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Chapter 1

Introduction

1.1 Motivation
Let us start with the fundamental definition.

Definition 1.1. A probability space is a measure space (Ω,F , P) such that P(Ω) = 1.
The elements of the σ-algebra F are called events.

Remark 1.2. The measure space of Definition 1.1 is a model for the axiomatic defini-
tion of a probability space. Notice that this model works for every kind of probability,
be it subjective, frequentist or other types of probabilities.

In the remainder of this section, I want to motivate this definition, which is in some
contrast to the elementary setting – for simplicity, we restrict ourselves to the one-
dimensional case. Indeed, in elementary probability theory, one usually considers two
quite different classes of models, namely

1. discrete models, where Ω is a finite or countably infinite set and probabilities
are given by P({ω }) = pω for some sequence of non-negative numbers with∑
ω∈Ω pω = 1;

2. continuous model with a (continuous, or at least Riemann integrable) density p,
where probabilities of events A are defined by

∫
A p(x)dx.

Some unification is achieved by the cumulative distribution function F(x) = P(] −∞, x]),
but it is not always intuitive to work with the distribution function, and, moreover,
some technical problems remain. There are some rather obvious advantages of Defini-
tion 1.1:

1. Both discrete and continuous models in the above sense are contained in Defi-
nition 1.1. Mixed models, with densities and point masses, are quite messy to
deal with in elementary probability, but fit very naturally into the framework of
Definition 1.1.

2. Definition 1.1 allows to use the machinery of measure theory, in particular to
convergence theorems (for interchanging limits and integrals/sums), which are
often much simpler then the corresponding theorems for sums or Riemann inte-
grals.
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3. Definition 1.1 encompasses models, which are neither discrete nor continuous
nor of the mixed type. Such models can actually appear for instance as limiting
cases of elementary models. Moreover, they play an important role by providing
counter-examples.

We will now, in some detail, describe a quite innocent probabilistic problem, where
we can see how measure theory appears rather naturally. Let us toss one coin. There
are two possible outcomes of the experiment, head and tail. Thus, we can choose
our probability space to be Ω1 B {H,T }, F1 B P(Ω1) and the probability measure
P1({H }) = p, P1({T }) = q B 1 − p with 0 ≤ p ≤ 1. If we want to repeat the
experiment n times (in an independent fashion, using the same coin), we can choose
the probability space Ωn B {H,T }n again with the power set as σ-algebra Fn and with
the probabilities of the elementary events defined as

Pn({ (ω1, . . . , ωn) }) B
n∏

i=1

P1({ωi }),

which is a product of p’s and q’s. Of course, the probability space (Ωn,Fn, Pn) is
nothing but the n-fold product measure space of (Ω1,F1, P1), symbolically

(Ωn,Fn, Pn) = (Ω1,F1, P1)⊗n.

At this stage, we might be interested in certain properties of the experiment. For in-
stance, we might be interested in the number of heads appearing among the first n coin
tosses. Principally, we could answer all questions regarding this random number given
the notions introduced so far, e.g., the probability that exactly 2 heads appeared among
the first four coin tosses is

P4 ({ (H,H,T,T ), (H,T,H,T ), (H,T,T,H), (T,H,H,T ), (T,H,T,H), (T,T,H,H) }) .

However, intuition and notation becomes much simpler when we introduce random
variables, for instance by setting X1, . . . , Xn : Ωn → { 0, 1 },

(1.1) Xi(ω1, . . . , ωn) B 1{H }(ωi) =

1, ωi = H,
0, ωi = T,

i = 1, . . . , n.

Then, the number of heads in the first n coin tosses is obviously given by X1 + · · ·+ Xn,
and all the related probabilities can be expressed in terms of the distribution of the
independent random variables Xi, P(Xi = 1) = p. Notice an abuse of notation (which
is rather typical in probability theory): take two different numbers n < m and consider
the k’th coin toss Xk, k ≤ n. Then, in one case Xk : Ωn → { 0, 1 }, in the other case
Xk : Ωm → { 0, 1 }. Obviously, these functions are different, since their domains of
definition are different. However, in both cases, the distribution of the random variable
is the same, and in both cases all the random variables Xk, 1 ≤ k ≤ n, are independent.
Thus, for the sake of our probabilistic inquiry, we may treat both maps as if they were
equal. In fact, this is true in much more generality. Indeed, we could have started with
a different probability space (Ω1,F1, P1). For instance, we could have chosen Ω1 = R,
F1 = B(R) and P1 given by a density, e.g., by f (x) = 1

√
2π

e−x2/2, and then define
X1(ω) B 1[u,∞[(ω) for some u such that P1(X1 = 1) = p. (And define, once again,
(Ωn,Fn, Pn) as the product space.) More obvious would be the choice Ω1 = { 0, 1 } with
X1(ω) = ω (the canonical probability space for the random variable X1). In all these
cases, the probabilistic analysis of coin tosses will be completely analogous.
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In probability theory, only the distribution of the random vari-
ables under investigation matters, but not the underlying proba-
bility space.

In addition to questions about the probabilities of events in finite time, one is often
also interested in asymptotic questions. For instance, if we do not know the parameter
p before – the fairness of the coin – we could try to estimate it using statistics. The
obvious estimator certainly is the sample mean, i.e.,

p(n) B
1
n

n∑
i=1

Xi,

and one of the most important problems in statistics is to determine whether p(n) con-
verges for n → ∞ to the true value p and in which sense. The weak law of large
numbers holds if the estimator converges in probability (i.e., in measure), which means
that for every ε > 0

(1.2) lim
n→∞

P
(∣∣∣p(n)

− p
∣∣∣ > ε) = 0.

The above statement is not quite precise, because we do not know (yet) how to con-
struct a common probability space (Ω,F , P), where all the random variables Xn, n ∈ N,
are simultaneously defined. However, in the current situation we might be happy refor-
mulating the statement (1.2) to say

lim
n→∞

Pn

(∣∣∣p(n)
− p

∣∣∣ > ε) = 0,

which is good enough for our current purpose. Much better than the weak law of large
numbers is the strong law of large numbers, which implies convergence of the estimator
P-almost everywhere – in probability theory, one usually says “almost surely” instead
of “almost everywhere”. This means, we need to show that

(1.3) P
(

lim
n→∞

p(n)
= p

)
= 1.

If we want to prove the strong law of large numbers, then we really need to find a
common probability space for all the (infinitely many) coin tosses, i.e., we need to
construct an infinite product space.

While this construction was already given in the measure theory course, we use
the opportunity to give a short reminder. The candidate for Ω is obvious enough:
Ω B {H,T }N, the set of all sequences taking values in {H,T }.1 The choice of F is
already not so clear. After all, Ω is now an infinite (even uncountable) set. Therefore, it
does not fit into the framework of discrete probability spaces anymore. P({ω }) = 0 for
any particular sequence ω of coin tosses, but this does not determine P. In particular,
the power set of Ω may very well be too large a σ-algebra. On the other hand, the
continuous model also does not fit well. However, since we are doing probability
theory, we might argue that we really only care about the random variables Xn, i.e., we
only need all the functions Xn : Ω → { 0, 1 }, n ∈ N, to be measurable, which leads to

1More generally, Ω is the Cartesian product of all the individual Ωi, i ∈ I, symbolically, Ω =
∏

i∈I Ωi, if
we want to construct

⊗
i∈I (Ωi,Fi, Pi) for a general index set I.
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the choice F = σ ((Xn)n∈N).2 Let now J ⊂ N be a finite set, then XJ B (Xn)n∈J : Ω →

{ 0, 1 }J is measurable, implying that the cylinder sets

Z =
{
ω ∈ Ω

∣∣∣ (ωi1 , . . . , ωik ) ∈ A
}
C p−1

J (A)

are measurable sets, where J = (i1, . . . , ik) ⊂ N, k ∈ N, A ∈ {H,T }k and pJ ((ωn)) =

(ω j) j∈J . For cylinder sets, however, we know how P should look like: we should have

(1.4) P(Z) = P(p−1
J (A)) = Pk(A).

Finally, one can prove that there is a unique probability measure P having the prop-
erty (1.4) for all cylinder sets Z.3

1.2 Terminology
We start with a very formal definition of random variables.

Definition 1.3. Given a probability space (Ω,F , P) and some measurable space (A,A).
Then any F -A-measurable map X : Ω→ A is called random variable.

With decreasing level of importance (and frequency), we shall consider random
variables taking values in

• R with the Borel σ-algebra B(R);

• the Euclidean space Rn with the Borel σ-algebra B(Rn);

• a Banach space E with its Borel σ-algebra B(E);

• a Polish space4 M with its Borel σ-algebra B(M).

Remark 1.4. We may also use random variables taking values, for instance, inR ∪ {±∞ }.

As we have noticed before, in probability theory the underlying probability space
usually does not matter, problems are formulated and treated in terms of random vari-
ables. Of course, not every probability space can carry any type of random variables.
For instance, we cannot define a Gaussian random variable on the probability space
(Ω1,F1, P1) used in section 1.1. This leads to the notion of the distribution of a random
variable.

Definition 1.5. Given a probability space (Ω,F , P), a measurable space (A,A) and
a random variable X : Ω → A. The image measure PX on (A,A) (i.e., the measure
defined by PX(B) B P(X−1(B)), B ∈ A) is called distribution of X.

2In general, we introduce the projections pi : Ω → Ωi defined by pi
(
(ω j) j∈I

)
= ωi and set F =

σ ((pi)i∈I ) = σ
(⋃

i∈I p−1
i (Fi)

)
. Of course, the definition in the dice-throwing example of the text coincides

with this definition of F .
3In general, cylinder sets have the form Z = p−1

J (A), where pJ is defined as above and A ∈
⊗

i∈J Fi.
Then, consider the well-known finite product measure PJ defined on

⊗
i∈J Fi. Then the requirement (1.4)

is recast to say that P(Z) = PJ(A). Again, one can prove existence and uniqueness of such a probability
measure on (Ω,F ), just like in the countable case. For a proof in the case of a countable index set I see the
lecture notes of F. Hofbauer, for the proof in the general case see Bauer, Satz 9.2.

4A Polish space is a separable, complete metric space.
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Remark 1.6. Obviously, (A,A, PX) is again a probability space. Let us define a map
idA : A→ A by idA(x) = x, x ∈ A. We understand idA as random variable mapping the
probability space (A,A, PX) into itself. Then the distribution of idA is PX , i.e., X and idA

have the same distributions. In particular, this example shows that for every probability
measure P one can find a random variable X (defined on a suitable probability space)
whose distribution is P. Moreover, the random variable is certainly not unique.

If a random variable X takes values in the Euclidean space Rn, then we can define
its integral.

Definition 1.7. Let X be a random variable defined on a probability space (Ω,F , P)
taking values in R (with the Borel σ-algebra). If |X| is an integrable function or X ≥ 0,
then we define the expectation or expected value as its integral and write

E[X] B
∫

Ω

XdP =

∫
Ω

X(ω)P(dω).

If X = (X1, . . . , Xn) takes its values in the space Rn equipped with its Borel σ-algebra
and ‖X‖ is integrable, then we define E[X] B (E[X1], . . . , E[Xn]).

If, e.g., the negative part X− is integrable, whereas the positive part is not, we will
also write that E[X] = ∞. Of course, all the properties of the integral with respect to
a measure obtained in measure theory carry over. In particular, we have the following
often used formula, sometimes called the “theorem of the intuitive statistician”.

Lemma 1.8. Let X be a real random variable on (Ω,F , P).5 Moreover, let g : R → R
be measurable such that |g ◦ X| is integrable. Then

E[g(X)] B E[g ◦ X] =

∫
Ω

g(X(ω))P(dω) =

∫
R

g(x)PX(dx).

In particular, the lemma implies that the expectation of a random variable is the
integral of the identity function with respect to the distribution of the random variable.

En passant, we note that the distribution of a real-valued random variable has a
uniquely defined (cumulative) distribution function

F(x) B P(X ≤ x) B P(X−1(] −∞, x])),

which is right-continuous and increasing and satisfies F(−∞) = 0, F(+∞) = 1. More-
over, any such function uniquely determines a distribution on the real line. Then, the
integrals of Lemma 1.8 can equivalently be expressed as Lebesgue-Stieltjes integral
with respect to the distribution function F

E[g(X)] =

∫
R

g(x)dF(x).

Of course, the expectation coincides with the elementary definitions for discrete and
continuous distributions. As in the elementary case, we also introduce higher moments.

Definition 1.9. Let p ≥ 1 and assume that |X|p is integrable. Then E[Xp] is the
p’th moment of X. For square-integrable random variables the variance is defined
by V[X] B E[(X − E[X])2].

5By this we mean that X is an F -B(R)-measurable map from Ω to R. In the following we will often omit
such obvious qualifications.
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Of course, the classical inequalities like Markov’s inequality or Chebyshev’s in-
equality immediately carry over from the elementary setting.

In many applications, we use probabilistic models for the evolution of some quan-
tity in time. In its most abstract form, this leads to

Definition 1.10. Given an index set I (usually I = N or I = [0,∞[ or subsets thereof),
a collection of random variables (Xi)i∈I (defined on a common probability space) is
called a stochastic process.

Like in Definition 1.10, we will often omit the probability space
(Ω,F , P) from statements. If the probability space is not explic-
itly mentioned, it is tacitly assumed that there exists a probability
space, where all relevant random variables are (jointly) defined.

1.3 Some milestones of this course
Most topics of the course are somehow related with the concept of a stochastic process.
The first major topic regards the asymptotic of sequences of independent, identically
distributed random variables (Xn)n∈N. Set S n B

∑n
k=1 Xk the corresponding random

walk. If these random variables are integrable, we know from elementary probability
theory that the weak law of large numbers holds,

∀ε > 0 : lim
n→0

P
(∣∣∣∣∣1nS n − E[X1]

∣∣∣∣∣ > ε) = 0.

One of the main results of this course will be a substantially stronger result known as
strong law of large numbers, which says that

P
(

lim
n→∞

1
n

S n , E[X1]
)

= 0,

and we will explore certain versions of this statement. Moreover, it might also be
interesting to see, how fast the probability of deviations from the long-term mean E[X1]
decreases to 0, which leads to the realms of “large deviations”.

Already in elementary probability theory we have learned some valuable informa-
tion about the speed of the above convergence. Indeed, if we multiply the difference
by
√

n, then the difference converges in distribution to a normal distribution. More
precisely, the central limit theorem says that

(1.5)
S n − nE[X1]
√

nσ
d
−−−−→
n→∞

N(0, 1),

provided that σ2 B V[X1] exists,
d
−→ denotes convergence in distribution and N(µ, σ2)

denotes the one-dimensional Gaussian distribution with mean µ and variance σ2. This
shows the unique role of the normal distribution as limiting distribution in the finite-
dimensional framework. In the infinite-dimensional framework, a similar role is played
by a certain stochastic process (Bt)t≥0, the Brownian motion. Indeed, in many physical
or social phenomena which are described as functions of time, and which can be ex-
plained as the result of many small, independent random perturbations, the Brownian
motion is natural probabilistic model. Examples include the position of gas molecules

9



(which are constantly and from all directions hit by other molecules) or the prices of
stocks (where the “shocks” are caused by buy or sell decisions of individual agents). It
is not surprising that the marginals Bt of a Brownian motion have normal distribution,
but the inter-dependence is less obvious. Brownian motion is not only very impor-
tant from the point of view of modeling and applications, it is also a very interesting
mathematical object in itself, for instance as a source of counter examples in analysis.

Finally, we shall also treat the problem of the construction of a stochastic process.
More precisely, we will address the question of how to construct a stochastic process
when the finite-dimensional marginal distribution are prescribed – and do not need to
be independent.

1.4 Literature
I recommend the following two textbooks on probability theory – both of them have
German and English editions:6

• Heinz Bauer: Wahrscheinlichkeitstheorie, 5. Auflage, Walter de Gruyter, Berlin,
2002.

• Achim Klenke: Wahrscheinlichkeitstheorie, 2. Auflage, Springer-Verlag, Berlin,
2008.

The notes are also based on lecture notes “Wahrscheinlichkeitstheorie” by E. Bolthausen,
then at TU Berlin, and the lecture notes “Wahrscheinlichkeitstheorie und Statistik” and
“Maß- und Integrationstheorie” by F. Hofbauer from University of Vienna.

6The editions cited were used for preparation of this text.
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Chapter 2

Independence

Let (Ω,F , P) denote a fixed probability space. We recall (and slightly extend) the
definition of independence for events.

Definition 2.1. A family (Ai)i∈I of events, i.e., Ai ∈ F for all i ∈ I, is called independent
if for every finite subset J ⊂ I we have

(2.1) P

⋂
j∈J

A j

 =
∏
j∈J

P(A j).

Remark 2.2. Notice that the notion of independence clearly depends on the proba-
bility measure, i.e., if the probability measure P is replaced by some other probability
measure Q on (Ω,F ), then (Ai)i∈I may lose its independence.

Example 2.3. Independence of a family of events like in Definition 2.1 is stronger
than pairwise independence of the events. Indeed, throw two dice independent of each
other, and let A1 be the event that the outcome of the first die is even, A2 the event that
the outcome of the second die is even, and A3 the event that the sum of the outcomes
is even. Then the A1 and A2, A1 and A3, A2 and A3 are independent (i.e., the events
A1, A2, A3 are pairwise independent), but the events A1, A2, A3 are not independent,
since P(A1 ∪ A2) = P(A1 ∪ A2 ∪ A3).

Recall from elementary probability theory that independence is not destroyed when
some of the Ai’s are replaced by their complements. In what follows we will generalize
the notion of independence to families of σ-algebras and random variables.

2.1 Independent systems
Definition 2.4. Let (Ei)i∈I a family of systems of sets, ∅ , Ei ⊂ F for i ∈ I. We say
that the family is independent iff every collection of events (Ai)i∈I with ∀i ∈ I : Ai ∈ Ei

is independent in the sense of Definition 2.1.

Obviously, a family (Ei)i∈I is independent if and only if every finite sub-family
is independent. Moreover, independence of a family of systems of sets is certainly
preserved when we pass to a family of subsystems

(
E′i

)
i∈I

with E′i ⊂ Ei. In what
follows, we are mostly interested in the question of how we can preserve independence
when we enlarge the set-systems.
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Lemma 2.5. Let (Ei)i∈I be independent. Then the family of the generated Dynkin
systems (δ(Ei)i∈I is also independent.

Proof. We may assume that I is finite. We show that for any individual index i0 ∈ I we
may replace Ei0 by its generated Dynkin system δ

(
Ei0

)
without losing independence,

which shows the claim. Let us define a system of setsDi0 by setting

Di0 B
{

A ∈ F
∣∣∣ ({ A } ,Ei : i ∈ I \ { i0 }) is independent

}
.

We show that Di0 is a Dynkin system. The set Ω is contained in Di0 , since for any
collection Ai ∈ Ei, i ∈ I \ { i0 }, and for every subset { i1, . . . , in } ⊂ I \ { i0 } we have

P(Ω ∩ Ai1 ∩ · · · ∩ Ain ) = P(Ai1 ∩ · · · ∩ Ain ) = P(A1) · · · P(Ain ) = P(Ω)P(Ai1 ) · · · P(Ain ).

Given a sets A ∈ Di0 , then

P(Ac ∩ Ai1 ∩ · · · ∩ Ain ) = P(Ω ∩ Ai1 ∩ · · · ∩ Ain ) − P(A ∩ Ai1 ∩ · · · ∩ Ain )
= P(Ω)P(Ai1 ) · · · P(Ain ) − P(A)P(Ai1 ) · · · P(Ain ) = P(Ac)P(Ai1 ) · · · P(Ain ),

showing that Ac ∈ Di0 . Similarly, we show that any countably union of disjoint sets
fromDi0 is again inDi0 . Therefore,Di0 is a Dynkin system, which contains the small-
est Dynkin system δ(Di0 ) generated by Ei0 . �

If a set system E is stable under intersections of sets, then δ(E) = σ(E). Therefore,
Lemma 2.5 immediately implies the

Corollary 2.6 (Hofbauer, MT, Satz 4.9). Let (Ei)i∈I be an independent family of sys-
tems of sets, which are closed under intersections. Then the family of generated σ-
algebras (σ(Ei))i∈I is independent.

The following result is a preparation for important results concerning independence
of random variables.

Theorem 2.7. Let (Ei)i∈I be an independent family of subsets ∅ , Ei ⊂ F which are
closed under intersections. Moreover, let (I j) j∈J be a partition of the index set I. Then
the family

(
F j

)
j∈J

is independent, where F j B σ
(⋃

i∈I j
Ei

)
, j ∈ J.

Proof. For j ∈ J define a system G j by

G j B
{

Ai1 ∩ · · · ∩ Ain

∣∣∣ n ∈ N, { i1, . . . , in } ⊂ I j, Ai1 ∈ Ei1 , . . . , Ain ∈ Ein

}
.

Obviously, G j is closed under intersections. Moreover, (G j) j∈J is independent by in-
dependence of (Ei)i∈I . Therefore, the claim follows by Corollary 2.6, since σ(G j) =

σ
(⋃

i∈I j
Ei

)
. �

As usual, in probability theory, we want to build our intuition on properties of ran-
dom variables and their distributions, not on the underlying probability spaces. There-
fore, we want to arrive at a notion of independence for random variables. Let us first
link independence of systems and events by showing that independence of systems is
really a more general notion than independence of events. Indeed, given a family (Ai)i∈I

of events, the corresponding family of systems ({ Ai })i∈I is trivially closed under inter-
sections. Thus, independence of the events is equivalent to independence of the system
and to independence of the generated σ-algebras Fi = σ({ Ai }) = { ∅, Ai, Ac

i ,Ω }, which
could naturally serve as definition of the random variable 1Ai . This is indeed the ap-
proach followed next, which will lead to a notion of independence equivalent to the
elementary one.
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2.2 Independent random variables
Definition 2.8. Given a family (Xi)i∈I of random variables defined on a probabil-
ity space (Ω,F , P). The family is called independent, iff the family of σ-algebras
(σ(Xi))i∈I is independent in the sense of Definition 2.4.

Note that we do not require the random variables to take values in the same measur-
able space. Indeed, we may assume that for each i ∈ I, Xi takes values in the measurable
space (Ωi,Fi). Then the product formula (2.1) can be expressed like follows: for every
finite subset J = { i1, . . . , in } ⊂ I and any A j ∈ F j, j ∈ J, we have

(2.2) P(Xi1 ∈ Ai1 , . . . , Xin ∈ Ain ) = P(Xi1 ∈ Ai1 ) · · · P(Xin ∈ Ain ).

By Corollary 2.6 we may restrict ourselves to sets A j forming generators of F j closed
under intersections. Indeed, we have the

Corollary 2.9. Let (Ei)i∈I be a family of systems Ei ⊂ Fi which are closed under
intersections and generate the σ-algebras, i.e., ∀i ∈ I : Fi = σ(Ei). Then the family of
F -Fi-measurable random variables Xi, i ∈ I, are independent if and only if the system
(Gi)i∈I is independent with Gi B X−1

i (Ei).

Spelled out, this means that the product formula (2.2) holds for every finite subset
{ i1, . . . , in } ⊂ I and Ai j ∈ Ei j , j = 1, . . . , n. For real random variables (i.e., random
variables taking values in R equipped with the Borel σ-algebra), this means that inde-
pendence is characterized by the distribution function.

Theorem 2.10 (Hofbauer, MT, Definition). Let (Xi)i∈I be a family of real random vari-
ables. For any finite subset { i1, . . . , in } = J ⊂ I let FJ : R|J| → [0, 1] denote the
corresponding cumulative distribution functions, i.e.,

FJ(x1, . . . , xn) = P(Xi1 ≤ x1, . . . , Xin ≤ xn).

Then the family (Xi)i∈I is independent if and only if for every such finite subset J we
have the product formula

FJ(x1, . . . , xn) =

n∏
j=1

F{ i j }(x j).

In particular, for discrete and continuous random variables, the notion of indepen-
dence as defined in Definition 2.8 coincides with the elementary definition.

Example 2.11. Given a finite sequence (X1, . . . , Xn) of random variables, each taking
values in a finite (or countably infinite) set Ek, k = 1, . . . , n. Then X1, . . . , Xn are
independent if and only if for every (e1, . . . , en) ∈ E1 × · · · × En

P(X1 = e1, . . . , Xn = en) = P(X1 = e1) · · · P(Xn = en).

