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Abstract

Motivated by the challenges related to the calibration of finan-
cial models, we consider the problem of solving numerically a singular
McKean-Vlasov equation

dSt = σ(t, St)St

√
vt√

E[vt|St]
dWt,

where W is a Brownian motion and v is an adapted diffusion pro-
cess. This equation can be considered as a singular local stochastic
volatility model. Whilst such models are quite popular among practi-
tioners, unfortunately, its well-posedness has not been fully understood
yet and, in general, is possibly not guaranteed at all. We develop a
novel regularization approach based on the reproducing kernel Hilbert
space (RKHS) technique and show that the regularized model is well-
posed. Furthermore, we prove propagation of chaos. We demonstrate
numerically that a thus regularized model is able to perfectly replicate
option prices due to typical local volatility models. Our results are
also applicable to more general McKean–Vlasov equations.

1. Introduction

The present article is motivated by [GHL12], wherein Guyon and Henry-
Labordère proposed a particle method for the calibration of local stochastic
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volatility models (e.g. stock price models). Let us recall that local volatility
models

dSt = σ(t, St)StdWt, (1.1)

where W denotes a one-dimensional Brownian motion under a risk-neutral
measure and S the forward price of a stock, can replicate any sufficiently
regular implied volatility surface, provided that we choose the local volatility
according to Dupire’s formula, symbolically, σ ≡ σDup [Dup94]. Unfortu-
nately, it is well understood that Dupire’s model exhibits unrealistic random
price behavior despite perfect fits to market prices of options. On the other
hand, stochastic volatility models

dSt =
√
vtStdWt (1.2)

for a suitably chosen stochastic variance process vt, may lead to realistic
(in particular, time-homogeneous) dynamics, but are typically difficult or
impossible to fit to observed implied volatility surfaces. We refer to [Gat11]
for an overview of stochastic and local volatility models.

Local stochastic volatility models can combine the advantages of both
local and stochastic volatility models. Indeed, if the forward price is given
by

dSt =
√
vtσ(t, St)StdWt, (1.3)

then it exactly fits the observed market option prices provided that

σDup(t, x)2 = σ(t, x)2E [vt | St = x] . (1.4)

This is a simple consequence of the celebrated Gyöngy’s Markovian projec-
tion theorem [Gyo86, Theorem 4.6], see also [BS13, Corollary 3.7]. With
this choice of σ we have

dSt = σDup(t, St)St

√
vt√

E [vt | St]
dWt, (1.5)

Note that v in (1.5) can be any positive adapted stochastic process. In a
sense, (1.5) may be considered as an inversion of the Markovian projection
due to [Gyo86], applied to Dupire’s local volatility (asset) model, i.e. (1.1)
with σ ≡ σDup.

Thus, the stochastic local volatility model of McKean–Vlasov type (1.5)
solves the smile calibration problem. However, equation (1.5) is singular
in a sense explained below and very hard to analyze and to solve. Even
the problem of proving existence or uniqueness for (1.5) (under various as-
sumptions on v) turned out to be notoriously difficult and only a few results
are available; we refer to [LSZ20] for an extensive discussion and literature
review.

Let us recall that the theory of standard McKean–Vlasov equations of
the form

dZt = H̃ (t, Zt, µt) dt+ F̃ (t, Zt, µt) dWt (1.6)
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with µt = Law(Zt), is well understood under appropriate regularity con-
ditions, in particular, Lipschitz continuity of H̃ and F̃ w.r.t. the standard
Euclidean distances in the first two arguments and w.r.t. the Wasserstein
distance in µt, see [Fun84, CD16a, MV16]. Denoting Zt := (Xt, Yt), it is not
difficult to see that the conditional expectation (x, µt) 7→ E [A(Yt) | Xt = x]
is, unfortunately, not Lipschitz continuous in the above sense. Therefore,
the standard theory does not apply to (1.5).

There are a number of results available in the literature where the Lips-
chitz condition on drift and diffusion is not imposed. Bossy and Jabir [BJ17]
considered singular MV systems of the form:

dXt = E[`(Xt)|Yt]dt+ E[γ(Xt)|Yt]dWt, (1.7a)

dYt = b(Xt, Yt)dt+ σ(Yt)dBt, (1.7b)

or, alternatively, the seemingly even less regular equation

dXt = σ(p(t,Xt))dWt, (1.8)

where p(t, ·) denotes the density of Xt. [BJ17] establishes well-posedness
of (1.7) and (1.8) under suitable regularity conditions (in particular, ellip-
ticity) based on energy estimates of the corresponding non-linear PDEs.
Interestingly, these techniques break down when the roles of X and Y are
reversed in (1.7), i.e., when E[γ(Xt)|Yt] is replaced by E[γ(Yt)|Xt] in (1.7a)
– and similarly for the drift term. Hence, the results of [BJ17] do not imply
well-posedness of (1.5).

In [LSZ20], the authors studied the following two-dimensional SDE,

dXt = b1(Xt)
h(Yt)

E[h(Yt)|Xt]
dt+ σ1(Xt)

f(Yt)√
E[f2(Yt)|Xt]

dWt, (1.9a)

dYt = b2(Yt) dt+ σ2(Yt) dBt, (1.9b)

where W and B are two independent one-dimensional Brownian motions.
Clearly, this can be seen as (1.5) with a non-zero drift and with the process v
chosen in a special way. The authors proved strong existence and uniqueness
of solutions to (1.9) in the stationary case. In particular, this imposes strong
conditions on b1 and b2, but also requires the initial value (X0, Y0) to be
random and have the stationary distribution. Existence and uniqueness of
(1.9) in the general case (without the stationarity assumptions) remains
open.

Finally, let us mention [JZ20, Theorem 2.2], which established weak
existence of the solutions to (1.5) for the case when v is a jump process
taking finitely many values.

Another question apart from well-posedness of these singular McKean–
Vlasov equations is how to solve them numerically (in a certain sense). Let
us recall that even for standard SDEs with singular or irregular drift, where
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existence/uniqueness is known for quite some time, the convergence of the
corresponding Euler scheme with non-vanishing rate has been established
only very recently [BDG19, JM21]. The situation with the singular McKean–
Vlasov equations presented above is much more complicated and very few
results are available in the literature. In particular, the results of [LSZ20]
do not provide a way to construct a numerical algorithm for solving (1.5)
even in the stationary case considered there.

We study the problem of numerically solving singular McKean-Vlasov
(MV) equations of a more general form than (1.5):

dXt = H (t,Xt, Yt, E[A1(Yt)|Xt]) dt+F (t,Xt, Yt, E[A2(Yt)|Xt]) dWt, (1.10)

where H,F,A1, A2 are sufficiently regular functions, W is a d-dimensional
Brownian motion, and Y is a given stochastic process, for example, a diffu-
sion process. Note that if one considers the Euler scheme, then a key issue is
how to approximate the conditional expectation E[Ai(Yt)|Xt = x], i = 1, 2,
x ∈ Rd.

One approach to tackle this problem was suggested by Guyon and Henry-
Labordère [GHL12] (see also [AKH02]). They used the “identity”

E[A(Yt) | Xt = x]“=”
EA(Yt)δx(Xt)

Eδx(Xt)
,

where δx is the Dirac delta function concentrated at x. This suggests the
following approximation:

E[A(Yt) | Xt = x] ≈
∑N

i=1A(Y i,N
t )kε(X

i,N
t − x)∑N

i=1 kε(X
i,N
t − x)

. (1.11)

Here ε > 0 is a small parameter, kε(·) ≈ δ0(·) is a regularizing kernel,
and (Xi,N , Y i,N )i=1...N is a particle system. While this method provides a
way of constructing solutions to (1.10), it has an important disadvantage.
One has to take ε > 0 small enough, but then (1.11) completely ignores
the complicated structure of dependence of Y on X outside a tiny region
(x− Cε, x+ Cε) for a certain C > 0 (indeed kε(X

i,N
t − x) ≈ 0 outside that

region).
As an alternative to [GHL12] we propose in this paper a novel approach

based on ridge regression in the context of reproducing kernel Hilbert spaces
(RKHS) which, in particular, does not have this disadvantage.

