Short dated option pricing under rough volatility

Christian Bayer
Peter Friz, Archil Gulisashvili, Blanka Horvath, Benjamin Stemper,
IWAP 2018, Budapest, June 19th, 2018
1 Results

2 Proofs

3 Future work
Friz, Gerhold, Pinter (2016) study MOTM (moderately out of the money) options. For diffusion models, they find call option price asymptotics:

<table>
<thead>
<tr>
<th>ATM</th>
<th>AATM</th>
<th>MOTM</th>
<th>OTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K = S_0$</td>
<td>$\log \frac{K}{S_0} \sim t^\beta$, $\beta > \frac{1}{2}$</td>
<td>$\log \frac{K}{S_0} \sim t^\beta$, $\beta < \frac{1}{2}$</td>
<td>$\log \frac{K}{S_0} = \text{const}$</td>
</tr>
<tr>
<td>$O(\sqrt{t})$</td>
<td>$O(\sqrt{t})$</td>
<td>$\exp\left(-\frac{\text{const}}{t^{1-2\beta}}\right)$</td>
<td>$\exp\left(-\frac{\text{const}}{t}\right)$</td>
</tr>
</tbody>
</table>
Friz, Gerhold, Pinter (2016) study MOTM (moderately out of the money) options. For diffusion models, they find call option price asymptotics:

\[
\begin{align*}
\text{ATM} & : \quad K = S_0 \\
& : \quad \log \frac{K}{S_0} \sim t^\beta, \quad \beta > \frac{1}{2}, \quad O(\sqrt{t})
\end{align*}
\]

\[
\begin{align*}
\text{AATM} & : \quad K = S_0 \\
& : \quad \log \frac{K}{S_0} \sim t^\beta, \quad \beta < \frac{1}{2}, \quad O(\sqrt{t})
\end{align*}
\]

\[
\begin{align*}
\text{MOTM} & : \quad \log \frac{K}{S_0} \sim t^\beta, \quad \beta < \frac{1}{2}, \quad \exp \left(-\frac{\text{const}}{t^{1-2\beta}} \right)
\end{align*}
\]

\[
\begin{align*}
\text{OTM} & : \quad \log \frac{K}{S_0} = \text{const} \quad \exp \left(-\frac{\text{const}}{t} \right)
\end{align*}
\]

- MOTM regime reflects the reality that the range of strikes of *liquidly traded* options decreases with maturity
- const in the OTM case is related to the energy \(\Lambda(k) \) of the underlying LDP, which may be hard to compute
- const in the MOTM case is, essentially, \(\Lambda''(0) \), which is often much easier to compute
\[\frac{dS_t}{S_t} = \sigma(\widehat{B}_t) d(\rho B_t + \bar{\rho} W_t) \]

\[\widehat{B}_t = \int_0^t K(t, s) dB_s \]

- \(K \) is a Volterra kernel with \(\int_0^1 \int_0^t K(t, s)^2 ds dt < \infty \)
- \(B, W \) are standard Brownian motions, \(\rho^2 + \bar{\rho}^2 = 1 \)
- \(\sigma : \mathbb{R} \rightarrow \mathbb{R}_{>0} \) “smooth”
- \(\widehat{B} \) is “small-time self-similar”: for any small \(t > 0 \) there is \(\varepsilon > 0 \) s.t.
 \[\left. \widehat{B} \right|_{[0, t]} \overset{\text{law}}{=} \varepsilon \left. \widehat{B} \right|_{[0, 1]} \]
- For example: \(K(t, s) = |t - s|^{H-1/2}, 0 < H < \frac{1}{2} \)
Theorem

For $x \geq 0$ the call option price satisfies

\[
c \left(\frac{\varepsilon}{x}, t \right) := E \left[\left(\exp (X_t) - \exp \left(\frac{\varepsilon}{x} x \right) \right)^+ \right]
= \exp \left(- \frac{I(x)}{\varepsilon^2} \right) \exp \left(\frac{\varepsilon}{x} x \right) J(\varepsilon, x), \quad x \geq 0,
\]

\[
J(\varepsilon, x) := E \left[e^{-\frac{I'(x)}{\varepsilon^2}} \tilde{U}^\varepsilon \left(e^{\frac{\varepsilon}{x} \tilde{U}^\varepsilon} - 1 \right) e^{I'(x)R_2} 1_{\tilde{U}^\varepsilon \geq 0} \right],
\]

where $\tilde{U}^\varepsilon = \tilde{\varepsilon} g_1 + \tilde{\varepsilon}^2 R_2$ for a centered Gaussian r.v. g_1 and a remainder term R_2. Moreover, for any $\theta > 0$ and $0 < \beta < H$,

\[
\varepsilon^\theta \log J(\varepsilon, x \varepsilon^{2\beta}) \xrightarrow{\varepsilon \to 0} 0
\]