Example 2.12. Given a finite sequence of real random variables (X1, . . . , Xn) with joint
density f : Rn → R. Then X1, . . . , Xn are independent if and only if f factorizes, i.e.,
there are functions f1, . . . , fn : R→ R with the property that for any x = (x1, . . . , xn) ∈
Rn

f (x) = f1(x1) · · · fn(xn).
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As a probabilistic property, independence of random variables only depends on
the distributions, but not on the underlying probability space. However, the marginal
distributions PXi , i ∈ I, cannot determine the dependence structure, which is a property
of the joint distribution. Let (Xi)i∈I be a family of random variables defined on the
probability space (Ω,F , P) and taking values in the measurable spaces (Ωi,Fi), i ∈ I,
respectively. Consider the product space

(2.3)
(
Ω̃, F̃

)
B

⊗
i∈I

(Ωi,Fi).1

By definition of the product space, X : Ω→ Ω̃, ω 7→ (Xi(ω))i∈I , is an F -F̃ -measurable
map: indeed, we need to show that for every i ∈ I, pi◦X : Ω→ Ωi is F -Fi-measurable.
But this is true since pi◦X = Xi. Therefore, we can define the distribution of the family
(Xi)i∈I as the image measure PX of P under X, which gives us the probability space
(Ω̃, F̃ , PX).

Theorem 2.13. A family of random variables (Xi)i∈I is independent if and only if the
joint distribution is the product of the marginal distributions, i.e.,(

Ω̃, F̃ , PX

)
=

⊗
i∈I

(Ωi,Fi, PXi ).

Proof. Let W denote the product measure of the probability measures PXi , i ∈ I. We
need to show that PX = W. By the construction of infinite product measures, this is
equivalent to equality between all finite-dimensional image measures: for finite subsets
J ⊂ I denote pJ the corresponding projection pJ((ωi)i∈I) = (ωi)i∈J and consider the
image measures WpJ and (PX)pJ = PpJ◦X = P(Xi)i∈J . But by construction of the product
measure W =

⊗
i∈I PXi , WpJ is the product measure of PXi , i ∈ J.

Now assume that (Xi)i∈I are independent. Then, in particular, (Xi)i∈J is independent.
For any Ai ∈ Fi, i ∈ J, we have

P(Xi)i∈J

∏
i∈J

Ai

 = P

(Xi)i∈J ∈
∏
i∈J

Ai

 =
∏
i∈J

P(Xi ∈ Ai) =
∏
i∈J

PXi (Ai) = WpJ

∏
i∈J

Ai

 .
This shows that, indeed, P(Xi)i∈J = WpJ .

Now, to the contrary, assume that P(Xi)i∈J = WpJ . Then, for any Ai ∈ Fi, i ∈ J,

P

(Xi)i∈J ∈
∏
i∈J

Ai

 = P(Xi)i∈J

∏
i∈J

Ai

 = WpJ

∏
i∈J

Ai

 =
∏
i∈J

P(Xi ∈ Ai),

which implies independence of (Xi)i∈J , and, a fortiori, independence of (Xi)i∈I . �

Remark 2.14. Any family of independent random variables (Xi)i∈I can be realized
on the corresponding probability space

⊗
i∈I(Ωi,Fi, PXi ) in the sense that if we set

Yi B pi, then (Yi)i∈I are independent and have the same distributions as (Xi)i∈I .

If we have a family of independent random variables (Xi)i∈I and transform them to
(Yi)i∈I with Yi = fi(Xi), i ∈ I, then one would naturally expect that the transformed
random variables are again independent.

1Recall that Ω̃ B
∏

i∈I Ωi, while F̃ B σ(pi; i ∈ I) is generated by the projections p j : Ω̃ → Ω j,
ω̃ = (ωi)i∈I 7→ ω j, j ∈ I.
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Theorem 2.15. Let (Xi)i∈I be a family of independent random variables taking values
in (Ωi,Fi), i ∈ I. Moreover, let (I j) j∈J be a partition of the index set I consisting of non-
empty sets and (A j,A j) be measurable spaces, j ∈ J. For j ∈ J let f j :

∏
i∈I j

Ωi → A j

be
⊗

i∈I j
-A j-measurable. Set

Y j B f j

(
(Xi)i∈I j

)
, j ∈ J.

Then the collection (Y j) j∈J is independent.

Proof. Let Z j B (Xi)i∈I j , j ∈ J, and notice that σ(Y j) ⊂ σ(Z j). Thus, we are left with
proving independence of the family (Z j) j∈J . By construction of the product σ-algebra,
we have

σ(Z j) = σ(Xi : i ∈ I j) = σ

⋃
i∈I j

σ(Xi)

 .
Therefore, independence of the σ-algebras σ(Z j), j ∈ J, follows from independence of
the σ-algebras σ(Xi), i ∈ I, by Theorem 2.7. �

Example 2.16. Let (Xm,n)n,m∈N be a collection of independent random variables dis-
tributed according to the Bernoulli distribution with parameter 0 < p < 1. Define

Ym B inf { n ∈ N | Xn,m = 1 } − 1, m ∈ N.

Then the sequence of random variables (Ym)m∈N is independent, identically distributed
according to the geometric distribution with parameter p, i.e.,

P(Ym = k) = p(1 − p)k.

Indeed, consider the set fm : { 0, 1 }N → N defined by fm(x) B inf { n ∈ N | xn = 1 } –
we disregard the event { n ∈ N | xn = 1 } = ∅, which only has probability 0. Then fm
is P(N)-P({ 0, 1 })⊗N-measurable: by the structure of the power set, we only need to
check that f −1

m ({ k }) ∈ P({ 0, 1 })⊗N for every k ∈ N. By the construction of the product
space, we have

f −1
m ({ k }) = p−1

{ 1,...,k } ({ (0, . . . , 0, 1) }) ∈ P({ 0, 1 })⊗N.

Thus, independence of (Ym)m∈N follows from Theorem 2.15. Regarding the distribu-
tion, note that

P(Ym > k) = P(Xm,1 = · · · = Xm,k+1 = 0) = (1 − p)k+1,

implying that P(Ym = k) = P(Ym > k − 1) − P(Ym > k) = p(1 − p)k.

From Theorem 2.13 one can derive, just like in the elementary case,2 the

Corollary 2.17 (Hofbauer, MT, Satz 4.10 for n = 2). Given n independent positive or
integrable random variables X1, . . . , Xn. Then

(2.4) E

 n∏
i=1

Xi

 =

n∏
i=1

E[Xi].

In particular, if X1, . . . , Xn are integrable and independent, then X1 · · · Xn is also inte-
grable.

2Indeed, one first assumes the random variable to only take finitely many values. Then the distribution is
actually discrete and the result is known. Then on approximates the general random variables X1, . . . , Xn by
random variables taking finitely many values only (step functions) and concludes by the construction of the
integral.
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Proof. We give an alternative proof. Assume that X1, . . . , Xn are integrable. By Theo-
rem 2.13, the joint distribution of Z B (X1, . . . , Xn) is given by

PZ =

n⊗
i=1

PXi .

Thus, Fubini’s theorem implies that

E [|X1 · · · Xn|] =

∫
Rn
|x1 · · · xn| PZ(dx1, . . . , dxn) =

∫
Rn
|x1| · · · |xn| PX1 (dx1) · · · PXn (dxn)

=

n∏
i=1

∫
R

|xi| PXi (dxi) =

n∏
i=1

E [|Xi|] < ∞.

Having established integrability of the product, the very same argument without |·|
shows the formula. The proof for non-negative random variables works in the same
way. �

The converse is, of course, not true: given random variables X1, . . . , Xn satisfying
equation (2.4), they do not have to be independent. On the other hand, the product
formula (2.4) implies that, as in elementary probability, independent random variables
are uncorrelated. In particular, for all square-integrable, independent random variables
X1, . . . , Xn, we have Bienaymé’s equality

(2.5) V[X1 + · · · + Xn] = V[X1] + · · · + V[Xn].

There is one important case, however, where the product formula (2.4) indeed implies
independence.

Corollary 2.18. Given an n-dimensional Gaussian random vector X = (X1, . . . , Xn).
Then X1, . . . , Xn are independent if and only if they are uncorrelated.

We postpone the proof of Corollary 2.18 to the end of the section.

Remark 2.19. It is essential that X1, . . . , Xn are jointly normally distributed. Indeed, it
is possible to construct two Gaussian random variables X and Y , such that (X,Y) is not
Gaussian, X and Y are uncorrelated, but not independent.

Exercise 2.20. Given a standard Gaussian random variable X and a constant c > 0,
define a random variable Yc by

Yc(ω) B

X(ω), |X(ω)| ≤ c,
−X(ω), |X(ω)| > c.

Show that Yc ∼ N(0, 1) again. Moreover, show that there is a positive real number c
such that Cov[X,Yc] = 0 – for instance, one can apply the intermediate value theorem
to the continuous function c 7→ Cov[X,Yc]. However, X and Yc are not independent
(why not?). Is this a contradiction to Corollary 2.18?

Next we consider the distribution of sums of independent random variables.

Definition 2.21. Given to probability measures µ and ν on (Rn,B(Rn)). Let T (x, y) B
x+y, x, y ∈ Rn, then the convolution of µ and ν is defined as the image measure of µ⊗ν
under the map T , symbolically

µ ∗ ν B (µ ⊗ ν)T .
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So if X and Y are independent random variables taking values in Rn, then the dis-
tribution of X + Y is given by the convolution of the distributions of X and Y , i.e.,
PX+Y = PX ∗ PY . We obtain the following formulas for distribution functions and
densities:

Theorem 2.22. Let X and Y be Rn-valued independent random variables with distribu-
tion functions FX and FY , respectively. Then their sum has distribution function FX+Y

with
FX+Y (x) =

∫
Rn

FY (x − y)dFX(y) =

∫
Rn

FX(x − y)dFY (y).

Moreover, assume that X and Y have densities fX and fY . Then X + Y has a density
fX+Y , given by the convolution of the densities fX and fY , i.e.,

(2.6) fX+Y (x) = fX ∗ fY (x) =

∫
Rn

fX(x − y) fY (y)dy =

∫
Rn

fX(y) fY (x − y)dy.

Proof. Let µ B PX and ν B PY . Then Fubini’s theorem implies that

FX+Y (t) =

∫
R2

1{ x+y≤t }(µ ⊗ ν)(d(x, y))

=

∫
R

(∫
R

1]−∞,t−y](x)µ(dx)
)
ν(dy)

=

∫
R

FX(t − y)dFY (y).

In the case of X and Y having densities, we can insert the densities and apply Fubini’s
theorem again, to obtain

FX+Y (t) =

∫
R

(∫ t−y

−∞

fX(x)dx
)

fY (y)dy

=

∫
R

(∫ t

−∞

fX(x − y)dx
)

fY (y)dy

=

∫ t

−∞

(∫
R

fX(x − y) fY (y)dy
)

dx. �

Exercise 2.23. Given two probability measures µ and ν defined on (Z,P(Z)). Derive
a formula for their convolution µ ∗ ν. Apply the formula to find out the distribution of
the sum of two independent random variables X ∼ Poiλ and Y ∼ Poiµ.

Given two random variables X and Y such that PX+Y = PX ∗ PY , can we infer that
X and Y need to be independent? As the following example shows, the answer is “no”
in general.

Example 2.24. Let γα denote the Cauchy-distribution with parameter α > 0, i.e., the
distribution with density

fα(x) =
1

πα
(
1 + (x/α)2)

and characteristic function
γ̂α(u) = e−α|u|.

Then one can easily show that γα ∗γβ = γα+β. On the other hand, let Tβ(x) B βx, β > 0.
Then (γα)Tβ = γαβ. In particular, let X ∼ γ1. Then P2X = γ2 = PX ∗ PX , but X is not
independent of itself.
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As a probabilistic notion, independence can be expressed in terms of the charac-
teristic function. We use the notation ϕX(u) = E[ei〈u ,X〉] for the characteristic function
of an Rn-valued random variable X and µ̂ for the Fourier transform of the probability
measure µ, i.e., P̂X = ϕX .

Theorem 2.25.

(i) The real random variables X1, . . . , Xn are independent if and only if the charac-
teristic function of the random vector X = (X1, . . . , Xn) is the tensor product of
the characteristic functions of X1, . . . , Xn, i.e.,

ϕX(u) = ϕX1 (u1) · · ·ϕXn (un), ∀u = (u1, . . . , un) ∈ Rn.

(ii) For two probability measure µ and ν on Rn we have

µ̂ ∗ ν = µ̂ ν̂.

Proof. If X1, . . . , Xn are independent, then the formula for the characteristic function
follows from

ei〈u ,X〉 = ei
∑n

j=1 u jX j = eiu1X1 · · · eiunXn

and Corollary 2.17. The converse direction follows from the fact that the characteristic
function characterizes a distribution and Theorem 2.13.

For the second part, we construct independent random variables X and Y with PX =

µ and PY = ν. Then

µ̂ ∗ ν(u) = E
[
ei〈u ,X+Y〉

]
= E

[
ei〈u ,X〉ei〈u ,Y〉

]
= E

[
ei〈u ,X〉

]
E

[
ei〈u ,Y〉

]
= µ̂(u)̂ν(u). �

Proof of Corollary 2.18. By Lemma A.3, the characteristic function ϕX is of the form
ei〈µ ,u〉− 1

2 〈u ,Σu〉, where µ = E[X] and Σ = Cov[X]. If X1, . . . , Xn are uncorrelated, then
Σ = diag(σ2

1, . . . , σ
2
n) for σ2

i = V[Xi]. Thus,

ϕX(u) = ei
∑n

j=1 µ ju j−
1
2
∑n

j=1 σ
2
j u

2
j =

n∏
j=1

eiµ ju j−
1
2σ

2
j u

2
j =

n∏
j=1

ϕX j (u j). �

2.3 The Borel-Cantelli lemma and 0-1-laws
Recall the definition of the limes superior of a sequence of events (An)n∈N

lim sup
n→∞

An =

∞⋂
n=1

∞⋃
m=n

Am = { ω ∈ Ω | # { n ∈ N | ω ∈ An } = ∞ } ,

i.e., ω ∈ lim supn→∞ An if and only if ω is contained in infinitely many sets of the
sequence (An).

Theorem 2.26 (Borel-Cantelli). Let (An)n∈N be a sequence of events from the proba-
bility space (Ω,F , P).

(i) If
∞∑

n=1

P(An) < ∞, then P
(
lim sup

n→∞
An

)
= 0.

(ii) If (An)n∈N is independent and
∑

n∈N P(An) = ∞, then P
(
lim supn→∞ An

)
= 1.
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Proof. For the proof of (i), we note that A B lim supn→∞ An ⊂
⋃∞

m=n Am. By subaddi-
tivity, this implies that

P(A) ≤
∞∑

m=n

P(Am)
n→∞
−−−−→ 0.

For (ii), consider Ac and note that

Ac =

∞⋃
n=1

∞⋂
m=n

Ac
m = lim

n→∞

∞⋂
m=n

Ac
m

is the limit of an increasing sequence of sets, which implies (continuity from below and
independence) that

P(Ac) = lim
n→∞

P

 ∞⋂
m=n

Ac
m

 = lim
n→∞

∞∏
m=n

[1 − P(Am)].

For 0 ≤ x ≤ 1 an elementary calculation shows that log(1 − x) ≤ −x. Now we fix
some n and take the logarithm in the above equation and obtain (with the convention
that 0 = exp(log(0)))

P(Ac) ≤ exp

 ∞∑
m=n

log(1 − P(Am))

 ≤ exp

 ∞∑
m=n

−P(Am)

 = 0. �

Definition 2.27. Given a sequence Fn ⊂ F of σ-algebras, we define the tail σ-algebra

T B
∞⋂

n=1

σ

 ∞⋃
m=n

Fm

 .
Any event A ∈ T is called tail event.

Moreover, given a sequence of random variables (Xn)n∈N we denote by T ((Xn)n∈N)
the tail σ-algebra generated by the sequence σ(Xn), n ∈ N.

Example 2.28. Let An ∈ Fn be a sequence of events and consider A B lim supn→∞ An.
Then A ∈ T . Indeed, for any fixed N, we have

A =
⋂
n∈N

⋃
m≥n

Am =
⋂
n≥N

⋃
m≥n

Am︸ ︷︷ ︸
∈σ(⋃∞m=n Fm)

∈ σ

 ∞⋃
m=N

Fm

 .

Thus, A ∈ T .

Example 2.29. Given a sequence of real random variables (Xn)n∈N. Then both lim supn→∞ Xn

and lim supn→∞
1
n
∑n

k=1 Xk are measurable with respect to T ((Xn)). The idea in both
cases is that the lim sup only depends on the tail-behavior of the sequence. Let us be
more precise in the second case. We have

lim sup
n→∞

1
n

n∑
k=1

Xk = lim sup
n→∞

1
n

n∑
k=N

Xk,

which is clearlyσ
(⋃∞

k=N σ(Xk)
)
-measurable, for any fixed N. Thus, lim supn→∞

1
n
∑n

k=1 Xk

is T -measurable.
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Theorem 2.30 (Kolmogorov’s 0-1-law). Let (Fn)n∈N be a sequence of independent
σ-algebras. Then the tail σ-algebra T is P-trivial, i.e.,

∀A ∈ T : P(A) ∈ { 0, 1 } .

Proof. Choose A ∈ T and let D be the set of all events D ∈ F which are independent
of A, i.e., P(A ∩ D) = P(A) ∩ P(D). We want to prove that A ∈ D, because then

P(A) = P(A ∩ A) = P(A)2,

implying that either P(A) = 0 or P(A) = 1. Arguing as in the proof of Lemma 2.5, we
see thatD is a Dynkin system. By definition of T , for any n we have that σ(F1 ∪ · · · ∪

Fn) is independent of T , and thus

∞⋃
n=1

σ(F1 ∪ · · · ∪ Fn) ⊂ D.

Notice that the union on the left side is a union of an increasing sequence of σ-algebras.
Therefore, it is closed under intersections. Thus, we have

A B σ

 ∞⋃
n=1

σ(F1 ∪ · · · ∪ Fn)

 = δ

 ∞⋃
n=1

σ(F1 ∪ · · · ∪ Fn)

 ⊂ D.
Since any Fn ⊂ A ⊂ D, this implies that T ⊂ A ⊂ D. �

Kolmogorov’s 0-1-law sheds some new light on the second part of the Borel-
Cantelli lemma: indeed, when (An) are independent, A = lim supn An is a tail event,
and, thus, can only have probability 0 or 1. If we have a sequence of independent
random variables (Xn), then by Example 2.29 lim sup Xn and, likewise, lim inf Xn are
measurable with respect to the tail σ-algebra. Therefore, those random variables are
almost surely constant. In particular, the limit of a sequence of independent random
variables either exists with probability 0 or with probability 1, and in the latter case is
almost surely constant. The same applies to the Cesàro means.

Remark 2.31. There is a more general theorem called Hewitt-Savage 0-1-law, which
says that any event depending on a sequence of independent random variables (Xn),
which is invariant under finite permutations of the indices of (Xn), has probability 0
or 1. In particular, define the cumulative sums (or the random walk) S n B

∑n
k=1 Xk,

n ∈ N. Clearly, lim supn S n does not depend on finite permutations of the indices. Thus,
lim supn S n and, likewise, lim infn S n are almost surely constant. Notice, however, that
they are not measurable with respect to the tail σ-algebra.

Example 2.32. Let (Xn) be an independent sequence of random variables distributed
with the Cauchy distribution with α = 1. Then, by Example 2.24 we know that the
scaled random walk 1

n S n has again a Cauchy distribution with parameter α = 1. Con-
sider X B lim supn→∞ S n/n and X B lim infn→∞ S n/n. Then for any c ∈ R we have

0 <
∫ ∞

c

1
π

1
1 + x2 dx = P

(S n

n
≥ c

)
≤ P

(
sup
k≥n

S k

k
≥ c

)
−−−−→
n→∞

P
(
lim sup

n→∞

S n

n
≥ c

)
= P

(
X ≥ c

)
,
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where we have used that { supk≥n S k/k ≥ c } is a decreasing sequence of sets and that
limn→∞ supk≥n xk = lim supn→∞ xn. By Theorem 2.30, this implies that P

(
X ≥ c

)
= 1

for every real number c, and we may conclude that X = ∞ almost surely. In the same
manner, we get X = −∞ almost surely.
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Chapter 3

The strong law of large numbers

3.1 The strong law of large numbers

We consider a sequence of random variables (Xn)n∈N and denote

(3.1) S n B
n∑

i=1

Xi, S ?
n B

1
n

S n, n ∈ N.

We want to study the asymptotic properties of the re-scaled random walk S ?
n . We will

at least assume that random variables are identically distributed and integrable.

Definition 3.1. The sequence (Xn)n∈N satisfies the strong (weak) law of large numbers
if limn→∞ S ?

n = E[X1] almost surely (in probability).

In this chapter, we will prove two versions of the theorem, i.e., we will prove that
the strong law of large numbers holds under two sets of conditions on the random
variables. The first formulation is rather easy to prove, but far from optimal.

Theorem 3.2. Let the random variables (Xn) be identically distributed, independent
and assume that E[X4

1] < ∞. Then the sequence satisfies the strong law of large
numbers.

Proof. By passing to a sequence Yn B Xn − E[X1] if necessary, we may assume that
E[X1] = 0. Then let

An B
{ ∣∣∣S ?

n

∣∣∣ ≥ n−1/8
}
, A B lim sup

n→∞
An.

Notice that S ?
n (ω)→ 0 for every ω ∈ Ac.

Markov’s inequality (with u(x) = x4) implies that

(3.2) P(An) ≤
√

n
n4 E

[
S 4

n

]
.
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We now compute the fourth moment of S n:

E[S 4
n] = E


 n∑

i=1

Xi

4 = E

 n∑
i1,i2,i3,i4=1

Xi1 Xi2 Xi3 Xi4

 =

n∑
i1,i2,i3,i4=1

E[Xi1 Xi2 Xi3 Xi4 ]

=

n∑
i=1

E[X4
i ] + 3

∑
i, j

E[X2
i X2

j ] +
∑

i1,i2,i3.i4∈{ 1,...,n }
i1<{ i2,i3,i4 }

E[Xi1 Xi2 Xi3 Xi4 ]︸             ︷︷             ︸
=E[Xi1 ]E[Xi2 Xi3 Xi4 ]=0

= nE[X4
1] + 3n(n − 1)E[X2

1]2.

Inserting this term into (3.2) and summing over n, we obtain

∞∑
n=1

P(An) ≤ E[X4
1]
∞∑

n=1

n3/2

n4 + 3E[X2
1]2

∞∑
n=1

n5/2 − n3/2

n4 < ∞.

By the Borel-Cantelli lemma (Theorem 2.26) we get that P(A) = 0. �

Next, we cite a much more general version of the strong law of large numbers,
which we are not going to prove.

Theorem 3.3 (Etemadi). Let (Xn)n∈N be a sequence of pairwise independent and iden-
tically distributed integrable random variables. Then the strong law of large numbers
holds.

The basic idea of the proof of Theorem 3.3 is to cut the random variables, i.e., to
consider random variables Yn B Xn1[−n,n](Xn) instead. The sequence (Yn) satisfies the
conditions of Theorem 3.2 (except for only pairwise independence), thus the strong law
of large numbers holds for (Yn). Finally, one shows that

∑
n P(Xn , Yn) < ∞, which,

by the Borel-Cantelli lemma, implies that Xn = Yn for almost all indices almost surely.
This will then allow to conclude.

With completely different methods we shall give a proof of the following version
of the strong law of large numbers.

Theorem 3.4. Assume that the sequence (Xn)n∈N is independent and identically dis-
tributed and the random variables are integrable. Then the strong law of large numbers
holds.

Remark 3.5. One common feature of all our conditions is that we always assume
a sequence of identically distributed random variables. At least in the framework of
Theorem 3.4, we know, however, that limn S ?

n mus be almost surely constant, provided
that the limit exists – this follows from Theorem 2.30. Therefore, it makes sense to
generalize the strong law of large number to the statement that

1
n

n∑
k=1

(Xk − E[Xk]) = 0, almost surely.

Kolmogorov proved that the above version of the strong law of large numbers holds
whenever (Xn) are independent, square integrable and

∞∑
n=1

var[Xn]/n2 < ∞.
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Moreover, this condition is optimal in the sense that for any sequence (αn) of positive
numbers satisfying

∑
n αn/n2 = ∞, there is a sequence of independent, square inte-

grable random variables (Xn) with var[Xn] = αn such that the law of large numbers
does not hold.

Remark. One might also wonder whether integrability is really necessary. However,
given a sequence (Xn) of independent, identically distributed random variables, one can
show that the almost sure convergence of S ?

n to some deterministic number µ already
implies that X1 is integrable and µ = E[X1] – see Bauer, Satz 12.3. Indeed, in Ex-
ample 2.32, we have seen that S ?

n does not converge to a deterministic number, when
X1 ∼ γ1. This is in line with the fact that the Cauchy distribution does not have a mean
value.

Remark 3.6. Let (Xn) be a sequence of i.i.d. square integrable random variables with
E[X1] = 0 and consider, as usual, the random walk S n B X1 + · · · + Xn. We are
interested in the asymptotic behavior of the paths of the random walk. By the law of
large numbers, we know that

1
n

S n → 0 almost surely,

but is this the best possible result? A sharper bound would be given by the scaling
factor 1/

√
n, but in that case we only have the central limit theorem,

1
√

n
S n

d
−−−−→
n→∞

N(0,V[X1]).

