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Abstract. We consider the problem of optimizing the expected logarithmic utility of the
value of a portfolio in a binomial model with proportional transaction costs with a long
time horizon. By duality methods, we can find expressions for the boundaries of the no-
trade-region and the asymptotic optimal growth rate, which can be made explicit for small
transaction costs (in the sense of an asymptotic expansion). Here we find that, contrary
to the classical results in continuous time, see Janeček and Shreve [Fin. Stoch. 8, 2004],
the size of the no-trade-region as well as the asymptotic growth rate depend analytically
on the level λ of transaction costs, implying a linear first order effect of perturbations
of (small) transaction costs, in contrast to effects of order λ1/3 and λ2/3, respectively, as
in continuous time models. Following the recent study by Gerhold, Muhle-Karbe and
Schachermayer [Fin. Stoch. 2011 (online first)] we obtain the asymptotic expansion by an
almost explicit construction of the shadow price process.

1. Introduction

In this paper we consider the problem of optimal investment in a market consisting of
two assets, one risk-free asset, the bond, which, for simplicity, is assumed to be constant
in time and one stock. More precisely, we assume that the investor wants to maximize her
expected utility from final wealth, i.e.,

E [U(VT )]→ max,

for a given finite horizon T > 0, a given utility function U and, certainly, a given ini-
tial wealth, say, x. Here, VT denotes the value of the portfolio obtained by the investor
at time T . In fact, we shall only consider the case of the most tractable utility function,
U(x) = log(x).1 In this framework, it is known since the seminal work of Merton in
1969 [Mer69] that in a frictionless market in which the price of the risky asset follows a
geometrical Brownian motion (with drift µ and volatility σ), it is optimal for the investor
to keep the fraction of wealth invested in the risky asset, ϕtS t, w.r.t. the total portfolio
wealth, ϕ0

t + ϕtS t constant equal to µ/σ2. In particular, this means that the portfolio has
to be constantly re-balanced. Of course, this result fully deserves its fame, but nonethe-
less it mainly implies that the model of a frictionless financial market in continuous time
is not an adequate model of reality in the context of portfolio optimization, since it gives
an investment, which would lead to immediate bankruptcy if applied in practice due to
the bid-ask spread. Consequently, it is essential to study the optimal investment problem

We gratefully acknowledge to continued support of Walter Schachermayer, who introduced the problem to
us and offered valuable hints and guidance. We are also grateful to Johannes Muhle-Karbe and Philipp Dörsek
for enlightening discussions.

1It is also possible to carry out our analysis for CRRA utility functions of the form U(x) = xγ
γ .
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under transaction costs, a work undertaken by many authors starting with Magill and Con-
stantinides [MC76]. While actually treating the related problem of optimizing utility from
consumption, in this work the main difference to the Merton rule has already been estab-
lished in a heuristic way, namely that an investor optimizing his expected utility keeps the
proportion of wealth invested in the stock to total wealth inside of a fixed interval instead
of fixed single point. Consequently, the investor will not trade actively while the propor-
tion remains inside the interval, suggesting the term “no-trade-region”. On the other hand,
when the proportion is about to leave the no-trade-region, then the investor will trade stocks
for bonds (or conversely) so as to just keep the proportion inside the interval.

Since then, many papers in the finance and mathematical finance literature have treated
the problem of portfolio optimization under proportional transaction costs, for instance
[DN90], [SS94], [JS04] and [TKA88], to mention some of the most influential ones on
the mathematical side. As usual for concave optimization problems, there are essentially
two approaches for the analysis: the primal approach, which, in this case, is mostly based
on the associated Hamilton-Jacobi-Bellman equation, and the dual approach. Represen-
tatives of the former method are the works [SS94] and [JS04], where the (asymptotic)
first order effect of the transaction costs to the no-trade-region was found for the utility-
from-consumption problem. An elegant formulation of the dual approach is based on the
notion of shadow prices, see Kallsen and Muhle-Karbe [KMK10], and we especially men-
tion the inspiring work of Gerhold, Muhle-Karbe and Schachermayer [GMKS11], where
asymptotic expansions for the no-trade-region and the asymptotic growth rate were found
in a utility-from-terminal-wealth problem. [JS04] and [GMKS11] found the characteristic
result that the size of the no-trade-region is of order λ1/3, where λ is the relative bid-ask-
spread.

