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American options

v(s0) := v(0, s0) = sup
τ∈S

E [Yτ∧T | S0 = s0]

I St ∈ Rd denotes the underlying asset price process, d ≥ 1

I Yt denotes the discounted cash-flow process, e.g., Yt = e−rtg(St)

g(s) =

(
K −

d∑
i=1

si

)+

or g(s) = max
i=1,...,d

(si −K)+

I E is the expectation w.r.t. a pricing measure P

I S denotes the set of Ft-stopping times
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State of the art methods

Let v(t, s) be time and asset dependent value function.

Dynamic programming principle

Value v(t, s) equals expected value at future time, or value of exercising right

now, whichever is larger:

v(t, s) ≈ max{E[v(t+ ∆t, St+∆t) | St = s], g(s)}

Making this rigorous leads to two state of the art algorithms that determine

v(t, s) backwards in time, starting with t = T where v(T, ·) ≡ g
I Discretize the HJB PDE

I Directly solve the dynamic programming principle by Monte Carlo

regression
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Tsitsiklis – Van Roy algorithm (caricature)

For tN := T, tN−1 := T − T/N, . . . , t0 := 0:

I Assume we have approximation vn(·) of v(tn, ·) that can be evaluated

at arbitrary points

I Generate samples s(m) ∼ Stn−1 , 1 ≤ m ≤M
I For each sample, generate a number of future samples

s(m,k) ∼ L
(
Stn | Stn−1 = s(m)

)
, 1 ≤ k ≤ K

I c(m) := 1
K

∑K
k=1 vn(s(m,k)), expected value of continuation from s(m)

I Determine pn−1(·) in some ansatz space V (e.g. some space of

polynomials) by discrete L2 regression:

pn−1 := arg min
p∈V

M∑
m=1

∣∣∣p(s(m))− c(m)
∣∣∣2

I Let vn−1(s) := max{g(s), pn−1(s)}
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Tsitsiklis – Van Roy algorithm

I Typically, vn is only used to construct an approximation to the optimal

stopping time τ∗, not for actual pricing.

I The more well-known Longstaff – Schwartz algorithm is a variant of the

above.

I Actual implementations avoid inner simulations.

Problems
I Value function v has only one continuous derivative at boundary of E∞

I Large ansatz spaces and many samples necessary for good accuracy

I Number of necessary samples to alleviate error propagation further

grows exponentially in number of time steps
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Finite difference methods

Dynamic programming principle for ∆t→ 0 leads to a nonlinear

free-boundary partial differential equation, for v and simultaneously for the

optimal exercise boundary. For d = 1, the optimal exercise boundary is a

function L : [0, T ]→ R+ and the equation for a put option is
vt(t, s) + rsvs(t, s) + 1

2σ
2s2vss(t, s)− rv(t, s) = 0, s ≥ L(t)

v(T, s) = (K − s)+

v(t, s) = (K − s)+, 0 ≤ s ≤ L(t)

v(t, ·) ∈ C1, 0 ≤ t < T

Problems

Same problems with regularity of v; curse of dimensionality with regular grids;

have to deal with a difficult nonlinear PDE and all the problems that come with

it
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Markovian markets

In Markovian market models, future stock development only depends on

current prices.

Optimal strategies only exploit current state

We may thus restrict optimization to hitting times of sets B ⊂ [0, T ]× Rd:

v(s0) = sup
B∈B([0,T ]×Rd)

Ψ(B) := sup
B∈B([0,T ]×Rd)

E[YτB∧T | S0 = s0]

I τB := inf{t ≥ t0 : (t, St) ∈ B} is the hitting time of B ⊂ [0, T ]× Rd

I Technical condition: S is càdlàg and the probability space is complete.

Pricing American Options by Exercise Rate Optimization · January 9, 2020 · Page 9 (31)



Markovian markets

In Markovian market models, future stock development only depends on

current prices.

Optimal strategies only exploit current state

We may thus restrict optimization to hitting times of sets B ⊂ [0, T ]× Rd:

v(s0) = sup
B∈B([0,T ]×Rd)

Ψ(B) := sup
B∈B([0,T ]×Rd)

E[YτB∧T | S0 = s0]

I τB := inf{t ≥ t0 : (t, St) ∈ B} is the hitting time of B ⊂ [0, T ]× Rd

I Technical condition: S is càdlàg and the probability space is complete.

Pricing American Options by Exercise Rate Optimization · January 9, 2020 · Page 9 (31)



Exercise region optimization

Strategy to find option price:

1. Choose parametrization of subsets of [0, T ]× Rd

2. Choose initial guess B0 ⊂ [0, T ]× Rd

3. Update to get Bn → B∞ and Ψ(Bn)→ Ψ(B∞) = v(s0)

Not so easy:

1. No obvious choice, no

“orthogonal bases” of subsets

2. How to pick initial guess?

3. Recall lack of continuity of hitting

times in general

4. Translates to lack of continuity

B 7→ 1
M

∑M
i=1 Y

i
τB∧T
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Exercise Rate Optimization (ERO)

Xt := logSt

For f : [0, T ]× Rd → R+ exercise with rate λt = f(t,Xt), i.e., at the first

jump time of an independent Poisson process with rate λt. Explicitly, at time

τf := inf

{
t ≥ 0

∣∣∣∣ ∫ t

0
λu du ≥ Z

}
, Z ∼ Exp(1).