If we want to have almost sure results, then one can show that, for instance, in the
normal case,

lim inf
n→∞

1
√

n
S n = −∞, lim sup

n→∞

1
√

n
S n = ∞, almost surely,

implying that
√

n is too small. The precise asymptotics in the almost sure sense is
given by the law of the iterated logarithm

lim sup
n→∞

S n√
2n log(log(n))

=
√

var[X1] a.s.,(3.3a)

lim inf
n→∞

S n√
2n log(log(n))

= −
√

var[X1] a.s.(3.3b)

3.2 Large deviations
Let (Xn)n∈N denote a sequence of integrable i.i.d. (independent, identically distributed)
random variables. Set µ B E[X1] and consider the random walk S n and its scaled
version S ?

n as defined in equation (3.1). By Theorem 3.4, the strong law of large
number holds,which in particular implies the weak law of large numbers, i.e.,

(3.4) ∀ε > 0 : lim
n→∞

P
(∣∣∣S ?

n − µ
∣∣∣ ≥ ε) = 0.

The theory of large deviations is concerned with the speed of the convergence in the
weak law of large numbers, i.e., it tries to find estimates for P(

∣∣∣S ?
n − µ

∣∣∣ ≥ ε) for finite
n. Consider the (generalized) Laplace transform of PX1 given by

φ(u) B E[euX1 ],
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which is defined for u ∈ R as a function taking values in ]0,∞]. (In that sense, we do
not need any integrability condition.) We define the Cramér transformation as

(3.5) I(x) B sup
u∈R

(ux − log φ(u)), x ∈ R.

(This is the Legendre transform of log φ.) Since φ(0) = 1, we see that

I(x) = sup
u∈R

(ux − log φ(u)) ≥ 0 − log φ(0) = 0,

which implies that I : R→ [0,∞]. By Jensen’s inequality and convexity of x 7→ eux,

euµ ≤ E[euX1 ] = φ(u)

implying that

(3.6) ∀u ∈ R : uµ − log φ(u) ≤ 0.

Therefore, I(µ) = 0.

Example 3.7. If X1 ≡ 0, then φ(u) ≡ 1 and I(x) = ∞ for every x , 0. Thus, I can
indeed take the value∞.

Theorem 3.8 (Cramér-Chernov). Under the above assumptions, we have for ξ ≥ µ
and any n ∈ N

P(S ?
n ≥ ξ) ≤ e−I(ξ)n

and for ξ ≤ µ and any n
P(S ?

n ≤ ξ) ≤ e−I(ξ)n.

Proof. First of all, note that the second assertion follows from the first assertion by
replacing (Xn) by (−Xn) (and noting that the corresponding Cramér transformation is
x 7→ I(−x)). Moreover, we may replace (Xn) by (Xn − ξ), which gives the Cramér
transform x 7→ I(x + ξ), which allows to infer then first assertion for general ξ ≥ µ
from the corresponding assertion for ξ = 0 and µ ≤ 0. Thus, in the following we may
assume that ξ = 0 and µ ≤ 0.

By independence, we get for u ≥ 0

P(S ?
n ≥ 0) = P(X1 + · · · + Xn ≥ 0)

= P
(
eu(X1+···+Xn) ≥ 1

)
≤ E

[
eu(X1+···+Xn)

]
= φ(u)n,

implying that log P(S ?
n ≥ 0) ≤ n log φ(u), for any u ≥ 0. Therefore,

1
n

log P(S ?
n ≥ 0) ≤ inf

{
log φ(u)

∣∣∣ u ≥ 0
}
.

On the other hand, from (3.6) we obtain for any u < 0

− log φ(u) ≤ uµ − log φ(u) ≤ 0.

On the other hand, I(0) ≥ 0. Therefore, we have

I(0) = sup { − log φ(u)︸     ︷︷     ︸
≤0 for u<0

| u ≥ 0 } = − inf
{

log φ(u)
∣∣∣ u ≥ 0

}
.
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Therefore, we can conclude that

P(S ?
n ≥ 0) ≤ exp

(
n inf

{
log φ(u)

∣∣∣ u ≥ 0
})

= e−nI(0). �

Exercise 3.9. Convince yourself of the remarks in the first paragraph of the proof of
Theorem 3.8.

Thus, the “exceptional” probabilities P(S ?
n ≥ E[X1] + ε) decrease exponentially

fast in n. Note that the right hand side of the inequalities in Theorem 3.8 should be
read as “0” when I(ξ) = ∞.

3.3 The ergodic theorem
If we interpret the the index n as time, one can describe the strong law of large numbers
as “time average = space average”. Ergodic theory is concerned with this kind of
phenomena in more generality.

Definition 3.10. A sequence of random variables (Xn)n∈N is called stationary if the law
of (Xn)n∈N is equal to the law of (Xn+1)n∈N, i.e., if P(Xn) = P(Xn+1).

Of course, this also means that the law of (Xn)n∈N is equal to the law of (Xn+k)n∈N

for any k ∈ N. We start with two fundamental definitions for ergodic theory. In the
following, τ : Ω→ Ω is an F -F -measurable map.

Definition 3.11. An event A ∈ F is called invariant if τ−1(A) = A. The σ-algebra of
invariant events is denoted by I =

{
A ∈ F

∣∣∣ τ−1(A) = A
}
.

At the level of random variables, X is I-measurable if and only if X ◦ τ = X.

Definition 3.12. τ is called measure preserving if for every A ∈ F we have P(τ−1(A)) =

P(A). If, in addition, I is P-trivial, i.e., P(A) ∈ { 0, 1 } for every A ∈ I, then the system
(Ω,F , P, τ) is called ergodic.

Obviously, ergodicity is equivalent to the property that every I-measurable random
variable is almost surely constant.

Theorem 3.13 (Birkhoff’s individual ergodic theorem). Let τ be a measure preserving
transformation and X be an integrable random variable. Define X1 B X and Xn B
X ◦ τn−1, n ≥ 2. Then there is an I-measurable random variable Y with E[Y] = E[X]
such that

S ?
n B

1
n

n∑
k=1

Xk
n→∞
−−−−→ Y P-almost surely.

If τ is ergodic, then S ?
n → E[X] a.s. for n→ ∞.

Proof. If τ is ergodic, then every I-measurable random variable is almost surely con-
stant, which shows the last part of the theorem.

We assume, without less of generality, that X ≥ 0. Let X B lim sup S ?
n and X B

lim inf S ?
n . Clearly, X ◦ τ = X and X ◦ τ = X, which implies that both random variables

are I-measurable. We want to show that

(3.7) E
[
X
]
≤ E[X] ≤ E

[
X
]
.
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Indeed, equation (3.7) together with X ≤ X would show that X = X = lim S ?
n almost

surely, and E[X] = E[X] by monotone convergence – note that E[S ?
n ] = E[X] for any

n. This will finish the proof.
In fact, we only prove the first inequality – the second one works along the same

lines. First we need to make sure that X < ∞ by cutting it off: for M > 0 set XM B
min(X,M). For given ε > 0 define the random variable Nε as

(3.8) Nε B inf
{

n ∈ N
∣∣∣ S ?

n ≥ XM − ε
}
< ∞.

Indeed, Nε is measurable, because

{Nε = n } =

n−1⋂
k=1

{ S ?
k < XM − ε } ∩ { S ?

n ≥ XM − ε } ∈ F , ∀n ∈ N.

While Nε can be unbounded, we certainly have
⋂

K∈N {Nε > K } = ∅, which implies
that limK P({Nε > K }) = 0, because the sequence {Nε > K } is decreasing in K. Thus,
there is a Kε ∈ N with P({Nε > Kε }) ≤ ε. Define random variables

(3.9) X̃ B

X, Nε ≤ Kε ,

M, else,
Ñε B

Nε , Nε ≤ Kε ,

1, else.

Note that X(ω) > M implies that S ?
1 (ω) = X(ω) > XM(ω) − ε, giving Nε(ω) = 1.

Therefore,
X ≤ X̃.

We claim that

(3.10)
1

Ñε

Ñε∑
n=1

X̃ ◦ τn−1 ≥ XM − ε.

The inequality holds in the case of Nε(ω) > Kε by construction of X̃(ω) and Ñε(ω).
In the other case, note that Ñε(ω) = Nε(ω) and X̃(ω) = X(ω), and so (3.10) holds by
definition of Nε .

On the other hand, we have by definition of Kε that

(3.11) E
[
X̃
]

= E
[
X̃1Nε>Kε

]
+ E

[
X̃1Nε≤Kε

]
≤ Mε + E[X].

Inductively define n0(ω) B 0, n1(ω) B Ñε(ω) and

nk+1(ω) B nk(ω) + Ñε(τnk(ω)(ω)), k ∈ N.

Moreover, for l ∈ N let Ml(ω) B sup { k ∈ N | nk(ω) ≤ l }. Since Ñε ≤ Kε ,we have
l − nMl ≤ Kε . Note that

l∑
k=1

X̃ ◦ τk−1 ≥

nMl∑
k=1

X̃ ◦ τk−1 =

n1∑
k=1

X̃ ◦ τk−1 +

n2∑
k=n1+1

X̃ ◦ τk−1 + · · · +

nMl∑
k=nMl−1+1

X̃ ◦ τk−1.

Applying the inequality (3.10) to each of the terms in the above sum, we obtain

l∑
k=1

X̃◦τk−1 ≥ n1(XM−ε)+(n2−n1)(XM◦τ
n1−ε)+· · ·+(nMl−nMl−1)(XM◦τ

nMl−1−ε),
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noting that nk−nk−1 = Ñε ◦τ
nk−1 . But XM is I-measurable, implying that Xm ◦τ

n = XM ,
even when n is itself random. Thus, we have a telescoping sum and further obtain

l∑
k=1

X̃ ◦ τk−1 ≥ nMl XM − nMlε ≥ lXM + (nMl − l)XM − lε ≥ lXM − KεM − lε.

Since τ is measure preserving, we have E[X̃ ◦ τk] = E[X̃]. Thus, by dividing the
previous inequality by l, we get

E
[
X̃
]
≥ E

[
XM

]
−

KεM
l
− ε

and (3.11) implies that

E[X] ≥ E
[
XM

]
−

KεM
l
− ε − Mε,

for all choices of M, ε and l. Therefore, we have E[X] ≥ E
[
XM

]
for any M, which

implies the first inequality (3.7) by monotone convergence. �

Remark. In fact, one can show that the random variable Y in Theorem 3.13 can be
chosen to be E[X|I].

Remark. Von Neumann’s statistical ergodic theorem shows that the convergence in
Theorem 3.13 also holds in Lp(Ω), if X ∈ Lp.

Next we want to show that Theorem 3.4 can be derived from Theorem 3.13. Let us
first describe the setting.

Lemma 3.14. Given a sequence of independent, identically distributed real random
variables (Xn)n∈N considered as one random variable taking values in (R,B(R))⊗N.
Define a map τ : RN → RN by τ((xn)n∈N) = (xn+1)n∈N. Then

(
RN,B(R)⊗N, P(Xn)n∈N , τ

)
is

ergodic.

Proof. Since the pre-image of a cylinder set under τ is a cylinder set, τ is measurable.
By stationarity of (Xn)n∈N, τ is measure preserving. Thus, we are left with showing
that invariant sets are trivial. For any invariant set A and any n we clearly have A =

τ−n(A). Therefore, A only depends on the coordinates (xn+1, xn+2, . . .). Thus, B B
(Xn)−1(A) = { ω ∈ Ω | (Xn(ω))n∈N ∈ A } is measurable with respect to the σ-algebra
Fn B σ(Xn, Xn+1, . . .) for any n. Therefore, B ∈ T ((Xn)n∈N). By Theorem 2.30, P(B) ∈
{ 0, 1 }, which implies that P(Xn)(A) = P(B) ∈ { 0, 1 }. �

Proof of Theorem 3.4. We are given an i.i.d. sequence of integrable real random vari-
ables (Xn)n∈N. As in Lemma 3.14, we consider the probability space (Ω′,F ′, P′) B
(RN,B(R)⊗N, P(Xn)n∈N ). Consider the random variable p1 : Ω′ → R defined by p1((xn)n∈N) =

x1. By Lemma 3.14, the shift operator τ is ergodic on (Ω′,F ′, P′). Therefore, Theo-
rem 3.13 implies that

1
n

n∑
k=1

p1 ◦ τ
k−1 n→∞
−−−−→

∫
p1dP′, P′-almost surely.

But P′-almost sure convergence of a sequence of random variables πn on Ω′ is equiv-
alent to P-almost sure convergence of the related sequence of random variables πn ◦
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(Xk)k∈N on Ω – by definition of the image measure. Therefore, we have shown that

1
n

n∑
k=1

p1 ◦ τ
k−1 ◦ (X j) j∈N =

1
n

n∑
k=1

p1 ◦ (Xk−1+ j) j∈N =
1
n

n∑
k=1

Xk

converges P-almost surely to
∫

p1dP′ = E[X1]. �

3.4 Applications and examples

3.4.1 An example of ergodicity
Let Ω = [0, 1[, F = B([0, 1[) and P = λ|[0,1[, the Lebesgue measure restricted to the
interval [0, 1[. For r ∈]0, 1[ we set τr(x) B x + r mod 1.

Theorem 3.15. The system (Ω,F , P, τr) is ergodic if and only if r is irrational.

Before we give a proof of this statement, recall some fact about Fourier series.

Lemma 3.16. Given a square integrable measurable function f : [0, 1[→ R. Then
there is a unique representation

f (x) =
∑
n∈Z

cne2πinx

in the sense that the above series converges in L2([0, 1[, dx) and the sequence of coef-
ficients (cn)n∈Z is unique.

Proof of Theorem 3.15. Take any I-measurable square integrable function f : [0, 1[→
R and consider its Fourier series expansion

(3.12) f (x) =
∑
n∈Z

cne2πinx.

Then f = f ◦ τr, and if we insert this equation into the Fourier series (3.12), we obtain∑
n∈Z

cne2πinx =
∑
n∈Z

cne2πinre2πinx.

By comparison of coefficients, we have ∀n ∈ Z : cn = cne2πinr. If r is irrational, then
this relation can only be satisfied if cn = 0 for every n , 0. Thus, f (x) = c0 almost
surely, implying that I is P-trivial, and the system is, hence, ergodic.

On the other hand, if r is rational, there is some n ∈ Z \ { 0 } with rn ∈ Z, implying
that e2πinr = e−2πinr = 1. Therefore, we can freely choose cn, c−n (and c2n, c−2n, . . . )
and obtain some non-trivial I-measurable function f . �

What does the ergodic theorem imply for this example? Take any integrable, mea-
surable function f : [0, 1[→ R – for simplicity we extend the function to a periodic
function R → R. If r is irrational, for almost every starting point x ∈ [0, 1[, we have
the convergence

(3.13) lim
n→∞

1
n

n∑
k=1

f (x + (k − 1)r) =

∫ 1

0
f (y)dy.
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3.4.2 Monte Carlo simulation
The second application we have in mind is the Monte Carlo method. The Monte Carlo
method belongs to the most important numerical methods. It was developed by gi-
ants of mathematics and physics like J. von Neumann, E. Teller and S. Ulam and
N. Metropolis during the development of the H-bomb. Today, it is widely used in
fields like statistical mechanics, particle physics, computational chemistry, molecular
dynamics, computational biology and computational finance.

Assume that we want to compute the quantity

(3.14) I[ f ; X] B E
[
f (X)

]
,

assuming only that we can actually sample from the distribution of X and that E
[
| f (X)|

]
<

∞. Taking a sequence X1, X2, . . . of independent realizations of X, the strong law of
large numbers implies that

(3.15) I[ f ; X] = lim
M→∞

1
M

M∑
i=1

f (Xi), P − a.s.

However, in numerics we are usually not quite satisfied with a mere convergence state-
ment like in (3.15). Indeed, we would like to be able to control the error, i.e., we would
like to have an error estimate or bound and we would like to know how fast the error
goes to 0 if we increase M. Before continuing the discussion, let us formally introduce
the Monte Carlo integration error by

(3.16) εM = εM( f ; X) B I[ f ; X] − IM[ f ; X], where IM[ f ; X] B
1
M

M∑
i=1

f (Xi)

is the estimate based on the first M samples. Note that IM[ f ; X] is an unbiased estimate
for I[ f ; X] in the statistical sense, i.e., E

[
IM[ f ; X]

]
= I[ f ; X], implying E

[
εM( f )

]
= 0.

We also introduce the mean square error E
[
εM( f ; X)2

]
and its square root, the error in

L2. The central limit theorem immediately implies both error bounds and convergence
rate provided that f (X) is square integrable.

Theorem 3.17. Let σ = σ( f ; X) < ∞ denote the standard deviation of the random
variable f (X). Then the root mean square error satisfies

E
[
εM( f ; X)2

]1/2
=

σ
√

M
.

Moreover,
√

MεM( f ; X) is asymptotically normal (with standard deviation σ( f ; X)).
i.e., for any constants a < b ∈ R we have

lim
M→∞

P
(
σa
√

M
< εM <

σb
√

M

)
= Φ(b) − Φ(a),

where Φ denotes the distribution function of a standard normal random variable.

Proof. Using independence of the Xi and the fact that IM[ f ; X] is unbiased,

E
[
ε2

M

]
= var

 1
M

M∑
i=1

f (Xi)

 =
1

M2

M∑
i=1

var[ f (Xi)] =
M var[ f (X1)]

M2 =
σ2

M
.

Asymptotic normality is an immediate consequence of the central limit theorem. �
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Theorem 3.17 has two important implications.

1. The error is probabilistic: there is no deterministic error bound. For a particular
simulation, and a given sample size M, the error of the simulation can be as large
as you want. However, large errors only occur with probabilities decreasing in
M.

2. The “typical” error (e.g., the root mean square error
√

E
[
ε2

M

]
) decreases to zero

like 1/
√

M. In other words, if we want to increase the accuracy of the result
tenfold (i.e., if we want to obtain one more significant digit), then we have to
increase the sample size M by a factor 102 = 100. We say that the Monte Carlo
method converges with rate 1/2.

Before continuing the discussion of the convergence rate, let us explain how to
control the error of the Monte Carlo method taking its random nature into account.
The question here is, how do we have to choose M (the only parameter available) such
that the probability of an error larger than a given tolerance level ε > 0 is smaller than
a given δ > 0, symbolically

P (|εM( f ; X)| > ε) < δ.

Fortunately, this question is already almost answered in Theorem 3.17. Indeed, it im-
plies that

P (|εM | > ε) = 1 − P
(
−
σε̃
√

M
< εM <

σε̃
√

M

)
∼ 1 − Φ(ε̃) + Φ(−ε̃) = 2 − 2Φ(ε̃),

where ε̃ =
√

Mε/σ. Of course, the normalized Monte Carlo error is only asymptoti-
cally normal, which means the equality between the left and the right hand side of the
above equation only holds for M → ∞, which is signified by the “∼”-symbol. Equating
the right hand side with δ and solving for M yields

(3.17) M =

(
Φ−1

(
2 − δ

2

))2

σ2ε−2.

Thus, as we have already observed before, the number of samples depends on the
tolerance like 1/ε2.

Remark. This analysis tacitly assumed that we know σ = σ( f ; X). Since we started
the whole endeavor in order to compute I[ f ; X], it is, however, very unlikely that we
already know the variance of f (X). Therefore, in practice we will have to replace
σ( f ; X) by a sample estimate. (This is not unproblematic: what about the Monte Carlo
error for the approximation of σ( f ; X)?)

Remark 3.18. Let us come back to the merits of Monte Carlo simulation. For simplic-
ity, let us assume that X is a d-dimensional uniform random variable, i.e.,

I[ f ] B I[ f ; U] =

∫
[0,1]d

f (x)dx.

Note that the dimension of the space did not enter into our discussion of the conver-
gence rate and of error bounds at all. This is remarkable if we compare the Monte
Carlo method to traditional methods for numerical integration. Those methods are
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usually based on a grid 0 ≤ x1 < x2 < · · · < xN ≤ 1 of arbitrary length N. The cor-
responding d-dimensional grid is simply given by { x1, . . . , xN }

d, a set of size Nd. The
function f is evaluated on the grid points and an approximation of the integral is com-
puted based on interpolation of the function between grid-points by suitable functions
(e.g., piecewise polynomials), whose integral can be explicitly computed. Given a nu-
merical integration method of order k, the error is the proportional to

(
1
N

)k
. However,

the we had to evaluate the function on Nd points. Therefore, the accuracy in terms of
points merely is like n−k/d, where n denotes the total number of points involved, which
is proportional to the computational cost. This is known as the curse of dimensionality:
even methods, which are very well suited in low dimensions, deteriorate very fast in
higher dimensions.

The curse of dimensionality is the main reason for the popularity of the Monte
Carlo method. As we will see later, in financial applications the dimension of the
state space can easily be in the order of 100 (or much higher), which already makes
traditional numerical integration methods completely unfeasible. In other applications,
like molecular dynamics, the dimension of the state space might be in the magnitude
of 1012!
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Chapter 4

Conditional expectations

Let (Ω,F , P) be a discrete probability space, and assume that Ω is finite and each
elementary event {ω } has positive probability. Recall that for an event A , ∅ the
conditional probability of some other event B given A is defined by

(4.1) P(B|A) B
P(A ∩ B)

P(A)
.

Note that B 7→ P(B|A) defines a probability measure on Ω, and we can therefore define
the conditional expectation of some random variable Y : Ω → R given the event A by
the expectation of Y under P(·|A), i.e.,

E[Y |A] B
∑
ω∈Ω

Y(ω)P({ω } |A).

Example 4.1. Let Ω = { 1, . . . , 6 } with the uniform probability measure, let A =

{ 2, 4, 6 } and Y(ω) = ω. The interpretation is that Y is the outcome of throwing a
die and A is the event that the die shows an even number of eyes. Then, the conditional
expectation of Y given A is (mathematically and intuitively) E[Y |A] = 4.

As usual, probability theory is mostly concerned with properties that only depend
on the involved distributions, not on the probability space. Thus, the notion of the con-
ditional expectation of one random variable Y with respect to another random variable
X is even more interesting. We define

(4.2) E[Y |X](ω) B E[Y |Aω], where Aω B
{
ω′ ∈ Ω

∣∣∣ X(ω′) = X(ω)
}
.

Again, the definition is best illustrated by an example.

Example 4.2. In continuation of Example 4.1 above, set

X(ω) B 1A(ω) =

1, ω ∈ A,
0, ω < A.

Then we obtain E[Y |X](ω) = 31Ac (ω) + 41A(ω).

In other words, we see that (4.2) is really an adequate generalization of the condi-
tional expectation with respect to sets. We also see that it is natural to define E[Y |X]
as a random variable, whose value depends on the value of X, i.e., which is σ(X)-
measurable. On the other hand, we also see that E[Y |X] depends only on the subsets of
Ω, on which X is constant, but not on the values of X itself – E[Y |X] = E[Y |2X]. This
indicates that E[Y |X] should actually only depend on X via σ(X).
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Remark. The same constructions also make sense in the case of a general probability
space, when X only takes finitely many values. By density, this could be used to extend
the definitions to general random variables.

4.1 Conditional expectations
As usual, we assume that we are given a probability space (Ω,F , P). Moreover, in
this section we will often omit the qualification “almost surely” for (in)equalities of
random variables. A will generally denote a sub-σ-algebra of F .

Definition 4.3. Given a sub-σ-algebra A ⊂ F and an integrable real random variable
X. A random variable Y is called conditional expectation of X givenA if and only if

(i) Y isA-measurable and

(ii) for every A ∈ A we have E[Y1A] = E[X1A].

We write Y = E[X|A]. The conditional probability of A ∈ F is defined by by
P(A|A) B E[1A|A].
Moreover, for a fixed random variable Z, we define E[X|Z] B E[X|σ(Z)], and, like-
wise, P(A|Z) B P(A|σ(Z)).

Lemma 4.4. The conditional expectation E[X|A] exists and is unique up to almost
sure equality.

Proof. It suffices to proof existence of E[X|A] for non-negative integrable random
variables X. Indeed, if E[X+|A] and E[X−|A] both exist, then a version of E[X|A] is
certainly given by E[X+|A] − E[X−|A].

So assume that X ≥ 0 and define a finite measure µ on (Ω,A) by setting

µ(C) B E[X1C], C ∈ A.

Clearly, µ � P|A. Therefore, the Radon-Nikodym theorem implies that there is an
A-measurable density for µ with respect to P|A denoted by Y , i.e.,

µ(C) = E[X1C] =

∫
C

YdP|A = E[Y1C], C ∈ A.