Almost all of the literature mentioned so far studied the effects of market-friction in
the form of proportional transaction costs in the case of markets allowing continuous time
trading, more specifically, in a Black-Scholes model. In the context of a discrete model, the
problem seems to be less pressing, as infinite trading activities are anyway not possible,
which implies that the optimal portfolio strategy of a friction-less, discrete-time model
is, at least, admissible in a model with transaction costs. However, also in a discrete-
time market, such a portfolio will be far from optimal. We refer to [GJ94] for numerical
experiments on the effects of transaction costs in a utility-from-terminal-wealth problem.
A thorough analytical and numerical study of the use of dynamic programming was done
by Sass [Sas05] allowing for very general structures of transaction costs, including some
numerical examples. [CSS06] use the dual approach for their analysis of the value function
and the optimal strategy for the super-replication problem of a derivative. In particular,
when the transaction costs are large enough, they show that buy-and-hold (or sell-and-hold)
strategies are optimal. In the context of super-replication, one should also mention the
recent [DS11]. Last but not least, we should also mention [Kus95], where the convergence
of the super-replication cost in a binomial model with transaction costs was studied when
the binomial model converges weakly to a geometrical Brownian motion.

A binomial model introduced in [CRR79] for the purpose of pricing options is not only
a simple model of pedagogical worth but also widely used nowadays by practitioners.
The valuation of American options, exotic options and options with dividends are some
examples of applications.

The goal of this paper is to study the portfolio optimization problem with transaction
costs in the binomial model. For this purpose, we are going to use the shadow price ap-
proach of [GMKS11], and, as common in this strand of research, we shall restrict our
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attention to the problem of a long investment horizon T → ∞. Our contribution is twofold.
First of all, we obtain the shadow price process explicitly. This permits us to find explicit
terms for the optimal portfolios, the no-trade-region as well as the asymptotic optimal
growth rate when the relative bid-ask-spread λ is small, in the sense of asymptotic ex-
pansions in terms of λ. Hence, in our approach we know more about the structure of the
solution and do not face the curse of dimensionality compared to the backward induction
solution of the Bellman equation performed numerically. Our second contribution is we
show that, contrary to the continuous case, in a binomial model the first order effect of pro-
portional transaction costs λ to both the no-trade-region and the optimal growth rate is of
order λ.2 Economically, this marked difference can be easily understood, as in a discrete-
time model all-too-frequent trading is already hindered by the model itself, which does not
allow infinite trading activities.

2. Setting

Let (Ω,F , P) denote a probability space large enough that we can define a binomial
model (S t)t∈N with infinite time horizon.3 Throughout the paper, the filtration (Ft)t∈N is
generated by the process (S t)t∈N. For simplicity, we assume interest rates r = 0. Con-
sequently, the model is free of arbitrage when u > 1 > d. Here, we assume that we are
given a re-combining tree, i.e., d = 1/u < 1, but allow for general 0 < p < 1. (Recall that
S t+1 = uS t with probability p and S t+1 = dS t with probability 1 − p.) While we allow for
binomial models with infinite time horizon, in general we shall consider the restriction to
a finite time horizon, i.e., (S t)t=0,...,T . A portfolio is given by the number ϕ0

t of bonds held
at time t (until time t + 1) and the number ϕt of stocks.

Moreover, we also have a proportional transaction cost λ, satisfying 0 < λ < 1. That is,
for each t ≥ 0 the bid and ask prices are given by (1 − λ)S t and S t, respectively.

Before we go to more details about the markets with transaction costs, we recall the
log-optimal portfolio in a generalized binomial model without transaction costs.

Proposition 2.1. Let wt, t = 1, . . . ,T, be a sequence of independent random variables tak-
ing the values ±1 with positive probabilities each and define a stochastic process (S t)t=0,...,T
by some fixed value S 0 > 0 and by

S t+1 B

ut+1S t, wt+1 = 1,
dt+1S t, wt+1 = −1,

where ut+1 > 1 > dt+1 > 0 are σ(w1, . . . ,wt)-measurable random variables and 0 ≤ t ≤
T − 1. Then the log-optimizing portfolio for the stock-price is given in terms of the ratio πt

of wealth invested in stock and total wealth at time t by

πt B
ϕtS t

ϕ0
t + ϕtS t

=
P(wt+1 = 1)ut+1 + P(wt+1 = −1)dt+1 − 1

(ut+1 − 1)(1 − dt+1)
.

Proof. The usual proof in the normal binomial model (see, for instance, [Shr04]) goes
through without modifications. �

Next we give a formal definition of a self-financing trading strategy in the binomial
model with proportional transaction costs. Note that in a model with transaction costs the
initial position of the portfolio, i.e., before the very first trading possibility, matters.

2In the continuous case, the first order effects are of order λ1/3 and λ2/3, respectively.
3In fact, it would be sufficient to consider a family of finite probability spaces (ΩT ,FT , PT ) carrying the

binomial model with T periods for any T ∈ N.
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Definition 2.2. A trading strategy is an adapted R2-valued process (ϕ0
t , ϕt)−1≤t≤T such that

(ϕ0
−1, ϕ−1) = (x, 0). It is called self-financing, if

ϕ0
t − ϕ

0
t−1 + (ϕt − ϕt−1)S t ≤ 0 and ϕ0

t − ϕ
0
t−1 + (ϕt − ϕt−1)(1 − λ)S t ≤ 0, 0 ≤ t ≤ T.