Let us recall that an RKHS H is a Hilbert space of real valued functions
f : X ⊂ Rd → R, such that the evaluation map H 3 f → f(x) is continuous
for every x ∈ X . This crucial property implies that there exists a positive
symmetric kernel k : X × X → R such that, for every x ∈ X , kx := k(·, x)
∈ H and one has that 〈f, kx〉H = f(x), for all f ∈ H. As a main feature,
any positive definite kernel k uniquely determines a RKHS H and the other
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way around. For a detailed introduction and further properties of RKHS we
refer to the literature, for example [SC08, Chapter 4]. We recall that the
RKHS framework is popular in machine learning, where it is widely used for
computing conditional expectations.

Consider a pair of random variables (X,Y ) taking values in X × X
with finite second moments and denote ν := Law(X,Y ). Suppose that
A : X → R is sufficiently regular and H is large enough so that we have
E [A(Y ) | X = ·] ∈ H. Then, formally,

cνA(·) :=

∫
X×X

k(·, x)A(y)ν(dx, dy) =

∫
X
k(·, x)ν(dx,X )

∫
X
A(y)ν(dy|x)

=

∫
X
k(·, x)E [A(Y )|X = x] ν(dx,X )

=: CνE [A(Y )|X = ·] ,

where

Cνf :=

∫
X
k(·, x)f(x)ν(dx,X ), for f ∈ H.

Unfortunately, in general, the operator Cν is not invertible. As Cν is pos-
itive definite, it is, however, possible to regularize the inversion by replacing
Cν by Cν + λIH for some λ > 0. Indeed, it turns out that

mλ
A(·; ν) := (Cν + λIH)−1cνA, (1.12)

is the solution to the minimization problem

mλ
A(·; ν) := arg min

f∈H

(
E(A(Y )− f(X))2 + λ‖f‖2H

)
, (1.13)

see Proposition 3.1. On the other hand one also has

E[A(Y )|X = ·] = arg min
f∈L2(Rd,Law(X))

E(A(Y )− f(X))2,

and therefore it is natural to expect that if λ > 0 is small enough and H is
large enough, then mλ

A(·; ν) ≈ E[A(Y )|X = ·], i.e. mλ
A(·; ν) is close to the

true conditional expectation.
The main result of the article is that the regularized MV system ob-

tained by replacing the conditional expectations with their regularized ver-
sions (1.12) in (1.10) is well-posed and propagation of chaos holds for the
corresponding particle system, see Theorem 2.1 and Theorem 2.2.

To establish these theorems, we study the joint regularity of mλ
A(x; ν)

in the space variable x, and the measure ν for fixed λ > 0. These type of
results are almost absent in the literature on RKHS and we here fill this gap.
In particular, we prove that under suitable conditions, mλ

A(x; ν) is Lipschitz
in both arguments, i.e. w.r.t. the standard Euclidean norm in x and the
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Wasserstein-1-norm in ν, and, can be calculated numerically in an efficient
way, see Section 2. Additionally, in Section 3 we study the convergence of
mλ
A(·; ν) in (1.12) to the true conditional expectation for fixed ν as λ ↓ 0 .

Let us note that, as a further nice feature of the RKHS approach com-
pared to the δ-like) kernel method of [GHL12], one may incorporate, at
least in principle, possible global prior information concerning properties
of E[A(Y )|X = ·] into the choice of the RKHS generating kernel k (e.g.
smoothness, tail or growth behavior). This degree of freedom is similar to,
for example, how one can choose the basis functions in the usual regression
methods for American options. We also note that the Lipschitz constants
for mλ

A(·; ν) with respect to both arguments are expressed in bounds related
to A and the kernel k, only, see Theorem 2.3. In contrast, if we would have
dealt with standard ridge regression, i.e. ridge regression based on a system
of basis functions, we would have to control bounds for possibly infinitely
many basis functions, which is considered to be a far more delicate task.

Thus, the contribution of the current work is fourfold. First, we propose
a RKHS-based approach to regularize (1.10) and prove the well-posedeness
of the regularized equation. Second, we show convergence of the approxima-
tion (1.13) to the true conditional expectation as λ ↓ 0. Third, we suggest
a particle based approximation of the regularized equation and analyze its
convergence. Finally, we apply our algorithm to the problem of smile cal-
ibration in finance and illustrate its performance on simulated data. In
particular, we validate our results by solving numerically a regularized ver-
sion of (1.5) (with mλ

A in place of the conditional expectation). We show
that our system is indeed an approximate solution to (1.5) in the sense that
we get very close fits of the implied volatility surface — the final goal of the
smile calibration problem.

The rest of the paper is organized as follows. Our main theoretical
results are given in Section 2. Convergence properties of the regularized
conditional expectation mλ

A are established in Section 3. A numerical al-
gorithm for solving (1.10) and an efficient implementable approximation of
mλ
A are discussed in Section 4. Section 5 contains numerical examples. The

results of the paper are summarized in Section 6. Finally, all the proofs are
placed in Section 7.

Convention on constants. Throughout the paper C denotes a positive
constant whose value may change from line to line. The dependence of
constants on parameters if needed will be indicated, e.g, C(λ).

Acknowledgements. The authors are grateful to Peter Friz and Mykhaylo
Shkolnikov for useful discussions. CB, OB, and JS are supported by the DFG
Research Unit FOR 2402.
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2. Main results

We begin by introducing the basic notation. For a ∈ R we denote a+ :=
max(a, 0). Let (Ω,F ,P) be a probability space. For d ∈ N, let X ⊂ Rd be an
open subset, and P2(X ) be the set of all probability measures on (X ,B(X ))
with finite second moment. If µ, ν ∈ P2(X ), p ∈ [1, 2], then we denote the
Wasserstein-p (Kantorovich) distance between them by

Wp(µ, ν) := inf(E|X − Y |p)1/p,

where the infimum is taken over all random variablesX,Y with Law(X) = µ,
Law(Y ) = ν.

Let C1(X ,R) be the space of all functions f : X → R such that

‖f‖C1 := sup
x∈X
|f(x)|+ sup

x∈X
i=1,...,d

|∂xif(x)| <∞.

Let k : X × X → R be a symmetric, positive definite kernel, and H be
a reproducing kernel Hilbert space of functions f : X → R associated with
the kernel k. That is, for any x ∈ X , f ∈ H one has

f(x) = 〈f, k(x, ·)〉H.

In particular, 〈k(x, ·), k(y, ·)〉H = k(x, y), for any x, y ∈ X . We refer to
[SC08, Chapter 4] for further properties of RKHS.

Let A : X → R be a measurable function such that |A(x)| ≤ C(1 + |x|)
for some universal constant C > 0 and all x ∈ X . For ν ∈ P2(X ×X ), λ ≥ 0
consider the following optimization problem (ridge regression)

mλ
A(·; ν) := arg min

f∈H

{∫
X×X

|A(y)− f(x)|2 ν(dx, dy) + λ‖f‖2H
}
. (2.1)

We fix T > 0, d ∈ N and consider the system

dXt = H(t,Xt, Yt, E[A1(Yt)|Xt])dt+ F (t,Xt, Yt, E[A2(Yt)|Xt])dW
X
t (2.2a)

dYt = b(t, Yt)dt+ σ(t, Yt)dW
Y
t , (2.2b)

where H : [0, T ] × X × X × R → Rd, F : [0, T ] × X × X × R → Rd × Rd,
Ai : X → R, b : [0, T ] × X → Rd, σ : [0, T ] × X → Rd × Rd are measurable
functions, WX ,W Y are two (possibly correlated) d-dimensional Brownian
motions on (Ω,F ,P), and t ∈ [0, T ]. It is also implicitly assumed that the
space X × X is invariant for the process (X,Y ) (which is trivially the case
when X = Rd, however for our purposes we will be mostly interested in the
case when X = Rd+).

As explained above, denoting µt := Law(Xt, Yt), we see that the func-
tional (x, µt) 7→ E [Ai(Yt) | Xt = x] is not Lipschitz continuous even if Ai is
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smooth. Therefore the classical results on well-posedness of McKean–Vlasov
equations are not applicable to (2.2).

