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Forward rates

Definition

Let P(t ,T) denote the price at time t of a zero coupon bond with
maturity T ≥ t . Then the instantaneous forward rate at time t for
maturity T is defined by

f(t ,T) = −
∂

∂T
log P(t ,T).

f(t , t) is called spot rate or short rate.

I P(t ,T) = exp
(
−

∫ T

t
f(t , u)du

)
.

I Important for pricing and valuation of interest rate products
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Modeling interest rates

All models understood under the risk-neutral measure

Short rate models: if the short rate f(t , t) is modeled, then the
term structure is constructed by

P(t ,T) = E
(
exp

(
−

∫ T

t
f(s, s)ds

)∣∣∣∣Ft

)
,

e.g., Vasiček, Hull-White, Cox-Ingersoll-Ross model.

Libor Market Model: simultaneous modeling of several yields

Heath-Jarrow-Morton framework: simultaneous modeling of the
whole forward rate curve (f(t ,T))T∈[t ,∞[, t ∈ [0,∞[
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HJM framework – 1

I HJM: model for time evolution of the forward rate curve
(f(t ,T))T∈[t ,∞[, t ∈ [0,∞[

I rt (x) := f(t , t + x), x ∈ [0,∞[, t ∈ [0,∞[, (Musiela
parametrization)

I H is a suitable (separable, real) Hilbert space of (forward rate)
curves, in fact it is a weighted Sobolev space.

I Model driven by finite number of Brownian motions:
Bt = (B1

t , . . . ,B
d
t )t∈[0,∞[ (HJM also possible for

infinite-dimensional BM)
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HJM framework – 2

drt =
(
∂

∂x
rt + αHJM(rt )

)
dt +

d∑
i=1

σi(rt )dB i
t (1)

I r0 ∈ H, initial forward rate curve
I σi : H → H, i = 1, . . . , d, volatility vector fields

(may be time-dependent)
I αHJM : H → H drift vector field given by

αHJM(h)(x) =
d∑

i=1

σi(h)(x)

∫ x

0
σi(h)(y)dy
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Pricing in HJM

The price of an interest rate option with payoff f : H → R is given by

c(t ,T) = E(f(rT )/Bt ,T |Ft ).

I Requires weak approximation of the solution of the
HJM-equation

I Known methods only in the Gaussian case and in the case of
finite-dimensional realizations

I Scenario simulation necessary for risk analysis
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SDEs in infinite dimensions

Consider 
dXx

t = (AXx
t + α(Xx

t ))dt +
d∑

i=1

σi(Xx
t )dB i

t ,

Xx
0 = x ∈ H,

(2)

where
I B is a d-dimensional Brownian motion,
I H is a separable, real Hilbert space and

Assumption A

A : D(A) ⊂ H → H is the generator of a C0-semigroup (St )t∈[0,∞[

of operators on H and α, σ1, . . . , σd : H → H are C∞-bounded
vector fields.
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Mild solutions

Definition
A continuous H-valued process Xx

t is a mild solution of the SDE (2)
if

Xx
t = Stx +

∫ t

0
St−sα(Xx

s )ds +
d∑

i=1

∫ t

0
St−sσi(Xx

s )dB i
s .

I Mild solutions are not necessarily semi-martingales.
I Each strong solution is a mild solution by variation of

constants.
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ODEs along cubature paths

Given an N-dimensional SDE

dXx
t =

d∑
i=0

Vi(Xx
t ) ◦ dB i

t = V0(Xx
t )dt +

d∑
i=1

Vi(Xx
t ) ◦ dB i

t . (3)

Fix a uniform partition of [0,T ] of size ` + 1.
I ωj1,...,j` : [0,T ]→ Rd is the path of bounded variation found by

concatenating cubature paths ωjr : [0,T/`]→ Rd (with
weights λjr ).