Moreover, it is called admissible, if the corresponding wealth process

Vt(ϕ0, ϕ) := ϕ0
t + ϕ+

t (1 − λ)S t − ϕ
−
t S t, 0 ≤ t ≤ T,

is a.s. non-negative.

In general, one would allow for portfolio process with negative values, as long as there
is a deterministic lower bound for the wealth. In a setting of log-optimization, however,
it makes sense to rule out such strategies as the logarithm assigns utility −∞ to outcomes
with negative wealth.

Definition 2.3. An admissible trading strategy (ϕ0
t , ϕt)−1≤t≤T is called log-optimal on {0, . . . ,T }

for the bid-ask process ((1 − λ)S , S ) , if

E[log(VT (ψ0, ψ))] ≤ E[log(VT (ϕ0, ϕ))]

for all admissible trading strategies (ψ0, ψ).

Due to technical reasons, it is not easy to solve the above problem for finite T > 0, as
the optimal strategy will be time-inhomogeneous. As usual in the literature on models with
transaction costs, we will instead modify it in Definition 2.5, essentially by letting T → ∞.
Here, we introduce the notion of a shadow price process, for which we refer to [KMK10].

Definition 2.4. A shadow price process for S is an adapted process S̃ such that (1−λ)S t ≤

S̃ t ≤ S t for any 0 ≤ t ≤ T and the log utility optimizing portfolio (ϕ0, ϕ) for the frictionless
market with stock price process S̃ exists and satisfies

{ϕt − ϕt−1 > 0} ⊆
{
S̃ t = S t

}
,

{ϕt − ϕt−1 < 0} ⊆
{
S̃ t = (1 − λ)S t

}
,

for all 0 ≤ t ≤ T.

By results from [KMK10], [KMK11], it is known that a shadow price process exists and
that the optimal portfolio in the frictionless market given by the shadow price process is,
in fact, also optimal in the model with transaction costs. Indeed, the shadow price process
can be seen as a solution of the dual optimization problem and is intimately related to the
notion of a consistent price system. For more background information on dual methods for
utility optimization in markets with transaction costs we refer to the lecture notes [Sch11].

Definition 2.5. Given a shadow price process S̃ = (S̃ t)0≤t≤T , an admissible trading strat-
egy (ϕ0

t , ϕt)−1≤t≤T is called log-optimal on {0, . . . ,T } for the modified problem if

E[log(ṼT (ψ0, ψ))] ≤ E[log(ṼT (ϕ0, ϕ))].

for all admissible trading strategies (ψ0, ψ), where

Ṽt(ϕ0, ϕ) B ϕ0
t + ϕtS̃ t, t ≥ 0.

Proposition 2.6. Let S̃ be a shadow price process for the bid-ask price process ((1−λ)S , S )
and let (ϕ0, ϕ) be its log-optimal portfolio. If V(ϕ0, ϕ) ≥ 0, then (ϕ0, ϕ) is also log-optimal
for the modified problem.

Proof. The proof is rather standard and simple. See [GMKS11]. �
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Using the above proposition, we obtain that difference between the true and the modified
problem is of order λ.

Corollary 2.7. Let S̃ be a shadow price process for the bid-ask price process ((1−λ)S , S ).
(i) If its log-optimal portfolio (ϕ0, ϕ) satisfies ϕ0 ≥ 0 and ϕ ≥ 0, then

sup
(ψ0,ψ)
E[log(VT (ψ0, ψ))] + log(1 − λ) ≤ E[log(VT (ϕ0, ϕ))] ≤ sup

(ψ0,ψ)
E[log(VT (ψ0, ψ))].

(ii) In general, we can find a positive, bounded random variable Y = Y(λ) having a finite,
deterministic limit Y(0) = limλ→0 Y(λ) such that

sup
(ψ0,ψ)
E[log(VT (ψ0, ψ))] + E[log(1 − λY(λ))] ≤ E[log(VT (ϕ0, ϕ))] ≤ sup

(ψ0,ψ)
E[log(VT (ψ0, ψ))].

Proof. Here we only give the proof of (i). For the second part we refer to Lemma 5.6.
Let (ψ0, ψ) be any admissible strategy for ((1 − λ)S , S ). As (1 − λ)S ≤ S̃ ≤ S , we get
VT (ψ0, ψ) ≤ ṼT (ψ0, ψ). If ϕ0 ≥ 0 and ϕ ≥ 0, then by the same reason we obtain VT (ϕ0, ϕ) ≥
(1 − λ)ṼT (ϕ0, ϕ). Combining these with Proposition 2.6, we obtain

E[log(VT (ϕ0, ϕ))] ≥ E[log(ṼT (ϕ0, ϕ))] + log(1 − λ)

≥ E[log(ṼT (ψ0, ψ))] + log(1 − λ)

≥ E[log(VT (ψ0, ψ))] + log(1 − λ). �

In particular, Corollary 2.7 implies that both problems coincide in the limit when T →
∞. Intuitively, this is clear, as an additional transaction at a final time T should not matter
much when T is large and we have a proper time-rescaling. To make this statement precise,
we need to introduce one more notion.

