CUBATURE ON WIENER SPACE: PATHWISE CONVERGENCE

CHRISTIAN BAYER AND PETER K. FRIZ

AssTrACT. Cubature on Wiener space [Lyons, T.; Victoir, N.; Proc. R. Soc. Lond. A 8
January 2004 vol. 460 no. 2041 169-198] provides a powerful alternative to Monte Carlo
simulation for the integration of certain functionals on Wiener space. More specifically,
and in the language of mathematical finance, cubature allows for fast computation of Eu-
ropean option prices in generic diffusion models.

We give a random walk interpretation of cubature and similar (e.g. the Ninomiya—
Victoir) weak approximation schemes. By using rough path analysis, we are able to estab-
lish weak convergence for general path-dependent option prices.

1. INTRODUCTION

Cubature on Wiener space (Kusuoka [6, [7], Lyons and Victoir [9]], see also Litterer and
Lyons [8]], Ninomiya and Victoir [[13]], Ninomiya and Ninomiya [[12]]) provides a powerful
alternative to Monte Carlo simulation for the integration of certain functionals on Wiener
space. As of present, these functionals are of the form f (S 1) where S 7 is the image of a
d-dimensional Brownian motion under the It6-map (the solution map to a stochastic differ-
ential equation); the aim of cubature on Wiener space is then to provide a fast numerical
algorithm to compute E [f (S7)], where the expectation is taken over the d-dimensional
Wiener measure.

In the language of mathematical finance, cubature deals with European option prices in
generic diffusion models. Although some exotic options can be handled in this framework
(e.g. Asian options, by enhancing the state-space) general path-dependent options are not
included in the presently available analysis on cubature methods. It must be admitted that
cubature has been designed for fast evaluation of payoffs of the type f (S7); but even so, it
may maintain its benefits in mildly path-dependent situation and, in any case, convergence
to the correct value will be considered a minimal requirement by most users.

The answer to “How can it fail to converge to the correct value?” is not trivial: cu-
bature methods are essentially derived from replacing Wiener-measure but a path-space
measure supported on smooth paths {w;}, subject to certain technical conditions relating
to the iterated integrals of these paths. Stochastic differential equations, however, are far
from stable under perturbations in the iterated integrals: recall the well-known examples of
McShane [[11] which give uniform approximations to Brownian motion where the limiting
differential equation exhibits bias in the form of additional drift terms. (The explanation
is that these approximations do not correctly approximate the iterated integrals of Brown-
ian motion known as Lévy’s stochastic area.) At the risk of confusing the reader, even if
is guaranteed that a sample path and its stochastic area are uniformly correctly approxi-
mated, the limiting differential equation may still exhibit additional drift termsﬂ The point
is that topology matters: uniform convergence needs to be replaced by a stronger notion
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I . now involving two or more iterated Lie brackets of the diffusion vector fields; see [4] for more on such
subtleties.
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of Holder (or p-variation) rough path topology in order to use the stability results of rough
path theory.

Our key idea is to view the iterations of cubature steps, (Lyons and Victoir [9, The-
orem 3.3] for instance), via an underlying random walk of the driving signal, Brownian
motion plus Lévy’s area. The iterated cubature scheme corresponds precisely to stochas-
tic differential equations in which the driving Brownian motion is replaced by k properly
rescaled concatenations of the w; (say, chosen independently with probability A; at each
step). Thanks to the smoothness of the w;, such a path has canonically defined iterated
integrals; the “only” thing left to do is to establish weak convergence of this random walk
to Brownian motion and Lévy’s stochastic area, in the correct rough path topology. It
is then an immediate consequence of the continuity of the Itd map in rough path sense
(i.e. as a deterministic function of path and area in rough path topology) to see that this
entails the desired weak convergence result for path dependent functionals of the type
[ :0<e<T).

Weak convergence questions of this type were first discussed in E. Breuillard, P. Friz,
M. Huesmann [2]. Unfortunately, the “Rough path Donsker” theorem obtained therein
does not lend itself immediately to the present applications: a moment of reflection reveals
that it would cover cubature with (1) equidistant steps and (2) in which the w; are straight
lines (Wong-Zakai!). Our strategy is thus to develop refined arguments that allow to cover
the generic cubature setting as well as its recent variations (like Ninomya—Victoir). This
leads, en passant, to a more flexible version of the Donsker theorem for Brownian motion
on Lie groups in topologies considerably finer than the uniform one.

The mathematical content — weak convergence of discrete structures to (Stratonovich)
SDE solutions — should also be compared to the (typically 1t6) diffusion limits of Markov
chains (cf. Stroock and Varadhan [[16, Section 11.2]), although we shall not pursue this
point further here.

The current paper uses many ideas and results from rough path theory, see Lyons [10]
and Friz and Victoir [3]], which we primarily use for reference in this paper. For cubature
on Wiener space, the authoritative reference remains Lyons and Victoir [9].

