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Abstract. Using rough path techniques, we provide a priori estimates for the output of Deep Residual
Neural Networks in terms of both the input data and the (trained) network weights. As trained network
weights are typically very rough when seen as functions of the layer, we propose to derive stability bounds
in terms of the total p-variation of trained weights for any p P r1, 3s. Unlike the C1-theory underlying
the neural ODE literature, our estimates remain bounded even in the limiting case of weights behaving
like Brownian motions, as suggested in [Cohen, Cont, Rossier, Xu: “Scaling properties of deep residual
networks”, arXiv, 2021]. Mathematically, we interpret residual neural network as solutions to (rough)
difference equations, and analyze them based on recent results of discrete time signatures and rough path
theory.

1. Introduction

Figure 1. Single block of the ResNet ar-
chitecture

Since their introduction in 2016 [13], Residual Neural Net-
works (ResNets) have gained a vast amount of popularity as a
preferred network architecture for Machine Learning applica-
tions. The general principle is that this architecture allows for
deeper networks since it models only the residual change of
the features at the output of each layer. This is achieved by
introducing “skip connections” which – at some steps – adjust
the output of a layer by adding an earlier layer’s output (see
Figure 1). These “blocks”, formed by a sequence of layers
connected by an identity mapping, are then stacked on top of
each other in order to build the network.

The authors of the previously cited paper argue that this
helps precondition the optimization solvers so that increasing
the network depth does not result in severe numerical insta-
bilities and performance degradation, as is observed in plain
Neural Networks. In particular, this approach allows them to
successfully train a Deep Neural Network with hundreds and
even thousands [14] of layers.

In a plain Neural Network, the input vector yi`1 of the pi` 1q-th hidden layer is given by an application
of the weights and the activation function to the input of the previous hidden layer. In symbols

yi`1 “ σpθiyiq

where σ : Rdi`1 Ñ Rdi`1 and θi is a di`1 ˆ di matrix. In the ResNet approach, this is modified so that the
output to the next hidden layer is given as the sum of the input to the previous layer, plus the previous
operations; that is,

yi`1 “ yi ` σpθiyiq. (1)
Here, it is assumed that the width of all layers is constant, but the approach can easily be adapted to the
more familiar setting of varying widths by applying an appropriate projection to right-hand side of the last
equation.

Remark 1.1. We simplify notation by leaving out the bias term in the update rule (1). The usual update
rule

yi`1 “ σpθiyi ` biq
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can be reproduced in the form (1) above by adding a column of consisting of ones to yi and an appropriate
restriction on θi to map that column to another column of ones – in the appropriate dimension.

Remark 1.2. In this work, we assume that the architecture follows the update (1) at each layer. In the
engineering practice, usually a few layers are skipped over. i.e. the true update may look as follows:

ryi “ σprθiyiq, yi`1 “ yi ` σpθiryiq,
skipping over one layer in the process.

It has been argued by several authors [6, 10,11] that the update in eq. (1) can be seen as a step of the
Euler scheme for a controlled ODE of the form

9yptq “ σpθptqyptqq, yp0q “ y0. (2)
Then, knowledge of stability and convergence of numerical schemes for such systems can be used to derive
corresponding results for ResNets, especially since one expects that the behavior of the output layer of the
network under consideration will follow closely that of the continuous-time solution of eq. (2) (that is, in
the limit of infinite depth) for very deep architectures.

In this work, we go back one step and consider the situation of ResNets with many, but finitely many
layers. Specifically, we consider finite difference equations of the form

xk`1 “ xk `
d
ÿ

µ“1
fµpxkqpwµ

k`1 ´wµ
kq, x0 “ ξ P Rm. (3)

Here, in the simplest case of constant dimension d, xk denotes the vector of nodes at layer k (corresponding
to yk above), and the increment matrix pwµ

k`1 ´wµ
kq
d
µ“1 corresponds to the matrix θk P Rdˆd. Finally,

the vector fields fµ : Rd Ñ Rd take care of the matrix-vector-multiplication as well as of the non-linear
activation function σ. We assume that the number of nodes d is constant over all the layers. For a more
general and detailed view of the setting, we refer to Appendix A.

Already from this very cursory look, the reader may notice an apparent difference between (1) and (3):
in the former formulation the nonlinearity is applied after the matrix multiplication, whereas the order
of operations is reversed in our finite difference equation. However, when we consider a deep network,
this difference essentially only effects the very first layer of the network, which is hit by the nonlinearity
in (3) before any affine transform is applied. All other layers are treated exactly the same way by both
architectures – assuming that the non-linearity is not applied to the output layer, as is customarily the case.

Hence, it does not come as a surprise that both formulations are essentially equivalent, as also pointed
out in [18]. We refer to Appendix A for a detailed analysis in our setting.

As seen in (3), instead of using continuous-time techniques, our approach consists of analyzing the
evolution of the sequence px0, . . . ,xN q, where N is the depth of the network, obtained by iteration of eq. (1)
directly at the discrete level. Seeing (3) as discretization of an ODE amounts to assuming that the weight
sequence comes from a C1-path of finite variation. There are conceptual and numerical reasons, discussed
below, that suggest a less restrictive view, formulated in the so-called p-variation scale. Recall that the
p-variation seminorm of a sequence pw0, . . . ,wN q is given by

}w}p;r0,Ns :“
˜

max
sPS0,N

#s
ÿ

j“0
|wsj`1 ´wsj |

p

¸1{p

where the maximum is taken over the set S0,N of all increasing subsequences
s “ ps0 “ 0, s1, . . . , sm, sm`1 “ Nq

of t0, . . . , Nu and we have set #s “ m for such a sequence. We use analytic techniques borrowed from
rough paths theory and the algebraic framework developed in [5] to contributes to our understanding of
stability properties of deep neural networks. We have

Theorem 1.3. Suppose x, x̃ are two solutions to eq. (9) with initial conditions ξ, ξ̃ and driven by w, w̃
respectively.

‚ Let 1 ď p ă 2 and f1, . . . , fd P C2
b. Then

sup
k“0,...,N

|xk ´ x̃k| ď 2c1{p
p,Ne

cp,N }f}
p

C2
b
}w̃}p

p;r0,Ns
p|ξ ´ ξ̃| ` }f}C2

b
}w´ w̃}p;r0,Nsq

holds, where cp,N is explicitly given in Theorem 5.4 below.
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‚ Let 2 ď p ă 3 and f1, . . . , fd P C3
b. Then

sup
k“0,...,N

|xk ´ x̃k| ď 2pc1p,N q1{pe
cp,N }f}

p

C3
b

´

|||W|||p
p;r0,Ns`|||W̃|||p

p;r0,Ns

¯

p|ξ ´ ξ̃| ` }f}C3
b
ρppW,W̃qq

holds, where cp,N is again explicitly given in Theorem 5.10 below.

The symbol W denotes the discrete signature lift of the weight sequence w appearing in eq. (3) (see
Section 4) and |||¨|||p is an appropriately defined norm on the spaces of lifts (Theorem 5.10). This inequality
holds uniformly over input data. In practice, the weight matrices are randomly initialized with random
i.i.d. values so typically the trained weights are also random. Our estimates hold pathwise, in the sense
that the depend only on a single initialization of the weight matrices. Typically the size of the constants
cp,N , c

1
p,N appearing in Theorem 1.3 can be very large, but they remain uniformly bounded as N Ñ 8

for all fixed p P r1, 3q. The fact that these constant can take on large values is also a consequence of the
pathwise nature of our estimates, in the sense that they control the worst-case behavior of the network.
We expect that under some assumptions on the distribution on the weights, some tighter control can be
obtained for the average-case behavior. In the continuous-time setting, the corresponding analysis has been
performed by e.g. Cass, Litterer and Lyons [1].

To see how our a priori estimate compares to what the C1 theory would imply, we ran a simple numerical
experiment1, by first training a ResNet128 using the MNIST dataset and then computing the p-variation
of the weights and their lift (Figure 2c). The jump observed at p “ 2 is produced by switching from the
standard p-variation norm } ¨ }p to the augmented p-variation norm |||¨|||p. To put Figure 2c into context,
note that the classical C1 analysis estimate corresponds to the case p “ 1 in our theory. (Figure 2a shows
one entry of the matrices wk plotted against the time index k as well as the same entry of the differences
wk`1 ´wk. Specifically, we plot the entry with indices p0, 0q. Similarly, Figure 2b shows the value of two
entries of the vector of nodes xk plotted against the layer k. In this case, we chose the entries with indices
0 and 32, respectively. The choices of particular entries are arbitrary.

The roughness of the driving weight matrices depicted in Figure 2a might seem surprising at first sight.
But recall the usual (random) initialization practice of the weights before the start of training: weights are
typically initialized to be independent across layers and nodes and, in the case of constant dimension d,
also identically distributed. There are several popular choices for the distribution itself, including normal
and uniform distributions. Hence, (possibly after a proper re-scaling reflecting a choice of “time”, and
possibly in some asymptotic sense) the path of initialized weight matrices correspond to a matrix-valued
Brownian motion, sampled in discrete time. As indicated by Figure 2a, the training does not seem to
fundamentally change the picture: While trained weights are certainly no longer i.i.d., they still seem to
exhibit the roughness of sample paths of a Brownian motion. We refer to [2] for an in-depth study of
scaling properties of deep residual neural networks.