The main idea of our approach is to replace the conditional expectation
by an approximation which has “nice” properties (in particular, it is Lips-
chitz). This would imply strong existence and uniqueness of the new system.
Furthermore, we will demonstrate numerically that the solution to the new
system is still “close” to the solution of (2.2) in a certain sense. Thus, we
consider the following system:

dX̂t = H(t, X̂t, Yt,m
λ
A1

(X̂t; µ̂t))dt+ F (t, X̂t, Yt,m
λ
A2

(X̂t; µ̂t))dW
X
t , (2.3a)

dYt = b(t, Yt)dt+ σ(t, Yt)dW
Y
t (2.3b)

µ̂t = Law(X̂t, Yt). (2.3c)

where t ∈ [0, T ]. We would need the following assumption on the kernel k.

Assumption K. The kernel k is twice continuously differentiable in both
variables, k(x, x) > 0 for all x ∈ X , and

D2
k := sup

(x,y)∈X×X
1≤i,j≤d

max
{
|∂xi∂yjk2(x, y)|, |∂xi∂yjk(x, y)|, |∂xik(x, y)|,

|∂yjk(x, y)|, |k(x, y)|
}
<∞

Now we are ready to state our main results. Their proofs are given in
Section 7.

Theorem 2.1. Suppose that Assumption K is satisfied for the kernel k, the
space X × X is invariant for the process (X̂, Y ) and

(1) Ai ∈ C1(X ,R), i = 1, 2;

(2) there exists a constant C > 0 such that for any t ∈ [0, T ], x, y, x′, y′ ∈ Rd,
z, z′ ∈ R,

|H(t, x, y, z)−H(t, x′, y′, z′)|+ |F (t, x, y, z)− F (t, x′, y′, z′)|
+ |b(t, y)− b(t, y′)|+ |σ(t, y)− σ(t, y′)|

≤ C(|x− x′|+ |y − y′|+ |z − z′|);

(3) for any fixed x, y,∈ Rd, z ∈ R one has∫ T

0
(|H(t, x, y, z)|2 + |F (t, x, y, z)|2 + |b(t, y)|2 + |σ(t, y)|2) dt <∞;

(4) E|X̂0|2 <∞, E|Y0|2 <∞.
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Then for any λ > 0 the system (2.3) with the initial condition (X̂0, Y0) has
a unique strong solution.

To analyze a numerical scheme solving (2.3), we consider a particle sys-
tem

dXN,n
t = H

(
t,XN,n

t , Y N,n
t ,mλ

A1
(XN,n

t ;µNt )
)
dt

+ F
(
t,XN,n

t , Y N,n
t ,mλ

A2
(XN,n

t ;µNt )
)
dWX,n

t (2.4a)

dY N,n
t = b(t, Y N,n

t ) dt+ σ(t, Y N,n
t ) dW Y,n

t (2.4b)

µNt =
1

N

N∑
n=1

δ
(XN,n

t ,Y N,nt )
, (2.4c)

where N ∈ N, n = 1, . . . , N , t ∈ [0, T ], and the pairs of d × d-dimensional
Brownian motions (WX,n,W Y,n), n = 1, . . . , N , are jointly independent and
have the same law as (WX ,W Y ). The following propagation of chaos result
holds; it establishes both weak and strong convergence of XN,n.

Theorem 2.2. Assume that all the conditions of Theorem 2.1 are satisfied.
Suppose additionally that the functions H, F , b, σ are locally bounded and
the initial conditions (XN,n

0 , Y N,n
0 ) are jointly independent and have the same

law as (X̂0, Y0). Moreover, suppose that E|X̂0|q <∞, E|Y0|q <∞ for some
q > 4. Then there exists a constant C = C(λ, T, E|X̂0|q, E|Y0|q) > 0 such
that for any N ∈ N

E sup
0≤t≤T

|XN,1
t −Xt|2 + sup

0≤t≤T
E[W2(µNt , µ̂t)

2] ≤ CN−1/2, (2.5)

where the process X solves (2.3) with WX,n, W Y,n in place of WX , W Y ,
respectively.

A crucial step which allowed us to obtain these results is the Lipschitz
continuity of mλ. The following holds.

Theorem 2.3. Assume that the kernel k satisfies Assumption K. Let A ∈
C1(X ,R). Then for any x, y ∈ X , µ, ν ∈ P2(X × X ) on has

|mλ
A(x;µ)−mλ

A(y; ν)| ≤ C1W1(µ, ν) + C2|x− y|,

where

C1 :=

(
Dk

λ2
+

1

λ

)
dD2

k‖A‖C1 and C2 :=

√
d

λ
D2
k‖A‖C1 .

This result is interesting for at least two reasons. First, it shows that
mλ
A is Lipschitz continuous in both arguments, provided that the kernel k

is smooth enough. That is, the Lipschitz continuity property depends on H
only through the smoothness of the kernel k. Second, this result gives an
explicit dependence of the corresponding Lipschitz constant on λ and k.

9



Remark 2.4. Let us stress that Theorem 2.1 establishes the existence and
uniqueness of (2.2) only for a fixed regularisation parameter λ > 0 and
can not be used to study the limiting case λ → 0. Indeed, it follows from
Theorem 2.3, that as λ → 0, the Lipschitz constants of mλ

A blows up. Yet,
we will demonstrate numerically in Section 5, that, actually, as λ → 0 the
solution to (2.2) does not blow up; on the contrary it weakly converges
to a limit; this hints that (at least) weak existence of solutions to (1.10)
should hold. Verifying this theoretically remains however an important open
problem.

3. Approximation of conditional expectations

In this section we study the approximation mλ
A introduced in (2.1) in more

detail. Throughout this section we fix an open set X ⊂ Rd, a measure
ν ∈ P2(X × X ), and impose the following relatively weak assumptions on
the function A : X → R and the positive kernel k : X × X → R.

Assumption A◦. The function A is sublinear, i.e. there exists a constant
C > 0 such that for all x ∈ X one has |A(x)| ≤ C(1 + |x|).

Assumption K◦. The kernel k(·, ·) is continuous on X × X and satisfies
0 < k(x, x) ≤ C(1 + |x|2) for some C > 0.

It is easy to see that Assumption K◦ implies for any x ∈ X

‖k(x, ·)‖2H = 〈k(x, ·), k(x, ·)〉H = k(x, x) ≤ C(1 + |x|2). (3.1)

Due to Assumption K◦ and [SC08, Lemma 4.33], H is a separable RKHS
and one has for any f ∈ H, x ∈ X ,

|f(x)| = |〈k(x, ·), f〉H| ≤ ‖k(x, ·)‖H‖f‖H ≤ C(1 + |x|)‖f‖H, (3.2)

where we also used (3.1). Hence, every f ∈ H is sublinear and, as a con-
sequence, for any fixed ν ∈ P2(X × X ), the objective functional in (2.1) is
finite.

It is also easy to see that (3.2) and (3.1) imply that for any x, y ∈ X

k(x, y) ≤ C(1 + |x|)‖k(·, y)‖H = C(1 + |x|)(1 + |y|). (3.3)

Therefore, the Bochner integrals

cνA :=

∫
X×X

k(·, x)A(y)ν(dx, dy), and Cνf :=

∫
X×X

k(·, x)f(x)ν(dx, dy).

(3.4)
are well defined functions in H for every f ∈ H. Moreover, operator
Cν : H → H is symmetric and positive definite since

〈g, Cνf〉 =

∫
X
〈g, k(·, x)〉 f(x)ν(dx,X ) =

∫
X
g(x)f(x)ν(dx,X ).

10



Thus, by the Hellinger-Toeplitz theorem, Cν is a bounded self-adjoint linear
operator on H. As a consequence, for any λ ≥ 0, the operator Cν +λIH is a
bounded self-adjoint operator on H with spectrum contained in the interval
[λ, ‖Cν‖ + λ]. Hence, if λ > 0, then (Cν + λIH)−1 exists and is a bounded
self-adjoint operator on H with norm

‖(Cν + λIH)−1‖H ≤ λ−1. (3.5)

We are now ready to state the following useful representation for the solution
to (2.1).

Proposition 3.1. Under Assumptions A◦,K◦, for any fixed ν ∈ P2(X ×X )
and λ > 0, the solution to (2.1) can be represented as

mλ
A(·; ν) = (Cν + λIH)−1cνA. (3.6)

This representation may be seen as an infinite sample version of the
usual solution representation for a ridge regression problem based on finite
samples. We thus consider it as not essentially new, but, in order to keep
our paper as self contained as possible we present a proof of it in Section 7.
Proposition 3.1 allows us to prove Lipschitz continuity of mλ

A, that is The-
orem 2.3.