Thus, Y = E[X|A]. Moreover, uniqueness follows by the uniqueness in the Radon-
Nikodym theorem. �

By the construction of the integral, the following characterization holds: let X ∈
Lp(Ω,F , P), then Y = E[X|A] if and only if

(4.3) ∀Z ∈ Lq(Ω,A, P|A) : E[ZY] = E[ZX], with 1/p + 1/q = 1, p ∈ [1,∞].

Note that the ordinary expectation is a special case of the conditional expectation:
E[X] = E[X| { ∅,Ω }]. We collect some simple properties of the conditional expec-
tation.

Lemma 4.5. Let X,Y ∈ L1(Ω,F , P) and letH ⊂ G ⊂ F be σ-algebras.

(i) For λ, µ ∈ R we have E[λX + µY |G] = λE[X|G] + µE[Y |G] a.s. (linearity).
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(ii) If X ≥ Y a.s., then E[X|G] ≥ E[Y |G] a.s. (monotonicity).1

(iii) If X is G-measurable, then E[X|G] = X a.s. Moreover, if E[|XY |] < ∞, then
E[XY |G] = XE[Y |G] a.s.

(iv) E[E[X|G]|H] = E[E[X|H]|G] = E[X|H] a.s. (tower property).

(v) |E[X|G]| ≤ E[|X| |G] a.s. (triangle inequality).

(vi) If X is independent of G, then E[X|G] = E[X] a.s.

(vii) Assume that Xn → X in L1. Then limn→∞ E[Xn|G] = E[X|G] in L1.

Proof. (i): The right hand side is G-measurable and for every C ∈ G we have

E
[
1C(λE[X|G] + µE[Y |G])

]
= λE [1C E[X|G]] + µE [1C E[Y |G]]

= λE[1C X] + µE[1CY] = E[1C(λX + µY)].

(ii): Let C = { E[X | G] < E[Y |G] } ∈ G. Then

0 ≥ E [1C(E[X|G] − E[Y |G]] = E[1C(X − Y)] ≥ 0,

implying that P(C) = 0.
(iii): The first part of the assertion follows directly from the definition. For the

second part, let us define Xn B max(min(X, n),−n), so that |Xn| ≤ n, Xn → X a.s.
Then |XnY | ≤ |XY | and E[XnY |G] → E[XY |G] by assertion (vii), whose proof will not
depend on assertion (iii). So we are left with proving the second part of assertion (iii)
for bounded, G-measurable random variables X. Note that for every Z ∈ L∞(Ω,G, P|G),
the product ZX ∈ L∞(Ω,G, P|G), and, by property (4.3) for E[Y |G],

E [ZXE[Y |G]] = E[ZXY].

Therefore, XE[Y |G] = E[XY |G] again by the characterization (4.3).
(iv): The second equality follows from the first part of (iii), and we only need to

show that E[E[X|G]|H] = E[X|H]. For C ∈ H ⊂ G we have

E[1C E[E[X|G]|H]] = E[1C E[X|G]] = E[1C X].

(v): By monotonicity, we have E[X|G] ≤ E[X+|G]. Since the latter is non-negative,
we obtain (E[X|G])+ ≤ E[X+|G] and, similarly, (E[X|G])− ≤ E[X−|G]. Thus, by lin-
earity,

|E[X|G]| = (E[X|G])+ + (E[X|G])− ≤ E[X+|G] + E[X−|G] = E[|X| |G].

(vi): For any bounded, G-measurable random variable Z we have

E[ZX] = E[Z]E[X] = E[ZE[X]],

implying E[X|G] = E[X] by (4.3).
(vii): By the triangle inequality and linearity, we have

E[|E[X|G] − E[Xn|G]|] ≤ E[E[|X − Xn| |G]] = E[|X − Xn|]→ 0,

which shows convergence in L1. �

1In particular, (ii) gives a direct proof of a.s. uniqueness of the conditional expectation.
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Property (vii) says that E[·|A] : L1(Ω,F , P)→ L1(Ω,A, P|A) is continuous. More-
over, we will see shortly that the same property holds true for any p ≥ 1, i.e., for the
map E[·|A] : Lp(Ω,F , P)→ Lp(Ω,A, P|A).

Lemma 4.6. A convex function ϕ : R → R is everywhere right-differentiable and the
right-derivative D+ϕ is increasing and for all x ∈ R

ϕ(x) = sup
y∈R

(
ϕ(y) + D+ϕ(x)(y − x)

)
= sup

y∈Q

(
ϕ(y) + D+ϕ(x)(y − x)

)
.

Proof. By convexity, ϕ is continuous and for fixed x ∈ R the map

y 7→
ϕ(x) − ϕ(y)

x − y
C S (x, y)

is increasing on ]x,∞[.2 Thus,

D+ϕ(x) = lim
y↘x

ϕ(x) − ϕ(y)
x − y

exists. Moreover, the inequalities S (x, t) ≤ S (x, y) ≤ S (y, u) for x < t < y < u imply
with t ↘ x and u↘ y that D+ϕ(x) ≤ D+ϕ(y). Moreover, we obtain

ϕ(y) ≤ ϕ(x) +
ϕ(y) − ϕ(u)

y − u
(y − x),

implying for u↘ y that
ϕ(x) ≥ ϕ(y) + (x − y)D+ϕ(y)

for y > x. Similarly, we can obtain the same inequality for y < x. Noting that we have
equality for y = x, we obtain the first formula from the statement of the lemma. Now
take a sequence xn → x of rational numbers. Since D+ϕ is increasing, it is bounded in
a neighborhood of x. Therefore, continuity of ϕ implies that

ϕ(x) = lim
n→∞

[
ϕ(xn) + D+ϕ(xn)(xn − x)

]
. �

Theorem 4.7 (Jensen’s inequality). Let ϕ : R→ R be convex and let X be an integrable
random variable such that E[ϕ(X)] exists. Then

ϕ (E [X|A]) ≤ E
[
ϕ(X)|A

]
≤ ∞.

Proof. For any fixed x ∈ Q and any ω ∈ Ω we have

ϕ(X(ω)) ≥ ϕ(x) + (X(ω) − x)D+ϕ(x),

implying the almost sure inequality

(4.4) E[ϕ(X)|A] ≥ ϕ(x) + (E[X|A] − x)D+ϕ(x).

Let Nx denote the exceptional set of (4.4) and set N B
⋃

x∈Q Nx. On Nc, (4.4) holds
uniformly for all rational x. Choosing ω ∈ Nc, we obtain

E[ϕ(X)|A](ω) ≥ sup
x∈Q

[
ϕ(x) + (E[X|A](ω) − x)D+ϕ(x)

]
= ϕ (E[X|A](ω))

by Lemma 4.6, which gives the result since P(N) = 0. �

2Indeed, for x < t < y we have S (x, t) ≤ S (x, y) ≤ S (t, y), which is left as an exercise.
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In particular, now we know that X ∈ Lp(Ω,F , P) implies that E[X|A] ∈ Lp(Ω,A, P)
for every p > 1 and that the map is continuous. This leads to the following, geometrical
interpretation of the conditional expectation for square integrable random variables.

Theorem 4.8. The map E[·|A] : L2(Ω,F , P) → L2(Ω,A, P|A) is the orthogonal pro-
jection onto the closed sub-Hilbert-space L2(Ω,A, P|A), i.e., for square-integrable ran-
dom variables X we have

E
[
(X − E[X|A])2

]
= min

Y∈L2(Ω,A,P)
E

[
(X − Y)2

]
.3

Proof. Let Y ∈ L2(Ω,A, P) and set Z B E[X|A]. Then, by (4.3), we have E[XY] =

E[ZY], and, for Y = Z, E[XZ] = E[Z2]. Combining the two equalities, we get

E
[
(X − Y)2

]
− E

[
(X − Z)2

]
= E

[
(Y − Z)2

]
≥ 0.

Thus, Y = Z = E[X|A] is a minimizer for E
[
(X − Y)2

]
and for every other minimizer

Y we have E
[
(Y − Z)2

]
= 0, implying that the minimizer is unique in L2. �

4.2 Markov kernels and regular conditional distribu-
tions

Intuitively, we might understand the conditional distribution of some real random vari-
able X given a σ-algebraA as the “random measure”

µA(C)(ω) = P(X ∈ C|A)(ω) = E[1C(X)|A](ω), C ∈ B(R).

However, it is not so clear, what we understand by a random measure. For instance, by
various assertions in Lemma 4.5, we have the following (in)equalities almost surely,
for C ∈ B(R) and disjoint sets Cn ∈ B(R):

µA(R) = 1,
0 ≤ µA(C) ≤ 1,

µA

 ∞⋃
n=1

Cn

 =

∞∑
n=1

µA(Cn).

However, it is, in general, not true that there is a common, fixed null-set N such that the
set-function C ∈ B(R) 7→ P(X ∈ C|A)(ω) is a probability measure for every ω ∈ Nc:
usually, the null-sets will depend on the sets C in the above properties. If we can indeed
find such a common null-set, then we will speak of a regular conditional distribution.

Before coming back to this question, let us first take a closer look to one impor-
tant probabilistic context of conditional expectations, namely the case of a conditional
expectation of one random variable Y given another random variable X, which was de-
fined by E[Y |σ(X)]. Intuitively, we would like to be able to condition Y on X taking cer-
tain values, i.e., we are interested in expressions like P(Y ∈ C|X = x). If P(X = x) > 0,
this can already be done in elementary probability theory. However, in many interesting
cases, this is not the case, but one can still make sense of P(Y ∈ C|X = x).

3From now, we simply write P instead of P|A.
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Lemma 4.9 (Factorization lemma). Given a set Ω, a measurable space (E,E), and
functions X : Ω→ E and Y : Ω→ R. Then Y is σ(X)-B(R)-measurable, if and only if
there is an E-B(R)-measurable function ϕ : E → R such that Y = ϕ ◦ X.

Proof. By the usual arguments, we may, for simplicity, assume that Y ≥ 0. If a map ϕ
as in the statement exists, then Y clearly is σ(X)-B(R)-measurable, so we only need to
prove the converse direction.

We know that there is a sequence of non-negative simple functions Yn converging
pointwise and monotone to Y and one can then show rather easily that there exists a
representation

Y =
∑
n∈N

αn1An , An ∈ σ(X).4

By definition of σ(X), one can find sets Bn ∈ E such that X−1(Bn) = An. Define

ϕ B
∑
n∈N

αn1Bn .

Then we have
ϕ ◦ X =

∑
n∈N

αn1Bn ◦ X =
∑
n∈N

αn1An = Y. �

Remark. In fact, the lemma remains valid if (R,B(R)) is replaced by some polish
space with its Borel-σ-algebra.

Definition 4.10. Given an integrable real random variable Y and a random variable X
taking values in some measurable space (E,E). Then for every x ∈ E we define the
factorized conditional expectation E[Y |X = x] by

E[Y |X = x] B ϕ(x), where ϕ(X) = E[Y |X]

as guaranteed by the factorization lemma. In particular, we set P(Y ∈ A|X = x) =

E[1A(Y)|X = x], A ∈ F .

We note that for every set A ∈ F , the conditional probability P(Y ∈ A|X = x)
was only defined for almost all x ∈ E and the exceptional null-set will depend on A.
Therefore, in general, we cannot hope that one can find a universal exceptional set for
all sets A with probability 0. It turns out, however, that this is true when the σ-algebra
E is countably-generated, e.g., in the case of the Borel-σ-algebra of a polish space.

Definition 4.11. Given two measurable spaces (E1,E1) and (E2,E2). A map κ : E1 ×

E2 → [0,∞] is called transition kernel if

(i) for every A ∈ E2, the map x 7→ κ(x, A) is E1-B([0,∞])-measurable and

(ii) for every x ∈ E1, the map A 7→ κ(x, A) is a σ-finite measure on E2.

If for every x ∈ E1 we have κ(x, E2) = 1, then we call κ a stochastic or Markov kernel.

4Choose Yn such that it takes values in 2−n { 0, . . . , n2n } only. Then the difference Yn − Yn−1 can only
take the values 2−n { 0, . . . , n2n }, too. Therefore, it can be written as a linear combination of n2n indicator
functions. Now write Y = Y0 +

∑∞
n=1(Yn − Yn−1), which is a countable linear combination of indicator

functions.
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Example 4.12. Given a real random variable X and a measurable map f : R2 → R.
Consider κ(x, A) B P( f (x, X) ∈ A) for x ∈ R and A ∈ B(R). Then for every fixed x,
κ(x, ·) clearly is a probability measure. On the other hand, for fixed A ∈ B(R), (x, y) 7→
1A ◦ f (x, y) is B(R)-B(R2)-measurable, and Fubini’s theorem implies measurability of

x 7→ P( f (x, X) ∈ A) =

∫
R

1A ◦ f (x, y)PX(dy).

Thus, κ is a Markov kernel. Note that this is the usual construction of Markov chains
(or random dynamical systems): Given a state Xn = x, the next state Xn+1 is constructed
by Xn+1 = f (Xn,Y) for some independent random variable Y .

Definition 4.13. Given a random variable Y with values in (R,B(R)) and a random
variable X taking values in some measurable space (E,E), both defined on the proba-
bility space (Ω,F , P). A Markov kernel κ : E ×B(R)→ [0, 1] is called regular version
of the conditional distribution of Y given X if κ(x, A) = P(Y ∈ A|X = x) for every
A ∈ B(R) and x ∈ E.

More precisely, inserting in the Definition 4.10, this means that for every Borel-set
A, we have κ(X, A) = E[1A(Y)|X] almost surely. By the definition of a Markov kernel,
this implies that A 7→ κ(X(ω), A) is, indeed, a probability measure for every ω.

Remark. We have only formulated the definition above for factorized conditional dis-
tributions, not for general conditional distributions P(Y ∈ A|G) for some G ⊂ F . In
that case, a regular version of the conditional probability is a map κ : Ω × B(R) → R
such that

• for A ∈ B(R) fixed, the random variable κ(A) = P(Y ∈ A|G) a.s.,

• for any ω ∈ Ω, A 7→ κ(A)(ω) is a probability measure on B(R).

Of course, we could also replace the real valued random variable Y by a random
variable taking values in a polish space (with its Borel-σ-algebra). Without proof, we
state the fact that in the case of real random variables, regular versions of the condi-
tional expectations always exist.

Lemma 4.14. Given a real random variable Y and a random variable X as in Defini-
tion 4.13. Then a regular version of the conditional expectation of Y given X exists.

Remark 4.15. The statement remains true when Y is a random variable taking values
in some polish space (equipped with the Borel-σ-algebra). In fact, it holds for Borel
spaces, i.e., measurable spaces (E,E) which are isomorphic to (A,B(A)) for some A ∈
B(R) in the sense that there is a bijective map ψ : E → A such that ψ is E-B(A)-
measurable and ψ−1 is B(A)-E-measurable. It turns out that any polish space equipped
with its Borel-σ-algebra is a Borel space.

The usability of the concept of regular conditional distributions, comes from the
fact that many intuitive expressions hold provided that we are given a regular version of
the conditional distribution, but do not hold in general. As examples of such formulas,
we present the following lemma.

Lemma 4.16. Given a real random variable Y and a random variable X with values in
some measurable space (E,E), both defined on (Ω,F , P), and assume that P(·|X = ·)
is a regular version of the conditional distribution of Y given X. Then the following
formulas hold:
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(i) for any Borel-function f : R → R such that E[| f (Y)|] < ∞ and any x ∈ E we
have

E[ f (Y)|X = x] =

∫
R

f (y)P(dy|X = x);

(ii) more generally, for any g : (E,E)⊗(R,B(R))→ (R,B(R)) such that E[|g(X,Y)|] <
∞ and any x ∈ E we have

E[g(X,Y)|X = x] =

∫
R

g(x, y)P(dy|X = x).

Proof. We omit a formal proof. The idea for both statements is very straightforward. In
the first case, first assume that f (Y) = 1A(Y) for some measurable set. Then the equality
holds by definition. The general case is then obtained by approximating f+ and f− by
elementary functions. In the second case, we start by assuming g(x, y) = 1A(x)1B(y).
Once again, the equality follows easily in this case. More generally, we approximate
g+ and g− by linear combinations of products of indicator functions. �

After all the definitions, we would like to comment on how conditional expectations
can actually be computed. In the discrete case, this is quite obvious. Indeed, assume
that X only takes the values (xn)n∈N, P(X = xn) > 0 for every n. Then we can define
E[Y |X = x] as an elementary conditional expectation.

Lemma 4.17. Assume that X and Y are real random variables with a joint density fX,Y

such that Y is integrable and the marginal density of X is positive, i.e.,

fX(x) B
∫
R

fX,Y (x, y)dy > 0, ∀x ∈ R.

Then we can define the conditional density of Y given X by

fY |X(y|x) B
1

fX(x)
fX,Y (x, y),

and we obtain that

(4.5) E[Y |X = x] =

∫
R

y fY |X(y|x)dy.

Proof. Denoting the right hand side of (4.5) by g(x) and rolling up all the definitions
in this chapter, we see that we have to prove that

(4.6)
∫

C
gdPX =

∫
X−1(C)

YdP

for every Borel-set C. We start with the right hand side and see that

(4.7)
∫

X−1(C)
YdP =

∫
Ω

Y1C(X)dP =

∫
Ω

Y1C×R(X,Y)dP =

∫
C×R

y fX,Y (x, y)dxdy.

Note that

E[|Y |] =

∫
R2
|y| fX,Y (x, y)dxdy < ∞,
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and Fubini’s theorem implies that x 7→
∫

y fX,Y (x, y)dy is λ-almost everywhere defined
and integrable, and, by a similar argument, fX(x) is a.e. defined and finite. Thus,

g(x) =
1

fX(x)

∫
R

y fX,Y (x, y)dy

is well-defined, except for a Lebesgue-null-set N, on which either fX = ∞ or x 7→∫
y fX,Y (x, y)dy is not integrable. Since PX � λ, PX(N) = 0 as well. Moreover, g is

PX-integrable, since∫
|g| dPX =

∫
|g| fXdx =

∫ ∣∣∣∣∣∫ y fX,Y (x, y)dy
∣∣∣∣∣ dx ≤

∫
R2
|y| fX,Y (x, y)dydx < ∞.

Therefore, we get for the left hand side of (4.6)∫
C

gdPX =

∫
C

g(x) fX(x)dx =

∫
C×R

y fX,Y (x, y)dxdy,

which, together with (4.7), shows (4.6) and we may conclude that g(x) =E[Y |X = x].
�

4.3 Martingales
In this section we take a first look at one particular class of stochastic processes. A
stochastic process is nothing but a family (Xi)i∈I of random variables on some proba-
bility space (Ω,F , P). Since, at least intuitively, the index set I plays the role of time,
we usually take I = N or I = [0,∞[. In the following, we shall only consider the former
case.

If the random variables Xn are not independent, then one can accumulate informa-
tion by observing the random variables. At some time n, we have already observed
X1, . . . , Xn, and this enables us to make a better guess about Xn+1, i.e.,

E[Xn+1|X1, . . . , Xn] B E[Xn+1|σ(X1, . . . , Xn)] , E[Xn+1].

On the other hand, it is also conceivable that we have other sources of information
about Xn+1, not just the observations of previous instances. For example, Xn might be
the closing price of a particular stock at day n. Certainly, the prices of consecutive days
are not independent. On the other hand, there are also external sources of information,
for instance general economic quantities (like unemployment statistics) or particular
information relevant to the economic sector (news of instability in the Arabic world in-
fluencing prices of oil-related stocks) or the individual company (like criminal charges
against its CEO). Therefore, it makes sense to consider a more general model for the
flow of information.

Definition 4.18. Given a probability space (Ω,F , P), a filtration is an increasing family
(Fn)n∈N of sub-σ-algebras of F , i.e., for n < m we have Fn ⊂ Fm. (Ω,F , (Fn)n∈N, P) is
called filtered probability space.

A stochastic process (Xn)n∈N is adapted to a filtration (Fn)n∈N if for every n ∈ N the
random variable Xn is Fn-measurable.

For instance, in the example of a stock price process, we could choose Fn B
σ(X1, . . . , Xn) – the natural filtration – if we do not have any outside sources of in-
formation. Clearly, a process is adapted to its natural filtration. On the other hand, in
case of outside information, we can have Fn ⊃ σ(X1, . . . , Xn).
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Definition 4.19. Given a filtered probability space (Ω,F , (Fn), P) and an adapted stochas-
tic process (Xn)n∈N such that for every n the random variable Xn is integrable. The
process is called

• a martingale iff for every n < m we have

(4.8) E[Xm|Fn] = Xn P-a.s.,

• a supermartingale iff for every n < m we have E[Xm|Fn] ≤ Xn,

• a submartingale iff for every n < m we have E[Xm|Fn] ≥ Xn.

The same definitions hold, mutatis mutandis, in case of a stochastic process (Xn)N
n=1

indexed by finite time.

A martingale is a model of a fair game. Indeed, the condition (4.8) means in partic-
ular that the best guess for Xn+1 given all the information available at time n is precisely
Xn, cf. Theorem 4.8. Now assume we participate in a game of chance, which is offered
infinitely many times and let Xn denote our accumulated profit or loss after n rounds of
the game. If the game is fair, then our expectation of the individual profit from the next
round of the game should be zero, i.e., E[Xn+1 − Xn|Fn] = 0, or E[Xn+1|Fn] = Xn, and
by induction this implies that (Xn) is a martingale, where Fn is the filtration generated
by the game. This is, indeed, the classical motivation for the notion of a martingale,
and there are interesting consequences of the theory of martingales to games of chance.
Let us now give some more concrete examples.

Example 4.20. Let (Yn)n∈N be a sequence of integrable, independent, identically dis-
tributed random variables and assume that E[Yn] = 0. Then the random walk S n B∑n

k=1 Yk is a martingale with respect to the filtration Fn B σ(Y1, . . . ,Yn). However, if
we change the filtration, S n will generally loose the martingale property. E.g., if we
take the augmented filtration Gn B σ (Fn ∪ σ(S N)), then S n certainly is Gn-adapted,
but generally fails to be a martingale. (Show this as an exercise!)

Example 4.21. Let (Xn) be an i.i.d. sequence of integrable random variables, modeling
the outcome of the n’th round of a game. In round n, the player bets en−1(X1, . . . , Xn−1).
Let S 1 B X1 and S n+1 B S n + en(X1, . . . , Xn)Xn+1 be the total profit of the player after
n + 1 rounds. Assume that en ≥ 0 is uniformly bounded (in n and ω). Then S n is
integrable for every n, adapted to the filtration Fn = σ(X1, . . . , Xn), and a martingale,
iff and only iff E[X1] = 0. It is a submartingale iff E[X1] ≥ 0 and a supermartingale iff
E[X1] ≤ 0. This setting can be used as a model for many games of chance.

Example 4.22. Given an integrable random variable X and some filtration (Fn). Then
a martingale is given by Xn B E[X|Fn], n ∈ N. Since Fn is increasing, more and more
information about X is revealed over time. Therefore, it is an obvious question to ask
whether one can finally get all of it back, i.e., whether X = limn→∞ Xn. In general,
this cannot be true, since limn→∞ Xn, if it exists, is F∞ B σ

(⋃
n∈N Fn

)
-measurable, so

cannot be equal to X if X is not F∞-measurable. On the other hand, if X is indeed F∞-
measurable, then we really have X = limn→∞ Xn, and convergence holds both a.s. and
in L1. This is, indeed, a rather general situation: for any martingale (Xn)n∈N satisfying
some stronger integrability assumption (E[supn |Xn|] < ∞ is enough), there is an F∞-
measurable, integrable random variable X∞ “closing” the martingale, i.e., with Xn →

X∞ in L1 and a.s., implying that Xn = E[X∞|Fn], n ∈ N.
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Notice that for a martingale Xn the sequence E[Xn] of expected values is constant,
whereas it is increasing for a submartingale and decreasing for a supermartingale. A
stochastic process (Xn) is a martingale if and only if it is both a sub- and a supermartin-
gale, and a process is a supermartingale if and only if (−Xn) is a submartingale. We
end with some rather easy properties of martingales.

Lemma 4.23. Given a filtered probability space (Ω,F , (Fn), P).

(i) Let (Xn), (Yn) be martingales, a, b real numbers, then aXn + bXn is a martingale.

(ii) Let (Xn), (Yn) be sub- or supermartingales, a, b non-negative real numbers, then
aXn + bYn is a sub- or supermartingale, respectively.

(iii) Let (Xn) and (Yn) be supermartingales. Then Zn B min(Xn,Yn) is a supermartin-
gale.

(iv) Let (Xn) be a martingale and φ : R → R a convex function such that φ(Xn) is
integrable for any n. Then (φ(Xn))n∈N is a submartingale.

(v) Given an adapted integrable sequence of random variables (Xn). If we have
E[Xn+1|Fn] = Xn for every n ∈ N, then (Xn) is already a martingale.

4.4 Optional sampling
Definition 4.24. Given a filtered probability space (Ω,F , (Fn), P). A random variable
τ with values in N∞ B N ∪ {∞ } is called stopping time iff for every n ∈ N we have
{ τ ≤ n } ∈ Fn.

