for Monte-Carlo simulation use a time discretization with J = 100 steps. Note
that the sample trajectories of X can be obtained using the exact form of the above autocorrela-
tion function. In order to obtain simulations with a constant initial value, we sampled from the
conditional law P(·|X0 = x0). For example, when generating the samples of X with the Cholesky
decomposition of the covariance matrix, this is simply achieved by setting the first component of
the standard normal input noise to zero.

In Table 3 we present low-biased estimates to the value of American put option obtained with deep
signature stopping policies. As model parameters we have chosen α = −0.4, λ = 0.02 (these values
are based on statistical estimates given in [Ben17]), initial value x0 = 100, volatility σ = 0.2 and
interest rate r = 0.05. The network architecture for the deep stopping policy consisted of I = 2
hidden layers, q = η2,N + 30 neurons per layer and relu activation functions. The networks were
trained using 220 sample paths and the low-biased estimates were calculated with 223 sample paths.
As a reference value we have also presented an estimate of the price of the European put option,
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which is given by E[e−rT (K−ST )+]. We observe that the values significantly improve when moving
from truncation level N = 1 to N = 2. For higher levels this improvement quickly saturates, which
suggests that the values are approaching the true value of the option.

Acknowledgments. All authors are supported by the MATH+ project AA4-2 Optimal control in
energy markets using rough analysis and deep networks.
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Appendix A. Technical aspects of stopped rough paths

Recall from Definition 3.1 the space stopped rough paths ΛT and its metric. The following lemma
characterizes the topology on ΛT .

Lemma A.1. The topology on ΛT coincides with the final topology induced by the map ϕ : [0, T ]×
Ω̂pT → ΛT , ϕ(t, X̂) = X̂|[0,t]. Moreover, ΛT is Polish.

Proof. A set U ⊂ ΛT is open with respect to the final topology if and only if ϕ−1(U) is open in

[0, T ] × Ω̂pT . One can easily check that ϕ is continuous for the topology induced by d, therefore
ϕ−1(U) is open for every open set U ⊂ ΛT . Now assume that ϕ−1(U) is open for a set U ⊂ ΛT . Let
X|[0,t] ∈ U and choose Y|[0,s] ∈ ΛT with d(X|[0,t],Y|[0,s]) < ε. Our goal is to prove that Y|[0,s] ∈ U
for ε chosen sufficiently small. Note that

ϕ−1(X|[0,t]) = {(t, X̃) : X̃|[0,t] = X|[0,t]}.

Assume s ≥ t first. Then d(X|[0,t],Y|[0,s]) < ε implies that

|t− s| < ε and dp−var;[0,s](X̃|[0,s],Y|[0,s]) < ε

where X̃|[0,s] is the stopped path defined on [0, s] as explained in Definition 3.1. Let X̃ = X̃|[0,T ] ∈ Ω̂pT
be the stopped path defined on the whole time interval [0, T ]. Since (t, X̃) ∈ ϕ−1(X|[0,t]) ⊂ ϕ−1(U)

and ϕ−1(U) is open, there is a δ > 0 such that whenever u ∈ (t− δ, t+ δ) and dp−var;[0,T ](X̃, Ỹ) < δ,

we have (u, Ỹ) ∈ ϕ−1(U). Choosing ε sufficiently small, we can assume that s ∈ (t−δ, t+δ). Define

Ỹ = Ỹ|[0,T ] ∈ Ω̂pT as in Definition 3.1. Then (s, Ỹ) ∈ ϕ−1(Y|[0,s]) and

dp−var;[0,T ](X̃, Ỹ) ≤ Cp(dp−var;[0,s](X̃, Ỹ) + dp−var;[s,T ](X̃, Ỹ))

= Cpdp−var;[0,s](X̃|[0,s],Y|[0,s]) ≤ Cpε.

Choosing ε small, we conclude (s, Ỹ) ∈ ϕ−1(U) and thus Y|[0,s] ∈ U . For s ≤ t, we can argue
similarly which proves that both topologies indeed coincide. Concerning the second statement,

separability follows from the separability of [0, T ]×Ω̂pT and the fact that ϕ is a continuous surjection.
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To prove that ΛT is complete with respect to the metric d is straightforward and follows from the

fact that [0, T ] and Ω̂pT are complete. �

Corollary A.2. Let Z be any topological space. A map g : ΛT → Z is continuous if and only if the

map [0, T ]× Ω̂pT 3 (t, X̂) 7→ g(X̂|[0,t]) ∈ Z is continuous.