I Given a path of bounded variation ω : [0,T ]→ Rd , Xx
T (ω)

denotes the solution of the ODE (3) with B formally replaced
by ω.
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Weak approximation

Theorem (Lyons and Victoir)

Given a smooth function f : RN → R (bounded with bounded
derivatives of order up to m + 1), then

sup
x∈RN

∣∣∣∣∣∣∣∣E(f(Xx
T )) −

∑
(j1,...,j`)∈{1,...,n}`

λj1 · · · λj` f(Xx
T (ωj1,...,j`))

∣∣∣∣∣∣∣∣
≤ CT

(
T
`

)m−1
2

.
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Cubature formulas on Wiener space

Definition

Positive weights λ1, . . . , λn and paths ω1, . . . , ωn : [0,T ]→ Rd form
a cubature formula on Wiener space of degree m if

E
(∫

0<t1<···<tk<T
◦dB i1

t1
· · · ◦ dB ik

tk

)
=

n∑
j=1

λj

∫
0<t1<···<tk<T

dωi1
j (t1) · · · dωik

j (tk )

for all J = (i1, . . . , ik ) ∈ {0, . . . , d}k with deg(J) ≤ m, k ≥ 0.

Convention: B0
t = ω0

j (t) = t , deg(i1, . . . , ik ) = k + #{j : ij = 0}, i.e.,
zeros are counted twice.
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Remarks

I Non-uniform partitions can accelerate convergence and
improve differentiability assumptions

I As typical for weak schemes, precise integration usually not
possible: use Monte-Carlo simulation

I Sophisticated recombination techniques available
I Respects the geometry of the problem (invariant

submanifolds, support of the law)
I Existence proof relying on the geometry of iterated

Stratonovich integrals, Chakalov’s theorem, and Chow’s
theorem

I Introduced by Terry Lyons and Nicolas Victoir (2004); strongly
related to moment similar random variables by Shigeo
Kusuoka (2001)
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Weak schemes in infinite dimensions

I Finite element schemes (reducing the problem to a stochastic
equation on a finite dimensional subspace), e. g. (Hausenblas
2003)

I Only few results on finite difference schemes (Gyöngy 1998)
I No “general” theory available
I Usual Euler-Maruyama schemes do not fit with the concept of

mild solutions.

Idea
Cubature scheme can be immediately generalized to the infinite
dimensional situation, since the results do not depend on the
dimension of the state space.
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PDEs along cubature paths

I Recall the SDE (2) in H

dXx
t = (AXx

t + α(Xx
t ))dt +

d∑
i=1

σi(Xx
t )dB i

t .

I Define vector fields

α0(x) = α(x) −
1
2

∑d

i=1
Dσi(x) · σi(x), x ∈ H,

σ0(x) = Ax + α0(x), x ∈ D(A) ⊂ H.

I In general, there is no Stratonovich formulation of (2).
I For a fixed path ω : [0,T ]→ Rd of bounded variation and

x ∈ H let Xx
t (ω) be the solution of

Xx
t (ω) = Stx+

∫ t

0
St−sα0(Xx

s (ω))ds+
d∑

i=1

∫ t

0
St−sσi(Xx

s (ω))dωi(s).
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Sobolev spaces

I Define the Sobolev spaces by D(A0) = H and

D(Ak+1) = {x ∈ D(Ak ) | Ax ∈ D(Ak )}

with the graph norm

‖x‖2
D(Ak )

= ‖x‖2H +
k∑

i=1

∥∥∥A ix
∥∥∥2

H .

I D(A∞) B
⋂∞

n=1D(An) is a Fréchet space with metric

dD(A∞)(x, y) =
∞∑

n=0

1
2n

‖x − y‖D(An)

max(1, ‖x − y‖D(An))
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Hierarchy of Sobolev spaces

H
St //

R(λ,A)
��

H

D(A)
St //

R(λ,A)
��

D(A)

λ−A

OO

D(A2)
St // D(A2)

λ−A

OO

D(A∞)
St // D(A∞)

I St can be restricted as
semi-group to D(An),
1 ≤ n ≤ ∞.

I A no longer unbounded on
D(A∞), but Fréchet spaces
not easy for studying ODEs.

I Go as far as necessary, but
not further.



Introduction Cubature on Wiener space Numerical examples References

Some assumptions

Assumption B

α, σ1, . . . , σd are smooth vector fields mapping D(Ak )→ D(Ak )
and their restrictions to D(Ak ) are C∞-bounded as maps
D(Ak )→ D(Ak ), k ∈ N.