Stopping times are essential in modeling strategies in games of chance or in trading of
stocks.

Example 4.25. Given an adapted process (Xn)n∈N and a Borel-set A. Then

τA(ω) B inf { n ∈ N | Xn(ω) ∈ A } ,

the first hitting time of A, is a stopping time, where we use the convention that inf ∅ =

∞. Indeed,

{ τA ≤ n } =

n⋃
k=1

{ Xk ∈ A }︸     ︷︷     ︸
∈Fk

∈ Fn.

We note that for filtrations indexed by N, a random time τ is a stopping time iff

{ τ = n } ∈ Fn, ∀n ∈ N.

Definition 4.26. Given a stopping time τ, we define the σ-algebra

Fτ B { A ⊂ Ω | ∀n ∈ N∞ : A ∩ { τ ≤ n } ∈ Fn } ,

where F∞ B σ
(⋃

n∈N Fn
)
.

Lemma 4.27. Let σ ≤ τ be stopping times with respect to the same filtration (Fn).
Then Fσ ⊂ Fτ ⊂ F∞.
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Proof. First of all, for A ∈ Fτ we have A = A ∩ { τ ≤ ∞ } ∈ F∞. Since { τ ≤ n } ⊂
{σ ≤ n }, for A ∈ Fσ we have

A ∩ { τ ≤ n } = A ∩ {σ ≤ n }︸         ︷︷         ︸
∈Fn

∩ { τ ≤ n }︸   ︷︷   ︸
∈Fn

∈ Fn,

implying that A ∈ Fτ. �

Given an adapted process (Xn) with values in (E,E) and a stopping time τ with
P(τ < ∞) = 1, we define

(4.9) Xτ(ω) B

Xτ(ω)(ω), ω ∈ { τ < ∞} ,

x, ω ∈ { τ < ∞}c .

for some fixed x ∈ E. The justification of the definition of the τ-past is given in

Lemma 4.28. The random variable Xτ is P-a.s. uniquely determined andFτ-measurable.

Proof. We have to prove measurability. For some A′ ∈ E, we set A B X−1
τ (A′) and

have to prove that A ∈ Fτ. For n ∈ N we have

A ∩ { τ ≤ n } = A ∩
n⋃

k=1

{ τ = k } =

n⋃
k=1

X−1
k (A′)︸  ︷︷  ︸
∈Fk

∩ { τ = k }

 ∈ Fn.

Now consider n = ∞. Clearly, { τ ≤ ∞ } = { τ < ∞} ∪ { τ = ∞}, and A ∩ { τ < ∞} =⋃
n∈N A ∩ { τ = n } ∈ F∞. On the other hand,

A ∩ { τ = ∞} =

{ τ = ∞} , x ∈ A′,
∅, x < A′,

∈ F∞. �

Lemma 4.29. Let (Xn)n∈N be a martingale and τ a stopping time with respect to the
same filtration (Fn)n∈N. If τ is bounded by a constant K, then E[Xτ] = E[X1].

Proof. By construction of Xτ, we have Xτ(ω) =
∑K

n=1 Xn(ω)1{ n }(τ(ω)), implying that
Xτ is integrable since |Xτ| ≤

∑K
n=1 |Xn| and that

E[Xτ] = E

 K∑
n=1

Xn1{ τ=n }

 =

K∑
n=1

E[Xn1{ τ=n }].

Since { τ = n } ∈ Fn and Xn = E[XK |Fn] a.s., we further get

E[Xτ] =

K∑
n=1

E[E[XK |Fn]1{ τ=n }] =

K∑
n=1

E[XK1{ τ=n }]

= E

XK

K∑
n=1

1{ τ=n }

 = E[XK] = E[X0]. �

Theorem 4.30 (Optional sampling theorem). Let (Xn) be an (Fn)-martingale and τ1 ≤

· · · ≤ τN be a finite sequence of bounded stopping times. Then (Xτn )N
n=1 is a martingale

with respect to (Fτn )N
n=1.
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Proof. First we note that it suffices to consider the case of two stopping times σ ≤ τ ≤
K. Note that both stopped random variables are integrable, since |Xτ| ≤

∑K
n=1 |Xn| and

likewise for Xσ. For any fixed A ∈ Fσ we need to show that E[Xτ1A] = E[Xσ1A].
Define a random time ρ by

ρ(ω) B σ(ω)1A(ω) + τ(ω)1Ac (ω).

Since A ∈ Fσ, we also have Ac ∈ Fτ, implying that

{ ρ ≤ n } = A ∩ {σ ≤ n }︸         ︷︷         ︸
∈Fn

∪ Ac ∩ { τ ≤ n }︸          ︷︷          ︸
∈Fn

∈ Fn.

Thus, ρ is a stopping time. By Lemma 4.29, we have

E[Xρ] = E [Xσ1A + Xτ1Ac ] = E[X1],
E[Xτ] = E [Xτ1A + Xτ1Ac ] = E[X1].

Subtracting both equalities then gives

E[Xσ1A] = E[Xτ1A]. �

If one starts with a supermartingale instead of a martingale, then the sampled pro-
cess is again a supermartingale, and likewise for submartingales.

Corollary 4.31 (Optional stopping theorem). Let (Xn) be an (Fn)-(super-)martingale
and τ a stopping time with respect to (Fn). Define the stopped process Xτ

n B Xmin(n,τ).
Then (Xτ

n) is again an (Fmin(n,τ))-(super-)martingale.

Remark 4.32. Various generalizations of the optional sampling theorem removing
the stringent assumption of uniformly bounded stopping times are possible. A quite
general version is the following: given a martingale (Xn)n∈N and an increasing sequence
(τn)n∈N of stopping times such that E

[∣∣∣Xτn

∣∣∣] < ∞ and

lim inf
N→∞

∫
{ τn>N }

|XN | dP = 0

for any n ∈ N. Then the sequence
(
Xτn

)
n∈N is a martingale.

Essentially, Theorem 4.30 and Corollary 4.31 say that there are no feasible winning
strategies in fair games. Indeed, we have before argued that fair games of chance can
be modeled as martingales. There are many ways how to model strategies in games, but
one way is outlined in Example 4.21, where we allowed to choose the bets as a function
of the previous history of outcomes. Another way would be to apply optimal stopping
rules. In both cases, we have to require some kind of boundedness condition. Either
we require that the total loss accrued must be uniformly bounded, or we require that
we have to stop before some deterministic time K. Both requirements are natural from
the perspective of true gaming situations, and using Example 4.21 and Corollary 4.31,
respectively, we see that no such strategy can lead to a gain on average. However, the
following example shows that the boundedness requirement is critical.

Example 4.33. Let us toss a fair coin over an over again (independent of each other),
and let Xn be 1 if the outcome of the n’th toss is head, and −1 otherwise. Then (Xn)n∈N

is a martingale. (Which filtration should one use?) Assume that we have unbounded
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credit and we start with Y0 = 0 on our gaming account. We bet on the subsequent
outcome of the coin tosses, and we get back twice the stake if we guess right an lose
the stake otherwise. Let us follow the following strategy: we always bet twice the
amount of the previous time, but stop when we win for the first time. We start with an
initial stake of 1. Assuming that we always bet on head, this means that

Yn =

n∑
k=1

2k−1Xk

and τ = inf { n | Xn = 1 }. Note that

Yτ =

∞∑
n=1

2n−1 −

n−1∑
k=1

2k−1

 1{ τ=n } =

∞∑
n=1

(
2n−1 − (2n−1 − 1)

)
1{ τ=n } = 1,

implying that this doubling strategy indeed almost surely ends up profitable. Note that
we even have P(τ < ∞) = 1. However, the stopping time τ is unbounded, meaning
we have to potentially wait an infinite time, and the accrued loss in the mean time is
unbounded as well, since Yn−1 = 1 − 2n−1 if τ = n. Thus, we indeed need unbounded
credit in order to follow this strategy.
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Chapter 5

Stochastic processes

In this chapter, we will discuss several classes of stochastic processes, give examples
and approach the delicate problem of construction of stochastic processes, i.e., of prob-
ability spaces, on which a certain stochastic process can be defined. We will usually
work in the following setting. We start with a probability space (Ω,F , P). A stochastic
process is then a family (Xi)i∈I of real random variables Xi, i ∈ I. Here, the index set I
represents time and we will either have discrete time stochastic processes – with I = N
or I = { 1, . . . ,N } – or continuous time stochastic processes – with I = R+ = [0,∞[ or
I = [0,T ].

5.1 Examples
Already in Chapter 4 we have encountered some important classes of stochastic pro-
cesses, namely martingales, super- and sub-martingales. While we have only defined
those notions in discrete time, the generalization to continuous time is obvious. In this
section, we are concerned with more “constructive” possible properties of stochastic
processes, i.e., with properties which allow or help with constructing the process in the
sense indicated above.

A notion of similar importance as the notion of a martingale is the notion of a
Markov process. Intuitively, a stochastic process has the Markov property if at any
time i ∈ I the whole information available about the future development of the process
is already contained in the current value Xi. This is an analogue to the notion of a
dynamical system, where again the future dynamics only depends on the current value,
but not on the past, i.e., not on the prior development of the process leading to the
current position. More formally, we have

Definition 5.1. Given a filtered probability space (Ω,F , (Fi)i∈I , P) and an adapted
stochastic process (Xi)i∈I . The process satisfies the Markov property (and is then called
a Markov process) w.r.t. the filtration (Fi)i∈I iff for ever i < j ∈ I and any A ∈ B(R) we
have

P
(
X j ∈ A|Fi

)
= P

(
X j ∈ A|Xi

)
a.s.

We will simply call it a Markov process, if the filtration is generated by the process,
i.e., if Fi = σ

(
X j : j ∈ I, j ≤ i

)
.

As already in the case of a martingale, in discrete time it suffices to check the
Markov property for indices j = i + 1. When I = N, the distribution of a Markov
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process (Xn)n∈N is determined by the initial distribution, i.e., the distribution of X1, and
the transition distributions P(Xn+1 ∈ A|Xn), n ∈ N.

Example 5.2. Let (Xn)n∈N be a sequence of independent, identically distributed real
random variables, Y a real random variable independent of (Xn) and define a stochastic
process (S n)n∈N0 by S 0 B Y and S n B S n−1 + Xn, n ∈ N. (S n is called a random walk.)
Then (S n) is a Markov process (with respect to the natural filtration). Indeed, Xn is
independent of σ(S 1, . . . , S n−1) = σ(Y, X1, . . . , Xn−1), implying that
(5.1)

P(S n ∈ A|Fn−1) = E[1A(S n−1 + Xn)|Fn−1] = E[1A(s + Xn)]|s=S n−1
= P(S n ∈ A|S n−1),

where we have used Lemma 4.16 part (ii) together with Lemma 4.5 part (vi).1

If E[Xn] = 0 for every n, then (Xn)n∈N is also a martingale

Example 5.3. Assume we are given a Markov process (Xn)n∈N in discrete time with
a finite state space, w.l.o.g., the state space can be chosen to be { 1, . . . ,M } for some
M ∈ N. In this case, (Xn) is called a (discrete time) Markov chain. We may represent
the transition distributions by matrices Pn B (pi, j

n )M
i, j=1, n ∈ N defined by

pi, j
n B P(Xn+1 = j|Xn = i).

Pn has the property that all entries are non-negative and ∀i :
∑M

j=1 pi, j
n = 1. On

the other hand, every such matrix Pn can be interpreted as the transition matrix of a
Markov chain. In most cases, one considers time-homogeneous Markov chains, which
means that Pn ≡ P for any n. Note that the transition probabilities over more than
one step of the Markov chain are obtained via matrix multiplication. Indeed, by the
Chapman-Kolmogorov equation, we have

P(Xn+2 = j|Xn = i) =

n∑
k=1

pi,k pk, j = (P · P)i, j = (P2)i, j.

For the actual distribution of Xn, we also need to fix the initial distribution, i.e., the
distribution of X1. We are free to choose whatever distribution, say πi = P(X1 = i),
i = 1, . . . ,M. Then we have for any n and any i

P(Xn+1 = 1)
...

P(Xn+1 = M)

 = (Pn)T


π1

...
πM

 .
This means that we, indeed, can construct an underlying probability space for any
discrete time Markov chain.

1More precisely, we argue as follows for the last equality: Let us assume we are given a regular version
of the conditional distribution of P(Xn ∈ ·|S n−1 = s). Then from Lemma 4.16, we know that

E[1A(S n−1 + Xn)|S n−1 = s] =

∫
R

1A(s + x)P(Xn ∈ dx|S n−1 = s) = E[1A(s + Xn)]

by independence. This implies that

P(S n ∈ A|S n−1) = E[1A(s + Xn)]|s=S n−1 .

For the second equality in (5.1), we need a similar formula for the general conditional expectation, allow-
ing to “integrate out independent terms”, which can be easily proved by the usual arguments starting with
indicator functions.
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Exercise 5.4. How can one realize a discrete time Markov chain on the probability
space ([0, 1],B([0, 1]), λ|[0,1])⊗N? I.e., given the initial distribution π and the transition
matrix P, explicitly construct the random variables (Xn)n∈N such that they have the
correct distributions and conditional distributions.

Next we are going to give examples in continuous time, which fall into a very
important sub-class of continuous time Markov processes.

Definition 5.5. A stochastic process (Xt)t≥0 is called Lévy process iff

(i) X0 = 0 a.s.,

(ii) the process has independent increments, i.e., for any n ∈ N and 0 ≤ t1 < t2 <
· · · < tn the random variables Xt2 − Xt1 , Xt3 − Xt2 , . . . , Xtn − Xtn−1 are independent,

(iii) the process has stationary increments, i.e., for any t ≥ 0 and any h > 0 the
increment Xt+h − Xt has the same distribution as Xh (i.e., the distribution of the
increment only depends on h but not on t),

(iv) the paths t 7→ Xt(ω) are a.s. right continuous with left limits.

In a sense, the notion of a Lévy process is the appropriate generalization of the
notion of a random walk as in Example 5.2 to the continuous time setting, except that
we did not require S 0 = 0 there – even though this would be a common assumption.
In particular, the same argument as in the example shows that any Lévy process is a
Markov process. In a way that can be made precise, there are two “extremal” Lévy
processes, namely the Poisson process and the Brownian motion.

Definition 5.6. A Lévy process (Nt)t≥0 is called Poisson process with parameter λ > 0
iff for every h > 0 the random variable Nh has the Poisson distribution with parameter
λh, i.e.,

P(Nh = k) =
(λh)k

k!
e−λh.

In particular, this means that Nt is an increasing process only taking integer values.
The Poisson process is often used in mathematical models. A representative use of the
Poisson process can be found in insurance mathematics.

Example 5.7. One way to model insurance business is to use separate models for the
number and times of claims on the one hand, and for the size of claims on the other
hand. If claims occur largely independent of each other (i.e., without big clusters), then
the arrival of claims can be modeled by a Poisson process with a suitable (possibly
time-dependent) intensity λ.2 The claim sizes are assumed to be i.i.d. random variables
which are independent of the claim numbers. More precisely, they are represented
by an i.i.d. sequence (Xn)n∈N of positive random variables independent of the Poisson
process (Nt)t≥0. Then the accumulated claim size of the insurance company up to time
t is modeled by

(5.2) S t B

Nt∑
n=1

Xn.

2Up to the usual imperfections, this assumption might be reasonable for car insurance, but certainly not
reasonable for insurances against earthquakes or storms. Mathematically, the claim is justified by Theo-
rem 5.10 below.
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The process (S t)t≥0 is known as a compound Poisson process and is again a Lévy pro-
cess. Its distribution is known as compound Poisson distribution. On the other hand,
the insurance company also gets premia. Assume that premia are paid continuously
with a rate c. Then the overall loss Lt of the insurance company at time t satisfies

Lt = S t − ct.

This model for the aggregate losses is known as Lundberg model. Note that Lt is still a
Lévy process.

Exercise 5.8. • Verify that the compound Poisson process (5.2) is a Lévy process
and compute its expected value and variance, assuming that they exist.

• Compute the characteristic function of the compound Poisson process.

• Show that the loss process (Lt)t≥0 is a Lévy process.

Definition 5.9. A Lévy process (Bt)t≥0 is called Brownian motion iff for any h > 0 we
have Bt ∼ N(0, t) and the paths t 7→ Bt(ω) are a.s. continuous.

5.2 Poisson process

The reason why the Poisson process is so often applied is the following observation.

Theorem 5.10. Given a counting process (i.e., an integer-valued increasing process)
(Nt)t≥0 with independent and stationary increments satisfying

• P(N0 = 0) = 1,

• P(Nh = 1) = λh + o(h) for h→ 0,

• P(Nh > 1) = o(h) for h→ 0

for some λ > 0. If the paths are chosen in such a way that the process is right continu-
ous, then (Nt)t≥0 is a Poisson process.

Proof. We need to prove that pn(t) B P(Nt = n) gives the probability function of the
Poisson distribution with parameter λt. Let us first consider n = 0. By the assumptions,
we have

p0(t + h) = P(Nt+h − Nt = 0)P(Nt = 0) = (1 − λh + o(h))p0(t),

implying that

ṗ0(t) = lim
h→0

p0(t + h) − p0(t)
h

= lim
h→∞

(
−λ +

o(h)
h

)
p0(t) = −λp0(t).

Solving the ODE with the initial value p0(0) = 1 we obtain the desired

(5.3) p0(t) = e−λt.

50



Now we tackle n > 0. By independence and stationarity of the increments, we again
have

pn(t + h) =

n∑
j=0

P(Nt+h − Nt = j|Nt = n − j)P(Nt = n − j)

=

n∑
j=0

P(Nt+h − Nt = j)P(Nt = n − j)

=

n∑
j=0

P(Nh = j)pn− j(t)

= pn(t)P(Nh = 0) + pn−1(t)P(Nh = 1) +

n∑
j=2

P(Nh = j)pn− j(t).

We estimate the sum by

n∑
j=2

P(Nh = j)pn− j(t) ≤
n∑

j=2

P(Nh = j) ≤ P(Nh > 1) = o(h),

giving us

pn(t + h) = pn(t)(1 − λh + o(h)) + pn−1(t)(λh + o(h)) + o(h).

As before, we obtain

ṗn(t) = −λpn(t) + λpn−1(t), pn(0) = 0,

or, multiplying with eλt,
d
dt

(
eλt pn(t)

)
= λeλt pn−1(t),

which can be solved iteratively starting with (5.3). By induction, we get eλt pn(t) =

(λt)n/n! or

pn(t) =
(λt)n

n!
e−λt. �

Basically, the main conditions of Theorem 5.10 mean that the probability of two
“nearly simultaneous” jumps is small compared to the probability of one jump.

Remark 5.11. Instead of recording the number of jumps Nt until time t, we can also
look at the jump times. Indeed, let

(5.4) Tn B inf { t | Nt ≥ n } , n ∈ N0.

and consider the inter-arrival times

(5.5) τn B Tn − Tn−1, n ∈ N.

This leads to the following characterization of the Poisson process:

• The inter-arrival times (τn)n∈N of a Poisson process (Nt)t≥0 with intensity λ are in-
dependent and exponentially distributed with parameter λ (i.e., with expectation
1/λ).
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• Given a sequence of i.i.d. exponential random variables (σn)n∈N, define

Mt B sup

 n

∣∣∣∣∣∣∣
n∑

k=1

σk ≤ t

 .
Then (Mt)t≥0 is a Poisson process.

Remark 5.11 gives a way to construct a Poisson process. Indeed, we know how to
construct a probability space on which a sequence (τn)n∈N of i.i.d. exponential random
variables can be defined. Therefore, we can construct the Poisson process on this
probability space.

Exercise 5.12. Let (Nt)t≥0 be a Poisson process with intensity λ. Then the conditional
distribution of the first jump time T1 given that Nt = 1 is the uniform distribution on
[0, t].

Indeed, the assertion of Exercise 5.12 can be generalized: given that Nt = n, the
jump times (T1, . . . ,Tn) are distributed according to the order statistics of n independent
uniform distributions on [0, t]. This means that we sample n times from the uniform
distribution and order these n random variables according to their size. Then we have
obtained a sample from the distribution of (T1, . . . ,Tn) conditioned on Nt = n.

5.3 Construction of stochastic processes
As before, by construction of a stochastic process (Xi)i∈I we mean the construction
of a probability space (Ω,F , P) such that the stochastic process (Xi)i∈I can be defined
on (Ω,F , P). Usually, this will be done by referring to already known constructions.
For instance, in the case of the Poisson process, we established an explicit formula of
(Nt)t≥0 in terms of the inter-arrival times, which form an i.i.d. sequence of exponential
random variables, see Remark 5.11. However, we know how to construct a proba-
bility space supporting an i.i.d. sequence of exponentials as infinite product space of
(]0,∞[,B(]0,∞[), f (x)dx) with f (x) = exp(−λx)/λ. Thus, the Poisson process can be
defined on this product space.

We are going to give constructions for two special cases: first we are going to treat
a general Markov process in discrete time, where we assume the transition kernels to be
given. Then we extend this to continuous-time processes where all finite-dimensional
marginals are given.

More precisely, given a sequence κn of Markov kernels on (R,B(R)), we want to
construct a Markov process (Xn)n∈N such that

(5.6) κn(x, A) = P(Xn+1 ∈ A|Xn = x), ∀n ∈ N, x ∈ R, A ∈ B(R).3

By the Markov property, we intuitively expect that those transition probabilities should
already carry enough information to construct the process. But before going in this
direction, we have to do discuss a bit more about Markov kernels.

Let (En,En) be measurable spaces, n ∈ N. Let κ1 be a stochastic kernel defined on
E1 × E2 and κ2 a stochastic kernel defined on (E1 × E2) × E3. Then we can define a
Markov kernel κ1 ⊗ κ2on E1 × (E2 ⊗ E3) by

(5.7) κ1 ⊗ κ2(x, A) B
∫

E2

κ1(x, dy)
∫

E3

κ2((x, y), dz)1A(y, z), A ∈ E2 ⊗ E3, x ∈ E1.

3In fact, in the following we will never use specific properties of the measurable space (R,B(R)), so the
result will be valid on any measurable space.
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Lemma 5.13. The map κ1 ⊗ κ2 defined in (5.7) is a Markov kernel.

Proof. With a similar argument as in Fubini’s theorem, one sees that

(x, y) 7→
∫

E3

κ2((x, y), dz)1A(y, z)

is E1 ⊗E2-measurable for any A ∈ E2 ⊗E3.4 Integrating again with respect to κ1 yields,
with the same argument, E1-measurability of

x 7→ κ1 ⊗ κ2(x, A) B
∫

E2

κ1(x, dy)
∫

E3

κ2((x, y), dz)1A(y, z).

On the other hand, for fixed x, the set function A 7→ κ1 ⊗ κ2(x, A) is non-negative with
κ1⊗κ2(x, E2×E3) = 1 and κ1⊗κ2(x, ∅) = 0. Finite additivity of the set function follows
immediately by linearity of the integral, and σ-additivity is then implied by monotone
convergence. �

Of course, κ2 may be defined on E2 only by treating it as a constant function in the
first part of the first argument. Moreover, given a probability measure µ on (E1,E1)
and a Markov kernel κ on E1 × E2, then we can define a probability measure µ ⊗ κ on
E1 ⊗ E2 by

(5.8) µ ⊗ κ(A1 × A2) B
∫

A1

µ(dx)κ(x, A2), A1 ∈ E1, A2 ∈ E2,

extending it to E1 ⊗ E2 by Caratheodory. (By Lemma 5.13, µ ⊗ κ is a Markov kernel,
which does not depend on the first component.) Note that we have a generalized Fubini
theorem for products of measures and Markov kernels: for any Markov kernel κ defined
on E1 × E2, any probability measure µ on E1 and any (integrable or non-negative)
measurable function f defined on E1 × E2, we have

(5.9)
∫

E1×E2

f (x, y)(µ ⊗ κ)(d(x, y)) =

∫
E1

(∫
E2

f (x, y)κ(x, dy)
)
µ(dx).5

Intuitively, equation (5.9), which also holds, mutatis mutandis, for products of Markov
kernels, says that it does not matter in which order we integrate.

Iteratively, given Markov kernels κn on
(∏n

i=1 Ei

)
× En+1, the Markov kernel κ1 ⊗

· · · ⊗ κn is defined on E1 ×
(⊗n+1

i=2 Ei

)
and µ ⊗ κ1 ⊗ · · · κn is a probability measure on⊗n+1

i=1 Ei.
Regarding stochastic processes, let µ = PX1 and

κn((x1, . . . , xn), A) = P(Xn+1 ∈ A|X1 = x1, . . . , Xn = xn).

Then
µ ⊗ κ1 ⊗ · · · ⊗ κn−1 = P(X1,...,Xn).

Of course, in the case of a Markov process, κn((x1, . . . , xn), A) = κn(xn, A) depends only
on xn, x1, . . . , xn ∈ R, A ∈ B(R). In fact, the following theorem asserts that we can go
to the limit n→ ∞ in this construction.