Proof. Follows from the universal property of the final topology. �

Appendix B. Solution of an optimal stopping problem corresponding to a discrete
time fractional Brownian motion with zero Hurst parameter

Recall from Remark 8.1 that, as H tends to zero, the covariance kernel of a fractional Brownian
motion converges pointwise to the kernel ρ0 given in (8.1). In this section we are going to derive
an explicit solution to the optimal stopping problem associated to a discrete time Gaussian process
with the covariance kernel ρ0. Therefore let (ξ0, ξ1, . . . , ξJ) be a finite sequence of independent
standard normal distributed random variables defined on a probability space (Ω,F ,P). Define the
process

Y = (Yj)j=0,1,...,J , Yj = ξj − ξ0,

and note that its covariance structure is given by E[YiYj ] = 2·ρ0(i, j). For ease of notation we refrain

from scaling the process by 1/
√

2. Further note that the filtration that the process Y generates is
given by

F0 = {∅,Ω}, Fj = σ(ξ1 − ξ0, . . . , ξj − ξ0).

We are interested in finding the solution to the discrete time optimal stopping problem associated
to the payoff Y . Therefore denote by SJ the set of discrete stopping times with respect to the
filtration (Fj)j=0,1,...,J and define the value process

Vj = sup
σ∈SJ ,σ≥j

E
[
Yσ

∣∣∣Fj] , j = 0, 1, . . . , J.

Then we have VJ = YJ and by the dynamic programming principle it follows

Vj = max {Yj , E[Vj+1|Fj ]} , j = 0, 1, ..., J − 1.(B.1)

We are now going to proceed by recursively calculating the conditional expectation in the dynamic
programming principle. Therefore define

ξ1:j :=
1

j

j∑
k=1

ξk

and note that we have the following

Lemma B.1. Let j ∈ {1, . . . , J}, then the conditional expectation of ξ0 given Fj is given by

E[ξ0|Fj ] =
j

j + 1
(ξ0 − ξ1:j).



34 C. BAYER, P. HAGER, S. RIEDEL, AND J. SCHOENMAKERS

Proof. First note that the random variable in the above right-hand side is mean-zero Gaussian and
is Fj-measurable which can easily be seen from the identity

j

j + 1
(ξ0 − ξ1:j) =

1

j + 1

j∑
i=1

Yi.

On the other hand, we have for all A ∈ Fj

E
[(
ξ0 −

j

j + 1
(ξ0 − ξ1:j)

)
1A

]
= E

[
1

j + 1
(ξ0 + ξ1 + · · ·+ ξj) 1A

]
= 0

since the random variable ξ0 + ξ1 + · · · + ξj is independent of Fj . Indeed, every Yi = ξi − ξ0 for
i ≤ j is uncorrelated with ξ0 + ξ1 + · · ·+ ξj , hence due to Gaussianity independent. �

Remark B.2. We can observe that the process (Yj , ξ0 − ξ1:j)j=0,1,...,J is a two-dimensional Markov
process adapted to the filtration (Fj)j=0,1,...,J . Indeed, recall that Yj = ξj − ξ0 and note that ξj is
independent of Fi for all i < j. Further, we see that the conditional law of ξ0 given Fi is Gaussian.
From the above lemma it follows that the conditional mean is given by ξ0 − ξ1:i and following a
simple Gaussian calculation we see that the conditional variance is deterministic (depending only
on i and j).

The conditional expectation of the value function VJ with respect to FJ−1 is then given by

E[VJ |FJ−1] = E[−ξ0|FJ−1] =
J − 1

J
(ξ1:J−1 − ξ0).

Hence, plugging into the Bellman equation (B.1) we obtain for the value process at J − 1

VJ−1 = max

{
ξJ−1 − ξ0,

J − 1

J
(ξ1:J−1 − ξ0)

}
.

Using the dynamic programming principle we are now going to show the following

Proposition B.3. For all j ∈ {1, . . . , J − 1} it holds

Vj = max

{
ξj − ξ0, µj+1 +

j

j + 1
(ξ1:j − ξ0)

}
,

and V0 = µ1, where

µJ = 0, µj =

√
j

j + 1
γ

(
µj+1

√
j + 1

j

)
, j = J − 1, J − 2, . . . , 1

where γ(x) = φ(x) + xΦ(x) and Φ and φ are the cdf and pdf of the standard normal distribution.