2. CuUBATURE ON WIENER SPACE AND THE ASSOCIATED RANDOM WALKS

Let B = (By)e(0,17 denote a standard d-dimensional Brownian motion on (Q, 7, (F/)e(0.11, P)
and B. = §,(B)y., i.e., B is the Brownian motion enhanced by its Lévy area. The geomet-
rical setting of B is the Lie group G?(R%), which can be defined as follows: let e, ..., e;
denote the canonical basis of R?. Then ¢;Qe j» 1 <1, j < d, forms a basis for the tensor prod-
uct R‘®@R?. Consider the algebra T*(R?) := R&R@RY®R?, which is understood as a step-2
nilpotent non-commutative algebra, i.e., for X; = z; + x| + a1, X = 20 + X + ap € T*(RY)
the product is given by

X| ®Xp = 2120 + (22X1 + 21X2) + (22a1 + z1a2 + X1 ® X7).

Consider g*(R?) c T?*(R?), the Lie-algebra generated by ey, ..., e, together with [e;, ],
1 <i< j <d, with the commutator defined by [x,y] = Xx®y -y ®X, X,y € T>(R?). The
exponential map exp : T>(RY) — T?(R?) defined by

o | ®k _ 1
exp(x).—l+;ﬁx —1+X+§X®X

in the step-2 nilpotent setting, maps g>(R?) in a bijective way to the Lie group G*(R?) :=
exp(g*(RY)) c T*(RY).

This Lie group is highly relevant for rough path analysis, since it is the geometric setting
of the enhanced Brownian motion mentioned before. Indeed, the T*(R¢)-valued process B
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defined by

d 1
ZfBQOdBéei@)ej::Sz(B)o,r, 0<tr<,
0

d
(1) B, ::1+ZB§e,-+
i=1 ij=1

lives in the Lie group G*(R%), i.e., P(B, e G*(RY), t € [0, 1]) = 1. In a similar way, we
will consider the (step-m truncated) signature, see Friz and Victoir [3]],

) Sm(B)o,,:=1+Z Z f odB)---0dBle; ®- ®e,

k=1 ipyixell,....d) ¥ OSH < Shi<t

which takes values in the step-m nilpotent Lie-group G™(R¢) defined analogously to G*(R? )E]
Consider the stochastic differential equation (in Stratonovich form)

A3) dX, = Vo(X)dt + » Vi(X,)odB,,

d
=1

1

Xo = xo € RN. Here, Vo, Vy,...,Vy : RY — RY is a collection of smooth vector fields.
A cubature formula on Wiener space is a random variable W taking values in the space
C'([0, 1], RY) of continuous paths of bounded variation with values in R? such that we
have

@) E[f odBl! --- odB;'Q] = E[f AW, - dW}|.
0<t <<t <1 0<t <<t <1
Equation (4) is supposed to hold for all multi-indices I = (iy,...,i) € {1,...,d}* with

k < mandall 1 <k < m, where m is a fixed positive integer, the order of the cubature
formula. Moreover, we note that the paths of the process W are of bounded variation,
therefore the integrals on the right hand side of (@) can be classically defined in a pathwise
sense. Notice that we do not use cross-integrals between time df and the Brownian motion
dB,. Therefore, a cubature formula in this sense can only be used to approximate SDEs
with drift Vy = 0. We will cover the general case later in Section

Rephrased in terms of the (truncated) signature, equation () means that

) E[Su(B)o1] = E[Su(W)o1],

where the expectation takes values in the algebra 7" (R¢). Obviously, any cubature formula
on Wiener space can be rescaled to a cubature formula on the interval [0, Af], At > 0, by
replacing W with the bounded variation path

(6) S ymW) 1 [0,A1] 5 RY, 55 VAIW(s/Ar).
On the level of signatures, this corresponds to applying the dilatation operator 6z, :
G"(RY) —» G™(RY), i.e.,

S (S3m W)y o, = O var(Sm(Who):

Remark 2.1. Note that the symbol 6 ;5; has different meanings on both sides of the equa-
tion: on the left hand side, it is a function from C([0, 1], Rd) to C([0, At], R4 ), whereas on
the right hand side it is the restriction to G™(RY) of a linear map defined on the algebra
T™(R?) by

Symen ® - ®e;) =A"e; ®---®e;,, 0<k<m, iy....;xe(l,....d}.
2Note that S m(B)o, = S m(B)o.., the Lyons lift of the enhanced Brownian motion, reflecting the fact that S ,,,(B)

depends uniquely and continuously on B — whereas B itself is not uniquely and certainly not continuously given
by B. For instance, we could have chosen the Ito-integral instead of the Stratonovich integral.
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GivenameshD ={0=1ty <ty <---<t, =1}, set Aty =t —tr_1, k= 1,...,n, and
|D| = max, At,. Moreover, let Wy, ..., W, be independent copies of the cubature formula
W. We define a random variable W? : [0, 1] — R taking values in the space of continuous
paths of bounded variation by concatenation of the paths 6m(W(k)) . [0,At] = RY,
k=1,...,n. Again, by well known properties of the signature (the Chen theorem, see for
instance [2, Theorem 7.11, Exercise 7.14]), this translates to the relation