4 Given a measurable function f : E1 × E2 → R≥0 and a Markov kernel κ : E1 × E2 → [0, 1], then the
map x 7→

∫
f (x, y)κ(x, dy) is measurable. This is obvious for f = 1A1 1A2 with Ai ∈ Ei. Then it is easy to

show that the system D of all sets A ∈ E1 ⊗ E2 such that we have measurability with f = 1A is a Dynkin
system containing the measurable rectangles, implying thatD = E1 ⊗ E2. Then one can extend the result to
any measurable function f as above by the construction of the integral.

5For the proof note that the equality holds by definition for f = 1A1 1A2 with Ai ∈ Ei. Then one can
extend the formula to f = 1A and finally to general measurable f by a series of approximating arguments.
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Theorem 5.14 (Ionescu-Tulcea). Given a sequence of measurable spaces (En,En),
n ∈ N, a probability measure P1 on (E1,E1) and a sequence of Markov kernels κn

defined on
(∏n

i=1 Ei

)
× En+1. Set

(Ωn,Fn) B
n⊗

i=1

(Ei,Ei), n ∈ N, (Ω,F ) B
⊗
n∈N

(En,En),

and define probability measures Pn on (Ωn,Fn) by

Pn B P1 ⊗ κ1 ⊗ · · · ⊗ κn−1.

Then there is a unique probability measure P on (Ω,F ) such that

∀n ∈ N, ∀(A1 × · · · × An) ∈
n⊗

i=1

Ei : P

A1 × · · · × An ×

∞∏
i=n+1

Ei

 = Pn(A1 × · · · × An).

Example 5.15. We want to construct a Markov process (Xn)n∈N on R. We know that
there is always a regular version of the conditional distribution. Assume we are given
the Markov kernels

κn(x, A) = P(Xn+1 ∈ A|Xn = x), x ∈ R, A ∈ B(R).

Moreover, we are given the initial distribution µ of X1. By Theorem 5.14, there is a
(unique) probability measure P on the measurable space

(Ω,F ) = (R,B(R))⊗N

such that the process defined by the projections πn satisfies the requirements, i.e.,

P(π1 ∈ A) = µ(A), P(πn+1 ∈ A|πn = x) = κn(x, A), x ∈ R, A ∈ B(R), n ∈ N.

Indeed, we can interpret κn as Markov kernel on Rn × B(R) as in the theorem.

Proof of Theorem 5.14. Uniqueness of P is clear since P is uniquely determined on the
cylinder sets, which form a generator of

⊗
n∈N En closed under intersections. So we

only have to prove existence.
Let A denote the system of cylinder sets, i.e., A = p−1

{ 1,...,n }(A) for some n ∈ N and
A ∈ Fn, where p{ 1,...,n } : Ω → Ωn is the projection map. A set-function P is defined on
A by

P(p−1
{ 1,...,n }(A)) B Pn(A), A ∈ Fn.

It is clear that 0 ≤ P ≤ 1 and that P(Ω) = 1. Moreover, finite additivity is also clear,
since for a finite sequence A1, . . . , AM of cylinder sets we can find a common index
n such that A1, . . . , AM ∈ p−1

{ 1,...,n }(Fn). By Carathéodory’s extension theorem, we can
extend P to a probability measure on F provided that P is upper continuous at ∅, i.e.,
for any sequence (An)n∈N of cylinder sets with An ↘ ∅ we have limn→∞ P(An) = 0.

So assume we are giving a decreasing sequence of cylinder sets An = p−1
{ 1,...,n }(Bn)

with α B infn P(An) > 0 and Bn ∈ Fn.6 For 1 ≤ m < n and (x1, . . . , xm) ∈ E1 × · · · × Em

set

hm,n(x1, . . . , xm) B

δ{ (x1,...,xm) } ⊗

n−1⊗
k=m

κk

 (Bn),

6This is a notational simplification. In general, we would have to assume that An = p−1
{ 1,...,kn }

(Bn) for
some Bn ∈ Fkn with a sequence kn which we might assume to be increasing. It is not difficult to extend the
following arguments to this general situation, but they are more transparent in the simpler case.
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hm(x1, . . . , xm) B infn>m hm,n(x1, . . . , xm). We will show that for any n there is a ρn ∈ En

such that for every m, hm(ρ1, . . . , ρm) ≥ α. Since Bn+1 ⊃ Bn × En+1, we have

hm,n+1(x1, . . . , xm) =

δ{ (x1,...,xm) } ⊗

n⊗
k=m

κk

 (Bn+1)

≤

δ{ (x1,...,xm) } ⊗

n⊗
k=m

κk

 (Bn × En+1)

=

δ{ (x1,...,xm) } ⊗

n−1⊗
k=m

κk

 (Bn)

= hm,n(x1, . . . , xm).

Thus, hm = limn→∞ hm,n is a decreasing limit. Noting that by the (generalized) Fubini
theorem

∫
Ωm

hm,ndPm =

∫
Ωm

(∫
Ωn

δ{ x1,...,xm }(d(y1, . . . , ym))
n−1⊗
k=m

κk((y1, . . . , ym), d(ym+1, . . . , yn))

1Bn (y1, . . . , yn)
)
Pm(d(x1, . . . , xm))

=

∫
Ωn

(∫
Ωm

δ{ x1,...,xm }(d(y1, . . . , ym))Pm(d(x1, . . . , xm))
)

n−1⊗
k=m

κk((y1, . . . , ym), d(ym+1, . . . , yn))1Bn (y1, . . . , yn)

=

∫
Ωn

Pm(d(y1, . . . , ym))
n−1⊗
k=m

κk((y1, . . . , ym), d(ym+1, . . . , yn))1Bn (y1, . . . , yn)

= Pn(Bn),

where we used that by Fubini’s theorem

∫
y∈A

∫
x∈Ωm

δ{ (x1,...,xm) }(dy)Pm(dx) =

∫
x∈Ωm

∫
y∈A

δ{ (x1,...,xm) }(dy)Pm(dx)

=

∫
x∈Ωm

1A(x)Pm(dx) = Pm(A)

for A ∈ Fm, which can be (by abuse of notation) expressed as∫
Ωm

δ{ (x1,...,xm) }(d(y1, . . . , ym))Pm(d(x1, . . . , xm)) = Pm(d(y1, . . . , ym)).

By the monotone convergence theorem we have∫
Ωm

hm(x)Pm(dx) = inf
n>m

∫
Ωm

hm,n(x)Pm(dx) = inf
n>m

Pn(Bn) ≥ α.
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Thus, h0 ≥ α. On the other hand, we have∫
Em+1

hm+1(ρ1, . . . , ρm, y)κm((ρ1, . . . , ρm), dy)

= inf
n>m+1

∫
Em+1

hm+1,n(ρ1, . . . , ρm, y)κm((ρ1, . . . , ρm), dy)

= inf
n>m+1

hm,n(ρ1, . . . , ρm) ≥ hm(ρ1, . . . , ρm) ≥ α,

so that we can, indeed, find ρm+1 ∈ Em+1 with hm+1(ρ1, . . . , ρm+1) ≥ α.
Thus, we have constructed a sequence (ρn)n∈N ∈ Ω such that

α ≤ hm,m(ρ1, . . . , ρm) = 1Bm (ρ1, . . . , ρm),

implying that (ρn)n∈N ∈
⋂

n∈N An , ∅. �

The other situation we are going to treat is a general stochastic process (Xi)i∈I given
by its marginal distributions. Let us assume that the state space of the process is R, i.e.,
Xi is an (R,B(R))-valued random variable, i ∈ I.7 For any finite subset J ⊂ I, we are
given the distribution µJ of the R|J|-valued random variable (Xi)i∈J . In which cases is it
possible to construct a probability space (Ω,F , P) and random variables Xi : Ω → R,
i ∈ I, such that we have

(5.10) ∀J ⊂ I, |J| < ∞ : P(Xi)i∈J = µJ?

If such a process (Xi)i∈I exists, we call the family of probability measures (µJ)J∈F(I)
the family of finite-dimensional marginal distributions of the process, where we have
used the notation F(I) B { J ⊂ I | |J| < ∞ }. Of course, there needs to be some kind of
consistency requirement. After all, given J1 ⊂ J2 ∈ F(I), then µJ1 is already determined
by µJ2 : denoting with pJ2,J1 : RJ2 → RJ1 to projection mapping (xi)i∈J2 to (xi)i∈J1 , we
have

(5.11)
(
µJ2

)
pJ2 ,J1

= µJ1 .

It turns out, however, that this consistency condition is already sufficient. For the state-
ment of the theorem let us also introduce the notation pJ for the projection (xi)i∈I 7→

(xi)i∈J for J ⊂ I.

Theorem 5.16 (Kolmogorov’s extension theorem). Given a polish space E with the
Borel σ-algebra B(E), an index set I and a consistent family (µJ)J∈F(I) of probability
measures on (E,B(E))⊗J , respectively, i.e., a family satisfying (5.11) for any J1 ⊂ J2 ∈

F(I).8 Then there is a unique probability measure µ on (E,B(E))⊗I such that

∀J ∈ F(I) : µpJ = µJ .

µ is called the projective limit of the probability measures (µJ) and denoted by

µ = lim
←−−
J↑I

µJ .

7We may treat processes with a polish state space in the same way, but one can show that it is not possible
to generalize this approach to general measurable state spaces.

8We could easily choose different polish spaces Ei, i ∈ I. Since the proof remains the same (except for
more complicated notations), and the stochastic process with changing state spaces seem to be rather exotic,
we only treat the standard case here.
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Put differently, choose (Ω,F , P) = (EI ,B(E)⊗I , µ) and Xi = πi B p{ i }, then the
stochastic process (Xi)i∈I has the finite dimensional marginals (µJ)J∈F(I). The process
(Xi)i∈I = (πi)i∈I defined like this is known as the canonical process.

Proof. We prove the theorem in two stages.
1. Countable index set I.
If the index set I is countable, then we may assume I = N. For n ∈ N consider
µn B µ{ 1,...,n }, a probability measure on (En,B(E)⊗n). Note that En is again polish and
B(E)⊗n = B(En). Therefore, there is a regular conditional distribution

κn−1((x1, . . . , xn−1), A) = µn(πn ∈ A|π1 = x1, . . . , πn−1 = xn−1),

A ∈ B(E), x1, . . . , xn−1 ∈ E. By Lemma 4.16, the Markov kernel κn−1 defined on
En−1 × B(E) satisfies for all A ∈ B(En) :

µn(A) =

∫
En

1A(x1, . . . , xn)κn−1((x1, . . . , xn−1), dxn)(µn)p{ 1,...,n },{ 1,...,n−1 } (d(x1, . . . , xn−1))

=

∫
En

1A(x1, . . . , xn)κn−1((x1, . . . , xn−1), dxn)µn−1(d(x1, . . . , xn−1)),

where we used the consistency condition (5.11). Thus, we have iteratively

µn = µ1 ⊗ κ1 ⊗ · · · κn−1, n ∈ N,

and the assertion follows from Theorem 5.14.
2. Uncountable index set I
Let G(I) B { J ⊂ I | J countable }. Recall that

(5.12) B(E)⊗I =
⋃

J∈G(I)

p−1
J

(
B(E)⊗J

)
=

⋃
J∈G(I)

σ(pJ).9

For any J ∈ G(I), by the first step of the proof we can construct a probability measure
µJ on (EJ ,B(EJ)) with µK = (µJ)pJ,K , K ∈ F(I), K ⊂ J. Thus, given two index sets
J, J′ ∈ G(I), we know that

µJ(p−1
J,K(A)) = µJ′ (p−1

J′,K(A)) = µK(A)

for all cylinder sets A ∈ B(E)⊗K with K ⊂ J ∩ J′. Since the cylinder sets form a
generator closed under intersections, this means that the probability measures µ̃J and
µ̃J′ defined on σ(pJ) and σ(pJ′ ), respectively, by µ̃J(A) = µJ(B) with A = p−1

J (B) (and
similarly for J′) coincide on σ(pJ) ∩ σ(pJ′ ), i.e.,

∀A ∈ σ(pJ) ∩ σ(pJ′ ) : µ̃J(A) = µ̃J′ .

Using (5.12), we may therefore define a set function µ on B(E)⊗I by

µ(A) B µ̃J(A) for J ∈ G(I) with A ∈ σ(pJ), A ∈ B(E)⊗I .

We need to show that µ is a probability measure. Obviously, 0 ≤ µ ≤ 1 and µ(EI) = 1.
Given a sequence of disjoint measurable sets An, let Jn ∈ G(I) such that An ∈ σ(pJn ),
n ∈ N. Then J B

⋃
n∈N Jn ∈ G(I) and ∀n : An ∈ σ(pJ),

⋃
n∈N An ∈ σ(pJ), implying

that

µ

⋃
n∈N

An

 = µ̃J

⋃
n∈N

An

 =
∑
n∈N

µ̃J(An) =
∑
n∈N

µ(An). �

9Indeed, the right hand side is a σ-algebra, since countable unions of countable sets are countable.
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Chapter 6

Brownian motion

Recall that a (standard, one-dimensional) Brownian motion is a stochastic process
(Bt)t≥0 with a.s. continuous paths, B0 = 0 and independent stationary increments with
distribution Bt−Bs ∼ N(0, t−s) for t > s ≥ 0, see Definition 5.9. We note that one could
also consider Brownian motions with drifts, i.e., processes Xt = µt + σBt and multi-
dimensional Brownian motions, which are vector-valued processes whose individual
components are Brownian motions such that the increments are multi-dimensional
Gaussians. The first question is whether such a process exists.

6.1 Construction of the Brownian motion
In light of Section 5.3, the obvious way to construct a probability space (Ω,F , P)
carrying the Brownian motion would be following Kolmogorov’s extension theorem
(Theorem 5.16). Indeed, given any finite ensemble of time points 0 ≤ t1 < t2 < · · · < tn,
it easily follows from the definition of Brownian motion that

(6.1) (Bt1 , . . . , Btn ) ∼ N(0,Σ), Σ = (σi, j)n
i, j=1 with σi, j = min(ti, t j), 1 ≤ i, j ≤ n.

It is also easy to see that the family of distributions defined by (6.1) is consistent in
the sense of (5.11). Thus, Theorem 5.16 indeed implies the existence of a probability
space (Ω,F , P) and of a family (Bt)t≥0 of random variables defined thereon such that

• B0 = 0,

• the increments Btn −Btn−1 , Btn−1 −Btn−2 , . . . , Bt1 −0 are independent and Bt−Bs =d

Bt−s whenever 0 < t1 < · · · < tn and t > s > 0,

• Bt ∼ N(0, t).

Exercise 6.1. Verify that one can indeed define such a probability space carrying a
process satisfying those conditions using Theorem 5.16.

Continuity of paths, however, is a property that cannot directly be obtained by Kol-
mogorov’s extension theorem. Indeed, there is no reason that the process (Bt)t≥0 ob-
tained by Kolmogorov’s extension theorem is continuous.1 Another famous theorem of

1Recall that the probability space constructed in Theorem 5.16 is (R,B(R))⊗[0,∞[ and the process is just
the evaluation map Bt(ω) = ω(t). By (5.12), any set A ∈ B(R)⊗[0,∞[ is already determined by the function
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Kolmogorov, the Kolmogorov-Chentsov theorem provides the existence of a (Hölder-)
continuous version of the process (Bt)t≥0, i.e., the existence of a process (Wt)t≥0 (de-
fined on the probability space (Ω,F , P)) such that the paths t 7→ Wt(ω) are continuous
(for every ω) and

(6.2) ∀t ≥ 0 : P(Bt = Wt) = 1.

Obviously, if two processes are versions of each other, then properties of finite-dimensional
marginal distributions are the same. Thus, (Wt)t≥0 satisfies all the requirements of Def-
inition 5.9 and is a Brownian motion.

Example 6.2. We construct two processes (Xt)t∈[0,1] and (Yt)t∈[0,1] which are versions of
each other but not almost surely equal. We choose the probability space ([0, 1],B([0, 1]), λ|[0,1])
and set Xt(ω) ≡ 1 and Yt(ω) B 1 − 1{ t }(ω). Then for every t we have P(Xt = Yt) = 1,
but P(∀t : Xt = Yt) = 0. Note that each path of X but no path of Y is continuous.

We will give a direct construction avoiding the Kolmogorov-Chentsov theorem.
Let (Yk,n)0≤k<2n, n∈N0 be a sequence of independent standard normal random variables.
Since this is a countable number of independent random variables, we know that we
construct the sequence on the probability space

(Ω,F , P) = (R,B(R), µ)⊗N ,

where µ(dx) = 1
√

2π
e−x2/2dx. For any n ∈ N0 define a stochastic process (Xn(t))t∈[0,1] by

∀
k
2n ≤ t <

k + 1
2n : Xn(t) =

k+1
2n − t
2−n Xn

(
k
2n

)
+

t − k
2n

2−n Xn

(
k + 1

2n

)
,(6.3a)

X0(0) = 0, X0(1) = Y0,0,(6.3b)

Xn+1

(
k
2n

)
= Xn

(
k
2n

)
, Xn+1

(
2k + 1
2n+1

)
= Xn

(
2k + 1
2n+1

)
+ 2−(n+2)/2Y2k+1,n+1,(6.3c)

Where we always use n ∈ N0 and, for fixed n, 0 ≤ k < 2n. Moreover, for understand-
ing (6.3c) note that

Xn

(
2k + 1
2n+1

)
=

Xn

(
k
2n

)
+ Xn

(
k+1
2n

)
2

.

We will show that Bt B limn→∞ Xn(t) is a Brownian motion on [0, 1]. Finally, given
a sequence of independent Brownian motions Bn defined on the intervals [0, 1], n ∈ N,
we can easily see that the concatenated process

Bt B

btc∑
k=1

Bk(1) + Bbtc+1(t − btc)

defines a Brownian motion on [0,∞[. Note that this Brownian motion can also be
defined on the same probability space (Ω,F , P), but, for simplicity, one can also take
(Ω,F , P)⊗N.

Before proving the main result, we have to provide a few auxiliary lemmas.

values ω(ti) for a sequence of time points (ti)i∈N. Since the set C([0,∞[: R) of continuous functions does not
have this property, it cannot be a measurable set with respect to the product σ-algebra. Thus, the question
whether (Bt)t≥0 has almost surely continuous paths, is only reasonable in the sense of an outer probability.
There is certainly a way around this technicality, but our construction will avoid the problem altogether.
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Lemma 6.3. Given a sequence of (d-dimensional) Lp-random variables converging
a.s. to some random variable X, p ≥ 1. Assume that there is r > p such that
supn E

[
|Xn|

r] < ∞. Then X ∈ Lp and the convergence holds in Lp.

Proof. By Fatou’s lemma, we have

E
[
|X|r

]
≤ lim inf

n→∞
E

[
|Xn|

r] ≤ sup
n

E
[
|Xn|

r] < ∞,
implying that supn E

[
|Xn − X|r

]
< ∞. By Hölder’s inequality, we have

E
[
|Xn − X|p

]
≤ ε p+E

[
|Xn − X|p 1{ |Xn−X|>ε }

]
≤ ε p+E

[
|Xn − X|r

]p/r P (|Xn − X| > ε)(r−p)/r .

Thus, for any ε > 0 we have lim supn→∞ E
[
|Xn − X|p

]
≤ ε p, implying the assertion. �

Exercise 6.4. Using Borel-Cantelli, show that any sequence Xn converging to a random
variable X in probability has an almost surely converging subsequence. Then adapt
the proof of the lemma and show that we can replace the assumption of almost sure
convergence by convergence in probability.

Lemma 6.5. Given a sequence (Xn)n∈N of d-dimensional centered Gaussian random
variables converging almost surely to a d-dimensional random variable X. Then Xn →

X in L2 and X is also Gaussian.

Proof. From the exercises we know that Xn → X in L2 implies that X has the normal
distribution. Since almost sure convergence implies convergence in distribution, which
in turn implies convergence of the characteristic functions, we know that the covariance
matrices Σn of Xn converge to some matrix Σ. Note that for some matrix An such
that Σn = AT

n An (existence of which is guaranteed by the Cholesky factorization) we
have Xn =d AnZ for any Z ∼ N(0, Id). On the other hand, using the operator norm
corresponding to the Euclidean distance on Rd, we have |AnZ| ≤ ‖An‖ |Z|. In particular,
we have

E
[
|Xn|

3
]
≤ ‖An‖

3 E
[
|Z|3

]
= λmax(Σn)3/2E

[
|Z|3

]
,

using that the operator-norm of An is the square root of the largest eigenvalue of Σn.
Thus, we have supn E[|Xn|

3] < ∞ and the result follows from Lemma 6.3. �

Lemma 6.6. For any n, the vector (Xn (k/2n))n
k=0 is a centered Gaussian random vector

with covariance E [Xn(k/2n)Xn(l/2n)] = min(k/2n, l/2n).

Proof. We prove the assertion by induction. It is true for n = 0. Assume it has been
established for n. By (6.3), the vector (Xn+1(k/2n+1)) is a linear combination of the
independent centered Gaussian vectors (Xn(k/2n)) and (Yk,n+1). By general properties
of the normal distribution, it is thus a centered Gaussian random vector. Let us show
the covariance formula for k = l (the general case works in the same way). If k is even,
then Xn+1(k/2n+1) = Xn((k/2)/2n) and the formula holds by induction. Otherwise,
letting k = 2m + 1, we have

E

Xn+1

(
2m + 1

2n+1

)2 = E


Xn( m

2n ) + Xn

(
m+1
2n

)
2

+ 2−(n+2)/2Y2m+1,n+1


2

=
1
4

(
m
2n +

m + 1
2n +

2m
2n

)
+ 2−(n+2) =

2m + 1
2n+1 . �
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Theorem 6.7. The process (Bt)t∈[0,1] defined by Bt B limn→∞ Xn(t) exists (in the
a.s. sense) and satisfies the properties of a Brownian motion.

Proof. First note that Markov’s inequality for a random variable Y ∼ N(0, 1) implies
that there is a well-known constant C such that for any a > 0, P(|Y | > a) ≤ Ca−8. More-
over, since Xn and Xn+1 are linearly interpolated between the grid points (see (6.3a)
together with (6.3c)), we have

sup
t∈[k/2n,(k+1)/2n]

|Xn+1(t) − Xn(t)| > ε =⇒ 2−(n+2)/2
∣∣∣Y2k+1,n+1

∣∣∣ > ε.
Thus,

P
(

sup
t∈[0,1]

|Xn+1(t) − Xn(t)| > 2−n/4
)

= P

2n−1⋃
k=0

{
sup

t∈[k/2n,(k+1)/2n]
|Xn+1(t) − Xn(t)| > 2−n/4

}
≤ P

2n−1⋃
k=0

{
2−(n+2)/2

∣∣∣Y2k+1,n+1
∣∣∣ > 2−n/4

}
≤ 2nP

(
|Y | > 2(n+4)/4

)
≤ C2−n−8.

Thus, the first part of the Borel-Cantelli lemma (Theorem 2.26) implies that there is a
P-nullset N such that for every ω ∈ Nc the sequence of continuous functions Xn(·)(ω)
is a Cauchy sequence in C([0, 1]). Thus, the limiting process Bt exists and t 7→ Bt(ω)
is continuous for every ω ∈ Nc – and for every ω ∈ Ω if we choose Bt(ω) appropriately
for ω ∈ N.

We are left to prove the requirements on the finite-dimensional marginals as laid
down in Definition 5.9. First note that B0 ≡ 0 since Xn(0) ≡ 0 for any n. Now given
0 < t1 < · · · < tK , we consider

(BtK −BtK−1 , . . . , Bt2−Bt1 , Bt1 ) = lim
n→∞

(Xn(tK) − Xn(tK−1), . . . , Xn(t2) − Xn(t1), Xn(t1))︸                                                       ︷︷                                                       ︸
CZn

a.s.

By the interpolation property (6.3a), we can describe Zn as a linear map applied to the
random vector

Zn B (Xn(bt1c), Xn(dt1e), . . . , Xn(btKc), Xn(dtKe)),

where
⌊
t j

⌋
≤ t j ≤

⌈
t j

⌉
are the elements of { k/2n | k = 0, . . . , 2n } closest to t j, j =

1, . . . ,K. Therefore, Zn is a centered normal random variable with covariance matrix
Σn. By Lemma 6.5, this implies that (BtK − BtK−1 , . . . , Bt2 − Bt1 , Bt1 ) is centered normal
with covariance matrix Σ B limn→∞ Σn. For any s ≤ t we have

E[Xn(s)Xn(t)] = E
[(
dse − s

2−n Xn(bsc) +
s − bsc

2−n Xn(dse)
) (
dte − t

2−n Xn(btc) +
t − btc

2−n Xn(dte)
)]

=
dse − s

2−n

dte − t
2−n bsc +

dse − s
2−n

t − btc
2−n bsc+

+
s − bsc

2−n

dte − t
2−n min(dse , btc) +

s − bsc
2−n

t − btc
2−n dse

= s + O(2−n),

using that |s − bsc| = O(2−n), |s − dse| = O(2−n) and likewise for t. Thus, Σ is, indeed,
of the form guaranteeing the distributional properties of the Brownian motion. �
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6.2 Properties of the Brownian motion

Lemma 6.8. Given a Brownian motion (Bt)t≥0 defined on (Ω,F , P) and constants
c, s > 0.