Let us now proceed with investigating when the function mλ
A = mλ

A(·; ν)
is a “good” approximation to the true conditional expectation

mA = mA(x, ν) := E(X,Y )∼ν [A(Y )|X = x] (3.7)

for small enough λ > 0.
Assume from now on that the measure ν ∈ P2(X ×X ) is nondegenerate

with respect to the first variable. That is, for every open set U ⊂ X one has
ν(U,X ) > 0. Consider the Hilbert space Lν2 := L2(X , ν(dx,X )). For f ∈ Lν2
put

T νf :=

∫
X
k(·, x)f(x)ν(dx,X ). (3.8)

Recalling (3.3), it is easy to see that T ν is a linear operator Lν2 → Lν2 .
Note that that H ⊂ Lν2 due to (3.2); thus, Cν is the restriction of T ν to H.
Further, since k(x, y) ≤

√
k(x, x)

√
k(y, y), the kernel k is Hilbert-Schmidt

on L2(X × X , ν(dx,X )ν(dy,X )), i.e.∫
k2(x, y)ν(dx,X )ν(dy,X ) <∞,

due to Assumption K◦. As a consequence of the standard results from
functional analysis, one then has (see for example [Kre89]):

(i) the operator T ν is self-adjoint and compact;
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(ii) there exists an orthonormal system (an)n∈N in Lν2 of continuous eigen-
functions corresponding to nonnegative eigenvalues σn of T ν and σ1 ≥
σ2 ≥ σ3 ≥ . . .;

(iii) If J := {n ∈ N : σn > 0}, one has

T νf =
∑
n∈J

σn 〈f, an〉Lν2 an, f ∈ Lν2

with limn→∞ σn = 0 if J = N.

It is easy to see that a generalization of Mercer’s theorem to unbounded
domains [Sun05] implies the following statement.

Proposition 3.2. Let k be a kernel satisfying Assumption K◦. Then k has
a series representation

k(x, y) =
∑
n∈J

σnan(x)an(y), x, y ∈ X (3.9)

with uniform convergence on compact sets. Moreover, (ãn)n∈J with ãn :=√
σnan is an orthonormal basis of H and the scalar product in H takes the

form

〈f, g〉H =
∑
n∈J

〈f, an〉Lν2 〈g, an〉Lν2
σn

for f, g ∈ H. (3.10)

Now we are ready to present the main result of this section next re-
sult, which quantifies the convergence properties of mλ

A(·, ν) as λ→ 0 for a
fixed measure ν. Recall the notation (3.7). Let PH̄ denote the orthogonal
projection of Lν2 onto the closure H of H in Lν2 .

Theorem 3.3. Assume that the kernel k satisfies Assumption K◦ and the
function A is bounded measurable. Then mA ∈ Lν2 and for any λ > 0∥∥∥PH̄mA −mλ

A(·; ν)
∥∥∥2

Lν2
=
∑
n∈J

λ2

(σn + λ)2 〈mA, an〉2Lν2 . (3.11)

In particular,
∥∥PH̄mA −mλ

A(·; ν)
∥∥
Lν2
→ 0 as λ ↓ 0.

If, moreover, PH̄mA ∈ H one has∥∥∥PH̄mA −mλ
A(·; ν)

∥∥∥2

H
=
∑
n∈J

λ2

(σn + λ)2 σn
〈mA, an〉2Lν2 , (3.12)

and thus
∥∥PH̄mA −mλ

A(·; ν)
∥∥
H → 0 for λ ↓ 0.

Theorem 3.3 establishes convergence of mλ
A(·; ν) as λ→ 0 though with-

out a rate. Its proof is placed in Section 7. Additional assumptions are
needed to guarantee a certain convergence rate. This is done in the follow-
ing corollary.
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Corollary 3.4. Suppose that the conditions of Theorem 3.3 are satisfied,
and that moreover for some θ ∈ (0, 1],∑

n∈J
σ−θn 〈PH̄mA, an〉2Lν2 <∞. (3.13)

Then∥∥∥PH̄mA −mλ
A(·; ν)

∥∥∥2

Lν2
≤
(

1− θ

2

)2( λθ

2− θ

)θ∑
n∈J

σ−θn 〈mA, an〉2Lν2 . (3.14)

In particular, if θ = 1, that is PH̄mA ∈ H, we get∥∥∥PH̄mA −mλ
A(·; ν)

∥∥∥
Lν2
≤
√
λ

2
‖PH̄mA‖H . (3.15)

Proof. Inequality (3.14) follows from (3.11), (3.13), and the fact that the
maximum of the function x 7→ λ2xθ/(x+ λ)2, x > 0, is equal to

(1− θ/2)2(λθ/(2− θ))θ.

Inequality (3.15) follows from (3.14) and (3.10).

Remark 3.5. If operator T ν defined in (3.8) is injective, then PH̄ = ILν2 . In
this case J = N and Theorem 3.3 and Corollary 3.4 quantify the convergence
to the true conditional expectation.

Thus, in this section we have shown that, under certain conditions,
mλ
A(·, ν) may converge at least in Lν2-sense to the true conditional expec-

tation mA(·, ν) as λ→ 0. This makes the heuristic discussion around (1.12)
and (1.13) in Section 1 more rigorous.

Remark 3.6. Note that the measure µ̂t in the solution of (2.3) depends on
λ, so in fact µ̂t = µ̂λt . Therefore, even when mλ

A(·, ν) → mA(·, ν) for fixed
ν and λ ↓ 0, the question whether mλ

Ai
(·, µ̂λt ) converges in some sense is

still not answered. We believe that this question is intimately linked to the
problem of existence of a solution to (2.2). As already explained, this is an
unsolved open problem and therefore considered out of our scope. However,
loosely speaking, assuming that the latter system has indeed a solution (in
some sense) with solution measure µt say, it is natural to expect that for a
suitable “rich enough” RKHS, mλ

Ai
(·, µt)→ mAi(·, µt) (the true conditional

expectation) as λ ↓ 0.

Thus, as follows from the discussion above, the space H has to be large
enough, otherwise there is no hope of convergence of mλ

Ai
(·, µ̂λt ) to the true

conditional expectation. Fortunately, there is a great flexibility for the choice
of the kernel k and thus RKHSH. For instance, starting with a simply struc-
tured infinite dimensional kernel, k∞ (e.g., the Gaussian kernel), in general
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it may happen that mλ
Ai
, i = 1, 2, have poor approximation properties in

the RKHS H∞ generated by k∞. In such a case we may add another kernel
to it, which incorporates possible prior information of mλ

Ai
such as shape

or growth behavior. For example, suppose one anticipates that mλ
Ai

fol-
lows “roughly” some functions in the linear span of some suitably chosen
set of basis functions, say, ψ1, ..., ψK . One then may consider the RKHS
H := H∞ ⊕Hψ generated by the kernel

k(x, y) := k∞(x, y) + kψ(x, y) := k∞(x, y) +

K∑
k=1

ψk(x)ψk(y), (3.16)

where kψ generates Hψ, and, without loss of generality, H∞ ∩Hψ = {0}.
Of course, in this line of reasoning, we think of K being a “very low”

number. The simplest extension one may think of is adding a constant, i.e.
K = 1 and ψ1 ≡ c 6= 0. Then, clearly, 1 ∈ H and, for instance, if X and Y
are independent, one then has that E [Y |X = ·] = E [Y ] ∈ H.

As another example, in the context of (1.3) one may think of a given
stochastic volatility process vt such that (1.3) with σ = 1 explains the market
prices up to a large extend already. One then may expect that, in the
solution of (1.5), E [vt|St = ·] is roughly proportional to σ2

Dup(t, ·). This
suggest to chose a (time dependent) kernel of the form (3.16) with ψ1(t, ·) :=
σ2

Dup(t, ·). The advantage of a suitable kernel extension is best seen in the

case where ψ1(t, ·) = σ2
Dup(t, ·)/σ2(t, ·) due to some oracle. Then mλ

A in the
solution of the regularized version of (1.5) is expected to be found “almost”
in the one dimensional space Hψ.

4. Numerical algorithm

Let us now describe in details our numerical algorithm to construct solutions
to (1.10). We begin by discussing an efficient way of calculating mλ

A.