D) _
S (W )0,1 =Sm (6W(W(1)))0,An ®: @Sy (6M(W(")))0,At,L
=6 i (SuW1))oa) ® - ® 6z (S (Wimyo.1) »

where ® denotes the multiplication in the Lie group G™(R¢). Finally, let X? denote the
(pathwise ODE) solution of the equation

d
() dxP =) V(XPyaw?’,

i=1

Xg) = xo. For a given function f : RN — R of interest, the method of cubature on Wiener
space now consists in the approximation

®) E[f(Xl)] =F [f(XlD)] + O(|D|(m—1)/2) .

provided that certain regularity assumptions are satisfied, see [9], [13] and [7]. In partic-
ular, the method provides an efficient numerical scheme, if W has been chosen in such a
way that integration of is “substantially simpler” then integration of the original (3),
see [1]. If f is smooth, (§) holds even for uniform meshes. If f only is Lipschitz, how-
ever, then Kusuoka [7, Theorem 4] shows that () holds provided that one takes certain
non-homogeneous meshes. The goal of this paper regarding cubature is to show that con-
vergence even holds for (reasonable) functionals f depending on the whole path (X,)p</<i-

Example 2.2. The cubature formulas in 9] are discrete random variables W taking values
in the space of continuous paths of bounded variations. That is, fix k paths of bounded

variation wy, . .., wy : [0,1]1 = R? and positive real numbers Ay, ..., 4 with { +- -+ Ay =
1. Then W is the random variable taking values in {wy, ..., wi} with P(W = w;) = 4;,
J=1,...,k Inall the concrete cubature formulas constructed in [9], the paths w (") are,

in fact, piecewise linear.

Example 2.3. We can even interpret the Wong-Zakai approximation as a cubature formula
on Wiener space (of order m = 3; the resulting convergence in (8) has then weak order
(m —1)/2 = 1, precisely as the usual Euler scheme for Ito differential equations). Indeed,
choose W as the linear path W, = tB,. We note that W? can be realized (for any mesh
D) by choosing 6 z;z:(Wy))(s) = s(By, — By,_,), because W (1) = ﬁ(B,k — By, ) has the
same law as W and all the W, are independent. Concatenation of these paths precisely
gives the piecewise linear approximation of B with nodes in D.

Example 2.4. Ninomiya and Victoir [13]] construct a cubature formula of order m = 5 in
the following way. Let A be a Bernoulli random variable (taking values +1 with probability
1/2 each) and let ZV ..., 7% be independent standard normal random variables. Set € =
1/(d + 1). For w € Q, W(w) is defined by the following formula. If A(w) = —1, we define
W(w) to be the piecewise linear path with

1/e, s€[0,&/2], i=0,
Wi(w)(s) = Zi(w)le, se€le/2+ G- Dee/2+is], ie(l,...,d),
=176, sell /2,11, i =0,

0, else.
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If A(w) = 1, W(w) is similarly defined by

1/e, s€[0,e/2],i=0,

Wi (w)(s) = Zi(w)/e, sele/2+(d—-iee/l2+d—-i+ el ie{l,...,d},
1/¢, s€ll—¢g/2,1],i=0,
0, else.

This means, we subdivide the interval [0, 1] into d + 2 subintervals

£ e 3e &
o252 )
On each of these subintervals, W(w) is constant in all components albeit one, which is
linear. In particular, W(w) is again piecewise linear.

At this stage, we would like to remark that we could replace the Gaussian random
variables Z' by discrete random variables having the same moments of order up to five.
Then we would obtain a special case of Example [2.2]— albeit for the non-standard choice
of WO, see Sectionbelow.

o3

U---U
2 2

U

Let us now turn our attention to Donsker type results: for a fixed sequence of meshes
D, with |D,| — 0 we wish to study the corresponding sequence of paths in G"(R9), i.e.,

we study
S (WD">0,. - (S’” (WDn)o,t)

By a Donsker theorem in rough path topology for the sequence of cubature formulas W=
we understand the statement that

©) Su (W), —= Su(B.

ref0,1]

weakly with respect to a-Holder rough path topologyﬁ for some @ € (1/3,1/2) and m > 2.
(In fact, elementary results of rough path theory imply then that it suffices to consider
m = 2. Also, the claimed convergence will actually be established for all @ < 1/2). As
a justification for calling the convergence stated in (9) a Donsker theorem, consider the
following random walk. Let us again fix the mesh D, = {0 =7 < --- < t, = 1}. (We
only take n as the number of sub-intervals for the grid 9, for more convenient notation.
The mathematics would, of course, work in precisely the same way, if the size of D, was
completely arbitrary, as long as |D,| — 0.) Define