Notation:

Ut := P
(
τf ≥ t | (Su)u∈[0,T ]

)
= exp

(
−
∫ t

0
λu du

)
,

φ
(
f, (Su)u∈[0,T ]

)
:= E

[
Yτf∧T | (Su)u∈[0,T ]

]
= −

∫ T

0
Yt dUt + YTUT ,

ψ(f) := E
[
φ
(
f, (Su)u∈[0,T ]

)]
= E

[
Yτf∧T

]
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Exercise Rate Optimization as relaxation of optimal stopping

v(s0) = sup
{
ψ(f)

∣∣∣ f : [0, T ]× Rd → R+ measurable
}

Proof.

Economical Randomized stopping rules are available to investors

Mathematical “≤” Any hitting time τB corresponds to

fB(t, x) :=

{
+∞, (t, ex) ∈ B,
0, else.

“≥” Conditioning on X yields stopping times, i.e.,

ψ(f) = E
[
E
[
Yτf∧T | X

]]
≤ v(s0).
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Exercise Rate Optimization is a smooth optimization problem

Pathwise smoothness〈
∇fφ

(
f, (St)t∈[0,T ]

)
, h
〉

= −
∫ T

0
Yt d 〈∇fUt, h〉+ 〈∇fUT , h〉YT ,

〈∇fUt, h〉 = −Ut
∫ t

0
h(u,Xu) du
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0
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log f

a) 1
M

∑M
m=1 φ

(m) (fc, S
m
· ), fc ≡ c
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s

b) 1
M

∑M
m=1 Y

(m)
τBs∧T

, Bs = [0, T ]× [0, s]
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Rate parametrization

Rate parametrization

Parametrization of rates by polynomials of degree ≤ k in (t, x)

Fk := { fp(t, x) = 1y>0 exp (p(t, x)) | p ∈ Pk }
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(a) s∗ ≈ K − (T − t)1/2
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(b) {T − t− (K − s)2 = 0} ∩ {g(s) ≥ 0}

Figure: Univariate put option, g(s) := (K − s)+, K = 1, T = 1
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Algorithm

(i) Replace (St)0≤t≤T by discretization with N <∞ time steps

(ii) Approximate expectation by MC based on M samples

(iii) Choose polynomials (ψj)
K
j=1 on R1+d and let

RK 3 c 7→ fc := exp

(
K∑
j=1

cjψj

)
1g>0

(iv) Using standard algorithms (e.g., L-BFGS-B), maximize the (discretized)

surrogate function Ψ: RK → R

c 7→ 1

M

M∑
m=1

[
−
∫ T

0
Y m
t dUm,ct + Y m

T Um,cT

]
,

where Um,ct := exp
(
−
∫ t

0 λ
m,c
u du

)
and λm,ct := fc(t,X

(m)
t )

(v) Optionally, resample paths to compute option price based on fc∗
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Black-Scholes, d = 1
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(a) Test and training prices
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n

2−n

(b) Relative error of test price

Figure: ERO with polynomial degree k = 2 (in (t, x)), M = Mn = 400× 4n

samples, N = Nn = 2n time-steps, errorO(M−1/2 +N−1)
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Black-Scholes, d = 1
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Figure: ERO with polynomial degree k = 0, 1 (in (t, x)), M = Mn = 400× 4n

samples, N = Nn = 2n time-steps
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Black-Scholes, d = 1
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Figure: Convergence with respect to the number of iterations of L-BFGS-B (n = 4).

We see exponential convergence.
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Black-Scholes, basket option, d ∈ { 2, 5 }
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(a) d = 2, # of basis: 10 (ERO), 28 (LS)
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(b) d = 5, # of basis: 28 (ERO), 462 (LS)

Figure: Convergence of Longstaff–Schwartz algorithm (LS) for {2, 5}-dimensional

basket put options with increasing polynomial degree. Reference value computed

using ERO with quadratic polynomials and 95% confidence bands (dashed).
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Max call option, Black-Scholes model, d = 2, training

Figure: Learning exercise rates at time t = 0.5 for an American max call option with

parametrization based on cubic polynomials. Point cloud.
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Max call option, Black-Scholes model, d = 2, training

Figure: Learning exercise rates at time t = 0.5 for an American max call option with

parametrization based on cubic polynomials. Iteration 0.
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Max call option, Black-Scholes model, d = 2, training