Accepting that the weights of deep residual neural networks behave like Brownian motions even after
training, and considering the case of many layers (e.g., 128 layers as used in Figure 2), Figure 2c becomes
clear. Indeed, paths of Brownian motion have finite p-variation only for p ą 2 in the continuous time limit,
hence we expect explosion of the p-variation for p ă 2 even in the discrete case when the number of steps
becomes large. In particular, the C1 analysis p “ 1 is expected to yield very poor results in the case of
deep residual neural networks, if no regularization techniques are used to enforce smoothness.

The article is organized as follows. In Section 2 we review classical stability results from ODE theory
and their application to the design of stable residual architectures, and their counterparts in the discrete
setting. In Section 3 we introduce the basic tools of discrete rough analysis needed in order to extend the
previously mentioned results to the p-variation topology. Next, in Section 4 we review the algebraic theory
of the so-called iterated-sums signature of a time series. Finally in Section 5 we prove stability bounds for
residual architectures in the p-variation norms, for p P r1, 3q.

Acknowledgments. The authors gratefully acknowledge the support by the German research foundation
DFG through the cluster of excellence MATH+, projects EF1-5 and EF1-13. We are also grateful for
related discussions with Terry Lyons and Gitta Kutyniok.

1Code available on GitHub, at https://github.com/ntapiam/resnets.

https://github.com/ntapiam/resnets
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(c) p-variation norm of the weights for p P r1, 3s.

Figure 2. ResNet128 trained to MNIST data.

2. Stability in finite-variation norm

Classical analytical tools can be exploited to understand the behavior of deep ResNets by comparing
their behavior to a limiting ODE system of the form eq. (2) [6, 10, 11]. The main tool for this kind of
analysis is Grönwall’s inequality, which we now recall.

Theorem 2.1. Let u, α, β : r0, T s Ñ R be continuous functions, with α non-decreasing and minpα, 0q P L1,
such that

uptq ď αptq `

ż t

0
βpsqupsqds

for all t P r0, T s. Then

uptq ď αptq exp
ˆ
ż t

0
βpsqds

˙

for all t P r0, T s.

It is a standard result that, together with a priori bounds for solutions to eq. (2), this result implies the
following stability bound [8, Theorem 3.15].

Theorem 2.2. Let x, x̃ be solutions to the ordinary differential equation
d
dtxptq “ fpxptqq d

dtwptq
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started respectively from ξ, ξ̃ P Rn and driven by w, w̃ P C1pr0, T s,Rdq. If f P LippRn,LpRd,Rnqq, the
bound

}x´ x̃}8;r0,T s ď e2}f}Lip}w̃}1;r0,T sp|ξ ´ ξ̃| ` }f}Lip}w´ w̃}1;r0,T sq

The usefulness of these results in the previously mentioned references comes from the fact that for
smooth enough driving signals, the behavior of the discrete control system defined in eq. (3) will be well
approximated by the continuous-time limiting system. However, this relies on the assumption that the
driving path w is indeed smooth, and that we are considering enough time steps, i.e., the network is deep
enough. It turns out that in practice neither of these assumptions might be satisfied (see Figure 2a). The
main goal of this paper is to show that both these assumptions can be removed while retaining the stability
results.

In this section we show how to obtain such a bound in the finite time-horizon regime, i.e., working
directly at the discrete level. In the current literature the smoothness assumption is sometimes circumvented
by penalizing the L1 norm (or C1 in continuous-time models) of the weights during training in order to
enforce the necessary smoothness. As before, the main tool is a discrete version of Grönwall’s inequality
(see e.g. [16, Lemma A.3]).

Theorem 2.3. Let c ě 0 and ϕj and vj be non-negative sequences. If

ϕj ď c`
j´1
ÿ

i“1
viϕi

for all j ě 1, then

ϕj ď c
j´1
ź

i“1
p1` viq ď c exp

˜

j´1
ÿ

i“1
vi

¸

for all j ě 1.

Let us consider solutions x, x̃ to eq. (3), driven resp. by w, w̃ and started resp. from two different initial
conditions ξ, ξ̃ P Rm. Suppose furthermore that the vector fields fµ are Lipschitz and bounded. We denote
by Lpfq the Lipschitz constant of f : Rm Ñ Rm.

Considering the difference zk – xk ´ x̃k and letting ∆k “ wk ´ w̃k, we can immediately observe that
zk`1 ´ zk “ xk`1 ´ xk ´ px̃k`1 ´ x̃kq

“

d
ÿ

µ“1
fµpxkqpwµ

k`1 ´wµ
kq ´

d
ÿ

µ“1
fµpx̃kqpw̃µ

k`1 ´ w̃µ
kq.

Therefore

|zk`1 ´ zk| ď
d
ÿ

µ“1
|fµpxkq|

ˇ

ˇ∆µ
k`1 ´∆µ

k

ˇ

ˇ`

d
ÿ

µ“1
|fµpxkq ´ fµpx̃kq||w̃µ

k`1 ´ w̃µ
k |.

Hence, we see that
|zk`1 ´ zk| ď }f}8|∆k`1 ´∆k| ` Lpfq|zk||w̃k`1 ´ w̃k|.

Performing a telescopic sum we obtain that

|zk| ď Lpfq
k´1
ÿ

j“0
|zj ||w̃j`1 ´ w̃j | ` |z0| ` }f}8

k´1
ÿ

j“0
|∆j`1 ´∆j |.

The second term in the right-hand side is bounded by
|z0| ` }f}8}∆}1;r0,Ns.

Therefore, we obtain from Theorem 2.3 that

|zk| ď p|x0 ´ x̃0| ` }f}8}∆}1;r0,Nsq
k´1
ź

j“0
p1` Lpfq|w̃j`1 ´ w̃j |q.

Using the elementary estimate 1` x ď ex we may finally obtain

sup
k“0,...,N

|xk ´ x̃k| ď eLpfq}w̃}1;r0,Nsp|x0 ´ x̃0| ` }f}8}w´ w̃}1;r0,Nsq. (4)
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Therefore, it is possible to obtain Lipschitz stability results at the discrete-time level. In the continuous-
time case, it is possible to prove such theorems with respect to the whole range of p-variation topologies, for
any p P r1,8q. In the rest of the article we introduce the analogous techniques for treating the discrete-time
case and we show how to obtain the desired bounds for p P r1, 3q. The main difficulty in this case is
that Theorem 2.3 is not well adapted to the weaker topologies, so a new generalization is needed (see
Theorem 3.13). Indeed, directly applying Theorem 2.3 in the p-variation norm would lead to a bound like
eq. (4) constant depending on N , which is unbounded as N Ñ8.

3. Elements of rough analysis

We begin with a brief overview of classical results present in the rough analysis literature. We remark
that many of these results are usually stated in terms of continuous-time variables which introduces certain
additional difficulties. In our case, no such difficulties arise so the statements and proofs of analogous
results become simpler.

3.1. Discrete controls. We recall that in the setting of [17] a control function (or simply a control) is a
function ω : r0,8q ˆ r0,8q Ñ r0,8q which is super-additive, in the sense that ωps, uq ` ωpu, tq ď ωps, tq
for all s ă u ă t. In the continuous-time setting, the main motivation for introducing control functions is
to measure the size of the increments of a function in a more flexible way than what the natural control
ωps, tq “ |t´ s| allows.

Definition 3.1 ( [3]). A (discrete) control is a triangular array of non-negative numbers pωk,l : k ă lq
such that ωk,k “ 0 and

ωk,l ` ωl,m ď ωk,m

for all k ă l ă m

Remark 3.2. Observe that for a control ω the maps l ÞÑ ωk,l and k ÞÑ ωk,l are non-decreasing and
non-increasing, respectively. Indeed, if 0 ď k ă l ă m ď N then

ωk,l ď ωk,l ` ωl,m ď ωk,m

and
ωk,m ě ωk,l ` ωl,m ě ωl,m.

Now we collect some results on how to produce new controls out of any given control.

Lemma 3.3. Let ω be a control and ϕ : r0,8q Ñ r0,8q an increasing convex function such that ϕp0q “ 0.
Then ω̃k,l – ϕpωk,lq is also a control.

Proof. Since ϕ is convex and ϕp0q “ 0 we have that
ϕpλpx` yqq ď λϕpx` yq

for any λ P r0, 1s. Choosing λ “ x
x`y we obtain

ϕpxq ď
x

x` y
ϕpx` yq.

Similarly, ϕpyq ď y
x`yϕpx` yq so that

ϕpxq ` ϕpyq ď ϕpx` yq,

i.e. ϕ is super-additive.
Therefore, if 0 ď k ă l ă m ď N ,

ω̃k,l ` ω̃l,m “ ϕpωk,lq ` ϕpωl,mq

ď ϕpωk,l ` ωl,mq

ď ϕpωl,mq “ ω̃l,m

where the last inequality follows from the monotonicity of ϕ. �

Remark 3.4. In particular, this implies that if ω is a control, then ωα is also a control, for any α ą 1.