(10) & = S (6 ymr (W), o, = 6 v m(Wao):

a random variable taking values in G"(RY). Note that & = ¢ var(w), where £ is an
independent copy of S,,(W),. Next define the G™(R%)-valued, finite random walk Ep
k=0,...,n,by Ef = 1 and

EZH = E‘Z ®§1rcl+l’

where 1 is the neutral element of G™(R?). Since

Dy _=n _
Su(W?),, =B k=0....n,
Sm (WD” )0
random) interpolation. This gives the link to the classical Donsker theorem as well as to
the paper of Breuillard, Friz and Huesmann [2]]. Let us rephrase their Theorem 3 for the
current setting.

_is, indeed, a path in G"(R?) obtained from the random walk Z" by (possibly

31.6., the a-Holder topology for functions taking values in the metric space (G2®RY, |I1l)., see [5l Definition
5.1,9.15]
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Proposition 2.5. Let W be a cubature formula on Wiener space of order m = 2 with finite
moments of all orders in the sense that

Vg2 1: E[||S2Woa]|’] < o,

where ||| denotes the Carnot-Caratheodory norm on G2(R?), see below. Moreover, assume
that W is chosen in such a way that for every w, S2(W(w))o. is a geodesic connecting 1 and
S2(W(w))o.1. Choose uniform meshes D,, = { S | k=0,..., n} Then the Donsker theorem
holds in rough path topology, i.e., S, (WD")O’. converges to B in C**~H([0, 1], GZ(RY)),
forevery a < 1/2.

Recall that the Carnot-Caratheodory norm is defined by

1
Il = inf{ f ]
0

The infimum is actually always attained, and can be parametrized as Lipschitz-continuous
path with constant speed, i.e., ”SQ('}’)O’[” = t”Sz(y)O,lH for 0 < ¢ < 1 and a minimizing
path vy, see [S, Theorem 7.33]. As a homogeneous norm, the Carnot-Caratheodory norm is
equivalent to the simpler norm

yeC!™ ([0, 1],Rd), S2(y)o1 =X } .

IXll, = max (|, lal'/?), x=1+x+aeG* R,
see [5, Theorem 7.45].

Remark 2.6. In [2, Theorem 1], the moment condition is relaxed, which gives weak con-
vergence in a-Holder norm for all « < «, for some a* < 1/2, which is related to the
relaxed moment condition. In this paper, we shall always assume existence of all the mo-
ments. We note, however, that we could also relax this assumption, obtaining a similar
result.

3. THE MAIN RESULT

Usually, a cubature formula W will not satisfy the conditions of Proposition[2.5] even if
we only choose uniform meshes, because the corresponding interpolation S (WD ) of the
random walk =" will not be geodesic. Moreover, if we want to treat functlons f which are
not smooth, then we have to choose non-uniform meshes with #, = ny ” for some y>m-—1,
see [7]. Therefore, we want to generalize Proposition[2.5]in two directions. We want to get
rid of the condition of geodesic interpolation, and we want to generalize to non-uniform
meshes. Fortunately, the first generalization is simple, at least for the cubature formulas
actually suggested in the literature, see Example and also for the Wong-Zakai
approximation given in Example [2.3] The second generalization, however, requires us to
change the method of proof as compared to [2].

It is natural to impose some restriction on the behavior of § (WD ) between two nodes

of the random walk. Indeed, we have to rule out “loops” which approach infinity.

Assumption 3.1. The cubature formula W takes values in the Cameron-Martin space H
(of paths started at 0) and the Cameron-Martin norm has finite moments of all orders, i.e.,

for every k e N
k/2
(f [W(s) ds) ]<oo.

This assumption is both natural (a general continuous path of finite 1-variation would
not be in the (1/2-€)-Holder support of the Wiener measure!) and satisfied by all (piecewise
linear!) cubature formulas used in practice. We look at this in some detail in

E[Iwi,|
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Example 3.2. Assume that the cubature formula W is piecewise linear, i.e., there is a posi-
tive integer € and there are d-dimensional random variables F1, . .., F¢ with finite moments
of all orders and a mesh 0 = sy < --- < s¢p = 1 such that

WJZFI, sii1<s<s, 1<
This immediately implies Assumption [3.1]
Our main theorem is (for conclusions to cubature see Corollary @]below):

Theorem 3.3. Given a cubature formula W of order m > 2 such that Wy and the cor-
responding area Ay have finite moments of all orders and Assumption |3.1| is satisfied.
Then Donsker’s theorem holds in rough path topology for any sequence D, of meshes

with |D,| — 0, i.e,
52 (1), o 5:Bn,

in CO’”’Hﬁl([O, 1], GZ(R")), forevery a < 1/2.