Figure: Learning exercise rates at time t = 0.5 for an American max call option with

parametrization based on cubic polynomials. Iteration 10.
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Max call option, Black-Scholes model, d = 2, training

Figure: Learning exercise rates at time t = 0.5 for an American max call option with

parametrization based on cubic polynomials. Iteration 20.
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Max call option, Black-Scholes model, d = 2, training

Figure: Learning exercise rates at time t = 0.5 for an American max call option with

parametrization based on cubic polynomials. Iteration 30.
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Max call option, Black-Scholes model, d = 2, training

Figure: Learning exercise rates at time t = 0.5 for an American max call option with

parametrization based on cubic polynomials. Iteration 40.
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Max call option, Black-Scholes model, d = 2, training

Figure: Learning exercise rates at time t = 0.5 for an American max call option with

parametrization based on cubic polynomials. Iteration 46.
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Max call option, Black-Scholes model, d = 2
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Figure: Level sets of optimal exercise rate at time t = 0.5 for American max call

option with quadratic (dashed) and cubic (solid) polynomials. Here, first order

polynomials cannot capture the shape of the exercise region.
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Heston model, d ∈ { 1, 10 }

I Rate λt = f(t,Xt, vt)

for stochastic variance vt

I Multivariate asset

St = (S1
t , . . . , S

d
t )

driven by a joint,

one-dimensional

variance process vt

I Example on the right:

American put option in

Heston model (d = 1,

K = 110, S0 = 100,

v0 = 0.15)
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0.15

1000
0.001

x

ν

Figure: Level sets of exercise rate at time t = 0.5
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Heston model, d ∈ { 1, 10 }
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Figure: Convergence of ERO in the polynomial degree for American put options in

multivariate Heston models
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Rough Bergomi model

dSt = St
√
vtdZt, S0 = s0

vt = ξ0E
(
ηŴt

)
, Ŵt =

√
2H

∫ t

0
(t− s)H−1/2dWs

I H � 1/2 is typically used

I Not a Markov process!

Extended state space

For J ≥ 0 choose λt = f(t,Xt) with

Xt := (logSt, logSt−∆1 , . . . , logSt−∆J
, vt, vt−∆1 , . . . , vt−∆J

) .
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Rough Bergomi model

K

70 80 90 100 110 120 130 140

Euro. 1.83 3.13 5.06 7.98 12.21 17.99 25.35 33.88

0 1.88 3.23 5.32 8.51 13.24 20 30 40

1 1.88 3.23 5.31 8.50 13.22 20 30 40
J 3 1.88 3.21 5.31 8.50 13.22 20 30 40

7 1.88 3.22 5.30 8.50 13.23 20 30 40

Table: Prices of American put option in the rough Bergomi model, S0 = 100,

v0 = 0.09, H = 0.07, η = 1.9, ρ = −0.9.
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Rough Bergomi model
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Figure: Level sets of exercise rates at t = 0.5 with J = 0
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Randomization in discrete time in the Markovian case

Consider a Bermudan option, with stopping times restricted to a finite set of

times, w.l.o.g. { 0, 1, . . . , J }.

Randomized exercise region optimization

v(0, S0) = sup
(h1,...,hJ )∈HJ

E

 J∑
j=0

Yjhj(Xj)

j−1∏
`=0

(1− h`(X`))

 ,
whereH denotes the space of measurable functions taking values in [0, 1].

I Obvious adaptation of ERO to Bermudan options

I Implementation: ReplaceH by a parameterized, finite-dimensional

subspace Ĥ

Example (DNN, Becker, Cheridito, Jentzen, Welti ’19)

Here, Ĥ is the space of deep neural networks of a given architecture.
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Randomization in discrete time in the Markovian case

Consider a Bermudan option, with stopping times restricted to a finite set of

times, w.l.o.g. { 0, 1, . . . , J }.

Randomized exercise region optimization

v(0, S0) = sup
(h1,...,hJ )∈HJ

E

 J∑
j=0

Yjhj(Xj)

j−1∏
`=0

(1− h`(X`))

 ,
whereH denotes the space of measurable functions taking values in [0, 1].

I Obvious adaptation of ERO to Bermudan options

I Implementation: ReplaceH by a parameterized, finite-dimensional

subspace Ĥ
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Convergence

I Let N(δ) denote the covering number of Ĥ w.r.t. L2(X), i.e., the

number of balls of radius δ needed to cover Ĥ. Assume that

N(δ) ≤ Aδ−ρ.

I Assume that the continuation value Cj is close to Yj in the sense that

P (|Cj(Xj)− Yj | ≤ δ) ≤ Bδα.

Theorem

Let vM denote the Monte Carlo approximation of v(0, S0) after re-sampling.

Then, with probability at least 1− δ,

0 ≤ v(0, S0)− vM ≤ C
(

log(1/δ)2

M

) 1+α
2+α(1+ν)

,

where ν := 2(1+α)
2+α(1+ρ/2) .
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