Definition 2.8. The optimal growth rate is defined as

R B lim sup
T→∞

1
T
E

[
log

(
VT (ϕ0,T , ϕT )

)]
,

where (ϕ0,T , ϕT ) denotes the log-optimal portfolio for the time-horizon T .

Intuitively, this means that by trading optimally, the value of the portfolio will grow like
eRT on average. Now, Corollary 2.7 obviously implies that we can replace VT by ṼT and
the optimal portfolio by the optimal portfolio of the modified problem.

3. Heuristic construction of the shadow price process

In this section, we are going to construct the shadow price process S̃ on a heuristic level,
which will then be made rigorous in the next section. In particular, we want to stress that
most of the assumptions made in this section will be justified in Section 4. Moreover, some
rather heuristic and vague constructions shall be made more precise.

Following [GMKS11], we make a particular ansatz for the parametrization of the shadow
price process.

Assumption 3.1. The shadow price process S̃ is a generalized binomial model as intro-
duced in Proposition 2.1. For any excursion of the shadow price process S̃ away from
the boundaries given by the bid- and ask-price process, there is a deterministic function g
such that S̃ = g(S ) during the excursion, i.e., whenever the shadow price process satisfies
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S̃ t ∈ {(1 − λ)S t, S t} , S̃ t+k ∈ {(1 − λ)S t+k, S t+k} but (1 − λ)S t+h < S̃ t+h < S t+h for any
1 ≤ h ≤ k − 1, then there is a function g such that S̃ t+h = g(S t+h), 1 ≤ h ≤ k − 1. 4

We assume that we start by buying at t = 0, i.e., S̃ 0 = S 0. Hence, the relation

x = ϕ0S̃ 0 + ϕ0
0

implies ϕ0
0 = cx

c+1 and ϕ0 = x
(c+1)S 0

, where c B ϕ0
0

ϕ0S 0
. Let us note once more that c is treated

as a known quantity for the moment.
In the frictionless case, Proposition 2.1 shows that the optimal portfolio is, indeed, deter-

mined by c via π = 1
1+c . Here, we treat the market with transaction costs as a perturbation

of the frictionless market. Therefore, this motivates a parametrization of the portfolio by
the fraction c also in that case. Keeping c constant over time requires continuous trad-
ing, incurring prohibitive transaction costs. Consequently, we may expect that the optimal
portfolio will only be re-balanced when c leaves a certain interval. Our first objective,
therefore, is to compute the initial holdings in the optimal portfolio, i.e., the initial c. In
what follows, we shall, however, assume that c is known and compute the given transaction
costs λ as a function of the parameter — a relation, which is going to be inverted to obtain
c.

Next, we construct the shadow price process S̃ during an excursion away from the
boundary. For this, we parametrize S̃ not by time t but by the number n of “net upwards
steps” of the underlying price process, i.e., for a given t ≥ 0, we consider n = n(t) such that
S t = unS 0, n ∈ Z, which is possible by our choice of a re-combining binomial tree model,
i.e., by d = u−1. During the first excursion from the bid-ask boundary, Assumption 3.1
implies that S̃ t = g(S t) for some function g. In particular, since n(s) = n(t) implies that
S s = S t, we have that S̃ t will only depend on n, but not on time t itself. Therefore, we may,
during the first excursion away from the bid-ask prices, index the shadow price process by
n instead of t.

Before constructing the shadow prices in the interior of the bid-ask price interval, let us
take a look at the expected behavior of the shadow price process when the stock price falls,
i.e., when n ≤ 0. Intuitively, and following [GMKS11], when the stock price gets smaller
than the initial price S 0, we have to continue buying stock, i.e., we have S̃ −n = S −n = dnS 0
for n ≥ 0, before the first instance of selling stock.5 We formulate this extended ansatz as
a second assumption.

Assumption 3.2. Given a time t ≥ 0 at which the number of bonds and stocks in the
log-optimal portfolio for the frictionless market in the shadow price process S̃ needs to
be adjusted. Let t + h be the (random) next time of an adjustment of the portfolio in the
opposite direction. If S̃ t = S t and S u < S t, then S̃ u = S u and, conversely, if S̃ t = (1 − λ)S t

and S u > S t, then S̃ u = (1 − λ)S u, for t ≤ u ≤ t + h.

What happens when S t increases beyond S 0? Intuitively, it seems clear that we will not
change the log-optimal portfolio at times t with S t > S 0 except by selling stock, i.e., for
positive n we expect to have (1 − λ)S n ≤ S̃ n < S n. Thus, during a positive excursion of
the stock price process S from S 0, the excursion of the shadow price process away from
the bid-ask price boundary will end at τ B min

{
t ≥ 0

∣∣∣ S̃ t = (1 − λ)S t

}
, assuming that

4Note that for different excursions, the functions g are not assumed to be equal. Later on, we will, however, see
that those functions can be easily transformed into each other, see Proposition 4.5 together with Proposition 4.4.