The natural conclusion from Theorem [3.3] would be a weak convergence result for the
cubature-approximation of the SDE (3) to its true solution on path-space. A little care
is necessary, however, because we have ignored the drift Vj in the SDE, i.e., our driving
signal is a pure Brownian motion and does not include time. The classical approach is to
add another component to both the Brownian motion and the approximating cubature paths
by setting BY := ¢, WY := ¢ and then require the moment matching condition (@) to hold for
all iterated integrals, where the multi-index (iy, ..., i;) now varies over {0, 1,... ,dF e,
where we also consider mixed iterated integrals of Brownian motion and time ¢. Due to
the scaling of Brownian motion “dB, ~ Vdr”, it is only necessary to impose the moment
matching condition for multi-indices (i1, ..., i) with k + #{jli; = 0} < m to get weak
convergence with rate 251

However, the Ninomiya-Victoir scheme does not fall into this class, because we have
seen in Examplethat they do not choose W = 1. Therefore, we want to generalize the
above considerations slightly. Let & : [0, 1] — R be a deterministic, uniformly Lipschitz
path with 2(0) = 0 and A(1) = 1. This setting obviously includes the drift-component of
the Ninomiya-Victoir scheme. We define the path hw by hW,i = Wli fori =1,...,d, and
"W := h(f). As usual, we set B” := t. We assume the usual moment matching condition to
hold, i.e.,

E[Su("W)oi| = E[Su(B)o.],

where S,,("W) is the step-m signature of the path "W, more precisely

m

Sm (hW)o,l = Z Z f thfill "'thzi: €, ® - Qe.
K20 (i)l 0<ty <<y<l

k+#{j:i;=0}<m
Analogously, the signature of the Brownian motion above is understood as the signature
of the now R%*!-valued process B. (This notation is ambiguous. In the following, the
symbol B will usually denote the R?-valued Brownian motion. We only mean the extended
R%*!_valued process if specifically indicated.) We note that the signatures of the (d + 1)-
dimensional processes take their values in a stratified Lie group denoted by G'I”(Rd). Ina
similar fashion as above, we obtain — by rescaling and concatenation — a stochastic process
"W? along a grid D. Of course, we have to use a different rescaling for the component
hwo Indeed, following the construction in Section we define § @(h W) : [0, Af] — R!

by 6 g ("W)i = VAW | fori = 1,....d, as before, but § j;("W)? = Arh(s/Ar). We
continue to construct "W? by concatenation.
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By rough path theory (continuity of Young pairing, e.g. [S, Section 9.4.4]) we also
obtain weak convergence in path-space for the extended process "W to the extended, R**!-
valued Brownian motion, which even holds for any truncated signature — not only for the
step-2 signature.

Corollary 3.4. Let W be cubature formula on Wiener space of order m > 2 satisfying
Assumption [3.1] and such that W, and the corresponding area A, have finite moments of
all orders. Then Donsker’s theorem holds in rough path topology for any sequence D,, of
meshes with |D,| — 0, i.e.,

Sn ("W),. —= Sn(B.

in COe-Hol(10, 1], G’lv(Rd)), foreverya < 1/2 and any N > 1.

Moreover, we define X2 as the solution to the (random) ODE

d
(11) d"xP = Vo ("xP)dn® @ + " Vi ("xP)aw”,

i=1
where h?» := "W?»0 Then we have weak convergence of "X?» to X on path-space.

Corollary 3.5. Given a bounded, continuous functional f : C%*~H9([0,1],R") — R, and
assume that W, h and D, satisfy the assumptions of Corollary[3.4] Then we have

Ef("x™)] — Elfo0L.

where X denotes the path (X;)0,17 of the true solution of the SDE (El) and "XPr denotes
the pathwise solution of the ODE (T1).

Proof. We interpret (7)) as a rough differential equation, i.e., for a given (rough) path w €
CcOeHel(10, 17; G%(Rd)) with w = m(w) we define n(w), := y, by

d
dy, = Voda! + )" Vi(y)daw].
i=1
In particular, we have X2 = 7 (S,("W?),.) and X = 7(S2(B)y.). By [5l Theorem 10.26],
the map w — 7i(w). is a continuous map from C**~H9([0, 1]; G2(R)) to CO*HI([0, 1]; RV).
Thus, Corollaryimplies weak convergence of "X?r = (S »(" WD“)O,) to X = m(S2(B)o.)
in C%e-H9l([0, 1];RN). o

Remark 3.6. Since the a-Hdolder topology is stronger than the usual uniform topology
given by the supremum norm, Corollary[3.53in particular holds for all bounded functionals
f which are continuous in the uniform topology on path space. In the case of unbounded
continuous functionals, convergence can still be guaranteed provided that some uniform
integrability property holds. (Of course, in the case of call-option type derivatives, one
could also try a relevant put-call-parity.) Finally, in the case of barrier options, the payoff
functional is often continuous apart from a set of measure zero on path space. Naturally,
non-continuities on null-sets do not hinder weak convergence of the cubature method.