4.1 Estimation of the conditional expectation

Let us recall that in order to solve the particle system (2.4) we need to
compute

mλ
A(·;µNt ) = arg min

f∈H

{ 1

N

N∑
n=1

|A(Y N,n
t )− f(XN,n

t )|2 + λ ‖f‖2H
}
. (4.1)

for t belonging to a certain partition of [0, T ] and fixed large N ∈ N; here
A = A1 or A = A2. It follows from the representer theorem for RKHS
[SHS01, Theorem 1] that mλ

A has the following representation:

mλ
A(·; νNt ) =

N∑
i=1

αik(XN,i
t , ·), (4.2)
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for some α = (α1, . . . , αN )T ∈ RN . Note that the optimal α can be cal-
culated explicitly by plugging the representation (4.2) into the above mini-
mization problem in place of f and minimizing over α. However, computing
the optimal α directly takes O(N3) operations, which is prohibitively ex-
pensive keeping in mind that the number of particles N is going to be very
large. Furthermore, even evaluating (4.2) at XN,n

t , n = 1, . . . , N , for a
given α ∈ RN is rather expensive, it requires O(N2) operations, and thus is
impossible to implement.

To develop an implementable algorithm, let us note that many particles
XN,i
t — and, as a consequence, the implied basis functions k(XN,i

t , ·) — will
be close to each other. Therefore, we can considerably reduce the computa-
tional cost by only using L� N rather than N basis functions as suggested
in (4.2). More precisely, we choose Z1, . . . , ZL among X1,N

t , . . . , XN,N
t – e.g.,

by random choice or taking every N
L th point among the ordered sequence

X
N,(1)
t , . . . , X

N,(N)
t in case that X is one-dimensional – and approximate

N∑
i=1

αik(XN,i
t , ·) ≈

L∑
j=1

βjk(Zj , ·), (4.3)

where β = (β1, . . . , βL)T ∈ RL. It is easy to see that∥∥∥ L∑
j=1

βjk(Zj , ·)
∥∥∥
H

=
〈 L∑
j=1

βjk(Zj , ·),
L∑
j=1

βjk(Zj , ·)
〉
H

=
L∑

j,k=1

βjβk〈k(Zj , ·), k(Zk, ·)〉H

=
L∑

j,k=1

βjβkk(Zj , Zk) = β>Rβ,

where R := (k(Zj , Zk))j,k=1,...,L is an L × L matrix. Thus, recalling (4.1),
we see that we have to solve

arg min
β∈RL

[
1

N
(G−Kβ)>(G−Kβ) + λβ>Rβ],

where G := (A(Y N,n
t ))n=1,...,N , K := (k(Zj , XN,n

t ))n=1,...,N,j=1,...,L is an N ×
L matrix. Differentiating with respect to β, we get that the optimal value
β̂ = β̂((XN

t ), (Y N
t )) satisfies

(K>K +NλR)β̂ = K>G, (4.4)

and we approximate expectation as

mλ
A(x;µNt ) ≈

L∑
j=1

β̂jk(Zj , x) =: m̂λ
A(x;µNt ). (4.5)
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Remark 4.1. Let us see how many operations we need to calculate β̂,
taking into account that L� N . We need O(NL) to calculate K, O(L2) to
calculate R, O(NL2) to calculate K>K (this is the bottleneck); O(L3) to
invert K>K + NλR and O(NL) to calculate K>G and solve (4.4). Thus,
in total we would need O(NL2) operations.

4.2 Solving the McKean–Vlasov equation

With the function m̂λ
A in hand, we consider now the Euler scheme for the

particle system (2.4). We fix time interval T , the number of time steps
M , and, for simplicity, we consider a uniform time increment δ := T/M .
Let ∆WX,n

i and ∆W Y,n
i denote independent copies of WX

(i+1)δ −W
X
iδ and

W Y
(i+1)δ − W Y

iδ , respectively, n = 1, . . . , N , i = 1, . . .M . Note that for
stochastic volatility models, the Brownian motions driving the stock price
and the variance process are usually correlated. We now define X̃n

0 = Xn
0 ,

Ỹ n
0 = Y n

0 , and for i = 0, . . . ,M − 1

X̃n
i+1 = X̃n

i +H
(
iδ, X̃n

i , Ỹ
n
i , m̂

λ
A1

(X̃n
i ; µ̃Ni )

)
δ (4.6a)

+ F
(
iδ, X̃n

i , Ỹ
n
i , m̂

λ
A2

(X̃n
i ; µ̃Ni )

)
∆WX,n

i

Ỹ n
i+1 = Ỹ n

i + b(iδ, Ỹ n
i )δ + σ(iδ, Ỹ n

i )∆W Y,n
i , (4.6b)

where µ̃Ni = 1
N

∑N
n=1 δ(X̃N,n

i ,Ỹ N,ni )
. Note that after each iteration we might

need to update the values of (X̃n
i , Ỹ

n
i ) in order to ensure that they lie in

X × X (this can be done, e.g., by replacing them by the closest to them
point of X × X ).

We see that at each discretization time step of (4.6) we need to compute
the approximations of the conditional expectations m̂λ

Ar
(X̃n

i ; µ̃Ni ), r = 1, 2.
This is done using the algorithm discussed in Section 4.1, and takes O(NL2)
operations, see Remark 4.1. Thus the total number of operations needed to
implement (4.6) is O(MNL2).

5. Numerical examples and applications to local
stochastic volatility models

As a main application of the regularisation approach presented above, we
consider the problem of calibration of stochastic volatility models to market
data. Fix T > 0. Let C(t,K) be the price at time 0 of a European call
option on a non-dividend paying stock X with strike K and maturity t,
K > 0, t ∈ [0, T ]. We assume that the market prices (C(t,K))t>0,K>0 are
given. To simplify the calculations, we suppose that the interest rate r = 0.
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We study Local Stochastic Volatility (LSV) models. That is, we assume
that the stock price X follows the dynamics

dXt =
√
YtσLV (t,Xt)XtdW

X
t , t ∈ [0, T ], (5.1)

where WX is a Brownian motion and (Yt) is a strictly positive volatility
process, both being adapted to some filtration (Ft)t≥0. As discussed in the
introduction, if the function σLV is given by

σ2
LV(t, x) :=

σ2
Dup(t, x)

E [Yt|Xt = x]
, t ∈ [0, T ], x > 0,

where σDup is the Dupire local volatility

σ2
Dup(t, x) :=

2∂tC(t, x)

x2∂xxC(t, x)
, t ∈ [0, T ], x > 0, (5.2)

then the model (5.1) is able to perfectly replicate the given call option prices
(for any choice of the volatility process Y ) [Dup94, Gyo86]. That is, one has
the identity

C(t,K) = E(Xt −K)+, t ∈ [0, T ], K > 0. (5.3)

In particular, the choice Y ≡ 1 recovers the local volatility model. In case
where Y is a diffusion process

dYt = b(t, Yt)dt+ σ(t, Yt)dW
Y
t , (5.4)

where W Y is a Brownian motion possibly correlated with WX , we see that
the model (5.1)-(5.4) is a special case of the general McKean-Vlasov equation
(2.2) with X = R+.

To solve (5.1)-(5.4), we implement the algorithm described in Section 4:
see (4.6) together with (4.5). To validate the results, we compare the call
option prices obtained by the algorithm (that is N−1

∑N
n=1(X̃n

M−K)+) with
the given prices C(T,K) for various T > 0 and K > 0. If the algorithm is
correct and if µ̃NM ≈ Law(XT , YT ), then, according to (5.3) one must have

C(t,K) ≈ N−1
N∑
n=1

(X̃n
M −K)+ =: C̃(t,K). (5.5)

On the other hand, if the algorithm is not correct and the true law Law(XT , YT )
is very different from µ̃NM , then (5.5) will not hold.

We verify (5.5) in two different setups. First, we consider the Black–
Scholes (BS) dynamics for the market; that is we assume σDup ≡ const for
const = 0.3 and S0 = 1. Second, we consider the local volatility dynamics
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for the market, that is we set C(t,K) := E(St −K)+, where St follows the
Heston model

dSt =
√
vtSt dWt, (5.6a)

dvt = κ(θ − vt) dt+ ξ
√
vt dBt, (5.6b)

with the following parameters: κ = 1.5768, θ = 0.0484, ξ = 0.5751, and
correlation ρ = −0.7 between the driving Brownian motions W and B, with
initial values S0 = 1, v0 = 0.1024, cf. similar parameter choices in [FO09].
We solved (5.6) with the standard Euler method with 108 trajectories and
103 time steps. We calculate then σDup from C(t,K) using (5.2).