Assumption C

f ∈ C∞(H;R) and x ∈ D(A b
m
2 c+1) such that

sup
0≤t≤T

sup
y∈ST (x)

∣∣∣σi1 · · ·σik Pt f(y)
∣∣∣ < ∞

for each multi-index (i1, . . . , ik ) ∈ {0, . . . , d}k with m < deg ≤ m + 2,
k ∈ N.
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Main result

Theorem
Given an operator A and vector fields α, σ1, . . . , σd satisfying
Assumptions A and B, and a point x and a functional f satisfying
Assumption C. Then∣∣∣∣E(f(Xx

T )) −
∑

(j1,...,j`)∈{1,...,n}`
λj1 · · · λj` f(Xx

T (ωj1,...,j`))
∣∣∣∣
≤ CT

(
T
`

)m−1
2

.
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Remarks

Idea of the proof
1 For x ∈ D(A), solve the SDE in both Hilbert spaces H and
D(A)

2 By uniqueness of solutions we are given a semimartingale in
H.

3 Iterate this procedure for stochastic Taylor expansion.

I Weak method of any order with deterministic a-priori bounds
I Assumption B is not very restrictive in view of the HJM

framework: indeed, one often has σi = φi ◦ µi , where µi is a
continuous linear map H → Rp and φi : Rp → D(A∞) is
smooth, for some p ≥ 1.

I Geometry of the problem respected (invariant submanifolds,
support of the distribution)
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Remark on Assumption C

Remark
Assumption C can be realized by applying the isomorphism

R(λ,A)−b
m
2 c : D(A b

m
2 c)→ H

and cutting off the vector fields in D(A b
m
2 c) outside a large set

(with respect to ‖·‖
D(A b

m
2 c)

).

Note that the solution process only hits the complement of a ball
with large radius in D(A b

m
2 c) with negligible probability by Lipschitz

continuity of the driving vector fields on D(A b
m
2 c).
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Cubature including jumps

I Consider infinite dimensional (finite-activity) jump diffusion

dXx
t = (AXx

t + α(Xx
t ))dt + σ(Xx

t )dBt + δ(Xx
t )dLt ,

Lt a compound Poisson process with rate µ.

I E (f(Xx
t )) =

∞∑
n=0

µne−tµn

n!
tnE

(
f(Xx

t )
∣∣∣ Nt = n

)
I Thus, can use a cubature formula on Wiener space of degree

m − 2n for approximation of E
(
f(Xx

t )
∣∣∣ Nt = n

)
I Integration over jump-times and jump-sizes required
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Method of the moving frame – a new proof method

I Difficulty in SPDE: unboundedness of drift and noise
I Separate treatment of drift and noise
I Assume that A is generator of a group (St )t∈R.
I Consider the Stratonovich SPDE

dXt = (AXt + α(Xt ))dt +
d∑

i=1

σi(Xt ) ◦ dB i
t .

I Define Yt = S−tXt . Then

dYt = α̃(t ,Yt )dt +
d∑

i=1

σ̃i(t ,Yt ) ◦ dB i
t ,

with α̃(t , x) = S−tα(Stx), σ̃i(t , x) = S−tσi(Stx).
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Cubature in the moving frame

1 Assume that modified vector fields α̃, σ̃i are C∞ bounded.
2 Stochastic Taylor expansion of Yt precisely as in finite

dimensions
3 Cubature on Wiener space under some additional

boundedness condition (that is satisfied if the quantity of
interest f and all vector fields have bounded support).

4 Transfer cubature method for Yt to Xt = StYt

5 Leads to the same method as introduced before, but in a
different manner.
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The moving frame for pseudo-contractive semigroups

I (St )t≥0 a pseudo-contractive semigroup on H, i.e.,

‖St‖ ≤ exp(ωt).

I Szőkefalvi-Nagy theorem: There is a Hilbert space H ⊂ W
and a C0-group of bounded operators (Qt )t∈R thereon
extending (St ) in the sense that Stx = πQtx for x ∈ H.

I Extend driving vector-fields to W via π, e.g., α→ α ◦ π.
I Check smoothness and boundedness conditions on W .



Introduction Cubature on Wiener space Numerical examples References

A remark on computation of the weighted sum

I Approximate the summation over the cubature tree via
Monte-Carlo simulation.