Lemma 3.5. Let ω, ω̃ be two controls. If α, β ą 0 are such that α` β ě 1, then ω̂k,l – ωαk,lω̃
β
k,l is also a

control.
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Proof. Let θ – α` β. By Lemma 3.3, it is enough to show that

zk,l – ω
α
θ
k,lω̃

β
θ
k,l

is a control, since then ω̂k,l “ zθk,l will also be a control. Since α
θ `

β
θ “ 1, Hölder’s inequality implies that

zk,l ` zl,m ď pωk,l ` ωl,mq
α
θ pω̃k,l ` ω̃l,mq

β
θ

ď ω
α
θ
k,mω̃

β
θ
k,m

and the proof is finished. �

3.2. p-variation. In the following we will deal with time series, which are finite sequences of vectors
w “ pw0,w1, . . . ,wN q P pRdqN . We will use the convention of indexing time steps with lower indices and
lowercase Latin letters, and spatial components with upper indices and lowercase Greek letters, so for
example wµ

k P R refers to the µ-th component of the k-th entry in the time series w. The main reason for
making this distinction is that the ranges for both sets of variables is different: indeed, note that Greek
letter indices always belong to the set t1, . . . , du, while Latin letter indices belong to the set t0, . . . , Nu.

We will also need to deal with general triangular arrays, which are collections of vectors of the form
pΞk,l : 0 ď k ă l ď Nq. For any time series we define a triangular array pwk,lq by setting wk,l :“ wl ´wk.

Definition 3.6. Given p ą 0, we define the p-variation with respect to a fixed choice of norm | ¨ | on Rd, by

}w}p;rk,ls :“
˜

max
sPSk,l

#s
ÿ

j“0
|wsj`1 ´wsj |

p

¸1{p

where the maximum is taken over the set Sk,l of all increasing subsequences
s “ ps0 “ k, s1, . . . , sm, sm`1 “ lq

of tk, k ` 1, . . . , l ´ 1, lu and we have set #s “ m for such a sequence. For a triangular array Ξ one can
also define its p-variation as

}Ξ}p;rk,ls :“
˜

sup
sPSk,l

#s
ÿ

j“0
|Ξsj ,sj`1 |

p

¸1{p

.

We observe that in the case where Ξk,l “ wl ´wk both definitions coincide.
Since the trivial sequence pk, lq P Sk,l we obtain immediately the bound

|Ξk,l| ď ‖Ξ‖p;rk,ls (5)
for any p ą 0. In the particular case where Ξk,l “ wl ´wk we also obtain

}w}8 – sup
k“0,...,N

|wk| ď |w0| ` }w}p;r0,Ns.

Proposition 3.7. Let Ξ be a triangular array and p ě 0. Then ωk,l :“ }Ξ}pp;rk,ls is a control.

Proof. Indeed, if s1 P Sk,l and s2 P Sl,m then s “ ps1, s2q P Sk,m and so
#s1
ÿ

j“0
|Ξsj ,sj`1 |

p `

#s2
ÿ

j1“0
|Ξs1

j1
,s1
j1`1
|p ď }Ξ}pp;k,m

and super-additivity follows from taking the supremum over Sk,l and Sl,m. �

Remark 3.8. Since the set Sk,l is finite, the p-variation norm of Ξ is finite for any p ą 0 and triangular
array Ξ. This should be contrasted with the usual setting for rough paths, where one deals with paths in
continuous time; in that setting, the p-variation norm can become infinite and this introduces a number of
analytical problems which are not present in the present context.

Remark 3.9. The p-variation defines a quasi-norm for 0 ă p ă 1 (i.e. the triangle inequality fails), and a
semi-norm for p ě 1 on time series, since all constant sequences have vanishing p-variation. For p ě 1, it
becomes a norm on triangular arrays.

Lemma 3.10. Let 0 ď p ă q ă 8. Then ‖Ξ‖q;rk,ls ď ‖Ξ‖p;rk,ls
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Proof. Observe that, since q
p ą 1, the inequality

#s
ÿ

j“0
|Ξsj ,sj`1 |

q ď

˜#s
ÿ

j“0
|Ξsj ,sj`1 |

p

¸q{p

holds for any s P Sk,l. �

Given a triangular array Ξ, we define another collection pδΞk,l,m : 0 ď k ă l ă mq by
δΞk,l,m :“ Ξk,m ´ Ξk,l ´ Ξl,m.

In the special case where Ξk,l “ wl ´wk we see that δΞk,l,m “ 0. The operator δ satisfies the following
product rule: if w is a time series and Ξ is a triangular array, consider the triangular array Zk,l – wkΞk,l.
Then

δZk,l,m “ wkδΞk,l,m ´wk,lΞl,m. (6)
Finally we collect here some standard results for further reference.

Lemma 3.11. Let Ξ be a triangular array and p ě 0. Suppose there is a control w such that

|Ξk,l| ď Cω
1{p
k,l

for all 0 ď k ă l ď N and some constant C ą 0. Then,

}Ξ}p;rk,ls ď Cω
1{p
k,l

for all 0 ď k ă l ď N .

Proof. By hypothesis the inequality
|Ξk,l|p ď Cpωk,l

holds for all 0 ď k ă l ď N . By superadditivity of w, if s P Sk,l then also
#s
ÿ

j“0
|Ξsj ,sj`1 |

p ď Cpωk,l.

The desired bound follows upon taking the maximum over s P Sk,l. �

Lemma 3.12. Assume that p ě 1 and
|xk,l| ď Cω

1{p
k,l

for all 0 ď k ă l such that ωk,l ď 1 or if l “ k ` 1. Then

}x}p;rk,ls ď 2Cpω1{p
k,l _ ωk,lq

for all 0 ď k ă l.

Proof. We show that the inequality |xk,l| ď Cω̃
1{p
k,l holds for all 0 ď k ă l ď N , where ω̃k,l – ωpk,l _ ωk,l

which is a control by Lemma 3.3. The conclusion then follows from Lemma 3.11.
If k ă l are such that ωk,l ď 1 then there is nothing to show, since in this case ω̃1{p

k,l “ ω
1{p
k,l . Suppose

now that k ă l are such that ωk,l ą 1. Inductively define j0 “ k ă j1 ă ¨ ¨ ¨ ă jM ă jM`1 “ l by setting
ju`1 – maxtj ą ju : ωju,j ď 1u ^ pju ` 1q.

By super-additivity of ω we immediately get that M ` 1 ď 2ωk,l. Also, by definition |xju,ju`1 | ď Cω
1{p
ju,ju`1

for u “ 0, 1, . . . , r. Thus, by the triangle inequality we obtain that

|xk,l| ď C
M
ÿ

u“0
ω

1{p
ju,ju`1

ď CpM ` 1q
ď 2Cωk,l
“ 2Cω̃1{p

k,l . �

Finally, we show the following result, known as the rough Grownall Lemma. It is a slight variation
of [4, Lemma 2.12], adapted to our particular setting.
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Theorem 3.13. Let z be a time series and suppose there exist controls ω, ω̃ such that

|zk,l| ď C

ˆ

max
j“0,...,l

|zj |
˙

ω
1{κ
k,l ` ω̃

1{ρ
k,l

whenever ωk,l ď L or l “ k ` 1, for some constants C ą 0 and κ, ρ ě 1. Then,

max
j“0,...,N

|zj | ď 2 exp
´ω0,N

αL

¯

"

|z0| ` max
j“0,...,N

ˆ

ω̃
1{ρ
0,j

´

1` 2ω0,j

αL

¯1´1{ρ
exp

´

´
ω0,j

αL

¯

˙*

where α– minp1, 1
Lp2Ce2qκ

q.

Proof. Define the sequences

Gk – max
j“0,...,k

|zj |, Hk – Gk exp
´

´
ω0,k

αL

¯

, H˚k – max
j“0,...,k

Hj .

Subdivide the interval t0, . . . , Nu into j0 “ 0 ă j1 ă ¨ ¨ ¨ ă jK ă jK`1 “ N where ju is the largest integer
in tju´1 ` 1, . . . , Nu such that ωju´1,ju ď αL or ju “ ju´1 ` 1 if such an integer does not exist. We note
that by subadditivity we necessarily have, for each u “ 1, . . . ,K, that

u ď 1` 2ω0,ju
αL

.

Indeed, by definition we have that for each r, ωjr´1,jr`1 ą αL, hence if j P tju´1 ` 1, . . . , juu we have

0 ď ωju´1`1,j ď 2ω0,j ´
u´2
ÿ

r“0
ωjr,jr`1`1 ď 2ω0,j ´ αLpu´ 1q,

that is,
u ď 1` 2ω0,j

αL
.

Now, for ju´1 ă j ď ju we have

|z0,j | ď
u´2
ÿ

r“0
|zjr,jr`1 | ` |zju´1,j |

ď

u´2
ÿ

r“0

´

CGtr`1ω
1{κ
jr,jr`1

` ω̃
1{ρ
jr,jr`1

¯

` CGjω
1{κ
ju´1,j

` ω̃
1{ρ
ju´1,j

ď CpαLq1{κ
u´1
ÿ

r“0
Gjr`1 ` u

1´1{ρω̃
1{ρ
0,j .