4. RANDOM WALKS WITH INDEPENDENT, NON-IDENTICALLY DISTRIBUTED INCREMENTS

In this section, we prepare the main ingredients of a proof of Donsker’s theorem for
random walks with independent, but not identically distributed increments on the Lie group
G = G*(R?%). More precisely, let £ be a random variable with values in G with finite
moments of all orders. We shall denote the components of ¢ in the basis of g := g?(R¢)
given by e;, 1 < i < d, together with [e;,¢;], | <i< j<d, by X' and A/, respectively, i.e.,

& =exp zd: Xie; + ZAi’j[ei, e;l].
i=1

i<j
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Thus, the condition that ¢ has finite moments of all orders simply means that all the real
random variables X’, A"/ have finite moments of all orders ¢ > 1. Moreover, we assume
that £ is centered, i.e.,
E[X1=0, i=1,...,d.
Let us fix amesh O, = {0 = < --- <1, = 1}. For n independent copies &, ..., Ew
of £, define & = 6 5, (§x)) and the corresponding random walk
=1, Z=E_,0& k=1,...,n
For use in the next lemma, let us define the coordinate mappings x' (mapping x € G to the
component of log(x) with respect to the basis element ¢;) and x*/ (mapping x € G to the
component of log(x) with respect to the basis element [e;,e;]), 1 <i<d,i < j<d. As
usual, the corresponding vector-fields (i.e., basis of the tangent space) are denoted by %

and respectively.

_9_
Oxti
Lemma 4.1. The above random walk satisfies the central limit theorem, i.e., Z}; converges
weakly to the Gaussian measure with inﬁnitesimal generator

Z” xb] 22 6x’6x/

i<j
where a*/ = E[A"] and b/ = Cov(X', X)) [
Proof. The result is well-known in probability theory on Lie groups, see, e.g., [14]]. We

verify that the system of probability measures p,x = (£7).P, i.€., i is the law of &,
satisfies the conditions given in [14, Theorem 3.2], namely:

(i) sup, Si-y [, 1M n(dx) < oo;
(i1) W,k is centered in the above sense;
(iii) for every 1 <i < j < d, there is a number a*/ € R such that

@ = lim Z | #eomstany

(iv) forevery 1 < i, j < d, there is a number 5™/ € R such that
n—oo

b = lim Z f X (0 (X i (d);
G

(v) lim, e X7, f 121 s (dx) = O for all € > 0.

By homogeneity of the Carnot-Caratheodory norm, we have

fG I ns(d) = E |5 vz @ | = anc [elP].

[|x|l=€

Thus,

> fG P i) = > AREIE7] = E [I€1?].
=1 k=1

and the supremum over # is obviously finite, settling (i).

(ii) is satisfied by assumption on £. Regarding (iii), note that x"/(£}) = x"/(6 z7-(£)) =
At A", where equality is understood as equality in law. Therefore, (iii) is satisfied with
a™ = E(A™) < co. A similar argument shows that (iv) holds with b/ = Cov(X', X/).

For the proof of (v), we again use homogeneity of the Carnot-Caratheodory norm. In-
deed, we have

1612 (@) = A [Ljecof (VAL NED I

lIxll=e

4The statement means that there is a semi- -group ()0 of probability measures on G having the above
infinitesimal generator and y; is the limiting distribution of Z!!. Moreover, this semi-group is Gaussian in the
sense that 11mt\0 +H:(G \ U) = 0 for every neighborhood U of the neutral element of the group G.
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implying that
- €
X1 nge(dx) < E|1) . (lIEIF] < P@ﬂ> )JEMW,
; [x|>e [ VD ]

by the Cauchy-Schwarz inequality. Now, the right hand side converges to zero by integra-
bility of ||| and |D,| — 0, for every fixed € > 0. |

Remark 4.2. If £ is the step-2 signature of a cubature formula of degree m > 2, then

a” = E[A¥] = 0,1 <i < j <d, and, moreover, b/ = Cov(X', X)) = 0ij. Thus, the
generator of the limiting Gaussian measure in Lemma coincides with the generator of
the Brownian motion on G, i.e., with the generator of B.

Next we state a moment estimate, which will enable us to prove tightness of the family
of interpolated random walks in rough path topology.

Proposition 4.3. For every p € N, p > 1 we can find a constant C independent of k and n
such that

E|l=2]”| < cr.