(i) The process c−1Bc2t, t ≥ 0, is again a Brownian motion.

(ii) The process Wt B Bt+s − Bs, t ≥ 0, is again a Brownian motion.

(iii) The process Wt B tB1/t, t > 0, with W0 B 0 is again a Brownian motion.

Proof. Left as an exercise. �

Property (i) can be interpreted as a scaling property of the Brownian motion. In
particular, it implies that Bt ∼

√
t for t small.

Lemma 6.9. The Brownian motion is a martingale in its natural filtration.

Proof. Left as an exercise. �

Fix some interval [s, s + t] and consider a partition D of the interval, i.e., a finite
setD = { s = t0 < · · · tn = t }. The mesh of such a partition is defined by

‖D‖ B sup
k
|tk+1 − tk | .

Theorem 6.10. Given a sequence Dn of partitions of the interval [s, s + t] such that
‖Dn‖ → 0. We writeDn = { t(n)

0 < · · · < t(n)
mn }. Then the random variables

S n B

mn−1∑
k=0

(
Bt(n)

k+1
− Bt(n)

k

)2 L2

−−−−→
n→∞

t.

Proof. By property (ii) in Lemma 6.8, we may assume that s = 0. Dropping super-
scripts, we see that

S n − t =

m−1∑
i=0

(
(Bti+1 − Bti )

2 − (ti+1 − ti)
)

=

m−1∑
i=0

(
(Bti+1 − Bti )

2 − E
[
(Bti+1 − Bti )

2
])
.

Since we have decomposed S n−t into a sum of independent centered random variables,
we obtain

E
[
(S n − t)2

]
=

m−1∑
i=0

E
[(

(Bti+1 − Bti )
2 − E

[
(Bti+1 − Bti )

2
])2

]
=

m−1∑
i=0

E
[(

(Bti+1 − Bti )
2 − (ti+1 − ti)

)2
]
.
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We note that Bti+1 − Bti ∼
√

ti+1 − tiX with X ∼ N(0, 1). Thus,

E
[
(S n − t)2

]
=

m−1∑
i=0

(ti+1 − ti)2E
[
(X2 − 1)2

]
≤ E

[
(X2 − 1)2

] m−1∑
i=0

‖Dn‖ (ti+1 − ti)

= 2t ‖Dn‖ ,

which converges to 0 for n→ ∞. �

Remark. Under certain assumptions on the sequence of partitions, we can even obtain
almost sure convergence to t. However, it can be shown that almost sure convergence
does not hold for general sequences of partitions.

Exercise 6.11. Assume that the sequence of partitions satisfies
∑

n ‖Dn‖ < ∞. Show
that S n → t a.s.
Hint: Use the Borel-Cantelli lemma.

The limit of the random variables S n is known as the quadratic variation of the
process (Bt)t≥0 on the interval [s, s + t]. Specializing the result to s = 0, the theorem
can be rephrased as saying that the Brownian motion has quadratic variation t. Recall
that the total variation of a function f on an interval [s, s + t] is defined by

Vs,s+t( f ) B sup
D

m−1∑
k=0

| f (tk+1) − f (tk)| .

Corollary 6.12. The total variation of the Brownian motion on any interval [s, s + t]
of positive length t is a.s. infinite.

Proof. Assume that the Brownian motion had a finite total variation on a set A with
P(A) > 0. Take a sequence of partitionsDn with

∑
n ‖Dn‖ < ∞. Then

S n =

m−1∑
k=0

(
Btk+1 − Btk

)2
≤ sup

k=0,...,m−1

∣∣∣Btk+1 − Btk

∣∣∣ m−1∑
k=0

∣∣∣Btk+1 − Btk

∣∣∣
≤ sup

k=0,...,m−1

∣∣∣Btk+1 − Btk

∣∣∣ Vs,s+t(B).

As continuous functions on the bounded interval [s, s + t], the maps u 7→ Bu(ω) are
uniformly continuous, for all ω ∈ Ω. Thus, supk=0,...,m−1

∣∣∣Btk+1 (ω) − Btk (ω)
∣∣∣ converges

to 0 as ‖Dn‖ → 0. On the other hand, for ω ∈ A, we have Vs,s+t(B)(ω) < ∞, implying
that

∀ω ∈ A : S n(ω) −−−−→
n→∞

0,

in contradiction to Theorem 6.10 together with Exercise 6.11. �

As already discussed above, Brownian motion is a Markov process and a martin-
gale with respect to its natural filtration Ft B σ (Bs : 0 ≤ s ≤ t), t ≥ 0. Most of the
properties of discrete-time martingales discussed in Section 4.3 and 4.4 also hold in
the continuous case, at least in the case of continuous processes – otherwise technical
subtleties frequently occur. We recall some of these properties and definitions applied
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to Brownian motion. As in discrete time, a random variable τ : Ω → [0,∞] is called
stopping time iff

(6.4) ∀t ≥ 0 : { τ ≤ t } ∈ Ft.

Let A ⊂ R be either open or closed, then the hitting time

(6.5) τA B inf { t ∈ [0,∞[ | Bt ∈ A }

is a stopping time.2 Given a stopping time τ, we again define the σ-algebra of the
τ-past by

(6.6) Fτ B { A ∈ F | ∀t ≥ 0 : A ∩ { τ ≤ t } ∈ Ft } .

As in the discrete case, the random variable Bτ is Fτ-measurable, whenever P(τ <
∞) = 1.

Lemma 6.13. Let τ be a stopping time with P(τ < ∞) = 1. Consider the process
(Xt)t≥0 defined by

Xt B Bτ+t − Bτ.

Then (Xt)t≥0 is again a Brownian motion. Moreover, the filtration (Gt)t≥0 generated by
(Xt)t≥0 is independent of Fτ.

We omit the proof of the lemma.3 The property given in Lemma 6.13 is known as
strong Markov property, because it implies that for any stopping time τ and any t ≥ 0
and any A ∈ B(R), we have

P(Bτ+t ∈ A|Fτ) = P(Bτ+t ∈ A|Bτ) on { τ < ∞}

almost surely, which is a direct generalization of the Markov property to stopping times.

Exercise 6.14. Reflection principle, see Karatzas and Shreve.

Example 6.15. In the following, we shall study very particular hitting times. For a > 0
consider τa B τ[a,∞[ and for a < 0 let τa B τ]−∞,a] be the first times that the Brownian
motion reaches the level a. Moreover, for a < b let τa,b B τ]a,b[c be the first time that the
Brownian motion leaves the interval ]a, b[. By continuity, note that Bτa = a a.s. Form
Lemma 6.9 and the exercises, we know that (Bt)t≥0 and

(
B2

t − t
)

t≥0
are martingales. We

assume that the optional sampling theorem holds for both martingales with the stopping
time τ.4 Then, we have

E [Bτ] = 0 = aP(Bτ = a) + bP(Bτ = b),

E
[
B2
τ

]
= E[τ] = a2P(Bτ = a) + b2P(Bτ = b).

From the first equation we get

P(Bτ = b) =
|a|

|a| + |b|
, P(Bτ = a) =

|b|
|a| + |b|

,

and inserting into the second equation we get E[B2
τ] = E[τ] = |a| |b|.

2As an example for the above mentioned subtleties, we note that continuity is essential for τA being a
stopping time for closed A.

3The proof is rather straightforward when τ takes only finitely many values. Otherwise, the stopping time
is approximated by discrete stopping times.

4While τ is an unbounded stopping time, the claim still seems justified since the processes Bmin(τ,t) and
B2

min(τ,t) are bounded. Thus, we can approximate τ by bounded stopping times τn, using the dominated
convergence theorem. For bounded stopping times, we can extend the proof of the optional sampling theorem
by approximation with stopping times taking only finitely many values. For details see, for instance, Karatzas
and Shreve or Breiman.
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6.3 Donsker’s invariance principle

Let (Yn)n∈N be an i.i.d. sequence of square integrable random variables with σ2 B
var[Y1]. Consider the random walk S n B Y1 + · · · + Yn. We rescale the random walk
and extend it to a process Xn(t) defined on [0, 1] by

(6.7) Xn(t) B
S bntc

σ
√

n
, t ∈ [0, 1],

where S 0 B 0 and btc denotes the largest integer smaller or equal to t. By the central

limit theorem, we know that Xn(1)
d
−−−−→
n→∞

N(0, 1), but much more is true: we even have
that the process (Xn(t))t∈[0,1] converges weakly to (Bt)t∈[0,1] for n → ∞. This result is
known as Donsker’s theorem, invariance principle (owing to the fact that the limiting
process does not depend on the random walk) and functional central limit theorem.
But first, we will show that the random walk S n can be embedded into the Brownian
motion.

Theorem 6.16 (Skorohod’s embedding theorem). Given any random variable Y with
E[Y] = 0 and E[Y2] < ∞. Then there is a probability space (Ω,F , P) and a Brownian
motion (Bt)t≥0 random variables U ≤ 0 ≤ V defined thereon such that BτU,V has the
same distribution as Y.

Proof. Let us first assume that Y takes only two values u ≤ 0 ≤ v with corresponding
probabilities p and q = 1 − p. Then we take U ≡ u and V ≡ v and Example 6.15
implies that BτU,V has the same distribution as Y .

In the second step, assume that Y takes values in some finite set. This means that
there are numbers y1, . . . , yK such that P(Y ∈ { y1, . . . , yK }) = 1 with pi B P(Y = yi).
We claim that there are numbers u1, . . . , un ≤ 0 and v1, . . . , vn ≥ 0 and positive numbers
q1, . . . , qn and r1, . . . , rn such that

q1 + · · · + qn + r1 + · · · + rn = 1,
∀i ∈ { 1, . . . , n } : qiui + rivi = 0,

q1δ{ u1 } + · · · + qnδ{ un } + r1δ{ v1 } + · · · + rnδ{ vn } = PY .

This means that { u1, . . . , un, v1, . . . , vn } = { y1, . . . , yK } and that for every 1 ≤ i ≤ K we
have ∑

j: u j=yi

q j +
∑

j: v j=yi

r j = pi,

where we note that one of these sums will be 0. Note that we do not require the
individual us and vs to be distinct! The claim is easily proved by induction on K. Then
define random variables (U,V) independent of the Brownian motion by setting

P((U,V) = (ui, vi)) = qi + ri, i = 1, . . . , n.

By independence of the Brownian motion and the random variables (U,V) and the
Example 6.15, we have

P(BτU,V = ui|(U,V) = (ui, vi)) =
|vi|

|ui| + |vi|
=

vi
ri
qi

vi + vi
=

qi

ri + qi
.
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Thus,

P(BτU,V = ui) =
∑

j: u j=ui

P(BτU,V = u j|(U,V) = (u j, v j))P((U,V) = (u j, v j))

=
∑

j: u j=ui

q j

r j + q j
(r j + q j) =

∑
j: u j=ui

q j = pi,

and likewise for positive values vi. Therefore, we see that, indeed, BτU,V has the same
distribution as Y .

In the final step, let Y be any square integrable centered random variable. We can
approximate Y by centered random variables Yn with finite support in the sense that

Yn
d
−−−−→
n→∞

Y . Consider the corresponding random boundaries (Un,Vn) such that BτUn ,Vn

has the same distribution as Yn. Without giving the proof, we claim that at least along
a subsequence we have

(Un,Vn)
d
−−−−→
n→∞

(U,V)

for some random variables (U,V).5 Applying Example 6.15 to the factorized condi-
tional probabilities, we get with τ B τU,V and some interval I ⊂]0,∞[ that

P(Bτ ∈ I|U,V) = 1I(V)
|U |

|U | + |V |

and by the same reasoning we have for τn B τUn,Vn that

P(Bτn ∈ I|Un,Vn) = 1I(Vn)
|Un|

|Un| + |Vn|
.

Thus, if the distribution functions of Y and V are continuous at the boundaries of I, we
have

P(Y ∈ I) = lim
n→∞

P(Yn ∈ I) = lim
n→∞

P(Bτn ∈ I)

= lim
n→∞

E
[
1I(Vn)

|Un|

|Un| + |Vn|

]
= E

[
1I(V)

|U |
|U | + |V |

]
= E[Bτ ∈ I].

We can likewise argue for intervals I ⊂] − ∞, 0[. Since the set of points at which the
distribution functions of Y , V and U are continuous is certainly dense, we have obtained
the result. �

Theorem 6.17. Given an i.i.d. sequence of random variables (Yn)n∈N with E[Y1] = 0
and σ2 B E[Y2

1 ] < ∞. Then there is a probability space, on which we can define
a Brownian motion (Bt)t≥0 and an i.i.d. sequence (τn)n∈N of non-negative, integrable
random variables independent of the Brownian motion, such that E[τ1] = σ2 and such
that the sequence

(
B∑n

k=1 τk

)
n∈N

has the same distribution as the random walk (S n)n∈N

with S n B Y1 + · · · + Yn.

Proof. By Theorem 6.16, there are random variables (U,V) such that BτU,V has the same
distribution as Y1 when (U,V) are independent of the Brownian motion B. Take one
probability space (Ω1,F1, P1) on which one can define a Brownian motion (Bt)t≥0 and

5The proof depends on compactness results in the weak topology.
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one probability space (Ω2,F2, P2) on which one can define an i.i.d. sequence of random
variables (Un,Vn) having the same distribution as (U,V). Then we choose

(Ω,F , P) B (Ω1,F1, P1) ⊗ (Ω2,F2, P2),

on which we can jointly define a Brownian motion (Bt)t≥0 and an independent i.i.d. se-
quence ((Un,Vn))n∈N. We define a filtration

Ft B σ ({ Bs | s ≤ t } ∪ {U1,V1 }) .

Obviously, both (Bt)t≥0 and (B2
t − t)t≥0 are martingales with respect to the filtration, and

τn B τUn,Vn is a stopping time, n ∈ N. Without proof, we collect the following results:

• The strong Markov property holds with respect to the stopping times τn, i.e.,
B(1)

s B Bτ1+s − Bτ1 is a Brownian motion, and the filtration F (1)
s generated by B(1

and U2,V2 is independent of Fτ1 .

• We set τ2 B inf
{

t ≥ 0
∣∣∣ B(1)

t ∈]U2,V2[c
}
.

• This construction can be iterated, leading to stopping times τn+1 and Brownian
motions B(n+1)

s B B(n)
τn+1+s−B(n)

τn+1 such that the filtration F (n+1)
s generated by B(n+1)

and Un+2,Vn+2 is independent of F (n)
τn+1 .

• The optional sampling theorem holds for the martingales B(n) and (B(n))2−t (with
B(0) B B) and the stopping time τn+1, i.e.,

E
[
(B(n)

τn+1
)2
]

= E[τn+1].

Then we see that S 1 and Bτ1 have the same distribution by Theorem 6.16. Moreover,
we have

σ2 = E[S 2
1] = E[B2

τ1
] = E[τ1].

By the other properties obtained above, the stopping times τn are i.i.d. and B(n)
τn+1 has the

same distribution as Yn. Note that

B(n)
τn+1

= B(n−1)
τn+τn+1

− B(n−1)
τn

= B(n−2)
τn−1+τn+τn+1

− B(n−2)
τn−1
− B(n−2)

τn+τn−1
+ B(n−2)

τn−1

= B(n−2)
τn−1+τn+τn+1

− B(n−2)
τn+τn−1

= Bτ1+···+τn+1 − Bτ1+···+τn .

Therefore,

S n =

n∑
k=1

Yk =d
n∑

k=1

B(k−1)
τk

=

n∑
k=1

(Bτ1+···+τk − Bτ1+···+τk−1 ) = Bτ1+···+τn ,

where “=d” denotes equality in distribution. �

Theorem 6.18. Given a centered, square integrable i.i.d. sequence (Yn)n∈N and the
corresponding random walk (S n)n∈N as above. Let Xn(t) B 1

σ
√

n S bntc for n ∈ N and
t ∈ [0, 1]. Then there is a probability space (Ω,F , P) with a Brownian motion (Bt)t∈[0,1]
and a sequence of processes (Xn(t))t∈[0,1] such that Xn(·) and Xn(·) have the same dis-
tributions and such that for any subsequence (nk) increasing fast enough we have

lim
k→∞

sup
0≤t≤1

∣∣∣Xnk (t) − Bt

∣∣∣ = 0 a.s.
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From the theorem we easily obtain the main result of the section.

Corollary 6.19 (Donsker’s theorem). In the setting of Theorem 6.18, the centered,
scaled, continuously interpolated random walks (Xn(t))t∈[0,1] converge weakly to the
Brownian motion (Bt)t∈[0,1], i.e., for any bounded continuous function f : C ([0, 1];R)→
R we have

lim
n→∞

E
[
f
(
(Xn(t))t∈[0,1]

)]
= E

[
f
(
(Bt)t∈[0,1]

)]
.

Proof. For any subsequence (nk) increasing fast enough, Theorem 6.18 and continuity
of f imply that

lim
k→∞

f
(
(Xnk (t))t∈[0,1]

)
= f

(
(Bt)t∈[0,1]

)
a.s.

Consequently, along any such subsequence we have

lim
k→∞

E
[
f
(
(Xnk (t))t∈[0,1]

)]
= lim

k→∞
E

[
f
(
(Xnk (t))t∈[0,1]

)]
= E

[
f
(
(Bt)t∈[0,1]

)]
,

which implies the convergence of the full sequence. �

Proof of Theorem 6.18. Without loss of generality we may assume thatσ = 1. We con-
struct (Ω,F , P) as in Theorem 6.17 and define the Brownian motion (Bt)t≥0 thereon. By
Lemma 6.8, t 7→

√
nBt/n is also a Brownian motion, independent of (Uk,Vk)k∈N. Thus,

we can also embed the random walk in the Brownian motion
√

nBt/n using stopping
times (τ(n)

k )k∈N such that S k has the same distribution as

√
nB

τ(n)
1 + · · · + τ(n)

k

n

 .
Consequently, Xn(t) has the same distribution as

Xn(t) B B

τ(n)
1 + · · · + τ(n)

bntc

n

 .
Note that for fixed n the sequence of random variables τ(n)

k is an i.i.d. sequence of
random variables with E

[
τ(n)

k

]
= 1. On the other hand, for fixed k, the random variables

τ(n)
k are identically distributed but not independent. We claim that for any subsequence

(nk) increasing sufficiently fast we have

(6.8) Znk B sup
0≤t≤1

∣∣∣∣∣∣∣τ
(nk)
1 + · · · + τ(nk)

bnk tc

nk
− t

∣∣∣∣∣∣∣ a.s.
−−−−→
k→∞

0.

Accepting (6.8), continuity of the paths of the Brownian motion B implies that, indeed,

lim
k→∞

sup
0≤t≤1

∣∣∣Xnk (t) − Bt

∣∣∣ = 0 a.s.

We are left to prove (6.8). If we can prove that Zn → 0 in probability, then the Borel-
Cantelli lemma implies that Znk → 0 a.s. for subsequences increasing fast enough. For
the proof of convergence in probability, note that

Zn = sup
0≤t≤1

∣∣∣∣∣∣∣τ
(n)
1 + · · · + τ(n)

bntc

n
− t

∣∣∣∣∣∣∣ = sup
0≤t≤1

∣∣∣∣∣∣∣τ
(n)
1 + · · · + τ(n)

bntc − bntc

n
+
bntc − nt

n

∣∣∣∣∣∣∣
≤ sup

0≤t≤1

∣∣∣∣∣∣∣τ
(n)
1 + · · · + τ(n)

bntc

n

∣∣∣∣∣∣∣ +
1
n
≤ sup

0≤t≤1
t

∣∣∣∣∣∣∣τ
(n)
1 + · · · + τ(n)

bntc

bntc

∣∣∣∣∣∣∣ +
1
n
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with τ(n)
k B τ(n)

k −1. Ignoring the 1/n-term, we note that there are two different regimes
going on: for t small, the term is small because of the factor t in front, whereas for t
close to 1, the term is small because of some law of large numbers. Indeed, for any
fixed ε > 0 we can further bound Zn by

Zn ≤ ε sup
0≤t≤ε

∣∣∣∣∣∣∣τ
(n)
1 + · · · + τ(n)

bntc

bntc

∣∣∣∣∣∣∣ + sup
ε≤t≤1

∣∣∣∣∣∣∣τ
(n)
1 + · · · + τ(n)

bntc

bntc

∣∣∣∣∣∣∣ +
1
n

≤ ε sup
k≥1

∣∣∣∣∣∣∣τ
(n)
1 + · · · + τ(n)

k

k

∣∣∣∣∣∣∣ + sup
k≥bεnc

∣∣∣∣∣∣∣τ
(n)
1 + · · · + τ(n)

k

k

∣∣∣∣∣∣∣ +
1
n

=d ε sup
k≥1

∣∣∣∣∣∣∣τ
(1)
1 + · · · + τ(1)

k

k

∣∣∣∣∣∣∣ + sup
k≥bεnc

∣∣∣∣∣∣∣τ
(1)
1 + · · · + τ(1)

k

k

∣∣∣∣∣∣∣ +
1
n
.

We start with the middle term. By the law of large numbers,

lim
k→∞

τ(1)
1 + · · · + τ(1)

k

k
= 0 a.s.,

implying that the second term converges to 0 in probability for n → ∞. Thus, for any
x > 0, we have

lim sup
n→∞

P(Zn > x) ≤ P

ε sup
k≥1

∣∣∣∣∣∣∣τ
(1)
1 + · · · + τ(1)

k

k

∣∣∣∣∣∣∣ > x

 .
Letting ε → 0, we see that Zn converges to 0 in probability. �
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Appendix A

Collection of results from
elementary probability

Multi-dimensional normal distribution
Definition A.1. A measure ν on B(R) is called Gaussian or normal if its Fourier trans-
form is of the form

ν̂(u) = eiau− 1
2σ

2u2
,

for some constants a ∈ R and σ ≥ 0. A measure ν on B(Rn) is Gaussian or normal
if and only if the image measures νh under all linear functionals h : Rn → R are
one-dimensional Gaussian.

Remark A.2. If σ > 0, then a Gaussian measure in the above sense has the density
1

√
2πσ2

e−(x−a)2/(2σ2). Thereof ore, the above definition corresponds to the usual definition
in the case of a positive variance, but also includes the Dirac measures δ{ a }. The same
is true in the multi-dimensional case: if the covariance matrix Σ is invertible, then the
Gaussian measure has the usual density. Again, also singular measures are included in
the definition.

We write N(µ,Σ) for the Gaussian distribution with expectation µ ∈ Rn and co-
variance matrix Σ ∈ Rn×n. Thus, an n-dimensional random vector X has a multi-
dimensional normal distribution if and only if 〈λ , X〉 has a one-dimensional normal
distribution, for each λ ∈ Rn. We collect some properties of the normal distribution.

Lemma A.3. Given an n-dimensional random vector X.

(i) X ∼ N(µ,Σ) if and only if for every u ∈ Rn : ϕX(u) = exp
(
i 〈u , µ〉 − 1

2 〈u ,Σu〉
)
.

Moreover, the normal measureN(µ,Σ) exists for any µ ∈ Rn and any symmetric,
positive semi-definite matrix Σ ∈ Rn×n.

(ii) Let X ∼ N(µ,Σ) and A ∈ Rk×n, b ∈ Rk, then AX + b ∼ N(Aµ + b, AΣAT ).

Inequalities
In what follows, X and Y are real random variables satisfying the required integrability
conditions. The first inequality holds because the covariance is a positive semi-definite
bi-linear form (on L2(Ω)).
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Lemma A.4 (Cauchy-Schwarz inequality). We have

Cov[X,Y]2 ≤ V[X]V[Y].

More generally, we also have the Hölder inequality.

Lemma A.5 (Hölder’s inequality). Given X ∈ Lp(Ω,F , P) and Y ∈ Lq(Ω,F , P) with
1 = 1/p + 1/q, p, q ≥ 1 (including the possibility of p = ∞), then XY ∈ L1 and

E[|XY |] ≤ E[|X|p]1/pE[|Y |q]1/q.

Lemma A.6 (Markov’s1 inequality). Given an increasing function u : R≥0 → R≥0 such
that u(|X|) is integrable. Then for every ε > 0

P(|X| ≥ ε) ≤
E[u(|X|)]

u(ε)
.

Corollary A.7 (Chebychev’s2 inequality). If X is square integrable, then for every
ε > 0

P(|X − E[X]| ≥ ε) ≤
V[X]
ε2 .