5Obviously, a positive excursion thereafter will be treated differently as a positive excursion immediately
started at time 0, i.e., with different shadow price process.
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Figure 1. A path of the shadow price process

∀0 ≤ t ≤ τ : S t ≥ S 0. We also let k B n(τ) be the corresponding net number of upwards
steps. This means that

ϕ0
n

ϕnS 0
= c for 0 ≤ n ≤ k − 1

As for 0 ≤ n ≤ k − 1 the numbers of bonds and stock in the log-optimal portfolio for the
market given by S̃ may not change, Proposition 2.1 implies

(1) πn =
ϕnS̃ n

ϕ0
n + ϕnS̃ n

=
S̃ n

cS 0 + S̃ n
=

pũn+1 + (1 − p)d̃n+1 − 1

(̃un+1 − 1)(1 − d̃n+1)
.

where

ũn+1 =
S̃ n+1

S̃ n
and d̃n+1 =

S̃ n−1

S̃ n
.

Solving (1) gives the recursion

S̃ n+1 =
S̃ ncS 0 + pS̃ nS̃ n−1 − cS 0(1 − p)S̃ n−1

pcS 0 + S̃ n−1 − (1 − p)S̃ n
, S̃ 0 = S 0 and S̃ −1 = S 0d.

Fortunately, we can find an explicit solution for the above recursion. It is given by

S̃ n = S 0

c(1 − ( 1−p
p )n) + βp

−(1 − ( 1−p
p )n) + βp

for p ,
1
2
,(2)

S̃ n = S 0
cn + β

−n + β
for p =

1
2
,(3)

where βp =
(c+d)(2p−1)
(1−d)(1−p) and β = c+d

1−d .

When we do not want to parametrize the shadow price process in terms of n, we can
still express S̃ t = S 0gc(S t) for 0 ≤ t ≤ τ. Indeed, by S n = S 0un we see that we can express
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n in terms of the stock price s by n =
log(s)
log(u) , and inserting into (2) gives

gc(s) =

c
(
1 − ( 1−p

p )−
log(s)
log d

)
+ βp

−

(
1 − ( 1−p

p )−
log(s)
log d

)
+ βp

for p ,
1
2
,

gc(s) =
c log(s) + β log u
− log(s) + β log u

for p =
1
2
.

Note that gc(s) is increasing, first concave and then convex.
Now we have constructed a candidate for the shadow price process S̃ which is defined

until the first time when it again hits either the bid or the ask price of the true stock. We have
also, en passant, settled the case when the process first hits the ask price again: for n = −1,
we have S̃ −1 = S −1 = dS 0, and we will buy additional stock and re-start the recursion, but
at a different initial value, see the next section for a detailed account. However, when we
actually consider the passage from ask to bid price, i.e., when n = k and S̃ k = (1 − λ)S k,
we have to decide how to re-balance our portfolio. In practice, the situation will be a
bit difficult: most likely, we are not able to follow our explicit formula (2), as it is quite
possible that S̃ k < (1−λ)S k, i.e., that the recursion formula does not hold true anymore for
the last step, because it would induce a violation of the first basic property of the shadow
price process. In principle, it would be possible to handle this situation. However, it
would lead to inherent non-continuities, which would not allow us to use the method of
asymptotic expansions. Thus, we assume that the shadow price process touches the bid
price at an integer point k. (Note that this is really an assumption on the model parameter,
not just an ansatz! The assumption will be made more explicit in Assumption 4.3 in the
subsequent section.)

Assumption 3.3. The model parameters (u, d, p, S 0 and λ) are chosen such that S̃ k =

(1 − λ)ukS 0 and S̃ k+1 = (1 − λ)uk+1S 0.

The second part of Assumption 3.3 requires some justification. In fact, it reflects a
choice on the trading involved at the first opportunity of selling. More precisely, it means
that we do not re-balance the log-optimal portfolio when the shadow price process first hits
the bid price. Only when the stock price increases once more, the shadow price is again
equal to the bid price and then we do trade. In the discrete time situation, this particular
structure of the shadow price process seems arbitrary, but it reflects an important condition
in the continuous problem as discussed in [GMKS11], namely the smooth pasting condi-
tion for the analogous function g in the Black-Scholes model with proportional transaction
costs. This condition says that g is continuously differentiable at s with g(s) = (1 − λ)s,
i.e., in some sense the shadow price process “smoothly” merges with the bid price process.
In continuous time, this assumption is very beneficial in, for instance, avoiding any ref-
erence to local times. In the discrete case, other choices are clearly also possible, which
lead, inter alia, to different shadow price processes as the one studied by [GMKS11] in the
Black-Scholes model seen as a limiting case of the binomial model. Since one of the main
motivations for the present model is to study precisely this convergence, we impose the
second part of Assumption 3.3.
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In the next step, we interpret the two equalities in Assumption 3.3 as a system of equa-
tions for the two unknowns k and λ.6 For p = 1

2 , the solution is given by k =
(c+d)(c−1)

c(1−d) and
λ = 1 − c2dk.