Remark B.4. Note that for any j ∈ {1, . . . , J − 1} it holds µj ≥ γ(2 · µj+1)/2. Hence it follows

that µ1 ≥ f◦(J−1)(0) with f(x) := γ(2x)/2. Since f is continuous and f(x) > x for all x ∈ [0,∞)
it follows that f◦J(0)→∞ for J →∞. This confirms what one intuitively expects, that the value
of the above optimal stopping problem converges to infinity as J tends to infinity.
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Proof. The claim was already shown for j = J − 1. We are going to use a backwards induction to
proof the claim for 0 ≤ j < J − 1. In order to explicitly calculate the conditional expectation of
Vj+1 given Fj , we are going the derive a orthogonal decomposition of each of the random variables
in the above maximum with respect to Fj . For the first random variable we have

ξj+1 − ξ0 =

(
ξj+1 −

1

j + 1
ξ0 −

j

j + 1
ξ1:j

)
+

j

j + 1
(ξ1:j − ξ0)

and for the second we have

j + 1

j + 2
(ξ1:j+1 − ξ0) =

1

j + 2
ξj+1 +

j

j + 2
ξ1:j −

j + 1

j + 2
ξ0

=
1

j + 2
ξj+1 +

j

j + 2
(ξ1:j − ξ0)− 1

j + 2
ξ0

=
1

j + 2
ξj+1 +

j

j + 2
(ξ1:j − ξ0) +

1

j + 2

j

j + 1
(ξ1:j − ξ0)

− 1

j + 2

(
1

j + 1
ξ0 +

j

j + 1
ξ1:j

)
=

1

j + 2

(
ξj+1 −

1

j + 1
ξ0 −

j

j + 1
ξ1:j

)
+

j

j + 1
(ξ1:j − ξ0).

For simplifying notation in what follows, we define

ηj :=

√
j + 1

j + 2

(
ξj+1 −

1

j + 1
ξ0 −

j

j + 1
ξ1:j

)
which is a standard Gaussian random variable orthogonal to Fj , indeed note that

V
(
ξj+1 −

1

j + 1
ξ0 −

j

j + 1
ξ1:j

)
= 1 +

1

(j + 1)2
+

j

(j + 1)2
=
j + 2

j + 1
.

Using this orthogonal decomposition and the induction claim we then have

E[Vj+1|Fj ] =

√
j + 2

j + 1
E

[
max

{
ηj , µj+2

√
j + 1

j + 2
+

1

j + 2
ηj

}]
+

j

j + 1
(ξ1:j − ξ0).

Resolving the above expectation is now simple one-variate Gaussian calculation. Therefore let
0 ≤ α < 1, β ∈ R, then note that

E[max{ηj , β + αηj}] =

∫ ∞
β/(1−α)

xφ(x)dx+

∫ β/(1−α)

−∞
(β + αx)φ(x)dx

= φ(β/(1− α)) + βΦ(β/(1− α))− αφ(β/(1− α))

= (1− α)φ(β/(1− α)) + βΦ(β/(1− α))

= (1− α)γ(β/(1− α)).

Therefore we finally have

E[Vj+1|Fj ] =

√
j + 2

j + 1

j + 1

j + 2
γ

(
µj+2

√
j + 1

j + 2

j + 2

j + 1

)
+

j

j + 1
(ξ1:j − ξ0)

and the rest of the claim follows from the dynamical programming principle. �
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Appendix C. Implementation details

We are going to discuss the technical steps which are necessary in order to allow Monte-Carlo
simulation for the signature stopping methodology. Throughout this section we will assume that
the rough path X ∈ ΩT is the lift of a d-dimensional process X = (Xt)0≤t≤T and that Y = (Yt)0≤t≤T
is a continuous real-valued process adapted to the filtration generated by X.

C.1. Time discretization. We fix a time grid with equidistant points (tj)j=0,1,...,J , tj = Tj/J

and define the discretized payoff process Ỹ by

Ỹj = Ytj , j = 0, 1, . . . , J.

Next, we fix a refinement (sj)j=0,1,...,J′ of the grid (tj)j=0,1,...,J with J ′ ≥ J and denote by SJ the
set of discrete stopping times with respect to the following filtration

F̃j := σ (Xsi : si ≤ tj , i = 0, 1, . . . J ′) , j = 0, 1, . . . , J.