We bound the first term on the right-hand side by
u´1
ÿ

r“0
Gjr`1 “

u´1
ÿ

r“0
Hjr`1 exp

´ω0,jr`1

αL

¯

ď H˚N

u
ÿ

r“1
er

ď H˚Neu`1.

Combining this with the previous bound we obtain

Gj ď |z0| ` CpαLq
1{κeu`1H˚N ` u

1´1{ρω̃
1{ρ
0,j

and so

Hj ď

ˆ

|z0| ` ω̃
1{ρ
0,j

´

1` 2ω0,j

αL

¯1´1{ρ
˙

exp
´

´
ω0,j

αL

¯

` CpαLq1{κe2H˚N .

This implies that

H˚N ď |z0| ` max
j“0,...,N

"

ω̃
1{ρ
0,j

´

1` 2ω0,j

αL

¯1´1{ρ
exp

´

´
ω0,j

αL

¯

*

` CpαLq1{κe2H˚N
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and so, by our choice of α we obtain

max
j“0,...,N

|zj | “ GN ď H˚N exp
´ω0,N

αL

¯

ď 2 exp
´ω0,N

αL

¯

"

|z0| ` max
j“0,...,N

ˆ

ω̃
1{ρ
0,j

´

1` 2ω0,j

αL

¯1´1{ρ
exp

´

´
ω0,j

αL

¯

˙*

and we are done. �

3.3. The Sewing Lemma. At the core of the theory of rough integration lies the Sewing Lemma [7,9].
Therefore, it is tightly connected with the solution theory of differential equations driven by rough signals.
Since our main aim is to perform a precise analysis of the behavior of discrete equations driven by irregular
time-series, it is no doubt that its discrete analogue will play a prominent rôle here as well.

We begin by showing some preliminary results.

Lemma 3.14. Suppose s P Sk,l of length #s “ m. For any given control ω, there exists an integer j˚ with
1 ď j˚ ď m such that

ωsj˚´1,sj˚`1
ď

2
m
ωk,l.

Proof. Suppose, on the contrary, that for any 1 ď j ď m we have that

ωsj´1,sj`1 ą
2
m
ωk,l.

Then this would imply that

2ωk,l ă
m
ÿ

j“1
ωsj´1,sj`1 ď 2ωk,l

by super-additivity, which is a contradiction. �

Proposition 3.15 (Discrete sewing). Let pΞk,l : 0 ď k ď l ď Nq be a triangular array, and suppose that
there exist two controls ω and ω̃ such that

|δΞk,l,m| ď ωαk,lω̃
β
l,m

for some α, β ą 0 with α` β ą 1, and for all 0 ď k ă l ď N . Then∣∣∣∣∣ l´1
ÿ

j“k

Ξj,j`1 ´ Ξk,l

∣∣∣∣∣ ď 2pα`βqζN pα` βqωαk,lω̃
β
k,l

for all 0 ď k ă l ď N , where ζN denotes the partial sum of Riemann’s zeta function

ζN psq–
N
ÿ

n“1
n´s.

Proof. By Remark 3.2 we deduce that |δΞk,l,m| ď ωαk,mω̃
β
k,m, and Lemma 3.5 implies that ω̂ :“ ω

α
θ ω̃

β
θ is a

control.
Now we apply a Young-style argument to estimate the above difference. First we observe that if l´k “ 1

then the bound is trivial since the left-hand side vanishes. Therefore we assume that l ´ k ě 2. By
Lemma 3.14 we can find an index k ă j˚ ă l such that

ω̂j˚´1,j˚`1 ď
2

pl ´ k ´ 1q ω̂k,l.

Hence, if we denote by s :“ pk, k ` 1, . . . , j˚ ´ 1, j˚ ` 1, . . . , lq we have∣∣∣∣∣ l´1
ÿ

j“k

Ξj,j`1 ´
ÿ

s

Ξsj ,sj`1

ˇ

ˇ

ˇ

ˇ

ˇ

“ |δΞj˚´1,j˚,j˚`1| ď

ˆ

2
l ´ k ´ 1

˙θ

ω̂θk,l.

Then we can apply Lemma 3.14 again to the sequence s to obtain a “coarser” sequence s1, containing one
less point, and such that ∣∣∣∣∣ÿ

s

Ξsj ,sj`1 ´
ÿ

s1

Ξs1
j
,s1
j`1

∣∣∣∣∣ ď
ˆ

2
l ´ k ´ 2

˙θ

ω̂θk,l.
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Continuing in this way we obtain a sequence of coarsenings of the full sequence until we get to s˚ “ pk, lq,
and by using the triangular inequality we then deduce the estimate∣∣∣∣∣ l´1

ÿ

j“k

Ξj,j`1 ´ Ξk,l

∣∣∣∣∣ ď 2θ
l´k´1
ÿ

r“1

1
rθ
ω̂θk,l

from where the conclusion follows. �

We will also need the following generalization of the Sewing Lemma, whose proof is straightforward.

Proposition 3.16 (Generalized discrete sewing). Suppose that Ξ is a triangular array as before. Suppose
that there are controls ωr and ω̃r, and exponents αr, βr ą 0 such that αr ` βr ą 1 for all r “ 1, . . . , n. If

|δΞk,l,m| ď
n
ÿ

r“1
ωαrr;k,lω̃

βr
r;l,m

then ∣∣∣∣∣ l´1
ÿ

j“k

Ξj,j`1 ´ Ξk,l

∣∣∣∣∣ ď 2θ̂ζN pθ̂q
n
ÿ

r“1
ωαrr;k,lω̃

βr
r;k,l

where θ̂ – min
r“1,...,n

tαr ` βru.

4. Lifting time series

Inspired by the theory of rough paths, we introduce an augmentation or lift of a given time series w.
Recall that the convention of using lowercase Latin letters as sub-indices to index time, and lowercase
Greek letters to index spatial components is in place.

Definition 4.1. Given a time series w, we call its lift the triangular array of d-by-d matrices W defined by

Wµν
k,l –

l´1
ÿ

j“k

pwµ
j ´wµ

kqpw
ν
j`1 ´wν

j`1q.

We write W – pw,Wq.

The main purpose of this lift is to provide “second order information” about the time series. It is, first
of all, a discrete analogue of an iterated integral as in the rough path setting, but it may be interpreted as
a generalized quadratic covariation of the components of w. The lift W is part of a much larger structure,
known as the iterated-sums signature of w [5].

We now record a basic property of W for later use:

Theorem 4.2. The time series lift W of a time series w satisfies Chen’s identity: for all indices
0 ď k ă l ă m ď N and µ, ν P t1, . . . , du we have

δWµν
k,l,m “ wµ

k,lw
ν
l,m.

Given p P r2, 3q, a pair W “ pw,Wq consisting of a time series and its lift, and indices 0 ď k ď l ď N ,
we define a semi-norm

|||W|||p;rk,ls – }w}p;rk,ls ` }W}
1{2
p{2;rk,ls, (7)

and a pseudometric

ρppW,W̃q– }w´ w̃}p;r0,Ns ` }W´ W̃}p{2;r0,Ns. (8)

We note that both can be turned into a proper norm (resp. metric) if we add the absolute value of the
initial value.
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5. Controlled difference equations

In this section we consider equations of the form

xk`1 “ xk `
d
ÿ

µ“1
fµpxkqpwµ

k`1 ´wµ
kq, x0 “ ξ P Rm (9)

for some vector fields f1, . . . , fd on Rm, and where k ranges between 0 and some fixed time horizon n P N.
Our main aim is to obtain some control over the size of the end-point value xn of the solution.

In view of the previous sections, and in particular of the bound in eq. (5), we will try to obtain good
estimates for the p-variation norm }x}p;r0,ns. Of course, such estimates will require some assumptions on
the vector fields. It turns out that we will not only be able to control the “large scale” behavior of x, but
we will also obtain a cascade of estimates of some remainder terms, reminiscent of a Taylor expansion.

The techniques needed to obtain those bounds will depend crucially on p P r1,8q. At first, we distinguish
two basic regimes: p P r1, 2q and p P r2,8q. By analogy with the rough paths literature, we call the former
the young regime, and the latter the rough regime – even though there is strictly no notion of roughness in
our setting. The rough regime can be further subdivided into the cases where p P rn, n` 1q, which we call
the level n rough regime. The terminology will make itself clear later down the road.

A central tool for constructing solutions to ODEs driven by rough paths are the so-called controlled
paths, introduced by Gubinelli [9]. See also [12]. In a nutshell, the notion of “controlledness” contains all
the necessary analytical estimates needed for the definition of a rough integral which then is used to give
sense to solutions of Rough Differential Equations. In the present setting no such definition is needed since
there are no divergences appearing from considering eq. (9). Nonetheless, we can still derive similar bounds.
Note however that in our case the estimates are proven rather than assumed.