I Alternatively: Use recombination method.
I Consider group generated by γ1, . . . , γ` ∈ Gm

d,1
I Construct random walk by Y0 = γ1, Yn+1 = Ynγj , j chosen

randomly from {1, . . . , `}.
I supp(Yn) grows polynomially, not exponentially!
I The truncated random signature of cubature paths can be

considered as such a random walk on Gm
d,1.

I The difference between solutions of ODEs driven by
recombining cubature paths can be estimated.

I Degree of the polynomial bound: Hausdorff dimension of
group, e.g., degree 4 for m = 3, d = 2
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A stochastic heat equation

I dXt = ∆Xtdt + sin ◦XtdBt

I H = L2(]0, 1[), D(∆) = H1
0(]0, 1[) ∩ H2(]0, 1[)

I Choose simplest possible cubature formula of degree m = 3.
I Note that the equation is non-trivial in the sense that the

Stratonovich formulation reads

dXt =

(
∆Xt −

1
2

cos ◦Xt sin ◦Xt

)
dt + sin ◦XtdBt
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Numerical results
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An HJM specific implementation

I Given a path ω : [0,T ]→ Rd of bounded variation and an
initial forward rate r0.

I Consider
drt (ω) =

(
∂

∂x
rt + αHJM,0(rt (ω))

)
dt +

d∑
i=1

σi(rt (ω))dωi
t ,

r0(ω) = r0.

I Scheme for solving the above PDE:

r t+∆t = S∆t r t + αHJM,0(r t )∆t +
d∑

i=1

σi(r t )ω̇
i
t ∆t ,

where St denotes the shift semigroup.
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CIR model

I CIR-model for the short rate Yt :

dYt = k(θ − Yt )dt + σCIR
√

YtdBt .

I Corresponds to HJM model via rt (x) = g0(x) + Ytg1(x) with

g1(x) =
4γ2eγx(

(γ + k)eγx + γ − k
)2 , g0(x) = kθ

∫ x

0
g1(y)dy,

where γ =
√

k 2 + 2σ2
CIR .

I Satisfies HJM SDE with

σ(r)(x) = σCIR

√
r(0)g1(x).
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Simulation of HJM-CIR model for Y0 = 0.05

CIR forward rate simulation
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Results for a European Call on a zero coupon bond
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Vasiček model

I Vasiček-model for the short rate Yt :

dYt = k(θ − Yt )dt + σVasdBt .

I Corresponds to HJM model via rt (x) = g0(x) + Ytg1(x) with

g1(x) = e−kx , g0(x) = kθ
∫ x

0
g1(y)dy−

σ2
Vas

2

(∫ x

0
g1(y)dy

)2
.

I Satisfies HJM SDE with

σ(r)(x) = σVasg1(x).
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Simulation of Vasiček model with Y0 = 0.05

Vasicek forward rate simulation

0.0

0.1

0.2

0.3

F
o
rw

a
rd

 r
a
te

0.0

0.2

0.4

0.6

0.8

1.0

Time to maturity

0.0

0.2

0.4

0.6

0.8

1.0

Running time



Introduction Cubature on Wiener space Numerical examples References

Results for a European call on a zero coupon bond
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Remarks

I Very good performance for the presented simple benchmark
models, but more relevant for much more complicated
situations.

I Predicted order of convergence (order 1 for m = 3) can be
seen in the results.

I Calculations done in Scilab and C (for PREMIA).
I Implementation also includes Bhar-Chiarella-model and a

two-factor CIR-model.
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Thank you for your attention!



The space of forward rate curves

Definition

Fix an increasing function w : [0,∞[→ [1,∞[ such that
w−

1
3 ∈ L1([0,∞[). Define a Hilbert space Hw by

Hw = {h ∈ L1
loc([0,∞[) | ∃h′ ∈ L1

loc([0,∞[) and ‖h‖w < ∞}

with

‖h‖w =
∣∣∣h(0)

∣∣∣2 +

∫ ∞

0

∣∣∣h′(x)
∣∣∣2 w(x)dx.

I Hw consists of continuous functions and the point evaluations
δx(h) = h(x) are continuous.

I The right-shift semigroup is a C0-semigroup on Hw .
I The limit limx→∞ h(x) is well defined for h ∈ Hw . Return
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