We can approximate the value of time optimal stopping problem (1.1) from below by the value of

discrete time optimal stopping problem associated to (Ỹ , (F̃j)j=0,1,...,J), i.e.

sup
σ∈SJ

E
[
Ỹσ∧J

]
≤ sup
τ∈S

E
[
Yτ∧T

]
.

Indeed, since F̃j ⊂ Ftj for all j ∈ {0, 1, . . . , J}, it is easy to see that for any σ ∈ SJ , ω 7→ tσ(ω)

defines a stopping time in S. Next, denote by X̃ the linear interpolation of the process X on the
grid (sj)j=0,1,...,J′ , i.e.

X̃t = Xsj +
t− sj

sj+1 − sj
(Xsj+1 −Xsj ), sj ≤ t ≤ sj+1, j = 0, 1, . . . , J ′.

Clearly also the time augmented path ((t, X̃t))0≤t≤T is piecewise linear and this process has a

(trivial) lift to a rough path, which we denote by X̃. We will now adapt the definition of the
randomized stopping times (4.1) to the discrete time setting. Therefore, let Z be positive random
variable as in Definition 4.1 and let θ ∈ T be a continuous stopping rule, then we define

σrθ = inf

{
0 ≤ j ≤ J

∣∣∣∣∣
j∑
i=0

θ(X̃|[0,ti])
2 ≥ Z

}
.(C.1)

Since X̃|[0,tj ] is F̃j-measurable for all j ∈ {0, 1, . . . , J}, it follows that that σrθ ∈ SJ . With minor
changes in proof, an analogous result of Proposition 4.4 holds for the stopping times σrθ and yields
the following expression for the expected payoff

E
[
Ỹσrθ

]
= E

Ỹ0 +

J−1∑
j=0

G(j)(Ỹj+1 − Ỹj)

 , with G(j) := 1− FZ

(
j∑
i=0

θ(X̃|[0,ti])
2

)
,(C.2)

where FZ is the cumulative distribution function of Z.
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C.2. Simulation of the (log-)signature. The standard, model independent procedure for ap-
proximating the truncated signature of given simulations of a path is to calculate the truncated
signature of the linearly interpolated path. Regarding the optimal stopping problem, it is therefore
necessary to generate joint samples of the process X and the payoff Y , while one may possibly
choose a finer approximation grid for the simulation of X. This may require discretization of sto-
chastic / rough differential equations. The truncated signature of the linearly interpolated path on
the given time grid can then be calculated exactly (up to floating point errors) and therefore always
yields an element in the free nilpotent Lie-group. Fortunately, packages for this task are readily
available. See, for instance, the iisignature library [RG20]. Note that in case the signature is needed
on each subinterval [0, sj ] (see Section C.4 below), one can use the calculation of the signature on
the preceding subinterval to significantly improve the efficiency. As already mentioned in Section 7,
the log-signature of the linearly interpolated path can be directly calculated in the Hall basis and
does not require the calculation of the signature.

C.3. Optimization of linear signature stopping policies based on the expected signature.
If the setting allows to pose the optimization problem in terms of the expected signature only,
as in the context of Corollary 6.6, then we need to compute the expected truncated signature

E[X̂≤N0,T ]. This can be done using Monte-Carlo estimation and the procedure for calculating samples
of the truncated signature as in explaind in Section C.2 above. The big advantage is, of course,
that we only need to compute the expected signature once, and can then apply the optimization
algorithm of our choice to a deterministic optimization problem. For calculating the expression
exp�(−(l � l)1) upto truncation degree N , one needs to implement a structure that allows the
handling of noncommutative polynomials with variable coefficients and that supports the shuffle
operation. Since we could not find an appropriate package we have implemented this part ourself.
Now let λ0w0 +λ1w1 + · · ·+λnkwnk ∈ TN ((Rd+1)∗), where w0, . . . , wnk ranges over all words in of
length k ≤ N in the alphabet Ad+1 (a total number of nk+1 = ((d+1)k+1−1)/d) words). Further,
let E ∈ TN (Rd+1) be a Monte-Carlo estimate of the expected truncated signature signature, then
the expression that needs to maximized is given by〈

exp�
(
− (λ0w0 + · · ·+ λnkwnk)

�2
1
)
lY , E

〉
,

where lY ∈ T ((Rd+1)∗), such that Y = 〈lY , X̂<∞〉. This expression is a polynomial in the coefficients
λ1, . . . , λnk . We can then apply a general state-of-the-art iterative optimization algorithms to
optimize the above polynomial subject to the constraint |λ1| + · · · + |λnk | ≤ K. The resulting
optimal coefficients can further be used to calculate a low-biased estimate of the optimal stopping
problem as described in Section C.5 below.