Given a vector field f : Rm Ñ Rm of class Cnb , i.e. it and all its derivatives up to order n are bounded,
we define

}f}Cnb – max
k“1,...,n

}Dkf}8.

If f “ pf1, . . . , fdq is a collection of vector fields on Rn of class Cnb (or, equivalently, a map in Cnb pRn,Rdnq),
we define

}f}Cnb – max
µ“1,...,d

}fµ}Cnb .

Lemma 5.1. Suppose f P C2
b and let x, x̃ be two time series. Then

}fpxq ´ fpx̃q}p;rk,ls ď 2pp´1q{p}f}C2
b

´

}x´ x̃}pp;rk,ls ` }x̃}
p
p;rk,ls}x´ x̃}p

8;r0,ls

¯1{p
.

Furthermore, if f P C3
b and we let

Tk,l – fpxlq ´ fpxkq ´Dfpxkqδxk,l
and similarly for x̃, then

}T ´ T̃ }p{2;rk,ls ď 2pp´2q{p}f}C3
b

”

}x´ x̃}pp;rk,lsp}x}
p
p;rk,ls ` }x̃}

p
p;rk,lsq

1{2 ` }x̃}pp;rk,ls}x´ x̃}p{2
8;r0,ls

ı2{p

Proof. Suppose first that f P C1
b. By the Fundamental Theorem of Calculus we may write

fpxlq ´ fpxkq “
ż 1

0
Dfpxk ` τδxk,lqδxk,l dτ.

Therefore, by adding and subtracting cross terms, we see that

|fpxlq ´ fpxkq ´ pfpx̃lq ´ fpx̃kqq| ď
ż 1

0
|Dfpxk ` τδxk,lqpδxk,l ´ δx̃k,lq|dτ

`

ż 1

0
|pDfpxk ` τδxk,lq ´Dfpx̃k ` τδx̃k,lqqδx̃k,l|dτ

The right-hand side is bounded by

}f}C2
b
p}x´ x̃}p;rk,ls ` }x̃}p;rk,ls}x´ x̃}8;r0,lsq ď 21´1{p}f}C2

b

´

}x´ x̃}pp;rk,ls ` }x̃}
p
p;rk,ls}x´ x̃}p

8;r0,ls

¯1{p
,

and the result follows from Lemma 3.11.
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Now, assume that f P C2
b. By iterated application of the Fundamental Theorem of Calculus we may now

write

Tk,l “

ż 1

0

ż τ

0
D2fpxk ` νδxk,lqpδxk,l, δxk,lqdνdτ.

Inserting appropriate cross terms we obtain

|Tk,l ´ T̃k,l| ď

ż 1

0

ż τ

0

∣∣D2fpxk ` νδxk,lqpδxk,l, δxk,lq ´D2fpxk ` νδxk,lqpδx̃k,l, δx̃k,lq
∣∣ dνdτ

`

ż 1

0

ż τ

0

∣∣“D2fpxk ` νδxk,lq ´D2fpx̃k ` νδx̃k,lq
‰

pδx̃k,l, δx̃k,lq
∣∣ dνdτ.

We now note that by symmetry of D2fpxq, it holds that for any a,b P Rn we have the identity
D2fpxqpa,aq ´D2fpxqpb,bq “ D2fpxqpa ´ b,a ` bq.

Hence, the first term may be bounded by

}f}C3
b
21´1{p

!

}x´ x̃}p{2p;rk,lsp}x}
p
p;rk,ls ` }x̃}

p
p;rk,lsq

1{2
)2{p

.

The second term can be bounded, as before, by

}f}C3
b

´

}x̃}pp;rk,ls}x´ x̃}p{2
8;r0,ls

¯2{p
.

Putting both terms together and proceeding as before we obtain the bound

}T ´ T̃ }p{2;rk,ls ď 21´2{p}f}C3
b

”

}x´ x̃}p{2p;rk,lsp}x}
p
p;rk,ls ` }x̃}

p
p;rk,lsq

1{2 ` }x̃}pp;rk,ls}x´ x̃}p{2
8;r0,ls

ı2{p
. �

5.1. The Young regime. In this regime, we can easily obtain good bounds with minimal assumptions on
the fi. These bounds have already been shown by Davie [3], but it will be an enlightening exercise to go
through the proof in full details, since it will lay the foundations for our approach in the rough regime.
Also, our methods are slightly different and already in this case they highlight the importance of the rôle
played by the Sewing Lemma (Propositions 3.15 and 3.16) and the rough Grönwall lemma (Theorem 3.13).

Before beginning we define the remainder

Rk,l – xk,l ´
d
ÿ

µ“1
fµpxkqwµ

k,l (10)

so that

xk,l “
d
ÿ

µ“1
fµpxkqwµ

k,l `Rk,l.

Theorem 5.2. Let 1 ď p ă 2, and suppose that f “ pf1, . . . , fdq is a collection of vector fields in Rn, of
class C1

b. The bound
}x}p;rk,ls ď 2

´

2pCp´1
p,N }f}

p
C1

b
}w}pp;rk,ls _ 2}f}C1

b
}w}p;rk,ls

¯

(11)

holds, with
Cp,N – 22{pζN p2{pq.

Proof. Consider the triangular array Ξk,l –
ř

µ fµpxkqw
µ
k,l. By eq. (6) we immediately see that

δΞk,l,m “ ´
d
ÿ

µ“1
pfµpxlq ´ fµpxkqqwµ

l,m,

so that the usual Lipschitz bound implies
|δΞk,l,m| ď }f}C1

b
‖x‖p;rk,ls}w}p;rk,ls,

and the hypothesis of Proposition 3.15 is satisfied since 2{p ą 1. Thus, we obtain∣∣∣∣∣ l´1
ÿ

j“k

Ξj,j`1 ´ Ξk,l

∣∣∣∣∣ ď Cp,N }f}C1
b
‖x‖p;rk,ls}w}p;rk,ls.
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with Cp,N – 22{pζN p2{pq. Now, we observe that by eq. (9),
l´1
ÿ

j“k

Ξj,j`1 “ xk,l

thus obtaining
|Rk,l| ď Cp,N‖f‖C1

b
‖x‖p;rk,ls}w}p;rk,ls. (12)

By Lemma 3.11, the same bound holds if we replace |Rk,l| on the left-hand side by ‖R‖p{2;rk,ls.
Using the relation between the remainder R and the increments of x we get

|xk,l| ď Cp,N‖f‖C1
b
‖x‖p;rk,ls}w}p;rk,ls ` ‖f‖C1

b
}w}p;rk,ls

for all 0 ď l ă k ď N . We deduce that

‖x‖pp;rk,ls ď 2p´1Cpp}f}
p
C1

b
‖x‖pp;rk,ls}w}

p
p;rk,ls ` 2p´1}f}pC1

b
}w}pp;rk,ls.

If we now consider a pair k ă l such that ω̄1{p
k,l – 2Cp,N }f}C1

b
}w}p;rk,ls ď 1, we obtain

‖x‖pp;rk,ls ď 2p}f}pC1}w}pp;rk,ls “ C´pp,N ω̄k,l

for all such pk, lq. In particular
|xk,l| ď C´1

p,N ω̄
1{p
k,l .

By eq. (9) the same inequality also holds when l “ k ` 1. From Lemma 3.12 we then get

}x}p;rk,ls ď 3C´1
p,N

´

ω̄k,l _ ω̄
1{p
k,l

¯

“ 3C´1
p

´

2p}f}pC1
b
Cpp,N }w}

p
p;rk,ls _ 2}f}C1

b
Cp,N }w}p;rk,ls

¯

from where the result follows. �

Remark 5.3. The hypothesis on the vector fields f , namely f P C1
b, can be relaxed to f P Lipγ´1 for some

γ P pp, 2s, meaning that f need not be differentiable but we merely need the existence of positive constant
L such that

|fpxq ´ fpx̃q| ď L|x´ x̃|γ´1

for all x, x̃ P Rn.

Finally we show that

Theorem 5.4. Let 1 ď p ă 2 and suppose x, x̃ are two solutions to eq. (9) with initial conditions ξ, ξ̃ and
driven by w, w̃ respectively. If furthermore f1, . . . , fd P C2

b are such that maxµ“1,...,d }fµ}C2
b
ď L, then

sup
k“0,...,N

|xk ´ x̃k| ď 2c1{p
p,Ne

cp,NL
p
p}w}p

p;r0,Ns`}w̃}
p

p;r0,Nsqp|ξ ´ ξ̃| ` L}w´ w̃}p;r0,Nsq

holds, where
cp,N – p4e2qpp4p´1Cpp,N ` 1q

and Cp,N is as in Theorem 5.2.

Proof. In order to make the notation more compact we also define the controls

εk,l – }w´ w̃}pp;rk,ls, ωk,l – }w}pp;rk,ls ` }w̃}
p
p;rk,ls.

Now, we define zk – xk ´ x̃k and notice that

|zk,l| ď |Rk,l ´ R̃k,l| `
d
ÿ

µ“1
|fµpxkqwk,l ´ fµpx̃kqw̃k,l|.