As our back-bone stochastic volatility model for Y , we choose a Heston-
type model but with different parameters then the data-generating Heston
model. That is, we set in (5.4) b(t, x) = λ(µ − x), σ(t, x) = η

√
x, Y0 =

0.0144, λ = 1, µ = 0.0144, η = 0.5751. We assume that WX and W Y are
uncorrelated. Hence, the backbone model exhibits smaller initial as well as
long-term variance, slower speed of mean-reversion, no correlation, but the
same vol-of-vol as compared to the price-generating model. In particular,
as the variance process has different parameters compared to the price-
generating stochastic volatility model, a non-trivial local volatility function
is required in order to match the implied volatility. Hence, even though
the generating model is of the same class, the calibration problem is still
non-trivial, and involves a singular MKV SDE.

We took H to be RKHS associated with the Gaussian kernel k with
variance 5. We fix the number of time steps M = 500, λ = 10−5, L = 40.
At each time step of the Euler scheme we choose (Zj)j=1,...,L by the following
rule:

Zj is j · 100/(L+ 1) percentile of the sequence {XN,n
t }n∈1,...N . (5.7)

Figure 1 compares the theoretical and the calculated prices (in terms of
implied volatilties) in the Black-Scholes (a) and Heston (b-d) settings for
various strikes and maturities. That is, we first calculate C(t,K) using the
Black-Scholes model (“Black-Scholes setting”) or (5.6) (“Heston setting”);
then we calculate σ2

Dup by (5.2); then we calculate X̃n
M , n = 1, . . . , N using

the algorithm (4.6) with H ≡ 0, A2(x) = x, and

F (t, x, y, z) := xσ2
Dup(t, x)

√
y
√
z

;

then we calculate C̃(t,K) using (5.5); finally we transform the prices C(T,K)
and C̃(t,K) to the implied volatilities. As usual, for K > S0 (out-of-the-
money options) the implied volatilities are calculated from the call option
prices C(t,K) and C̃(t,K), and for K < S0 (in-the-money options) the
implied volatilities are calculated from the put option prices P (t,K) and
P̃ (t,K) defined similarly.
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We plot at Figure 1 implied volatilties for a wide range of strikes and
maturities. More precisely, we consider all strikes K such that P(ST < K) ∈
[0.02, 0.98] — this corresponds to all but very far in–the–money and out–
of–the–money options. Pricing of the options with very far in or out of
the money strikes is discussed later. One can from Figure 1 that already
for N = 104 trajectories, identity (5.5) holds up to a small error for all
the considered strikes and maturities. This error further diminishes as the
number of trajectories increases. At N = 106 the true implied volatility
curve and the one calculated from our approximation model become almost
indistinguishable.

(a) (b)

(c) (d)

Figure 1: Fit of the smile vs number of trajectories. (a): Black-Scholes
setting, T = 1 year. (b): Heston setting, T = 1 year. (c): Heston setting,
T = 4 years. (d): Heston setting, T = 10 years.

Now let us discuss the stability of our model as the regularization pa-
rameter λ→ 0. We study the absolute error in the implied volatility of the
1 year ATM call option for various λ ∈ [10−7, 1] in the Black–Scholes and
Heston settings described above. We took N = 106 trajectories and L = 40
Zjs at each step according to (5.7); we performed 100 repetitions at each
considered value of λ. The results are presented at Figure 2. We see that in
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both settings, initially, the error drops as λ decreases, then it stabilizes once
λ ≤ 10−5. Therefore for all our calculations we took λ = 10−5. It is clear
that the error does not blow up as λ becomes very small; the remaining error
is due to other factors (numbers of trajectories and time steps being not big
enough, etc). This indicates that (at least in our setting) the solution to the
approximating equation (2.2) does converge weakly to the solution of (1.10)
as λ→ 0.

(a) (b)

Figure 2: Mean absolute implied volatility error for different values of λ.
(a): Black-Scholes setting. (b): Heston setting.

Let us see how the error in call option prices in (5.5) (and thus the
distance between the laws of the true and approximated solutions) depends
on the number of trajectories N . Recall, that it follows from Theorem 2.2
that this error should decrease as N−1/4 (note the square in the left–hand
side of (2.5). Figure 3 shows how the absolute error in the implied volatility
of 1 year ATM call option decreases as the number of trajectories increases
in (a) Black–Scholes setting and (b) Heston setting. We took λ = 10−5,
L = 40, N ∈ [250, 212 · 250]. We performed 100 repetitions at each value of
N . We see the error decreases as O(N−1/2) in both settings, which is even
better than predicted by theory.
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(a) (b)

Figure 3: Mean absolute implied volatility error vs number of trajectories.
The black line is the approximation: error= CN−1/2 (a): Black-Scholes
setting; C = 0.423. (b): Heston setting; C = 0.272.

We also investigate the dependence of error in the implied volatility on
the number of basis functions L in the representation (4.5). Recall that since
the number of operations depends on L quadratically (it equals O(MNL2)),
it is extremely expensive to set L to be large. At Figure 4 we plotted the
dependence of the absolute error in the implied volatility of 1 year ATM call
option on L. We used N = 106 trajectories, λ = 10−5, L ∈ [1 . . . 30] and did
100 repetitions at each value of the number of basis functions. We see that
as the number of basis functions increases, the error first drops significantly,
but then stabilizes at L ≈ 20.

(a) (b)

Figure 4: Mean absolute implied volatility error vs number of basis func-
tions. (a): Black-Scholes setting. (b): Heston setting.

As discussed above, Fig. 1 shows that our approximating model (2.3)
agrees with the original model (1.10) and is able to callibrate the market
correctly for a wide range of maturities T and strikes K with P(ST < K) ∈
[0.02, 0.98]. Now let us discuss the pricing of very far in-the-money or
out-of-the-money options when P(ST < K) /∈ [0.02, 0.98]. At Fig. 5(a),
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we zoom out Fig. 1(b) to see the fit of the smile for all K such that
P(ST < K) ∈ [0.0001, 0.9999]. We see that for very in/out-of-the money
strikes with P(ST < K) < 0.005 or P(ST > K) > 0.995, the approximated
model does not converge to the correct price as number of trajectories goes
to infinity. This error is due to our way of choosing Zjs. Recall that we
have selected them using (5.7). This means however that there will be no
Zj next to the very far in/out of the money strikes. Indeed, with L = 40 for

T = 1 the left-most Zj corresponds to 2.44th percentile of {XN,n
T }n∈1,...N ,

which is approximately 0.451. One can see that this is quite far from 0.15
(the smallest strike considered in Fig. 5) and therefore it is not surprising
that the approximation (4.3) fails. Similarly, the right-most Zj corresponds

to 97.56th percentile of {XN,n
T }n∈1,...N , which is 1.440 and is far from 2, the

largest strike considered in Fig. 5.

(a) (b)

Figure 5: Fit of the smile for very far in/out-of-the-money options. (a): He-
ston setting, Zjs are chosen according to (5.7). (b): Heston setting, Zjs are
chosen according to (5.7) and (5.8).

A naive solution to this problem would be just to increase L, which is
the number of Zjs that has to be taken in (4.3). Note however, that 0.15

corresponds to 0.01th percentile of {XN,n
T }n∈1,...N , and to cover it one needs

to take L ≈ 104. Recalling that the number of operations of our algorithm
depends quadratically on L, one can see that this new algorithm would
require 6 ·104 more time than the current version with L = 40 and therefore
is not feasible.

Therefore we suggest here another approach. We add to Zjs chosen

according to (5.7), 2L̃ more elements: corresponding to L̃ very small and L̃
very large percentiles. More precisely, we took L̃ = 5 and added

Zr which is r · 0.1 and (100− r · 0.1) perecentiles of {XN,n
T }n∈1,...N , r = 1, . . . , 5.

