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Motivation
SDEs

Applications of SDEs

In mathematical finance, financial markets are often modelled
by the solution Xt of a stochastic differential equation (SDE).
The price (at time 0) of a European option with maturity T
and payoff f (XT ) is given by an expression like

C (X0) = E
(
e−rT f (XT )

)
.

More generally, given a differential operator L and let u
denote the solution of the corresponding Cauchy problem{

∂u
∂t (t, x) = Lu(t, x), t ∈]0,T ], x ∈ Rn

u(0, x) = f (x), x ∈ Rn .

A stochastic representation is the solution St of an SDE s. t.

u(t, x) = E (f (XT )|Xt = x), t ∈]0,T ], x ∈ Rn.
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Definition

Given a d-dimensional Brownian motion B defined on the
probability space (Ω,F ,P), T > 0, functions a : Rn → Rn and
σ : Rn → Rn×d being Lipschitz with at most linear growth.

Definition

By a stochastic differential equation we understand an equation

X x
t = x +

∫ t

0
a(X x

s )ds +

∫ t

0
σ(X x

s )dBs , t ∈ [0,T ], x ∈ Rn. (1)

“σdBt” should be interpreted as a matrix-vector multiplication.
We will often use the short-hand notation{

dX x
t = a(X x

t )dt + σ(X x
t )dBt , t ∈]0,T ]

X x
0 = x

. (2)
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Feynman-Kac Formula

Let L denote the second-order differential operator on Rn given by

Lf (x) =
n∑

i=1

ai (x)
∂f

∂x i
(x) +

1

2

n∑
i ,j=1

bij(x)
∂2f

∂x i∂x j
(x),

where b = (bij) is the n × n-matrix defined by b = σσT .

Theorem (Feynman-Kac Formula)

Let f ∈ C 2
c (Rn) and q ∈ C (Rn) bounded from below and define

u(t, x) = E
(
exp

(∫ T

t
q(Xs)ds

)
f (XT )

∣∣∣Xt = x
)
, t ∈ [0,T ], x ∈ Rn.

Then u solves the parabolic Cauchy problem

ut(t, x) + Lu(t, x) + q(x)u(t, x) = 0, u(T , x) = f (x).

Christian Bayer Euler Methods & Beyond



Introduction
Euler-Maruyama Scheme

Higher Order Methods
Summary

Time Discretization
Monte-Carlo Simulation

Euler Scheme for SDEs

We present an approximation for the solution X x
T of the SDE (2).

Definition

Fix x ∈ Rn and let ∆(N) be the equidistant mesh of size N,
i. e. ti = i

N T , i = 0, . . . ,N. Set ∆ti = T
N and ∆Bi = Bti+1 − Bti ,

i = 0, . . . ,N − 1. Define the uniform Euler-Maruyama

approximation to X x
T by X

(N)
0 = x and

X
(N)
i+1 = X

(N)
i +a(X

(N)
i )∆ti +σ(X

(N)
i )∆Bi , i = 0, . . . ,N−1. (3)

Remark

Note that the discretization X
(N)
i – in this form – is only

“discrete” in the time variable but not as a random variable.
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Strong Convergence of the Euler-Maruyama Scheme

Definition

Given a sequence X
(N)

of time-discrete approximations of X x
T

along time partitions ∆(N). X
(N)
N converges strongly to X x

T if it

converges in L1(Ω), i. e. if limN→∞ E
(∣∣X x

T − X
(N)
N

∣∣) = 0. It
converges strongly with order γ > 0 if there is a constant C > 0
such that – with

∣∣∆(N)
∣∣ = max(ti+1 − ti ) –

E
(∣∣X x

T − X
(N)
N

∣∣) ≤ C
∣∣∆(N)

∣∣γ .

Theorem

The uniform Euler-Maruyama scheme converges strongly of order
γ = 1

2 to the true solution X x
T .
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Weak Convergence of the Euler-Maruyama Scheme

Let C k
p (Rn) denote the space of all C k -functions of polynomial

growth (together with their derivatives).

Definition

X
(N)
N converges weakly to X x

T if, for some k ∈ N,

lim
N→∞

E
(
f
(
X

(N)
N

))
= E (f (X x

T )), ∀f ∈ C k
p (Rn).

X
(N)
N converges to X x

T with weak order γ > 0 if ∃C > 0 s. t.∣∣E(
f
(
X

(N)
N

))
− E (f (X x

T ))
∣∣ ≤ C

∣∣∆(N)
∣∣γ , ∀f ∈ C

2(γ+1)
p

and for all N large enough.