For the second term we have the bound
d
ÿ

µ“1
|fµpxkqwµ

k,l ´ fµpx̃kqw̃
µ
k,l| ď }f}8ε

1{p
k,l ` }Df}8|zk|}w̃}p;rk,ls

ď L
´

ε
1{p
k,l ` |zk|}w̃}p;rk,ls

¯

.
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To bound the first term, we use the Sewing Lemma with the germ Ξk,l –
ř

µ fµpxkqw
µ
k,l´

ř

µ fµpx̃kqw̃
µ
k,l.

First we compute

δΞk,l,m “ ´
d
ÿ

µ“1
pfµpxlq ´ fµpxkqqwµ

l,m ´

d
ÿ

µ“1
pfµpx̃lq ´ fµpx̃kqqw̃µ

l,m

so that

|δΞk,l,m| ď }f}C1
b
}x}p;rk,lsε

1{p
l,m `

d
ÿ

i“1
}fµpxq ´ fµpx̃q}p;rk,ls}w̃µ}p;rl,ms

ď L}x}p;rk,lsε
1{p
l,m ` max

µ“1,...,d
}fµpxq ´ fµpx̃q}p;rk,ls}w̃}p;rl,ms

Hence by Lemma 5.1
ˇ

ˇ

ˇ

ˇ

ˇ

l´1
ÿ

j“k

Ξj,j`1 ´ Ξk,l

ˇ

ˇ

ˇ

ˇ

ˇ

“ |Rk,l ´ R̃k,l|

ď 21´1{pLCp,N

ˆ

}x}p;rk,lsε
1{p
k,l `

´

}z}p
8;rk,ls}x̃}

p
p;rk,ls ` }z}

p
p;rk,ls

¯1{p
}w̃}p;rk,ls

˙

.

Now, on the one hand, we see that

|zk,l| ď |Rk,l ´ R̃k,l| `
d
ÿ

µ“1
|fµpxkqwµ

k,l ´ fµpx̃kqw̃
µ
k,l|

ď |Rk,l ´ R̃k,l| ` L
`

}z}8;rk,ls}w̃}p;rk,ls ` εk,l
˘

,

so the bound

}z}p;rk,ls ď 81´1{pLCp,N

!

}x}pp;rk,lsεk,l `
´

}z}p
8;rk,ls}x̃}

p
p;rk,ls ` }z}

p
p;rk,ls

¯

}w̃}pp;rk,ls ` }z}
p
8;r0,ls}w̃}

p
p;rk,ls ` εk,l

)1{p

holds. Therefore, for any pair of indices k ă l such that 8p´1LpCpp,Nωk,l ď
1
2 , we have that

}z}pp;rk,ls ď 23p´2LpCpp,N

´

1` }x}pp;rk,ls

¯

εk,l ` }z}p8;rk,lsp2
3p´2LpCpp,N }w̃}

p
p;rk,ls ` }x̃}

p
p;rk,lsq.

By the a priori estimate in Theorem 5.2, we see that

}x}p;rk,ls ď 2L}w}p;rk,ls, }x̃}p;rk,ls ď 2L}w̃}p;rk,ls

so that
}z}pp;rk,ls ď Apεk,l `Ap}z}p8;r0,lsωk,l.

where Ap – 2pLpp4p´1Cpp,N ` 1q.
On the other hand, when l “ k ` 1 we have

|zk`1 ´ zk| ď
d
ÿ

µ“1

ˇ

ˇ

ˇ
fµpxkqwµ

k,k`1 ´ fµpx̃kqw̃
µ
k,k`1

ˇ

ˇ

ˇ

ď A1{p
p ε

1{p
k,l `A

1{p
p }z}8;r0,k`1s}w̃}p;rk,ls

Finally, by using Theorem 3.13 we obtain

|xN ´ x̃N | ď 2cp,Necp,N }w̃}
p

p;r0,Ns
`

|ξ ´ ξ̃| ` }w´ w̃}p;r0,Ns
˘

where we have used that x ÞÑ p1` cxqαe´x is decreasing over r0,8q as long as cα ď 1, and

cp,N – 2pe2pAp. �

Remark 5.5. As before, the hypothesis on the vector fields can be relaxed to requiring that f P Lipγ for
some γ P pp, 2s. In this case this means that f P C1

b and there is a constant L ą 0 such that

}Dfpxq ´Dfpx̃q} ď L|x´ x̃|γ´1

for all x, x̃ P Rn.



STABILITY OF DEEP NEURAL NETWORKS VIA DISCRETE ROUGH PATHS 16

5.2. The case of 2 ď p ă 3. We show analogues of the results in the previous section for the case where
now we take p P r2, 3q.

We keep the previous notations, i.e., we consider eq. (9) and but redefine R in eq. (10) as

Rk,l – xk,l ´
d
ÿ

µ“1
fµpxkqwµ

k,l ´

d
ÿ

µ,ν“1
DfνpxkqfµpxkqWµν

k,l, (13)

and we furthermore consider

Ik,l – xk,l ´
d
ÿ

µ“1
fµpxkqwµ

k,l (14)

Jµk,l – fµpxlq ´ fµpxkq ´
d
ÿ

ν“1
Dfµpxkqfνpxkqwν

k,l (15)

“ fµpxlq ´ fµpxkq ´Dfµpxkqδxk,l `DfµpxkqIk,l. (16)

where in eqs. (13) and (15), W denotes the iterated-sums lift of w.

Definition 5.6. For µ, ν P t1, . . . , du we define the vector field Fµν : Rn Ñ Rn

Fµνpxq :“ Dfνpxqfµpxq.

Observe that by successive application of the chain rule one can show that if

}Fµν}Ckb
ď p2k`1 ´ 1q}f}2

Ck`1
b

for all k ě 0 as long as the norm on the right-hand side is finite.

Lemma 5.7. Let p P r2, 3q and f P C2
b. The bound

max
µ“1,...,d

}Jµ}p{2;rk,ls ď 21´2{p}f}C2
b

ˆ

}I}
p{2
p{2;rk,ls `

1
2}x}

p
p;rk,ls

˙2{p
.

holds.

Proof. Performing a first-order Taylor expansion on fi we see that

Jµk,l “ Dfµpxkq

˜

xk,l ´
d
ÿ

ν“1
fνpxkqwν

k,l

¸

`
1
2D

2fµpxk ` θxk,lqpxk,l,xk,lq

for some θ P p0, 1q. Thus

|Jµk,l| ď }f}C2
b

ˆ

|Ik,l| `
1
2 |xk,l|

2
˙

ď 21´p{2}f}C2
b

ˆ

}I}
p{2
p{2;rk,ls `

1
2}x}

p
p;rk,ls

˙2{p
.

The proof is concluded by applying Lemma 3.11. �

Theorem 5.8. Let p P r2, 3q, and suppose that x solves eq. (9) with f P C2
b. The bounds

}x}p;rk,ls ď Kpp|||W|||pp;rk,ls _ |||W|||p;rk,lsq

}I}p{2;rk,ls ď K 1pp|||W|||2pp;rk,ls _ |||W|||2p;rk,lsq

hold, with

Kp – 9ˆ 26p1´1{pq
´

1_ 61´1{p8p1´1{pqp1´2{pqC
1´1{p
p,N

¯

, K 1p – 3ˆ 21´2{p`1`K2
p

˘

.

Proof. As before, by scaling we may assume that }f}C2
b
ď 1. Consider the triangular array

Ξk,l –
d
ÿ

µ“1
fµpxkqwµ

k,l `

d
ÿ

µ,ν“1
FµνpxkqWµν

k,l.
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We immediately see that

δΞk,l,m “ ´
d
ÿ

µ“1

´

fµpxlq ´ fµpxkq
¯

wµ
l,m `

d
ÿ

µ,ν“1

!

Fµνpxkqwµ
k,lw

ν
l,m ´

`

Fµνpxlq ´ Fµνpxkq
˘

Wµν
l,m

)

“ ´

d
ÿ

µ“1
Jµk,lw

µ
k,l ´

d
ÿ

µ,ν“1

`

Fµνpxlq ´ Fµνpxkq
˘

Wµν
l,m.

Since f P C2
b, the function Fµν is in C1

b for all µ, ν P t1, . . . , du and }Fµν}C1
b
ď 3. Therefore, we have the

p-variation estimate
}Fµνpxq}p;rk,ls ď 3}x}p;rk,ls.

Hence, we see that

|δΞk,l,m| ď
d
ÿ

µ“1
}Jµ}p{2;rk,ls}wµ}p;rl,ms ` 3}x}p;rk,ls

d
ÿ

µ,ν“1
}Wµν}p{2;rl,ms.