Lemma A.8 (Jensen’s inequality). Given a convex function f such that f (X) is inte-
grable, then

E[ f (X)] ≥ f (E[X]).

1German: Markow.
2German: Tschebyschow.

71



Appendix B

Characteristic functions

Given a probability measure µ on (Rn,B(Rn)), we recall that the characteristic function
is defined by

(B.1) µ̂(u) B
∫
Rn

ei〈u ,x〉µ(dx), u ∈ Rn.

In particular, for a random variable X defined on the probability space (Ω,F , P) with
values in Rn, we set ϕX B P̂X . Note that the integral of a C-valued measurable function
f is simply defined by ∫

f dµ =

∫
< f dµ + i

∫
= f dµ,

and that a function f is B(C)-B(Rn)-measurable if and only if < f and = f are B(R)-
B(Rn)-measurable. This can be seen from the fact that B(C) ≡ B(R2) = B(R) ⊗ B(R).
Thus,

fu B x 7→ ei〈u ,x〉

is measurable and µ-integrable for every u ∈ Rn, since | fu| = 1.

Example B.1. If µ has a density f with respect to the n-dimensional Lebesgue mea-
sure, then

µ̂(u) =

∫
Rn

ei〈u ,x〉 f (x)dx

is the Fourier transform of the function f . Thus, we can invert the characteristic func-
tion to get back the density by

f (x) =
1

(2π)n

∫
Rn

e−i〈x ,u〉µ̂(u)du.

We will next show that the situation is typical: indeed, the characteristic function µ̂
characterizes the probability measure µ.

Theorem B.2. A probability measure µ is uniquely determined by its characteristic
function. More precisely, given two probability measures µ and ν on (Rn,B(Rn)) with
µ̂ = ν̂, then µ = ν.
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We note that the theorem is actually a theorem from analysis, and it is not sur-
prising that its proof is more analytic than probabilistic. Before giving the proof, we
collect some auxiliary results. We start with one of the main theorems from functional
analysis.

Lemma B.3 (Stone-Weierstrass theorem). Let E be a compact metric space andK = R
or K = C. Consider C ⊂ C(E,K) be a point-separating algebra1, which is also closed
under complex conjugation in case K = C. Then C is dense in Cb(E,K) with respect to
‖·‖∞.

From measure theory, we recall the following result.

Lemma B.4. Let E be a metric space and µ a probability measure on (E,B(E)). Then
for every A ∈ B(E) we have µ(A) = sup { µ(K) | K ⊂ A compact }.

Lemma B.5. The family Cb(Rn,R) separates probability measures on Rn, i.e., given
two probability measures µ and ν on (Rn,B(Rn)) with

∫
f dµ =

∫
f dν for every bounded

continuous function f , then necessarily µ = ν.

Proof. By Lemma B.4, it suffices to prove that µ(K) = ν(K) for every compact set
K ⊂ Rn. Given such a compact set K, one can find a sequence ρn of uniformly bounded,
continuous functions converging to 1K .2 By dominated convergence, we can conclude
that

µ(K) = lim
n→∞

∫
ρndµ = lim

n→∞

∫
ρndν = ν(K). �

If Rn were a compact set, then we could easily conclude by combining Lemma B.3
with Lemma B.5. Since this is not the case, we need to invest a bit more work.

Proof of Theorem B.2. Assume we are given probability measures µ and ν such that
µ̂ = ν̂. Moreover, let f ∈ Cb(Rn,C) and 0 < ε < 2. We can find N ∈ N large enough
that

(1 + 2 ‖ f ‖∞)(µ + ν) (Rn \ [−N,N]n) < ε/2.

Let CN B
{

fu|[−N,N]n

∣∣∣ u ∈ 2πZn
}

and DN the generated algebra. Then DN is dense in
C([−N,N]n,C) by Lemma B.3, implying that we can find g ∈ DN such that

sup { | f (x) − g(x)| | x ∈ [−N,N]n } < ε/4.

Now we interpret g as a function on Rn. By linearity of the integral,
∫

gdµ =
∫

gdν.
Since g is Zn-periodic, we have ‖ f − g‖∞ ≤ ‖ f ‖∞ + ‖g‖∞ ≤ 2 ‖ f ‖∞ + ε/2 < 1 + 2 ‖ f ‖∞.
Finally, we have∣∣∣∣∣∫ f dµ −

∫
f dν

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫

[−N,N]n
( f − g)dµ

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫

[−N,N]n
( f − g)dν

∣∣∣∣∣∣ +
+

∣∣∣∣∣∣
∫
Rn\[−N,N]n

( f − g)dµ

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫
Rn\[−N,N]n

( f − g)dν

∣∣∣∣∣∣
≤
ε

4
+
ε

4
+ ‖ f − g‖∞ µ (Rn \ [−N,N]n) + ‖ f − g‖∞ ν (Rn \ [−N,N]n)

≤ ε.

1C is an algebra, i.e., 1 ∈ C, f , g ∈ C imply that f g ∈ C, f + g ∈ C and f ∈ C, α ∈ K imply that α f ∈ C.
Moreover, for x , y ∈ E we can find f ∈ C with f (x) , f (y).

2Find an open set U with dist(K,Uc) < 1/n. From topology we know that we can find a continuous
function ρn which is 1 on K, 0 on Uc and bounded by 1 in general.
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Since ε was arbitrary, we have
∫

f dµ =
∫

f dν for every f ∈ Cb(Rn,C). By Lemma B.5,
this shows that µ = ν. �

We collect some simple properties of the Fourier transform.

Lemma B.6. Given a probability measure µ on (Rn,B(Rn)).

(i) µ̂ is continuous.

(ii) For all u ∈ Rn we have
∣∣∣̂µ(u)

∣∣∣ ≤ 1 = µ̂(0).

(iii) µ̂ is positive semi-definite, i.e., for every collection u1, . . . , uk ∈ R
n, the matrix

A ∈ Ck×k given by Ai, j = µ̂(ui − u j) is positive semi-definite.

The proof is left as an exercise.

Remark B.7. In fact, one can prove that µ̂ is uniformly continuous. A famous theorem
by S. Bochner shows that, conversely, any continuous, positive semi-definite function
f : Rn → C is the Fourier transform of a finite measure onB(Rn), which is a probability
measure if f (0) = 1.

In analysis, it is well known that derivatives of the Fourier transforms are related
to the moments of the underlying function or measure. For simplicity, we give the
statement in dimension n = 1 only.

Theorem B.8. Assume that the probability measure µ on (R,B(R)) has a finite n’th
moment, i.e., Mn B

∫
xnµ(dx) exists as a real number. Then µ̂ is n times continuously

differentiable and
µ̂(k)(0) = ik Mk, k ≤ n.

Proof. Since ∂k
u fu(x) = (ix)k fu(x), we have

∣∣∣∂k
u fu(x)

∣∣∣ = |x|k, which is µ-integrable for
k ≤ n. Now fix k < n and assume that we have already established that

µ̂(k)(u) = ik
∫
R

xkeiuxµ(dx) =

∫
R

∂k

∂uk fu(x)µ(dx).

Since ∂k+1

∂uk+1 fu is uniformly bounded by an integrable function, we may apply Lemma B.9
to get

µ̂(k+1)(u) =
d
du

∫
R

∂k

∂uk fu(x)µ(dx) =

∫
R

∂k+1

∂uk+1 fu(x)µ(dx) = ik+1
∫
R

xk+1eiuxµ(dx),

implying the statement for u = 0. (Strictly speaking, we need to apply Lemma B.9 for
both the real and imaginary parts of the integral.) �

Lemma B.9. Let (A,A, µ) be some measure space, I ⊂ R an open interval, I , ∅, and
f : A × I → R a function satisfying:

(i) ∀y ∈ I : x 7→ f (x, y) ∈ L1(µ).

(ii) For almost every x ∈ Ω the map y 7→ f (x, y) is differentiable with derivative
denoted by f ′(x, y).

(iii) g B x 7→ supy∈I | f
′(x, y)| ∈ L1(µ).
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Then for every y ∈ I the function x 7→ f ′(x, y) ∈ L1(µ) and

d
dy

∫
A

f (x, y)µ(dx) =

∫
A

f ′(x, y)µ(dx).

Proof. Left as an exercise. �

Example B.10. Let X ∼ N(µ, σ2). We want to compute its characteristic function.
Note that X = µ + σY , implying that ϕX(u) = eiµuϕY (σu). Thus, it suffices to compute
ϕY . By Lemma B.9, we have

d
du
ϕY (u) =

∫
R

ixeiux 1
√

2π
e−x2/2dx

= −i
∫
R

eiux ∂

∂x
1
√

2π
e−x2/2dx

= i
∫
R

∂

∂x
eiux 1
√

2π
e−x2/2dx − i

[
eiux 1
√

2π
e−x2/2

]+∞

−∞︸                  ︷︷                  ︸
=0

= −u
∫
R

eiux 1
√

2π
e−x2/2dx = −uϕY (u),

where we used integration by parts. But the ordinary differential equation

ϕ̇Y (u) = −uϕY (u), ϕY (0) = 1,

has the unique solution ϕY (u) = e−u2/2. Thus, we have showed that

(B.2) ϕX(u) = eiuµ− 1
2σ

2u2
.

Now assume that Z ∼ N(µ,Σ) is a d-dimensional normal random variable. This means
that 〈λ ,Z〉 ∼ N(〈λ , µ〉 , 〈λ ,Σλ〉) for every λ ∈ Rd. In particular, for u ∈ Rd,

(B.3) ϕZ(u) = E[ei〈u ,Z〉] = ϕ〈u ,Z〉(1) = ei〈u ,µ〉− 1
2 〈u ,Σu〉,

using (B.2).
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Appendix C

Weak convergence and the
central limit theorem

In the following, we are going to discuss probability measures on (Rd,B(Rd)) or ran-
dom variables defined on some probability space (Ω,F , P) taking values in (Rd,B(Rd)).
Therefore, we are going to omit these qualifications in the current chapter. Note that
most of the results are also true for polish spaces (E,B(E)).

From measure theory, we recall the following types of convergence of random vari-
ables Xn:

• Xn converges to a random variable X almost surely, iff P (limn→∞ Xn = X) = 1;

• for p ≥ 1 we say that Xn converges to X in Lp iff Xn, X ∈ Lp(Ω,F , P) and

lim
n→∞
‖X − Xn‖Lp = lim

n→∞

(
E

[
|X − Xn|

p])1/p
= 0.

We know that those two types of convergence are “independent” in the sense that none
of them implies the other. Both of them imply convergence in measure or convergence
in probability, i.e., the statement that

(C.1) ∀ε > 0 : lim
n→∞

P (|X − Xn| ≥ ε) = 0.

Lemma C.1. Given a sequence of Rd-valued random variables Xn and another Rd-
valued random variable X on (Ω,F , P). Assume that either Xn → X almost surely or
Xn → X in Lp(Ω,F , P), p ≥ 1. Then Xn → X in probability.

On the other hand, if Xn → X in probability, then there is a subsequence (nk)k∈N

such that Xnk → X almost surely.

Proof. From Bürger’s lecture notes we already know that almost sure convergence
implies convergence in probability. Therefore, we may assume that Xn → X in Lp. For
fixed ε > 0, Markov’s inequality implies that

lim
n→∞

P (|X − Xn| ≥ ε) ≤ lim
n→∞

E
[
|X − Xn|

p]
ε p = 0.

For the second part, fix k ∈ N. By convergence in probability, we can find an
nk ≥ nk−1 such that

P(Ak) ≤
1
k2 , where Ak B

{ ∣∣∣Xnk − X
∣∣∣ ≥ 1

k

}
.
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In particular, we have
∑

k P(Ak) ≤
∑

k 1/k2 < ∞. Thus, Theorem 2.26 implies that

P
(
lim sup

k→∞
Ak

)
= 0.

However, ω < lim supk→∞ Ak implies that
∣∣∣Xnk (ω) − X(ω)

∣∣∣ < 1/k for all k large enough.
Thus,

∀ω < lim sup
k→∞

Ak : lim
k→∞

Xnk (ω) = X(ω). �

Weak convergence is even weaker then convergence in probability, and is, in fact,
more a type of convergence of measures.

Definition C.2. Given a sequence of probability measures µn and a single probability

measure µ on (Rd,B(Rd)). We say that µn converges weakly to µ, symbolically µn
d
−→ µ

iff
∀ f ∈ Cb(Rd) : lim

n→∞

∫
f dµn =

∫
f dµ.

A sequence of random variables taking values in Rd converges weakly or in distribu-
tion to a random variable X on Rd iff the distributions of Xn converge weakly to the

distribution of X. In this case, we write Xn
d
−→ X.

We note that the random variables Xn do not need to be defined on one common
probability space (Ω,F , P), since only the distribution matters. Therefore, statements

like Xn
d
−−−−→
n→∞

µ make sense, too. By Lemma B.5, the weak limit of a sequence of
probability measures is unique if it exists. On the other hand, the weak limit of a
sequence of random variables is, of course, by no means unique: any random variable
with the limiting distribution is a limit.

Lemma C.3. On the level of distribution functions, weak convergence of probability
measures µn on (R,B(R)) with c.d.f. Fn to a probability measure µ with c.d.f. F is
equivalent to weak convergence of the distribution functions

∀x ∈ S (F) : lim
n→∞

Fn(x) = F(x),

where S (F) is the set of points of continuity of F.

Proof. During the proof we say that an interval I with endpoints a and b is an interval
of continuity of F iff a, b ∈ S (F). We first prove that weak convergence implies weak
convergence of the distribution functions. Fix ε > 0. Let I be an interval of continuity
of F and Iδ ⊃ I an interval of continuity such that the interval Iδ \ I has length δ and
such that the left (right) endpoint of Iδ is strictly smaller (larger) then the left (right)
endpoint of I1 and with µ(Iδ \ I) < ε – here we use that I is an interval of continuity.
Then we can find a continuous function f taking values in [0, 1] such that

f (x) =

1, x ∈ I,
0, x ∈ Ic

δ .

Then we have for n sufficiently large

µn(I) ≤
∫

f dµn <

∫
f dµ + ε ≤ µ(Iδ) + ε < µ(I) + 2ε.

1This is not meant to preclude the possibility to choose intervals I =] −∞, a].
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By constructing a similar interval Iδ ⊂ I, we can also show the revers inequality, i.e.,
for n sufficiently large

µn(I) > µ(I) − 2ε.

This implies that |µn(I) − µ(I)| < 2ε for n sufficiently large and any interval of continu-
ity I. In particular, choosing I =] −∞, x] with x ∈ S (F) gives the claim.

In the other direction, assume that f is a continuous function bounded by M > 0.
Let A be a finite interval of continuity for F with µ(A) > 1 − ε. By uniform continuity
of f on A we can approximate f on A by a step function g with | f (x) − g(x)| < ε for
x ∈ A and we can choose g such that the intervals, on which g takes constant values, are
intervals of continuity of F. Outside of A, we set g = 0, implying that |g(x) − f (x)| ≤ M
for x ∈ Ac. We note that ∫

gdµn −−−−→
n→∞

∫
gdµ.

On the other hand, we have∣∣∣∣∣∫ f dµ −
∫

gdµ
∣∣∣∣∣ ≤ εµ(A) + Mε ≤ (1 + M)ε,

and for n sufficiently large∣∣∣∣∣∫ f dµn −

∫
gdµn

∣∣∣∣∣ ≤ εµn(A) + Mµn(Ac) ≤ εµn(A) + 2εM ≤ (1 + 2M)ε.

Combining the inequalities we have for n sufficiently large that∣∣∣∣∣∫ f dµ −
∫

f dµn

∣∣∣∣∣ ≤ ∣∣∣∣∣∫ f dµ −
∫

gdµ
∣∣∣∣∣ +

∣∣∣∣∣∫ gdµ −
∫

gdµn

∣∣∣∣∣ +

∣∣∣∣∣∫ gdµn −

∫
f dµn

∣∣∣∣∣
< 3(M + 1)ε,

implying convergence of
∫

f dµn to
∫

f dµ. �

Remark C.4. Weak convergence topologizes the setM1(Rd) of probability measures
on B(Rd). In fact, one can show that the weak topology – which is a weak∗ topol-
ogy in the sense of functional analysis – can be metricized by Prokhorov’s [German:
Prohorov?] metric defined by dP(µ, ν) B max

(
d′P(µ, ν), d′P(ν, µ)

)
with

d′P(µ, ν) B inf
{
ε > 0

∣∣∣ ∀A ∈ B(Rd) : µ(A) ≤ ν (Bε(A)) + ε
}
,

where Bε denotes the open ball with radius ε.

Lemma C.5 (Slutzky). Let (Xn) and (Yn) be sequences of Rd-valued random variables

such that Xn − Yn −−−−→
n→∞

0 in probability and such that Yn
d
−−−−→
n→∞

Y for some random

variable Y. Then we have Xn
d
−−−−→
n→∞

Y as well. In particular, convergence in probability
implies convergence in distribution.

Proof. For simplicity, we consider the case d = 1 only.2 Let Fn and Gn denote the
distribution functions of Xn and Yn, respectively. We want to show that Fn(x) → G(x)

2The extension to the multi-dimensional case can later be justified by the Cramér-Wold trick, see
Lemma C.10.
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for x ∈ S (G), where G denotes the distribution function of Y . Notice that for any ε > 0
and x ∈ R

{ Xn ≤ x } ⊂ {Yn ≤ x + ε } ∪ { Xn − Yn ≤ −ε } ⊂ {Yn ≤ x + ε } ∪ { |Xn − Yn| ≥ ε } .

Thus,

(C.2) Fn(x) ≤ Gn(x + ε) + P (|Xn − Yn| ≥ ε) .

Now assume that x ∈ S (G), x + ε ∈ S (G). For n large enough we have

Fn(x) ≤ G(x + ε) + 2ε.

Since x ∈ S (G), for any δ > 0 and any n large enough, this implies

Fn(x) ≤ G(x) + δ.

By turning around the roles of Fn and Gn in (C.2) and changing x→ x− ε, we can also
get for n large enough

Fn(x) ≥ G(x − ε) − ε,

implying finally that Fn(x)→ G(x), x ∈ S (G).
For the second part assume that Xn → X in probability and set Yn ≡ X. Then

Xn → X in distribution by the first part. �

Corollary C.6. Given a sequence of Rd-valued random variables (Xn) and an Rd-
valued random variable X. Assume either of the following three conditions:

a) Xn → X almost surely;

b) Xn → X in Lp(Ω,F , P) for some p ≥ 1;

c) Xn → X in probability.

Then Xn
d
−→ X.

Proof. We already know by Lemma C.1 that a) and b) imply c). By Lemma C.5, c)
implies convergence in distribution. �

Remark C.7. In fact, Corollary C.6 c) can be partially inverted: if we have a sequence

of random variables Xn
d
−−−−→
n→∞

X0, then one can find a probability space (Ω′,F ′, P′) and

random variables X′n : Ω′ → Rd with PXn = P′X′n , n ∈ N0, such that X′n → X′0 in (P′)
probability.

As a probabilistic property, weak convergence should be reflected by properties of
the characteristic functions.

Theorem C.8 (Lévy’s continuity theorem). Assume we are given a sequence µn of
probability measures on Rd.

(i) If there is a probability measure µ with µn
d
−−−−→
n→∞

µ, then the sequence µ̂n con-

verges (uniformly on compact sets) to µ̂.
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(ii) Conversely, assume that µ̂n −−−−→
n→∞

f pointwise for some function f : Rd → C

(partially) continuous3 at 0. Then there is a probability measure µ on (Rd,B(Rd))

with f = µ̂ and µn
d
−−−−→
n→∞

µ.

We skip the proof of this important theorem, since it relies on non-trivial results
from functional analysis regarding relative sequential compactness in the metric space
of probability measures.

Theorem C.9 (Central limit theorem). Let Xn be a sequence of i.i.d. random variables
taking values in (Rd,B(Rd)) and assume that µ B E[X1] ∈ Rd and Σ B cov[X1] ∈ Rd×d

exist. Then ∑n
i=1(Xi − µ)
√

n
d
−−−−→
n→∞

N(0,Σ).

In particular, in the one-dimensional case, we can reformulate the result as∑n
i=1(Xi − µ)
√

nσ
d
−−−−→
n→∞

N(0, 1),

provided that σ2 B var[X1] > 0.

Proof. We first give the proof in dimension d = 1 for σ > 0 – otherwise, there is
nothing to prove. For ease of notation, we assume that µ = 0. Since X1 is square
integrable, Theorem B.8 implies that

ϕX1 (u) = 1 −
σ2

2
u2 + o(u2).

By Theorem 2.25 (ii) the characteristic function of the scaled partial sum S ∗n B
1
√

nσ

∑n
l=1 Xl

satisfies

ϕS ∗n (u) =

n∏
l=1

ϕ Xl√
nσ

(u) =

(
ϕX1

(
u
√

nσ

))n

=

(
1 −

u2

2n
+ o(n−1)

)n

−−−−→
n→∞

e−u2/2.

Since e−u2/2 is the characteristic function of the standard normal distribution, Theo-
rem C.8 gives the result. �

For the proof for the multi-dimensional case, we are going to use the following
auxiliary result.

Lemma C.10 (Cramér-Wold). Given a sequence Xn of random variables in Rd. Then
the sequence converges weakly to some random variable X if and only if for every
u ∈ Rd the sequence of one-dimensional random variables 〈u , Xn〉 converges to some
random variable Xu. In that case, 〈u , X〉 has the same distribution as Xu.

Proof. We only need to prove that convergence of 〈u , Xn〉 in distribution for every
u ∈ Rd implies weak convergence of the sequence Xn. By Lévy’s continuity theorem,
we know that for every u ∈ Rd the sequence of functions

ϕ〈u ,Xn〉(t) = E[ei〈tu ,Xn〉] = ϕXn (tu)

3This means that the functions xi 7→ f (x) is continuous for every component i.
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converges to a continuous function fu(t). Clearly, there is a function f : Rd → C such
that fu(t) = f (tu). Now take 1 ≤ l ≤ d and u = el. Again, by Theorem C.8 we have

1 = f (0) = fel (0) = lim
t→0

fel (t) = lim
t→0

f (tel),

implying partial continuity of f . Thus, we can appeal to Lévy’s continuity theorem for
the last time and get weak convergence of the sequence Xn to a random variable X with
characteristic function f .

Note that this, in turn, implies weak convergence of 〈u , Xn〉 to 〈u , X〉 because of
continuity of x 7→ 〈u , x〉. �

Proof of the multi-dimensional part of Theorem C.9. Now we assume that Xn are d-
dimensional (again with µ = 0). By the one-dimensional version, we know that∑n

i=1 〈u , Xn〉
√

n
d
−−−−→
n→∞

N(0, σ2
u),

where σ2
u = var[〈u , X1〉] = uT cov[X1]u for every u ∈ Rd. By Lemma C.10, this implies

weak convergence of 1
√

n

∑n
i=1 Xi to some random variable X such that

∀u ∈ Rd : 〈u , X〉 ∼ N(0, uT Σu).

In particular, we obtain
ϕX(u) = E[ei〈u ,X〉] = e−

1
2 uT Σu,

implying that X ∼ N(0,Σ) by Theorem B.2. �

Remark C.11. The Berry-Esseen theorem gives a non-asymptotic quantitative bound
for the speed of convergence in the central limit theorem. Given i.i.d. real random
variables Xn with E[X1] = 0 (w.l.o.g.) and var[X1] = σ2 > 0 such that γ B E

[
|X1|

3
]
<

∞. Once again, let S ∗n B (X1 + · · · + Xn)/(
√

nσ). There is a universal constant C (i.e.,
a constant independent of the sequence Xn and the parameters) such that for all n ∈ N

sup
x∈R

∣∣∣P (
S ∗n ≤ x

)
− Φ(x)

∣∣∣ ≤ Cγ
σ3
√

n
,

where Φ denotes the c.d.f. of the standard normal distribution. The constant C is not
known, but one has an upper bound C ≤ 0.4785.

Remark C.12. The central limit theorem can be generalized to non-identically dis-
tributed independent families of (real) random variables (Xn). In this case, we say that
the central limit theorem holds if∑n

j=1(X j − E[X j])√∑n
j=1 var[X j]

d
−−−−→
n→∞

N(0, 1).

It turns out that the relevant sufficient condition for the central limit theorem is limn→∞ Ln(ε) =

0 for every ε > 0, where

(C.3) Ln(ε) B
1
s2

n

n∑
j=1

∫
{ |x−E[X j]|≥εsn }

(x − E[X j])2PX j (dx)

81



with s2
n B

∑n
j=1 var[Xn]. This condition is known as Lindeberg’s condition. Moreover,

Lindeberg’s condition is rather sharp. Indeed, if the central limit theorem holds and the
random variables satisfy Feller’s condition, i.e.,

lim
n→∞

(
max

j=1,...,n

var[X j]
sn

)
= 0,

then they satisfy Lindeberg’s condition.
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