Christian Bayer Euler Methods & Beyond



Introduction
Euler-Maruyama Scheme

Higher Order Methods
Summary

Time Discretization
Monte-Carlo Simulation

Weak Convergence of the Euler-Maruyama Scheme – 2

Remark

1 The notion of weak convergence seems to be more
appropriate for our problem than the – stronger – notion of
strong convergence, since we actually want to approximate
quantities of the form E (f (X x

T )).

2 In probability theory, the notion of weak convergence is
usually defined with respect to the space Cb(Rn) of
continuous, bounded functions instead of the space C k

p (Rn).

Theorem

Let the data a and σ be C 4. Then the uniform Euler-Maruyama
scheme converges weakly with order 1.
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Monte-Carlo Simulation

Proposition

Given an Rn-valued random variable X and a measurable function
f : Rn → R such that f (X ) ∈ L2(Ω) with variance σ2(f ). Let Xm,
m ∈ N, denote a sequence of independent copies of X . Then

lim
M→∞

1

M

M∑
m=1

f (Xm) = E (f (X )) a. s.

and, in the sense of convergence in distribution,

√
M

1
M

∑M
m=1 f (Xm)− E (f (X ))

σ(f )
M→∞−−−−→ N (0, 1).
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Error of Monte-Carlo Simulation

Remark

1 Monte-Carlo simulation allows approximation of E (f (X )) with
error control provided that it is feasible to generate random
numbers from X: heuristically, if M is large enough,

1

M

∑M

m=1
f (Xm)− E (f (X )) ∼ N

(
0,

σ2(f )

M

)
.

2 It is a method of order 1
2 . Given ε > 0 and 0 < δ < 1, to

guarantee that
∣∣ 1
M

∑M
m=1 f (Xm)− E (f (X ))

∣∣ < ε with

probability 1− δ we have to choose M ≥
(

pσ(f )
ε

)2
, where p is

the (1− δ
2)-quantile of a standard Gaussian random variable,

i. e. P(|Z | ≥ p) = δ for Z ∼ N (0, 1).
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Monte-Carlo Simulation in the Euler-Maruyama Scheme

We want to approximate the unknown value E (f (X x
T )) by the

value E
(
f
(
X

(N)
N

))
, but – in general – it is impossible to

calculate the latter expected value.

Contrary to X x
T , it is possible to generate random numbers

according to the distribution of X
(N)
N , see (3).

This allows approximation of E
(
f
(
X

(N)
n

))
using Monte-Carlo

simulation: for fixed N, M let
(
X

(N,m)
N

)
m∈N denote a sequence

of independent copies of X
(N)
N . Then we approximate

E
(
f
(
X

(N)
N

))
≈ 1

M

∑M

m=1
f
(
X

(N,m)
N

)
.
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A New Error Regime

Monte-Carlo simulation introduces an additional, stochastic
error to the Euler scheme.

The total errror naturally splits into two parts according to

Error =

∣∣∣∣E (f (X x
T ))− 1

M

∑M

m=1
f
(
X

(N,m)
N

)∣∣∣∣
≤

∣∣∣E (f (X x
T ))− E

(
f
(
X

(N)
N

))∣∣∣
+

∣∣∣∣E(
f
(
X

(N)
N

))
− 1

M

∑M

m=1
f
(
X

(N,m)
N

)∣∣∣∣ .

The first term is called time-discretization error and the
second term is called statistical error.
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A Crude Error Analysis

Remark

The slow convergence rates of the Euler-Maruyama scheme
seem to indicate the need for higher order methods.

Fix an error tolerance ε > 0 and 0 < λ < 1. Reserve λε for
the discretization and (1− λ)ε for the statistical error. Using
a p-order discretization method, we need

N(λε) = C1(λε)−1/p, M((1− λ)ε) = C2((1− λ)ε)−2.

Consequently, the total work is proportional to

N(λε)M((1− λ)ε) = C1C2λ
−1/p(1− λ)−2ε

−(2+ 1
p
)
.
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The Stratonovich Stochastic Integral

Definition

For a continuous semimartingale Y , the Stratonovich integral of Y
with respect to Brownian motion is defined by∫ t

0
Ys ◦ dB i

s =

∫ t

0
YsdB i

s +
1

2
[Y ,B i ]t .