By Proposition 3.16 we see that

|Rk,l| ď 3Cp,N

˜

d
ÿ

µ“1
}Jµ}p{2;rk,ls}wµ}p;rk,ls ` }x}p;rk,ls}W}p{2;rk,ls

¸

. (17)

Now we note that

|Ik,l| ď |Rk,l| `
d
ÿ

µ,ν“1

ˇ

ˇ

ˇ
FµνpxkqWµν

k,l

ˇ

ˇ

ˇ
ď |Rk,l| ` }W}p{2;rk,ls

so that, by eq. (17) and Lemma 5.7, we obtain

|Ik,l| ď 3ˆ 21´2{pCp,N

!

p}I}
p{2
p{2;rk,ls ` }x}

p
p;rk,lsq

2{p}w}p;rk,ls ` }x}p;rk,ls}W}p{2;rk,ls

)

` }W}p{2;rk,ls

ď 3ˆ 41´2{pCp,N

!

p}I}
p{2
p{2;rk,ls ` }x}

p
p;rk,lsq}w}

p{2
p;rk,ls ` }x}

p{2
p;rk,ls}W}

p{2
p{2;rk,ls

)2{p
` }W}p{2;rk,ls.

Taking p
2 -variation we obtain

}I}p{2;rk,ls ď 3ˆ81´2{pCp,N

!

p}I}
p{2
p{2;rk,ls ` }x}

p
p;rk,lsq}w}

p{2
p;rk,ls ` }x}

p{2
p;rk,ls}W}

p{2
p{2;rk,ls

)2{p
`21´2{p}W}p{2;rk,ls.

If 0 ď k ă l ď N are such that 3ˆ 81´2{pCp,N |||W|||p;rk,ls ď
1
2 then

}I}p{2;rk,ls ď 3ˆ 21´2{pp}x}2p;rk,ls ` }W}p{2;rk,lsq. (18)

Finally, noting that

|xk,l| ď |Ik,l| `
d
ÿ

µ“1
|fµpxkqwµ

k,l| ď }I}p{2;rk,ls ` }w}p;rk,ls.

we obtain, by taking p-variation, that

}x}p;rk,ls ď 21´1{pp}I}p{2;rk,ls ` }w}p;rk,lsq

ď 3ˆ 22´3{p}x}2p;rk,ls ` 3ˆ 22´3{p}W}p{2;rk,ls ` 21´1{p}w}p;rk,ls.

Let c1 – 3ˆ 22´3{p, c2 – 21´1{p. Multiplying both sides by c1 and using our hypothesis on the interval
rk, ls we obtain that

c1}x}p;rk,ls ď pc1}x}p;rk,lsq
2 ` c1pc1 ` c2q|||W|||p;rk,ls.

Set c – c1pc1 ` c2q. Reducing further the size of the interval if necessary, we may assume that c1pc1 `
c2q|||W|||p;rk,ls ď

1
4 , so that we must necessarily have that one of the following inequalities hold:

4}x}p;rk,ls ě
1`

b

1´ 4c|||W|||p;rk,ls

2 ě
1
2 , 4}x}p;rk,ls ď

1´
b

1´ 4c|||W|||p;rk,ls

2 ď 2c|||W|||p;rk,ls.

In fact, the second inequality holds if }x}p;rk,ls ď
1
8 . Applying Lemma 3.12, we obtain

}x}p;rk,ls ď Kp

´

|||W|||p;rk,ls _ |||W|||pp;rk,ls

¯
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with
Kp – 9ˆ 26p1´1{pq

´

1_ 61´1{p8p1´1{pqp1´2{pqC
1´1{p
p,N

¯

.

This shows the first estimate.
Now replace this bound in eq. (18) and use the fact that }W}p{2;rk,ls ď |||W|||2p;rk,ls to obtain

}I}p{2;rk,ls ď 3ˆ 21´2{p`1`K2
p

˘

|||W|||2p;rk,ls

�

Finally, we prove our main result, namely the stability bound for the evolution of features through the
network. But first, we extend Lemma 5.7 to bound the difference of the remainders J and J̃ for solutions
of difference equations driven by different noises.

Lemma 5.9. Let x and x̃ be solutions to eq. (9) driven by w and w̃, respectively. Then, for all 0 ď k ă
l ď N we have

max
µ“1,...,d

}Jµ ´ J̃µ}p{2;rk,ls ď 22´4{p}f}C3
b

!

}I ´ Ĩ}p{2;rk,ls ` }x´ x̃}8;r0,ls

´

}Ĩ}p{2;rk,ls ` }x̃}2p;rk,ls

¯

` }x´ x̃}p;rk,lsp}x}p;rk,ls ` }x̃}p;rk,lsq
)

Proof. Using eq. (16) we see that

Jµk,l ´ J̃
µ
k,l “ Tµk,l ´ T̃

µ
k,l `Bk,l

where,
Bk,l – DfµpxkqIk,l ´Dfµpx̃kqĨk,l,
Tµk,l – fµpxlq ´ fµpxlq ´Dfµpxkqδxk,l,

and T̃ i is defined similarly.
Adding and subtracting cross terms we obtain the following bound for the B term:

|Bk,l| ď }f}C3
b
p|Ik,l ´ Ĩk,l| ` |xk ´ x̃k||Ĩk,l|q,

so that

}B}p{2;rk,ls ď 21´2{p}f}C3
b

´

}I ´ Ĩ}
p{2
p{2;rk,ls ` }x´ x̃}p{2

8;r0,ls}Ĩ}
p{2
p{2;rk,ls

¯2{p
.

From Lemma 5.1 we obtain that

}T ´ T̃ }p{2;rk,ls ď 21´2{p}f}C3
b

”

}x´ x̃}p;rk,lsp}x}p;rk,ls ` }x̃}p;rk,lsq ` }x̃}2p;rk,ls}x´ x̃}8;r0,ls

ı

and the proof is finished. �

Theorem 5.10. Let 2 ď p ă 3 and suppose x, x̃ are two solutions to eq. (9) with initial conditions ξ, ξ̃
and driven by w, w̃ respectively. If furthermore f1, . . . , fd P C3

b, then

sup
k“0,...,N

|xk ´ x̃k| ď 2c1p,Ne
cp,N }f}

p

C3
b

´

|||W|||p
p;r0,Ns`|||W̃|||p

p;r0,Ns

¯

p|ξ ´ ξ̃| ` }f}C3
b
ρppW,W̃qq

holds, where
cp,N – 2pe2ppLp `K

2
p `K

1
pq
p, c1p,N “ 21´2{pc

1{p
p,N

with
Lp – 43{2´2{p ˆ 72´3{p ˆ Cp,N ,

the constant Cp,N appears in Proposition 3.15 and Kp,K
1
p are as in Theorem 5.8.

Proof. We divide the proof in several steps. Below we denote

∆xk – xk ´ x̃k
∆Jµk,l – Jµk,l ´ J̃

µ
k,l

∆Ik,l – Ik,l ´ Ĩk,l



STABILITY OF DEEP NEURAL NETWORKS VIA DISCRETE ROUGH PATHS 19

and we consider the controls
εk,l – }w´ w̃}pp;rk,ls

ωk,l – }x}pp;rk,ls ` }x̃}
p
p;rk,ls

Ek,l – }W´ W̃}p{2p{2;rk,ls.

We also assume, without loss of generality, that }f}C3
b
ď 1.

Step 1. We estimate the difference of the remainders R and R̃ as defined in eq. (13) via the Sewing Lemma.
To this end, consider the germ

Ξk,l –
d
ÿ

µ“1
fµpxkqwµ

k,l `

d
ÿ

µ,ν“1
FµνpxkqWµν

k,l ´

d
ÿ

µ“1
fµpx̃kqw̃µ

k,l ´

d
ÿ

µ,ν“1
FµνpxkqW̃µν

k,l.

A standard calculation, using Chen’s identity Theorem 4.2 yields

δΞk,l,m “ ´

d
ÿ

µ“1
pfµpxlq ´ fµpxkqqwµ

l,m `

d
ÿ

µ,ν“1

´

Fµνpxkqwµ
k,lw

ν
l,m ´ pFµνpxlq ´ FµνpxkqqW

µν
l,m

¯

`

d
ÿ

µ“1
pfµpx̃lq ´ fµpx̃kqqw̃µ

l,m ´

d
ÿ

µ,ν“1

´

Fµνpx̃kqw̃µ
k,lw̃

ν
l,m ´ pFµνpx̃lq ´ Fµνpx̃kqqW̃

µν
l,m

¯

“ ´

d
ÿ

µ“1
Jµk,lw

µ
l,m ´

d
ÿ

µ,ν“1
pFµνpxlq ´ FµνpxkqqWµν

l,m `

d
ÿ

µ“1
J̃µk,lw̃

µ
l,m `

d
ÿ

µ,ν“1
pFµνpx̃lq ´ Fµνpx̃kqqW̃µν

l,m.

Therefore

|δΞk,l,m| ď
d
ÿ

µ“1
}∆Jµ}p{2;rk,ls}wµ}p;rl,ms `

d
ÿ

i“1
}J̃µ}p;rk,ls}∆wµ}p;rl,ms

`

d
ÿ

µ,ν“1
}Fµνpxq ´ Fµνpx̃q}p;rk,ls}Wµν}p{2;rl,ms `

d
ÿ

µ,ν“1
}Fµνpx̃q}p;rk,ls}Wµν ´ W̃µν}p{2;rl,ms.

Hence, by the Sewing Lemma we obtain that

|Rk,l ´ R̃k,l| ď Cp,N

!