(5.8)
Thus, in total we have now 50 different Zj in representation (4.3).
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One can see from Fig. 5(b) that this choice have drastically increased the
accuracy of the approximation of the smile for very far in/out-of-the money
options, increasing the total time only by 60%. A small price to pay is that
some of the near-the-money options has now a slightly larger error than it
was in the initial way of choosing Zjs according to (5.7), see Table 1.

Strike K 0.15 0.25 0.75 1 1.25 1.75 2
P(ST < K) 0.0001 0.0017 0.1595 0.4574 0.8599 0.9988 0.9999
True IV 0.4832 0.4512 0.3103 0.2465 0.2025 0.1935 0.1995

IV error (A) 0.0786 0.0339 0.0010 0.0012 0.0006 0.0149 0.0268
IV error (B) 0.0233 0.0043 0.0007 0.0012 0.0008 0.0021 0.0067

Table 1: Comparison of two methods of choosing basis functions: only by
(5.7) vs by (5.7) and (5.8). IV error denotes the average absolute error of
implied volatilities, where Zjs is chosen by (5.7) (A); Zjs is chosen by (5.7)
and (5.8) (B).

6. Conclusion and outlook

In this paper, we study the problem of calibrating local stochastic volatil-
ity models via the particle approach pioneered in [GHL12]. We suggest
a novel RKHS based regularization method and prove that this regular-
ization guarantees well-posedness of the underlying McKean-Vlasov SDE
and the propagation of chaos property. Our numerical results suggest that
the proposed approach is rather efficient for the calibration of various lo-
cal stochastic volatility models and can outperform widely used local kernel
methods. There are still some questions left open here. First, it remains
unclear whether the regularised McKean-Vlasov SDE remains well-posed
when the regularisation parameter λ tends to zero. This limiting case needs
a separate study. Another important issue is the choice of RKHS and the
number of basis functions which ideally should be adapted to the problem
at hand. This problem of adaptation is left for future research.

7. Proofs

In this section we present the proofs of the results from Section 2 and Sec-
tion 3.

Proof of Proposition 3.1. Let I ⊂ N and let e := (ei)i∈I be a total orthonor-
mal system in H (note that I is finite if H is finite dimensional). Define the
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vector γν ∈ `2(I) by

γνi := 〈ei, cνA〉H =

∫
X×X

〈
ei, k(·, x)

〉
HA(y)ν(dx, dy)

=

∫
X×X

ei(x)A(y)ν(dx, dy), i ∈ I. (7.1)

Since the operator Cν is bounded it may be described by the (possibly infi-
nite) symmetric matrix

Bν :=
(
〈ei, Cνej〉H

)
(i,j)∈I×I =

(∫
X
ei(x)ej(x) ν(dx,X )

)
(i,j)∈I×I

, (7.2)

which acts as a bounded positive semi-definite operator on `2(I). Denote

βν = (B + λI)−1γν . (7.3)

For f ∈ H write f =
∑∞

i=1 βiei. Then, recalling (7.1) and (7.2), we derive

arg min
f∈H

{∫
X×X

|A(y)− f(x)|2 ν(dx, dy) + λ‖f‖2H
}

= arg min
β∈`2(I)

{∫
X×X

|A(y)−
∞∑
i=1

βiei|2 ν(dx, dy) + λ‖β‖2`2(I)

}
= arg min

β∈`2(I)

{
−2〈β, γν〉`2(I) + 〈β, (B + λI)β〉`2(I)

}
= arg min

β∈`2(I)

{
−2〈β − βν , γν〉`2(I) + 〈β − βν , (B + λI)(β − βν)〉`2(I)

+ 2〈β − βν , (B + λI)βν〉`2(I)

}
= arg min

β∈`2(I)

{
〈β − βν , (B + λI)(β − βν)〉`2(I)

}
= βν ,

where we used the fact that B + λI is strictly positive definite and the
definition (7.3). To complete the proof it remains to note that

∞∑
i=1

βνi ei = (Cν + λIH)−1cνA,

which shows (3.6).

Proof of Theorem 2.3. Let us write

|mλ
A(x;µ)−mλ

A(y; ν)| ≤ |mλ
A(x;µ)−mλ

A(x; ν)|+ |mλ
A(x; ν)−mλ

A(y; ν)|
= I1 + I2. (7.4)
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Working with respect to the orthonormal basis introduced in the proof of
Proposition 3.1, see (7.3), we derive for the first term in (7.4)

I1 = |〈k(x, ·),mλ
A(·;µ)−mλ

A(·; ν)〉H|
≤ ‖k(x, ·)‖H‖mλ

A(·;µ)−mλ
A(·; ν)‖H

≤
√
k(x, x)‖βµ − βν‖`2(I)

≤ Dk‖βµ − βν‖`2(I) (7.5)

where we used (3.1) and Assumption K.
Denote Qν := Bν + λI and Qµ := Bµ + λI. Recalling that they are

bounded `2(I)→ `2(I) operators with bounded inverses, it easy to see that

‖(Qµ)−1 − (Qν)−1‖`2(I) ≤ ‖(Qµ)−1‖`2(I)‖(Qν)−1‖`2(I)‖Qµ −Qν‖`2(I).

Therefore

‖βµ − βν‖`2(I) = ‖(Qµ)−1γµ − (Qν)−1γν‖`2(I)

≤
∥∥((Qµ)−1 − (Qν)−1

)
γµ
∥∥
`2(I)

+
∥∥(Qν)−1(γµ − γν)

∥∥
`2(I)

≤
∥∥(Qµ)−1

∥∥
`2(I)

∥∥(Qν)−1
∥∥
`2(I)

∥∥Qµ −Qν∥∥
`2(I)

∥∥γµ∥∥
`2(I)

+
∥∥(Qν)−1

∥∥
`2(I)

∥∥γµ − γν∥∥
`2(I)

≤ 1

λ2

∥∥Bµ −Bν
∥∥
`2(I)

∥∥γµ∥∥
`2(I)

+
1

λ

∥∥γµ − γν∥∥
`2(I)

. (7.6)

Now observe that for any i, j ∈ I

(Bµ
ij −B

ν
ij)

2 =
(∫
X
ei(x)ej(x)

(
µ(dx,X )− ν(dx,X )

))2

=

∫
X

∫
X
ei(x)ej(x)ei(y)ej(y)

×
(
µ(dx,X )− ν(dx,X )

)(
µ(dy,X )− ν(dy,X )

)
.

Hence, by using the identity∑
i∈I

ei(x)ei(y) =
∑
i∈I

〈
k(x, ·), ei

〉
H
〈
k(y, ·), ei

〉
H =

〈
k(x, ·), k(y, ·)

〉
H = k(x, y),

(7.7)
we get∥∥Bµ −Bν

∥∥2

`2(I)
≤
∥∥Bµ −Bν

∥∥2

HS

=

∫
X

(
µ(dx,X )− ν(dx,X )

) ∫
X
k2(x, y)

(
µ(dy,X )− ν(dy,X )

)
.

(7.8)
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By the duality principle, for every smooth h : X → R one has∣∣∣ ∫
X
h(x)

(
µ(dx,X )− ν(dx,X )

)∣∣∣ =
∣∣∣ ∫
X×X

h(x)
(
µ(dx, dy)− ν(dx, dy)

)∣∣∣
≤ sup

x∈X

∣∣∂xh(x)
∣∣W1(µ, ν).