“uniformly in x around $x = 0$”.
Consider the rough volatility regime $\tilde{\varepsilon} = \varepsilon^{2H}, \ 0 < H \leq \frac{1}{2}$ and moderate deviations $k_t = kt^{1/2-H+\beta}, \ 0 \leq \beta < H$

Theorem

\[-\log c(k_t, t) = \frac{I''(0)}{t^{2H-2\beta}} \frac{k^2}{2} (1 + o(1)), \ \ t \searrow 0\]

with

\[I''(0) = \frac{1}{\sigma(0)^2}.\]
Consider the rough volatility regime $\hat{\varepsilon} = \varepsilon^{2H}$, $0 < H \leq \frac{1}{2}$ and moderate deviations $k_t = kt^{1/2-H+\beta}$, $0 \leq \beta < \frac{2}{3}H$

Theorem

$$- \log c(k_t, t) = \frac{I''(0) k^2}{t^{2h-2\beta}} \frac{2}{2} + \frac{I'''(0) k^3}{t^{2h-3\beta}} \frac{6}{6} (1 + o(1)), \quad t \downarrow 0$$

with

$$I''(0) = \frac{1}{\sigma(0)^2}, \quad I'''(0) = -6\rho \frac{\sigma'(0)}{\sigma(0)^4} \int_0^1 \int_0^t K(t, s) ds dt.$$
Consider the rough volatility regime $\varepsilon = \varepsilon^{2H}, \ 0 < H \leq \frac{1}{2}$ and moderate deviations $k_t = kt^{1/2-H+\beta}, \ 0 \leq \beta < \frac{2}{3}H$

Theorem

$$-\log c(k_t, t) = \frac{I''(0)}{t^{2h-2\beta}} \frac{k^2}{2} + \frac{I'''(0)}{t^{2h-3\beta}} \frac{k^3}{6} (1 + o(1)), \quad t \searrow 0$$

with

$$I''(0) = \frac{1}{\sigma(0)^2}, \quad I'''(0) = -6\rho \frac{\sigma'(0)}{\sigma(0)^4} \int_0^1 \int_0^t K(t, s)dsdt.$$

Corollary

The implied volatility satisfies

$$\sigma_{impl}(k_t, t) = \sigma(0) - \rho \frac{\sigma'(0)}{\sigma(0)} \int_0^1 \int_0^t K(t, s)dsdt \ k_t t^{H-1/2} (1 + o(1)).$$
Numerical evidence

\[H = 0.3, \beta = 0.175 \]

Asymptotic formula

Cholesky Pricer

MOTM asymptotics · IWAP 2018, Budapest, June 19th, 2018 · Page 7 (14)
Outline

1 Results

2 Proofs

3 Future work
Large deviations [Forde and Zhang 2016]

\[dX_t = \sigma(\hat{B}_t) d(\rho W_t + \rho B_t) \季度 \text{drift}. \]

Short time asymptotics: \(X_t \overset{\text{law}}{=} X_1^\varepsilon, \varepsilon = \sqrt{t}, \hat{\varepsilon} = \varepsilon^{2H}, \) with

\[dX_t^\varepsilon = \sigma(\hat{\varepsilon} B_t) \varepsilon d(\rho W_t + \rho B_t) \]

Theorem

\(\hat{X}_1^\varepsilon \define \frac{\varepsilon}{\hat{\varepsilon}} X_1^\varepsilon \) satisfies LDP with speed \(\hat{\varepsilon} \) and rate function

\[
I(x) \define \inf_{f \in H^1_0} \left\{ \frac{1}{2} \left(x - \rho \langle \sigma(K\dot{f}), f \rangle \right)^2 + \frac{1}{2} \|f\|_{H^1_0}^2 \right\}.
\]

Notation:

- \(\|f\|_{H^1_0} = \|\dot{f}\|_{L^2[0,1]} \)
- \((K\dot{f})(t) = \int_0^t K(t, s)\dot{f}(s)ds, f \in H^1_0 \)
Large deviations [Forde and Zhang 2016]

\[dX_t = \sigma(\hat{B}_t) d(\bar{\rho}W_t + \rho B_t) + \text{drift}. \]