C.4. A loss-function for linear and deep signature stopping policies. In this subsection we
will define a loss-function for the linear and deep stopping policies based on the regular form of the
expected payoff (C.2). The loss-function can be used with a stochastic gradient descent method in
order to numerically optimize the parameters of the stopping policy and thus to approximate the
value of the optimal stopping problem. Assume that we have generated M sample trajectories

(X̃
(m)
j , Ỹ

(m)
j )0≤j≤J, 1≤m≤M , with X̃

(m)
j ∈ Rd+1, Ỹ

(m)
j ∈ R,

of the time augmented path X̂ and the payoff process Y (for simplicity we have not used a finer time

grid for X̂). Fix a truncation level N ∈ {1, 2, . . . }. For each series of samples X̃
(m)
0 , . . . , X̃

(m)
J we
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can calculated the truncated signature of the linearly interpolated path on each subinterval [0, tj ],
yielding the the sequence of vectors

(X̃(m)
j )0≤j≤J, 1≤m≤M , with X̃(m)

j ∈ TN (Rd+1) ∼= R1+σd+1,N .

Let θl ∈ Tsig be a signature stopping policy of the form θl(X̂) = 〈l, X̂<∞〉 for some l ∈ TN ((Rd+1)∗).
Further letM⊂ {1, ...,M} be the indices of a batch of samples. Using (C.2) we define the following
loss-function for the stopping policy θl

`
(
Ỹ |M, L̃|M; l

)
= − 1

|M|
∑
m∈M

Ỹ (m)
0 +

J−1∑
j=0

GZ

(
j∑
i=0

〈
l, X̃(m)

i

〉2)
(Ỹ

(m)
j+1 − Ỹ

(m)
j )

 ,

where GZ = 1− FZ .

Next, let θ = θlog ◦ log⊗ ∈ Tlog be a deep stopping policy with a neural network θlog of the form
(7.2). In this case, the definition of the loss-function is in principle the same as above, however, the
log-signature can be calculated directly in the hall basis, yielding the sequence of vectors

(L̃(m)
j )0≤j≤J, 1≤m≤M , with L̃(m)

j ∈ gN (Rd+1) ∼= Rηd+1,N .

Again using (C.2) we define the following loss-function for the deep stopping policy θ by

`
(
Ỹ |M, L̃|M; θlog

)
= − 1

|M|
∑
m∈M

Ỹ (m)
0 +

J−1∑
j=0

GZ

(
j∑
i=0

θlog

(
L̃(m)
i

)2)
(Ỹ

(m)
j+1 − Ỹ

(m)
j )

 .

Regarding the distribution of Z, we have tried the exponential distribution and the log-logistic
distribution. The latter, corresponding to GZ(x) = 1/(1 +x), led to initially quicker learning rates,
however for the overall performance it was better to use the exponential distribution.

C.5. Calculation of lower-bounds. Assume that we have obtained a stopping policy θ∗ ∈ T
as the output of a numerical optimization. For example θ∗ = 〈l∗, ·〉 ∈ Tsig for some numerically
optimized l∗ ∈ T (V ∗); or θ∗ ∈ Tlog with some trained neural network θ∗log. We then calculate a

estimate to the value of the optimal stopping problem by a Monte-Carlo approximation of (C.2)
with a new set of sample trajectories. Note that this estimates is precisely given by the respective
loss-function of Section C.4 evaluated at the new set of samples. The estimate is low biased due to
the sub-optimality of the stopping policy.

Alternatively, note that the stopping policy θ∗ defines a stopping time σ∗ := σrθ∗ ∈ SJ by (C.1).
Therefore, after generating independent samples of Z, one for each sample trajectory of X and Y ,
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we obtain another low-biased estimator of the optimal stopping value by the Monte-Carlo approx-

imation of E[Ỹσ∗ ]. Since both estimates yield the same result, upto a the additional Monte-Carlo
error introduced by the sampling of Z, the latter value can serve for a sanity check.
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