Remark

We can switch between SDEs in Stratonovich and Itô form by∫ t

0
h(Xs) ◦ dBs =

∫ t

0
h(Xs)dBs +

1

2

n∑
j=1

d∑
k=1

σjk(Xs)
∂hk

∂x j
(Xs)ds.
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Stochastic Taylor Expansion

Theorem

Let f : Rn → R be C∞-bounded. Define differential operators
Aj =

∑n
k=1 σkj ∂

∂xk and A0 =
∑n

k=1

(
ak − 1

2

∑d
j=1 Ajσkj

)
∂

∂xk ,

j = 1, . . . , d. For α = (i1, . . . , ik) ∈ {0, . . . , d}k set
fα = Ai1 · · ·Aik f and construct the iterated Stratonovich integrals
by Jα

t =
∫
0<t1<···<tk<t ◦dB i1

t1 · · · ◦ dB ik
tk with the convention that

◦dB0
s = ds. For m ∈ N we have

f (X x
t ) =

∑
k∈N, α∈{0,...,d}k ,
k+#{ij=0}≤m

fα(x)Jα
t + Rm(t, x , f ), (4)

where supx∈Rn

√
E (R2

m) = O
(
t

m+1+1]1,∞[(t)

2

)
.
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Taylor Schemes

Remark

1 The stochastic Taylor expansion is the analogue of the Taylor
expansion for deterministic functions. Note that the iterated
Stratonovich integrals Jα play the rôle of the polynomials.

2 The intriguing summation boundary “k + #{ij = 0}” comes
from the different scaling of Brownian motion – corresponding
to non-zero indices – and time – corresponding to the index 0
– which is sometimes described by “dBt ≈

√
dt”.

Consequently, time indices have to be counted twice.

It seems plausible to generalize the Euler-Maruyama scheme by
schemes where the increment (3) is obtained by truncating the
stochastic Taylor expansion at some point. These schemes are
called Taylor schemes.
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Definition of the Milstein Scheme

Definition

Given a (uniform) partition as before. The Milstein scheme is

defined by X
(N)
0 = x and, for i = 0, . . . ,N − 1,

X
(N)
i+1 = X

(N)
i +a

(
X

(N)
i

)
∆ti +σ

(
X

(N)
i

)
∆Bi +

d∑
j ,k=1

Ajσk
(
X

(N)
i

)
I
(j ,k)
∆ti

,

where I
(j ,k)
∆ti

=
∫ ti+1

ti
(B j

t − B j
ti )dBk

t .

Remark

The Milstein scheme is obtained by using the second order
stochastic Taylor expansion (after rewriting it in Itô form).
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Properties of the Milstein Scheme

Theorem

The Milstein scheme converges strongly and weakly and is of order
1 in both senses.

Remark

The weak orders of the Milstein and the Euler-Maruyama schemes
coincide. Since we are mostly interested in weak convergence, it
might not seem sensible to use the Milstein scheme. Note,
however, that one can construct Taylor schemes of any order and
the Milstein scheme already has most of the properties of higher
order Taylor schemes. Therefore, we may use it exemplorarily for
general higher order schemes.
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Sampling Iterated Itô Integrals

If we want to apply the Milstein scheme we need to be able to
sample random numbers according to the distribution of the
d(d + 1)-dimensional random variable(

∆B1
i , . . . ,∆Bd

i , I
(1,1)
∆ti

, . . . , I
(j ,k)
∆ti

, . . . , I
(d ,d)
∆ti

)
. (5)

I
(j ,j)
∆ti

, 1 ≤ j ≤ d , can be expressed in terms of Brownian

motion in an algebraic way by I
(j ,j)
∆ti

= 1
2((∆B j

i )
2 −∆ti ).

The mixed terms I
(i ,j)
∆ti

depend on B in a non-trivial way. This
makes sampling from the afore-mentioned random vector a
costly task.
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Embedding Higher Order Taylor Schemes in a Lie Group

For the scheme constructed by using the stochastic Taylor
expansion of order m, we need to be able to sample from the
distribution of the random vector of all Jα

t with α running
through all the multi-indices in {0, . . . , d} such that
|α|+ #{ij = 0} ≤ m, c. f. (4).

The analyis of this random vector is greatly simplified if we
interpret the vector of iterated Stratonovich integrals of order
up to m as a stochastic process taking values in some Lie
group Gm

d ,1, which is nilpotent of order m.
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Definition of the Lie Group

Let Am
d ,1 be the (associative, non-commutative) algebra of all

polynomials in e0, . . . , ed with degree less or equal to m, where
all occurrences of e0 are counted twice. We truncate all terms
of higher degrees when multiplying two such polynomials.
We encode the vector of iterated Stratonovich integrals as an
element of the algebra by setting Y 1

t = 1+
∑

Jα
t eα, where the

sum runs over |α|+ #{ij = 0} ≤ m and e(i1,...,ik ) = ei1 · · · eik .