Short time asymptotics: \(X_t \overset{\text{law}}{=} X^\varepsilon_1, \varepsilon = \sqrt{t}, \hat{\varepsilon} = \varepsilon^{2H}, \) with

\[dX_t^\varepsilon = \sigma(\hat{\varepsilon}\hat{B}_t) \varepsilon d(\bar{\rho}W_t + \rho B_t) \]

Theorem

\(\hat{X}_1^\varepsilon := \frac{\varepsilon}{\hat{\varepsilon}} X_1^\varepsilon \) satisfies LDP with speed \(\hat{\varepsilon} \) and rate function

\[
I(x) := \inf_{f \in H^1_0} \left\{ \frac{1}{2} \left(x - \rho \left(\sigma(Kf), f \right) \right)^2 + \frac{1}{2} \| f \|^2_{H^1_0} \right\}.
\]

Proof.

- \(d\hat{X}_t^\varepsilon = \sigma(\hat{\varepsilon}\hat{B}_t) \hat{\varepsilon} d(\bar{\rho}W_t + \rho B_t) \). Hence, \(\hat{X}_1^\varepsilon = \Phi_1(\varepsilon W, \varepsilon B, \varepsilon B) \).
- Use (extended) extension principle based on LDP for \((W, B, \hat{B})\).
Energy expansion

\[
I(x) = \inf_{f \in H^1_0} \left\{ \frac{1}{2} \left(x - \rho \langle \sigma(Kf), f \rangle \right)^2 + \frac{1}{2} \|f\|_{H^1_0}^2 \right\} = \inf_{f \in H^1_0} I_x(f).
\]

1) First order optimality condition

\[
I : \mathbb{R} \times H^1_0 \to \mathbb{R}_{\geq 0}, (x, f) \mapsto I_x(f) \text{ is smooth in Fréchet sense. Hence, any local minimizer } f \text{ satisfies}
\]

\[
H(x, f) := D_f I_x(f) \cdot f = 0.
\]
Energy expansion

\[I(x) = \inf_{f \in H_0^1} \left\{ \frac{1}{2} \left(x - \rho \langle \sigma(Kf), f \rangle \right)^2 + \frac{1}{2} \| f \|_{H_0^1}^2 \right\} = \inf_{f \in H_0^1} \mathcal{I}_x(f). \]

1) First order optimality condition

2) Local uniqueness and smoothness of minimizer

By the implicit function theorem, there is a unique \(f = f^x \) satisfying the first order condition in a neighborhood of \(x = 0, \ f = 0. \ x \mapsto f^x \) is smooth.
Energy expansion

\[I(x) = \inf_{f \in H^1_0} \left\{ \frac{1}{2} \left(x - \rho \langle \sigma(K\dot{f}), f \rangle \right)^2 + \frac{1}{2} \|f\|_{H^1_0}^2 \right\} = \inf_{f \in H^1_0} I_x(f). \]

1) First order optimality condition
2) Local uniqueness and smoothness of minimizer
3) Existence of a minimizer

“Local convexity”: \(D^2 f I_x(0) \cdot (g, g) > 0 \) for any \(g \in H^1_0 \).

Remark: This point is not completely obvious, see the following minimization problem:

\[\mathcal{G}(f) := \int_0^1 \left[(f'(s)^2 - 1)^2 + f(s)^2 \right] ds \to \min! \]
Energy expansion

\[I(x) = \inf_{f \in H^1_0} \left\{ \frac{1}{2} \left(x - \rho \langle \sigma(K\dot{f}), f \rangle \right)^2 + \frac{1}{2} \|f\|_{H^1_0}^2 \right\} = \inf_{f \in H^1_0} I(x)(f). \]

1) First order optimality condition

2) Local uniqueness and smoothness of minimizer

3) Existence of a minimizer

4) Expansion of minimizer \(f^x \) in \(x \to 0 \).

Make ansatz \(f^x_t = \alpha_t x + \beta_t \frac{x^2}{2} + O(x^3) \) and plug into first order condition \(H(x, f^x) = 0 \), yields formulas for \(\alpha, \beta, \ldots \)
Pricing formula

\[c \left(\frac{\varepsilon}{\bar{\varepsilon}} x, t \right) = E \left[\left(e^{\frac{\varepsilon}{\bar{\varepsilon}} \bar{X}_1} - e^{\frac{\varepsilon}{\bar{\varepsilon}} x} \right)^+ \right], \quad \bar{X}_1 = \int_0^1 \sigma(\varepsilon \bar{B}) \bar{d}(\rho W + \rho B) \]