So we continue (7.8) in the following way:

‖Bµ−Bν‖2`2(I) ≤W1(µ, ν) sup
x∈X

∣∣∣ ∫
X
∂xk

2(x, y)
(
µ(dy,X )− ν(dy,X )

)∣∣∣, (7.9)

and for each particular x ∈ X we have similarly∣∣∣∫
X
∂xk

2(x, y)
(
µ(dy,X )− ν(dy,X )

)∣∣∣ ≤ d∑
i=1

∣∣∣∫
X
∂xik

2(x, y)
(
µ(dy,X )− ν(dy,X )

)∣∣∣
≤

d∑
i=1

sup
y∈X
|∂y∂xik2(x, y)|W1(µ, ν)

≤ d2D2
kW1(µ, ν),

where the last inequality follows from by Assumption K. Combining this
with (7.9), we deduce

‖Bµ −Bν‖`2(I) ≤ DkW1(µ, ν)d. (7.10)

By a similar argument, using (7.7), we derive∥∥γµ − γν∥∥2

`2(I)

≤
∑
i∈I

∫
X×X

∫
X×X

ei(x)ei(x
′)A(y)A(y′)(µ− ν)(dx, dy)(µ− ν)(dx′, dy′)

≤
∫
X×X

∫
X×X

k(x, x′)A(y)A(y′)(µ− ν)(dx, dy)(µ− ν)(dx′, dy′)

≤ d2W2
1(µ, ν)‖A‖2C1D

2
k, (7.11)

where again Assumption K was used. Next note that

‖γµ‖2`2(I) =

∫
X×X

∫
X×X

k(x, x′)A(y)A(y′)µ(dx, dy)µ(dx′, dy′)

≤
∫
X×X

∫
X×X

∣∣A(y)
∣∣√k(x, x)

∣∣A(y′)
∣∣√k(x′, x′)µ(dx, dy)µ(dx′, dy′)

=
(∫
X×X

∣∣A(y)
∣∣√k(x, x)µ(dx, dy)

)2

≤
∫
X×X

∣∣A(y)
∣∣2µ(dx, dy)

∫
X×X

k(x, x)µ(dx, dy)

≤ D2
k‖A‖2C1 (7.12)
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due to Assumption K. Substituting now (7.10), (7.11), and (7.12) into (7.6)
and then into (7.5), we finally get

I1 ≤ (λ−1Dk + 1)λ−1D2
kW1(µ, ν)d‖A‖C1 (7.13)

Now let us bound I2 in (7.4). We clearly have

I2 = |〈k(x, ·)− k(y, ·),mλ
A(·; ν)〉| ≤ ‖k(x, ·)− k(y, ·)‖H‖mλ

A(·; ν)‖H (7.14)

Note that

‖k(x, ·)− k(y, ·)‖2H
= 〈k(x, ·)− k(y, ·), k(x, ·)− k(y, ·)〉H
= k(x, x)− k(x, y)− (k(y, x)− k(y, y))

=
(∫ 1

0
∂2k(x, x+ ξ(y − x)) dξ

)>
(x− y)−

(∫ 1

0
∂2k(y, x+ ξ(y − x)) dξ

)>
(x− y)

= (x− y)>
(∫ 1

0

∫ 1

0
∂1∂2k(x+ η(y − x), x+ ξ(y − x)) dξdη

)>
(x− y),

with ∂1, ∂2 denoting the vector of derivatives of k with respect to the first
and second argument, respectively. Recalling Assumption K, we derive

‖k(x, ·)− k(y, ·)‖2H ≤ dD2
k |x− y|

2 . (7.15)

Further, using (7.12), we see that

‖mλ
A(·; ν)‖H = ‖βν‖`2(I) ≤ ‖(Bν + λI)−1‖`2(I)‖γν‖`2(I) ≤ λ−1Dk‖A‖C1 .

Combining this with (7.15) and substituting into (7.14), we get

I2 ≤
√
dλ−1D2

k‖A‖C1 |x− y|.

This, together with (7.13) and (7.4), finally yields

|mλ
A(x;µ)−mλ

A(y; ν)| ≤ C1W1(µ, ν) + C2|x− y|,

where C1 = (λ−1Dk + 1)λ−1D2
kd‖A‖C1 and C2 =

√
dλ−1D2

k‖A‖C1 . This
completes the proof of the theorem.

Now we are ready to prove the main results of Section 2. They would
follow from Theorem 2.3 obtained above.

Proof of Theorem 2.1. It follows from Theorem 2.3, and the assumptions of
the theorem, and the fact that W1-metric can be bounded from above by
the W2-metric, that the drift and diffusion of (2.3) are Lipschitz and satisfy
the conditions of [CD16a, Theorem 4.21]. Hence it has a unique strong
solution.
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Proof of Theorem 2.2. We see that Theorem 2.3 and the conditions of the
theorem implies that all the assumptions of [CD16b, Theorem 2.12] hold.
This implies (2.5).

Proof of Theorem 3.3. Consider the operator Cν in the orthonormal basis
(ãn)n∈J of H. Put

Dν := (〈ãi, Cν ãj〉H
)

(i,j)∈J×J = (〈ãi, T ν ãj〉H
)

(i,j)∈J×J = (σjδij)(i,j)∈J×J ,

since ãj is an eigenvector of T ν with eigenvalue σj . Since Cν is diagonal in
this basis, we see that for λ > 0 one has for i ∈ J

(Cν + λIH)−1ãi = (σi + λ)−1ãi. (7.16)

Consider also the function cνA in this basis. We write for i ∈ J similar to
(7.1)

ηνi := 〈cνA, ãi〉H =

∫
X×X

ãi(x)A(y)ν(dx, dy), i ∈ I

and we clearly have cνA =
∑

i∈J η
ν
i ãi. Then, using Proposition 3.1 and (7.16)

we derive for λ > 0

mλ
A(·; ν) = (Cν + λIH)−1cνA =

∑
i∈J

ηνi (Cν + λIH)−1ãi

=
∑
i∈J

ηνi (σi + λ)−1ãi. (7.17)

Next, since mA ∈ Lν2 , we have

PHmA =
∑
i∈J

〈
E(X,Y )∼ν [A(Y )|X = ·] , ai

〉
Lν2
ai. (7.18)

Further, for i ∈ J we deduce〈
E(X,Y )∼ν [A(Y )|X = ·], ai

〉
Lν2

=

∫
X
E(X,Y )∼ν [A(Y )|X = x] ai(x)ν(dx,X )

= E(X,Y )∼ν(ai(X)E[A(Y )|X])

= E(X,Y )∼νai(X)A(Y )

= σ
−1/2
i ηνi ,

where we used that ãn =
√
σnan. Substituting this into (7.18) and combining

with (7.17), we get

PHmA −mλ
A =

∑
i∈J

(ηνi σ
−1
i − η

ν
i (σi + λ)−1)ãi =

∑
i∈J

ηνi
λ

σi(σi + λ)
ãi.
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Thus∥∥PHmA −mλ
A

∥∥2

Lν2
=
∑
i∈J

(ηνi )2 λ2

σi(σi + λ)2
=
∑
i∈J
〈mA, ai〉2Lν2

λ2

(σi + λ)2
,

which is (3.11). Similarly, recalling (3.10), we get∥∥PHmA −mλ
A

∥∥2

H=
∑
i∈J

(ηνi )2 λ2

σ2
i (σi + λ)2

=
∑
i∈J
〈mA, ai〉2Lν2

λ2

σi(σi + λ)2
,

which is finite whenever PHmA ∈ H, that is,
∑

i∈J〈mA, ai〉2Lν2σ
−1
i <∞. This

shows (3.12). It is easily seen by dominated convergence that the l.h.s. of
(3.11) goes to zero, and, in the case PHmA ∈ H the l.h.s. of (3.12) goes to
zero as well.
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proximation of sdes – a stochastic sewing approach. arXiv preprint
arXiv:1909.07961, 2019.

[BJ17] Mireille Bossy and Jean-François Jabir. On the wellposedness of
some McKean models with moderated or singular diffusion co-
efficient. In International Symposium on BSDEs, pages 43–87.
Springer, 2017.

[BS13] Gerard Brunick and Steven Shreve. Mimicking an Itô process by a
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[CD16b] René Carmona and François Delarue. Probabilistic Theory of Mean
Field Games with Applications II. Springer, Probability Theory and
Stochastic Modelling 84, 2016.

[Dup94] Bruno Dupire. Pricing with a smile. Risk, 7:18–20, 1994.

[FO09] Fang Fang and Cornelis W Oosterlee. A novel pricing method for
European options based on Fourier-cosine series expansions. SIAM
Journal on Scientific Computing, 31(2):826–848, 2009.

29



[Fun84] Tadahisa Funaki. A certain class of diffusion processes associated
with nonlinear parabolic equations. Zeitschrift für Wahrschein-
lichkeitstheorie und Verwandte Gebiete, 67(3):331–348, 1984.

[Gat11] Jim Gatheral. The volatility surface: a practitioner’s guide, volume
357. John Wiley & Sons, 2011.

[GHL12] Julien Guyon and Pierre Henry-Labordère. Being particular about
calibration. Risk Magazine, 2012.

[Gyo86] István Gyongy. Mimicking the one-dimensional marginal distribu-
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