Definition

We define Gm
d ,1 = {Y 1

t (ω) | ω ∈ Ω} for any t > 0.

Remark

Gm
d ,1 is a Lie group having a global chart. Note that we would only

need all paths ω of bounded variation in the definition of Gm
d ,1.
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The Vector of Iterated Integrals as a Process in Gm
d ,1

For y ∈ Gm
d ,1 consider the stochastic differential equation in Gm

d ,1

dY y
t = Y y

t e0dt +
∑d

i=1
Y y

t ei ◦ dB i
t . (6)

Proposition (Teichmann 2006)

The vector Y 1
t of iterated Stratonovich integrals coincides with the

solution to the SDE (6) with initial value 1.

Remark

The infinitesimal generator to (6) is the sub-Laplacian on Gm
d ,1.

Therefore, we call the fundamental solution of the SDE – and
density of the iterated integrals – the heat kernel on Gm

d ,1.
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Approximation of the Heat Kernel

Note that the coefficient of Y 1
t in e0 is equal to t.

Consequently, the heat kernel as density of Y 1
t does not exist

albeit in a generalized function sense.
If we factorize Am

d ,1 w. r. t. the subspace generated by e0, then
one can show that the heat kernel exists as a function in the
Schwartz space.
This suggests approximating the heat kernel by Hermite
functions. Interpret Y 1

t as a process taking values in some
RK . Let Σt be a suitable covariance matrix thereon and let
rt(z) and hβ(t, z) respectively denote the density of N (0,Σt)
and the corresponding Hermite polynomials, z ∈ RK , β ∈ NK .
There is an efficient procedure for calculating the coefficients
aβ
t of the expansion

pt(·)
rt(·)

=
∑

β∈NK

aβ
t hβ(t, ·). (7)
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Milstein Scheme with Approximate Densities

In the step from ti to ti+1, the increment of the Milstein
scheme depends on (an independent copy of) Y 1

∆ti
,

consequently X
(N)
N depends on Z0, . . . ,ZN−1, where Zi ∼ Y 1

∆ti

independent of each other. We write X
(N)
N (Z0, . . . ,ZN−1).

Therefore, we immediately get

E
(
f
(
X

(N)
N

))
=

∫
RKN

f
(
X

(N)
(z0, . . . , zN−1)

)
p∆t0(z0) · · · p∆tN−1

(zN−1)dz0 · · · dzN−1.

Fix an approximation p̃t of the heat kernel by truncating the
Hermite expansion at some point and a probability Qt on RK

with density qt > 0, e. g. Qt = N (0,Σt).
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Milstein Scheme with Approximate Densities – 2

Proposition

For M ∈ N let Z
(m)
i , m = 1, . . . ,M, i = 0, . . . ,N − 1, be a

sequence of independent, Q∆ti -distributed random variables.

E
(
f
(
X

(N)
N

))
= lim

M→∞

1

M

M∑
m=1

f
(
X

(N)
N

(
Z

(m)
0 , . . . ,Z

(m)
N−1

))
p̃∆t0

(
Z

(m)
0

)
q∆t0

(
Z

(m)
0

) · · · p̃∆tN−1

(
Z

(m)
N−1

)
q∆tN−1

(
Z

(m)
N−1

) .

Remark

The choice of Σt and Qt is crucial.

Note that p̃t is not a true density and takes negative values.
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First Results for the Weak Error

1 5 10 50 100 500

0.
00

2
0.

01
0

0.
05

0
0.

20
0

1.
00

0

Number of time steps

Er
ro

r

Milstein method
Euler method
Confidence interval
Reference lines

Call on the sphere (non−hypo., non−comm.)

Christian Bayer Euler Methods & Beyond



Introduction
Euler-Maruyama Scheme

Higher Order Methods
Summary

Stochastic Taylor Schemes
The Milstein Scheme
The Milstein Scheme with Approximate Heat Kernels

First Results for the Strong Error
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Summary

The Euler-Maruyama scheme for discretization of SDEs is
simple to understand and implement, but suffers from a low
order of convergence, especially in the strong sense.

Typically, the cost of the Monte-Carlo simulation overshadows
this defect and it seems to be more important to accelerate
the simulation than to improve the order.

In situations with dominating time discretization error,
stochastic Taylor methods provide methods of any order, but
the simulation is costly. One possibel alternative might be the
use of approximate heat kernels.

One should also consider Richardson extrapolation – a
generalization of Romberg extrapolation – as a mean to get
higher order methods.
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