1) Perturbation & Girsanov transform

Change measure \(\widehat{\varepsilon}(W, B) \rightarrow \varepsilon(W, B) + (h, f), \) \(h, f \in H^1_0 \) with Girsanov transform \(G_\varepsilon \) transforming \(\bar{X}_1 \rightarrow \bar{Z}_1 \) with

\[
G_\varepsilon = \exp \left(-\frac{1}{\varepsilon} \int_0^1 h dW - \frac{1}{\varepsilon} \int_0^1 h dB - \frac{1}{2\varepsilon^2} \int_0^1 (h^2 + f^2) dt \right)
\]

\[
\bar{Z}_1 = \int_0^1 \sigma(\varepsilon \bar{B} + f) \left[\bar{d}(\rho W + \rho B) + d(\rho h + \rho f) \right]
\]
Pricing formula

\[c \left(\frac{\varepsilon}{\varepsilon} x, t \right) = E \left[\left(e^{\frac{\varepsilon}{\varepsilon} X_1} - e^{\frac{\varepsilon}{\varepsilon} x} \right)^+ \right], \quad \widehat{X}_1 = \int_0^1 \sigma(\widehat{B}) \varepsilon d(\rho W + \rho B) \]

1) Perturbation & Girsanov transform

2) Stochastic Taylor expansion \(\widehat{Z}_1 = x + \varepsilon g_1 + \varepsilon^2 R_2 \)

For \(h, f \) with \(\Phi_1(h, f) = x \) we have the above stochastic Taylor expansion with

\[
g_1 = \int_0^1 \left[\sigma(\widehat{f}_t) d(\rho W_t + \rho B_t) + \sigma'(\widehat{f}_t) \widehat{B}_t d(\rho h_t + \rho f_t) \right].
\]
Pricing formula

\[c \left(\frac{\varepsilon}{\varepsilon} x, t \right) = E \left[\left(e^{\frac{\varepsilon}{\varepsilon} \tilde{X}_1} - e^{\frac{\varepsilon}{\varepsilon} x} \right)^+ \right], \quad \tilde{X}_1 = \int_0^1 \sigma(\varepsilon \tilde{B}) \varepsilon d(\tilde{\rho} W + \rho B) \]

1) Perturbation & Girsanov transform

2) Stochastic Taylor expansion \(\tilde{Z}_1^\varepsilon = x + \tilde{\varepsilon} g_1 + \tilde{\varepsilon}^2 R_2 \)

3) \(\int_0^1 \hat{h}^x dW + \int_0^1 \hat{f}^x dB = I'(x)g_1 \)

Following Ben Arous, we can show that

\[\int_0^1 \hat{h}^x dW + \int_0^1 \hat{f}^x dB = I'(x)g_1 \]

when \((h^x, f^x) \) is optimal configuration.
Pricing formula

\[c \left(\frac{\varepsilon}{\varepsilon} x, t \right) = E \left[\left(e^{\frac{\varepsilon}{\varepsilon} \tilde{X}_1} - e^{\frac{\varepsilon}{\varepsilon} x} \right)^+ \right], \quad \tilde{X}_1 = \int_0^1 \sigma(\varepsilon B) \varepsilon d(\varrho W + \rho B) \]

1) Perturbation & Girsanov transform

2) Stochastic Taylor expansion \(\tilde{Z}_1^\varepsilon = x + \varepsilon g_1 + \varepsilon^2 R_2 \)

3) \(\int_0^1 \dot{h}^x dW + \int_0^1 \dot{f}^x dB = I'(x) g_1 \)

4) Estimates for \(J(\varepsilon, x) \)

Steps 1-3 lead to the remainder term

\[J(\varepsilon, x) = E \left[e^{-\frac{I'(x)}{\varepsilon^2} \tilde{U}^\varepsilon} \left(e^{\frac{\varepsilon}{\varepsilon} \tilde{U}^\varepsilon} - 1 \right) e^{I'(x) R_2} 1_{\tilde{U}^\varepsilon \geq 0} \right], \quad \tilde{U}^\varepsilon = \tilde{Z}_1^\varepsilon - x, \]

which is then estimated from above and below.
Pricing formula

\[c\left(\frac{\varepsilon}{\varepsilon}x, t\right) = E\left[\left(e^{\frac{\varepsilon}{\varepsilon}\tilde{X}_1} - e^{\frac{\varepsilon}{\varepsilon}x}\right)^+\right], \quad \tilde{X}_1 = \int_0^1 \sigma(\varepsilon\tilde{B})\varepsilon\tilde{d}(\rho W + \rho B) \]