For p , 1
2 , set x =

1−p
p and y = xk. If we eliminate λ from equations, then we obtain

(4)
c(1 − y) + βp

−(1 − y) + βp
=

c(1 − xy) + βp

−(1 − xy) + βp
d

which is second order polynomial equation for y. We obtain two solutions y1 to be given
in (5) and y2 =

p
1−p which implies that the net number of upwards steps is k = −1. However,

for k = −1, we indeed solve equation (4), but at the ask-price instead of the bid price.
Therefore, the remaining solution must be the appropriate one,

(5) y =
[c(p + pd − d) + d(2p − 1)][1 − p − pd − c(2p − 1)]

c(1 − d)2(1 − p)2 .

Hence, s̄ = d−k = y− log(d)/ log(x). Inserting this, we obtain
(6)

λ =

(cp((c + 2)d + c) − c(c + 1)d)
(
−

c(d−1)2(p−1)2

((c+2)dp−(c+1)d+cp)(c(2p−1)+dp+p−1)

)− log(d)
log(x)

c(2p − 1) + dp + p − 1
+ 1 C F(c).

4. Formal construction of the shadow price process

The proofs of most propositions in this section are found in Appendix A. From now on
we fix S 0 = 1, 0 < λ < 1, 1 > d = 1/u > 0 and d

1+d < p < 1
1+d . (The last inequality

translates to the condition 0 < µ < σ2 in the Black-Scholes case. By modifying some
of the functions, it is also possible to carry out the whole analysis for the other cases.)
Moreover, we denote c̄ =

1−p−pd
p+pd−d and b =

log(d)
log((1−p)/p) . Note that the optimal wealth fraction

πt in the frictionless binomial model is by Proposition 2.1 given by πt = 1
1+c̄ .

Proposition 4.1. Define

F(c) :=

1 −
(

c(p+pd−d)+d(2p−1)
(1−d)(1−p)

)2 (
(c(p+pd−d)+d(2p−1))(1−p−pd−c(2p−1))

c(1−d)2(1−p)2

)b−1
for p , 1

2 ,

1 − c2d
(c+d)(c−1)

c(1−d) for p = 1
2 .

Then, F(c) = λ has a unique solution in (c̄,∞) if p ∈ ( d
1+d ,

1
2 ], and a unique solution in

(c̄, 1−p−pd
2p−1 ) if p ∈ ( 1

2 ,
1

1+d ).

As we have c, we can define k and s̄. Denote

r(c) B
[c(p + pd − d) + d(2p − 1)][1 − p − pd − c(2p − 1)]

c(1 − d)2(1 − p)2 .

Proposition 4.2. Fix c and define

k :=


log(r(c))
log

(
1−p

p

) for p , 1
2 ,

(c+d)(c−1)
c(1−d) for p = 1

2 ,

and s̄ := uk. We have k > 0.

Assumption 4.3. We assume that the model parameter d is given such that k is a positive
integer in the above definition.

6Recall that we treat λ as an unknown and c as a known quantity with the prospect of inverting the function
for λ in terms of c at a later step.
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Note that this is the only assumption left from the previous Section 3. A closer look
at the definition of k shows the intuitively obvious fact that k converges to infinity when
d → 1. Consequently, at least when we are really interested in binomial models with d ∼ 1,
Assumption 4.3 is easy to fulfill by a slight modification of the model parameters.

Proposition 4.4. Define the function g on {d, 1, . . . , s̄, us̄} by

g(s) :=


c
(
1−( 1−p

p )
−

log(s)
log d

)
+βp

−

(
1−( 1−p

p )
−

log(s)
log d

)
+βp

, for p , 1
2 ,

c log(s)+β log u
− log(s)+β log u , for p = 1

2 ,

where βp =
(c+d)(2p−1)
(1−d)(1−p) and β = c+d

1−d . Then g is increasing, maps {d, 1, . . . , s̄, us̄} onto
{d, 1, . . . , (1 − λ)s̄, (1 − λ)us̄} and satisfies the “smooth pasting” conditions

(7) g(d) = d, g(1) = 1, g(s̄) = (1 − λ)s̄, g(us̄) = (1 − λ)us̄.

In addition,
(1 − λ)s ≤ g(s) ≤ s for 1 ≤ s ≤ s̄.

Finally, we have

p g(us)
g(s) + (1 − p) g(ds)

g(s) − 1

( g(us)
g(s) − 1)(1 − g(ds)

g(s) )
=

g(s)
c + g(s)

for 1 ≤ s ≤ s̄.