Proof. The proof heavily relies on Burkholder’s inequality, see [3]]. Recall that the discrete
time Burkholder inequality establishes the existence of constants ¢, Cj, for I < p < oo such
that for every p-integrable real martingale Y,, and any n € N we have

cpsup IS ullzy < sup||Yull < Cp sup (IS allzs
n n n
where, setting ¥y := 0, S,, == /2p_;(Yx — Y4—1)? is the square root of the quadratic vari-

ation of Y. By choosing Y,; = Y, for / > 0, this immediately implies the corresponding
finite version

(12) cplISally < ally < Cp ISl -

By equivalence of homogeneous norms, see, for instance, [S, Theorem 7.44], we can re-
place the Carnot-Caratheodory norm ||-|| on G2(R%) by the homogeneous norm

nmmmmeLhmwkhmwthmwxwmﬂ

where ) and m, denote the projection to the first and second level components of x, i.e.,
when x = 1 + x + a € G*(RY), then 7;(x) = x € R? and m,(x) = a € R? ® R%. Thus, the
assertion of the proposition is equivalent to the existence of a constant C (only depending
on p) such that

(13) E|fmtogEp| 7| < i,
(14) E [|n2(log(EZ))|2”] < Ct,f”.

We start by proving (I3)). By the Campbell-Baker-Hausdorff formula, we have

i(ix}]e[ scizd;

i=1 \I=
Here, X; = VA él) and C is a constant, which does neither depend on the partition D,
nor on k. For the remainder of the proof, we will use this symbol for constants that may
vary from line to line, but do not depend on D, or on k. This implies that

k

2%

=1

|1 (log(Ep))| =

k 4p

2.

=1

d
E [|n1(1og(ag))|“”] <C ; E
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Now we apply Burkholder’s inequality to the martingale Y; = Z;‘zl X; with the exponent

4p to get
k 2p 2p
2 2p All
Z(XI) =cr ZE Z &2 |
=1 i=1

Noting that the sum inside the expectation is a convex combination, we apply Jensen’s
inequality for the convex function x?” and get

k d
E [|m(1og(az))|4”] <cr? Z > ﬁ x| = (Z E[Xi)*]|n
i=1

pyergis

d

E|fmaogE|”| < Y

i=1

,

which is of the form required in (I3).
For (14), we again start with the Campbell-Baker-Hausdorff formula and get

2p
_ o .
E[|n2(1og(;g))| "]:E D ZA'J+— S (XiX] - X)X})|lene;]
I<i<j<d L I=1 1<l <h<k
2p
1 o o
J J
<C Z Z *3 Z (XEIXIZ_XI.XZ)
1<i<j<d =1 1<l <<k
21’ 2p 2p
(15) <c Y |E +E|| > xix[| |+E|| > xix
1<i<j<d 1<l <h<k 1<l <h<k

}.

Now fix some 1 <i < j < d. Again by Jensen’s inequality, we have

Z All (]) zk: A_kt[ HA([) ] =F “Azlj) 2P] []%1’.
=1

=1

k 2p 2p

EZA’

=1

(16) = 7E

On the other hand, note that

k hL-1
> xix -3
h=1 Ii=1

1<li<h<k

is a martingale (indexed by k). Thus, Burkholder’s inequality for the exponent 2p
gives

2P 2P

2p h-1

2%

Now we again apply Jensen’s inequality and then the Cauchy-Schwarz inequality, and
obtain

E <CE

D, XX,

1<l <b<k

>y

L=

=CrE

(S5

hL=1

2p k 2|P
E|l > xix] SCt,fZ LE| (X)) ZXZ
1<l <h<k ho

k b1 P2

At o 4p\1/2 2 .

p —_2 J i

(17) LW (2|l ]) |2 IZ:XII

h= 1=1
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By applying Burkholder’s and Jensen’s inequalities for a final time, we get for the left-most
term in the above inequality
21)‘
L1

At
<sz2')—12 “E [' 1>|4p]<C’122p1 [| Wl ]

=1

h-1

ZX’

h-1

Z Atll ( ))2

hL=1

|<cire
",

Inserting the last inequality into (17), we obtain

' j2p ) A/zp L \2
E Z X11X12 SCI h,- 1( “ 1)| ]) ( ['X(1)| ])
1<l <b<k 17
ap 12 1/2
<C(EHX<’»1 ) el
Together with (I5) and (I6) this shows (I4)), and the proposition follows. a

5. PROOF OF THE MAIN RESULTS
Analogously to [2, Theorem 1] we can now state our

Theorem 5.1. Let D, = {0 =1y < --- < t, = 1} be a sequence of meshes with |D,| — 0
n
and let " = (EZ)kzo be a centered random walk in G*(R?) along the mesh (as defined
in Section {), whose increments have moments of all orders. Additionally, we impose
E(ﬂg(fk)) 0. Define a sequence = of stochastic processes with values in G*(R?) by
E, =Eifork=0,...,nand by geodesic interpolation for t € [ty, ty+1]. Then
—=n

= —B
n—oo

in CO*=He1 (10,11, GA(R)) for all a < 1/2.