1) Perturbation & Girsanov transform

2) Stochastic Taylor expansion \(\tilde{Z}_1^\varepsilon = x + \varepsilon g_1 + \varepsilon^2 R_2 \)

3) \(\int_0^1 \dot{h}^x dW + \int_0^1 \dot{f}^x dB = I'(x)g_1 \)

4) Estimates for \(J(\varepsilon, x) \)

5) Example: Black-Scholes case

\[
J(\varepsilon, x) = M\left(-\frac{I'(x)\sigma}{\varepsilon} + \varepsilon\sigma\right) - M\left(-\frac{I'(x)\sigma}{\varepsilon}\right) \sim \frac{1}{\sqrt{2\pi}} \frac{\sigma^3\varepsilon^3}{x^2},
\]

with \(M(\alpha) := e^{\alpha^2/2} F(\alpha) \), \(F \) being the c.d.f. of \(\mathcal{N}(0, 1) \)
Estimating the remainder term

Stochastic Taylor expansion gives

\[\epsilon^2 R_\epsilon^2(t) = \epsilon \int_0^t \left[\sigma(\epsilon B_s + f_s) - \sigma(f_s) \right] d[\bar{\rho}W_s + \rho B_s] + \text{BV process} \]
Estimating the remainder term

Stochastic Taylor expansion gives

\[\varepsilon^2 R_2^\varepsilon(t) = \varepsilon \int_0^t [\sigma(\varepsilon B_s + f_s) - \sigma(f_s)] d[\bar{\rho}W_s + \rho B_s] + \text{BV process} =: M_t^\varepsilon \]

For \(M^{\kappa,\varepsilon} := M^\tau \) with \(\tau := \inf \{ t \mid |\varepsilon B_t| \geq \kappa \} \), we have

\[\frac{d[M^{\kappa,\varepsilon}]_t}{dt} = \varepsilon^2 [\sigma(\varepsilon B_t + f_t) - \sigma(f_t)]^2 \leq \varepsilon^4 \|\sigma'|_{\infty;K}^2 |B^\tau_t|^2 \]
Estimating the remainder term

Stochastic Taylor expansion gives

\[\varepsilon^2 R_2^\varepsilon(t) = \varepsilon \int_0^t \left[\sigma(\varepsilon B_s + f_s) - \sigma(f_s) \right] d \left[\rho W_s + \rho B_s \right] + \text{BV process} =: M_t^\varepsilon \]

For \(M^{\kappa, \varepsilon} := M^\tau \) with \(\tau := \inf \{ t \mid |\varepsilon B_t| \geq \kappa \} \), we have

\[\frac{d[M^{\kappa, \varepsilon}]}{dt} = \varepsilon^2 \left[\sigma(\varepsilon B_t + f_t) - \sigma(f_t) \right]^2 \leq \varepsilon^4 \left\| \sigma' \right\|_\infty^2 \left| B^\tau_t \right|^2 \]

As \(\varepsilon^{-2} M^{\kappa, \varepsilon} = O \left(|B^{\kappa, \varepsilon}|^2_{\infty; [0,1]} \right) \), which has exponential tails, BDG inequality implies (for some \(c_1, c_2 > 0 \))

\[P \left(\left| R_2^\varepsilon(t) \right| > r, \ |\varepsilon B|_{\infty; [0,1]} < \kappa \right) \leq c_1 \exp \left(-c_2 r \right) \]
Outline

1. Results

2. Proofs

3. Future work
Complete price expansion

\[J(\varepsilon, x) = E \left[e^{-\frac{I'(x)}{\varepsilon^2} \widehat{U}^\varepsilon} \left(e^{\frac{\varepsilon}{\varepsilon} \widehat{U}^\varepsilon} - 1 \right) e^{I'(x)R_2} 1_{\widehat{U}^\varepsilon \geq 0} \right], \]

- \(\widehat{U}^\varepsilon = \widehat{\varepsilon} g_1 + \widehat{\varepsilon}^2 R_2 \)
- \(g_1 \) given explicitly in terms of optimal configuration \(f^x \)
- \(R_2 \) remainder term in stochastic Taylor expansion; not given explicitly, but we have control of tail behaviour

Goal

Obtain precise asymptotics/expansion of \(J(\varepsilon, x), x = x(\varepsilon), \) as \(\varepsilon \downarrow 0. \)

- So far, we have polynomial upper and lower bounds.
- Advantage: no need for heat kernel asymptotics.