}∆J}p{2;rk,ls}w}p;rk,ls ` }J̃}p{2;rk,lsε
1{p
k,l ` }∆F }p;rk,ls}W}p{2;rk,ls ` }F px̃q}p;rk,lsE

2{p
k,l

)

.

(19)
Step 2. We now use the relation Ik,l “ Rk,l `

řd
µ,ν“1 FµνpxkqW

µν
k,l to obtain

|Ik,l ´ Ĩk,l| ď |Rk,l ´ R̃k,l| `
d
ÿ

µ,ν

|Fµνpxkq ´ Fµνpx̃kq||Wµν
k,l| `

d
ÿ

µ,ν“1
|Fµνpx̃kq||Wµν

k,l ´ W̃µν
k,l|

ď |Rk,l ´ R̃k,l| ` }∆x}8;r0,ls}W}p{2;rk,ls ` E
2{p
k,l .

Using Lemmas 5.7 and 5.9 and eq. (19) we see that the right-hand side is bounded by

Cp,N

!

`

}∆I}p{2;rk,ls ` }∆x}8;r0,lsp}Ĩ}p{2;rk,ls ` }x̃}2p;rk,lsq ` }∆x}p;rk,lsω
1{p
k,l

˘

}w}p;rk,ls

` p}Ĩ}p{2;rk,ls ` }x̃}2p;rk,lsqε
1{p
k,l ` p}∆x}p;rk,ls ` }∆x}8;r0,ls}x̃}p;rk,lsq}W}p{2;rk,ls

` }x̃}p;rk,lsE
2{p
k,l

)

` }∆x}8;r0,ls}W}p{2;rk,ls ` E
2{p
k,l .

Defining the control

Qk,l – 24p{2´1Cp{2p

!

`

}∆I}p{2p{2;rk,ls ` }∆x}p{2
8;r0,lsp}Ĩ}

p{2
p{2;rk,ls ` }x̃}

p
p;rk,lsq ` }∆x}p{2p;rk,lsω

1{2
k,l

˘

}w}p{2p;rk,ls

` p}Ĩ}
p{2
p{2;rk,ls ` }x̃}

p
p;rk,lsqε

1{2
k,l ` p}∆x}pp;rk,ls ` }∆x}p

8;r0,ls}x̃}
p
p;rk,lsq

1{2}W}p{2p{2;rk,ls

` }x̃}p{2p;rk,lsEk,l

)

we obtain the bound

|∆Ik,l| ď 31´2{p
´

Qk,l ` }∆x}p{2
8;r0,ls}W}

p{2
p{2;rk,ls ` Ek,l

¯2{p
.
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By Lemma 3.11 the same bound holds for }∆I}p{2;rk,ls. Now, taking k ă l close enough such that

|||W|||p;rk,ls ď
1

2ˆ 721´2{p ˆ Cp,N

we see that

}∆I}p{2;rk,ls ď 2ˆ721´2{pCp,N

!

}∆x}8;r0,lsŨ
2{p
k,l ` }∆x}p;rk,lsω

1{p
k,l ` Ũ

2{p
k,l ε

1{p
k,l ` V

1{p
k,l }W}

1{2
p{2;rk,ls ` }x̃}p;rk,lsE

2{p
k,l

)

where now

Ũk,l – }Ĩ}
p{2
p{2;rk,ls ` }x̃}

p
p;rk,ls

Vk,l – }∆x}pp;rk,ls ` }∆x}p
8;r0,ls}x̃}

p
p;rk,ls

are new controls as well.
Step 3. We now use the fact that

xk,l “ Ik,l `
d
ÿ

µ“1
fµpxkqwµ

k,l

to obtain that

|∆xk,l| ď |∆Ik,l| ` |∆xk|
d
ÿ

µ“1
|w̃µ

k,l| `

d
ÿ

µ“1
|∆wµ

k,l|

ď }∆I}p{2;rk,ls ` }∆x}8;r0,ls}w}p;rk,ls ` ε
1{p
k,l .

From the previous bound on }∆I}p{2;rk,ls we get that

|∆xk,l| ď 2ˆ 721´2{pCp,N

!

}∆x}8;r0,lsŨ
2{p
k,l ` }∆x}p;rk,lsω

1{p
k,l ` Ũ

2{p
k,l ε

1{p
k,l

` V
1{p
k,l }W}

1{2
p{2;rk,ls ` }x̃}p;rk,lsE

2{p
k,l ` }∆x}8;r0,ls}w}p;rk,ls ` ε

1{p
k,l

)

Taking p-variation we see that

}∆x}p;rk,ls ď Lp

!

}∆x}8;r0,lsŨ
2{p
k,l ` }∆x}p;rk,lsω

1{p
k,l ` Ũ

2{p
k,l ε

1{p
k,l ` V

1{p
k,l }W}

1{2
p{2;rk,ls

` }x̃}p;rk,lsE
2{p
k,l ` }∆x}8;r0,ls}w}p;rk,ls ` ε

1{p
k,l

)

with Lp – 2 ˆ 71´1{p ˆ 241´2{p ˆ Cp,N . Using again the fact that k ă l are chosen so that
|||W|||p;rk,ls ď L´1

p ă 1 , and the a priori estimate in Theorem 5.8 we obtain that

}∆x}p;rk,ls ď Lp}∆x}8;r0,lspŨ
2{p
k,l ` |||W|||p;rk,ls ` |||W̃|||p;rk,lsq ` L

1
ppε

2
k,l ` Ek,lq

2{p.

Now, we notice that

Ũk,l “ }x}pp;rk,ls ` }Ĩ}
p{2
p{2;rk,ls ď pK

p
p ` pK

1
pq
p{2q|||W̃|||pp;rk,ls

so that

Ũ
2{p
k,l ď L´1

p pK
2
p `K

1
pq|||W̃|||p;rk,ls.

Trivial estimates show that the same bound holds when l “ k ` 1, so by the rough Grönwall
lemma and an argument similar to the Young case we obtain

}∆x}8;r0,Ns ď c1pe
cp,N p|||W|||p

p;r0,Ns`|||W̃|||p
p;r0,Nsq

`

|x0 ´ x̃0| ` ρppW,W̃q
˘

.

where

cp,N – 2pe2ppLp `K
2
p `K

1
pq
p, c1p,N “ 21´2{pcp,N . �
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Appendix A. Comparison of architectures

In this section we show that the residual architectures mentioned in the introduction, namely

yk`1 “ yk ` σpyk, θkq, (20)

xk`1 “ xk `
d
ÿ

µ“1
fµpxqwµ

k,k`1 (21)

are related to each other, in the sense that any evolution represented by eq. (20) may be obtained as a
projection of the evolution governed by (21). Note that we allow the dimensions of the noises, as well as
the vector fields, to be different in each architecture. Consider the maps

Y : Rm ˆ CpRm ˆMmˆm,Rmq ˆMN
mˆm Ñ Rm, X : Rn ˆ CpRn,Rnqd ˆ pRdqN Ñ Rn

defined by
Ypy, σ, θq– yN , Xpx, f,wq “ xN

where yk and xk solve eqs. (20) and (21) respectively, with y0 “ y, x0 “ x. The following result draws on
ideas by Kidger, Morrill, Foster and Lyons [15].

Proposition A.1. Fix d “ m2 ` 1 and n “ m` d, and set π : Rn Ñ Rm be the projection onto the first
m coordinates. Then the inclusion

YpRm ˆ CpRm ˆMmˆm,Rmq ˆMN
mˆmq Ă π ˝ XpRn ˆ CpRn,Rnqd ˆ pRdqN q

holds.

The content of this is result is that we may emulate the non-linear evolution of eq. (20) by a linear
control system of greater dimension as in eq. (21). Since π is a Lipschitz map, this has no repercussion for
our estimates. Therefore, it suffices to study systems linear in the control.

Proof. Let w be the pm2 ` 1q-dimensional noise obtained by flattening of the θ matrices and adding a time
component, i.e., for µ P t1, . . . ,m2u set

wµ
k “

k
ÿ

j“0
θjptµ{mu, µ mod mq

and wd
k “ k. Let π̃ : Rn Ñ Rd denote the projection onto the last d coordinates and let e1, . . . , en denote

the standard basis of Rn. Define the vector fields fi : Rn Ñ Rn by

fµpxq– em`µ, µ “ 1, . . . , d´ 1

fdpxq– em`d `
m
ÿ

ν“1
σνpπpxq, π̃pxqqeν .

Therefore, the corresponding solution to eq. (21) satisfies

xk`1 “ xk `
d
ÿ

µ“1
fµpxkqpwµ

k`1 ´wµ
kq

“ xk `
m
ÿ

ν“1
σνpπpxkq, π̃pxkqqeν `

d
ÿ

µ“1
pwµ

k`1 ´wµ
kqem`µ

In particular
π̃pxk`1q “ π̃pxkq ` θk`1 ´ θk,

that is, π̃pxkq “ θk. Therefore,
πpxk`1q “ πpxkq ` σpπpxkq, θkq

so that, if we pick an initial condition x P Rn such that πpxq “ y P Rm we immediately see that
xN “ yN . �
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