Define the sequence of stopping times (%n)∞n=0, (σn)∞n=1 and a process (mt)t≥0 by

%0 = 1 and mt = min
0≤i≤t

S i, 0 ≤ t ≤ σ1,

where σ1 is defined as

σ1 = min
{

t ≥ %0 :
S t

mt
= s̄ &

S t−1

mt−1
= s̄

}
.

Then, define the process (Mt)t≥0 as

Mt = max
σ1≤i≤t

S i, σ1 ≤ t ≤ %1,

where %1 is defined as

%1 = min
{

t ≥ σ1 :
S t

Mt
=

1
s̄

&
S t−1

Mt−1
=

1
s̄

}
.

Afterwards, we again pass to the running minimum and define

mt = min
%1≤i≤t

S i, %1 ≤ t ≤ σ2,

where

σ2 = min
{

t ≥ %1 :
S t

mt
= s̄ &

S t−1

mt−1
= s̄

}
.

Then, for t ≥ σ2, we define

Mt = max
σ2≤i≤t

S i, σ2 ≤ t ≤ %2,

where

%2 = min
{

t ≥ σ2 :
S t

Mt
=

1
s̄

&
S t−1

Mt−1
=

1
s̄

}
.

Proceeding in a similar way, we get the stopping times (σn)∞n=1, (%n)∞n=1. Both σn and
%n increase a.s. to infinity. Note that these stopping times are indeed attained because S
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is a binomial model, s̄ = uk where k ∈ N and S 0
m0

= 1, S σn
Mσn

= 1, S %n
m%n

= 1, for n ≥ 1.
Moreover, we see that mt and Mt are only defined on stochastic intervals ~%n−1, σn� and
~σn, %n� respectively. Note that s̄mσn−1 = S σn−1 and M%n−1 = s̄S %n−1 for n ≥ 1. Then, we
extend the processes M and m to N by

Mt := s̄mt, for t ∈
∞⋃

n=1

~%n−1, σn~ and mt :=
Mt

s̄
, for t ∈

∞⋃
n=1

~σn, %n~.

Therefore, we have
mt ≤ S t ≤ s̄mt for t ≥ 0.

Furthermore, by construction, m decreases only on {S t = mt} and increases only on {S t =

Mt} = {S t = s̄mt}.
Now, we can define a candidate for a shadow price. The result shows that it is a gener-

alized binomial model.

Proposition 4.5. Define S̃ t = mtg( S t
mt

), t ≥ 0. Then, S̃ is an adapted process which lies in

the bid-ask interval [(1 − λ)S , S ]. Moreover, consider the multipliers ũt and d̃t implicitly
defined by

S̃ t+1 =

ũt+1S̃ t, S t+1 = uS t,

d̃t+1S̃ t, S t+1 = dS t,

then we have

ũt+1 =
g( S tu

mt
)

g( S t
mt

)
> 1 > d̃t+1 =

g( S td
mt

)

g( S t
mt

)
.

Proof. S̃ is adapted because m is adapted. Moreover,

1 ≤
S t

mt
≤ s̄, for t ≥ 0.

Also Proposition 4.4 implies that

(1 − λ)s ≤ g(s) ≤ s for 1 ≤ s ≤ s̄.

Hence S̃ lies in the bid-ask interval. The ratios in the last assertion easily follow in the
case mt < S t < s̄mt as mt does not change. In the cases S t = mt and S t = s̄mt they follow
using g(d) = d and g(us̄) = (1 − λ)us̄ respectively. Finally, ũt+1 > 1 > d̃t+1, since g is
increasing. �

The log-optimal portfolio can be given in closed form relative to the process m and the
sequence of stopping times % and σ.

Theorem 4.6. Let S̃ t = mtg
(

S t
mt

)
. Then the log-optimizer (ϕ0

t , ϕt) in the frictionless market

with S̃ exists and satisfies (ϕ0
−1, ϕ−1) = (x, 0), (ϕ0

0, ϕ0) = ( cx
c+1 ,

x
c+1 ) and for t > 0

ϕ0
t =

ϕ
0
%n−1−1

(
c+d
c+1

) log(mt )−log(m%n−1−1)

log(d) , on ∪∞n=1 ~%n−1, σn~,

ϕ0
σn−1

(
cd+(1−λ)s̄
c+(1−λ)s̄

) log(mt )−log(m%n−1−1)

log(d) mt
mσn−1 , on ∪∞n=1 ~σn, %n~,

together with

ϕt =

ϕ%n−1−1

(
c+d
c+1

) log(mt )−log(m%n−1−1)

log(d) m%n−1−1

mt
, on ∪∞n=1 ~%n−1, σn~,

ϕσn−1

(
cd+(1−λ)s̄
c+(1−λ)s̄

) log(mt )−log(m%n−1−1)

log(d) , on ∪∞n=1 ~σn, %n~.
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Furthermore, the optimal fraction of wealth invested in the stock satisfies