Proof. Kolmogorov’s tightness criterion, see, for instance, [15], implies that =is tight (in
Ce-Hdly provided that for any u, v € [0, 1]

(18) supE [d (E:,EZ)a] <clv-ul"?,

where a, b, ¢ are positive constants with @ < b/a and d denotes the Carnot-Caratheodory
distance defined by d(x,y) = ||x’1y||. We choose a = 4p and b = 2p — 1, then Proposi-

tion 43| implies that (I8) holds for u,v € D,. For arbitrary v < u, assume that #; < v < f;1
and t; < u <ty (for t;, tir1, 1), tjs1 € D,). Using (by the geodesic interpolation)

—n —n tiv1 —V  j=n =n —n —n =1 ="
19 d(E,.5,, )= -—d(E,.5,,). d(E_,E) d(E.5,)
( ) ( v ti+1 Ati+l 1i ti+1 tj u At 41 tj> t/+l

and the triangle inequality, we obtain

—=n =n\a liy1 —V v\ 2 2 u—t ” 2
£ [d(‘:‘v’:‘u) ] ¢ i1 = V)P +(t —t )T + | —] w—1t)™

Ali+| Aty
<clu—vP",

for some constant ¢ only depending on p.

This shows that the sequence of stochastic processes = is tight in rough-path-topology.
Moreover, Lemma. 1|shows that the finite-dimensional marginal distributions of £ con-
verge to those of B. Thus, we obtain the theorem for @ < 1 and, with p — oo, for any
a<1/2. O
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Proof of Theorem[3.3] In Theorem [5.1]above, we have already proved our main result for

N = 2 and for the special case of geodesic interpolation, i.e., for the case that S, (WD")O l,

t € [0, 1], provides a geodesic interpolation between the grid points, i.e., between S, (WD")0 e
t € D,. We note that the extension of the result to N > 2 is immediate since the Lyons’ '
lift Sy : G*(RY) — GM(RY) is continuous in rough path topology, see, for instance, [5}
Corollary 9.11].

We need to give a proof for the case N = 2 but without geodesic interpolation. As
before, assume that we are given #; < v < tiy, t; < u < tjq, with #;, 1), ti41,tj41 € D,. For
any path w € H, the Cameron-Martin space, we have, see [5, Proposition 15.7],

lel—var;[s,t] < V|t - Sl ||‘U||’H;[x,z] s

where ||| _yyr[s,) denotes the first variation of a path restricted to [s, ¢] and |||, denotes
the Cameron-Martin norm, likewise restricted to [s, 7], i.e.,

!
ol = f OGP du.
2 “lonl? 1 f” (-1
W.Z)u — WP df = "%
“ ”ﬂ;[lj’ul ft:' [ Atjer Jy; (Atj+1
Therefore, we can bound

d (S2 (Wﬂn)o,t‘, 52 (WDn)O,M) =152 (WD")
< |W1)n v
—var;[t;,u]

< \Ju-— tj ”W”‘H .

Notice that

2 1
dr < f Wi dr = (W2, .
0

1,

By Assumption[3.T] we get

(200 E [d (52 (WD")OJ

i

4p
S2(w?),.) ] < (=) E [IWl3 | < Cu -1,
and similarly
4p
@21 E [d(Sz (WD")OV,SZ (WD")M 1) } < Cltipg — ).
Therefore, we can show tightness of the sequence of processes S, (WD")O_ as in the proof

of Theorem 5. 1] above. O

Now we finally return to the Donsker theorem for cubature paths with an adjourned,
Lipschitz component 4.

Proof of Corollary[3.4) Let h? := "W?+0 denote the O-component of "W?». Moreover,
letid : [0,1] — [0, 1] denote the identity, id(#) = t. We note that hPn converges to id in
CO-Hol([0, 1];R) for any 8 < 1. Indeed, let 0 < 7 < 1 and let #; < t < t;;; denote the grid
points closest to ¢. Then apparently

D, . . r—t
() =t + Az,ﬂh(AtiH).

For h(0) = 0, we get |h(t)| < L|#|, where L is the Lipschitz constant of 4. From this one can
easily conclude that ||hD" - id”m < (1+L)|D,| and K" converges to id uniformly on [0, 1]
with uniform Lipschitz bounds for |D,| — 0. This implies the convergence in g-Holder
topology for any 5 < 1.

By this result together with Theorem [3.3] for the convergence of S,>(W), we can im-
mediately conclude that S, (hWD")O' converges to S2(B)p. in COe-Hal ([0, 1]; G%(Rd)). By
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continuity of the Lyons lift S,(x) — Sy(x) in rough path topology, the statement of the
corollary follows. O
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