π̃t =
ϕtS̃ t

ϕ0
t + ϕtS̃ t

=
g
(

S t
mt

)
c + g

(
S t
mt

) .
Proof. We will show that (ϕ0

t , ϕt) given above is indeed the log-optimal portfolio. It is
clear from the above definition that (ϕ0

t , ϕt) is an adapted process. Inductively, we obtain
that

(8) ϕ0
t = cmtϕt, for t ≥ 0,

both on ∪∞n=1~%n−1, σn~ and on ∪∞n=1~σn, %n~. Therefore, the self-financing condition

ϕ0
t+1 − ϕ

0
t + S̃ t+1(ϕt+1 − ϕt) = 0,

follows easily when mt does not change, as then ϕ0
t and ϕt do not change, either. If mt

changes and t ∈ ∪∞n=1~%n−1, σn~ , then the self-financing condition follows using (8) and
the fact that S̃ t = mt and S̃ t+1 = mt+1 = dmt. It follows similarly for t ∈ ∪∞n=1~σn, %n~.
Therefore, (8) implies that the fraction of wealth in the stock is

ϕtS̃ t

ϕ0
t + ϕtS̃ t

=
g
(

S t
mt

)
c + g

(
S t
mt

) .
Now, we prove that the same holds for the log-optimizer and hence by uniqueness we are
done. By Proposition 4.5, S̃ is a generalized binomial model and hence Proposition 2.1
and Proposition 4.4 imply that the fraction of wealth invested in the stock is given by

π̃t =
pũt+1 + (1 − p)d̃t+1 − 1

(̃ut+1 − 1)(1 − d̃t+1)
=

p
g(u S t

mt
)

g( S t
mt

)
+ (1 − p)

g(d S t
mt

)

g( S t
mt

)
− 1

(
g(u S t

mt
)

g( S t
mt

)
− 1)(1 −

g(d S t
mt

)

g( S t
mt

)
)

=
g
(

S t
mt

)
c + g

(
S t
mt

) . �

Corollary 4.7. Let S̃ t = mtg
(

S t
mt

)
. Then S̃ t is a shadow price.

Proof. By definition, m decreases only on {S t = mt} and increases only on {S t = s̄mt}.
Hence, by definition of ϕ in Theorem 4.6, we obtain

{ϕt − ϕt−1 > 0} ⊆ {S t = mt} = {S̃ t = S t} and

{ϕt − ϕt−1 < 0} ⊆ {S t = s̄mt} = {S̃ t = (1 − λ)S t}. �

5. Asymptotic expansions

Having constructed the shadow price process and the corresponding log-optimal port-
folio process in Theorem 4.6, we can now start to reap the benefits. Note, however, that the
almost explicit account of the log-optimal portfolio depends on the optimal ratio c between
wealth invested in bonds and stocks, respectively. We have implicitly found c as solution
of a non-linear equation λ = F(c), see (6), but we need a better grip on it to facilitate fur-
ther understanding of the optimal portfolio under proportional transaction costs λ, which
can be gained by formal series expansions. In the following, denote η B (2p−1) log(d)

(1−d) log((1−p)/p) if

p , 1
2 and η B log(d)

−2(1−d) if p = 1
2 .

Remark 5.1. Assuming that we know c, we can find the optimal portfolio and the value
function by a simple iteration on the tree in forward direction, instead of the typical back-
ward iteration. Thus, the shadow price method can be directly turned into an attractive
numerical method by solving the equation for c numerically.
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Proposition 5.2. The optimal ratio of wealth invested in bonds and stocks c has the series
expansion

c = c̄ +

∞∑
i=1

ciλ
i,

where all the coefficients ci can be computed by means of well-known symbolic algorithms.
In particular, the first two coefficients are given by

c1 =
c̄(1 − p)

(1 + d)η − 1
and c2 =

c̄(1 − p)
[
(1 + d)2η2 +

d2+(2−2p)d−1−2p
1−d η +

2p(p+pd−d)
1−d

]
2[(1 + d)η − 1]3 .

Proof. We will try to formally invert the power series for λ as a function of c. Since we
can only invert such a power series when the 0-order term vanishes, we expand the right
hand side of equation (6) around the value c = c =

1−p−pd
p+pd−d , which is the optimal c in the

frictionless binomial model.
We only consider the case p , 1

2 , the case p = 1
2 being similar. Using Mathemat-

ica [Res10], we do a Taylor expansion

(9) λ = F(c) = λ1(c − c) + λ2(c − c)2 + O((c − c)3),

where

λ1 =
(1 + d)η − 1

c̄(1 − p)
, λ2 = −

(1 + d)2η2 +
d2+(2−2p)d−1−2p

1−d η +
2p(p+pd−d)

1−d

2c̄2(1 − p)2 .

Note that all coefficients of the series could, in principle, be found in symbolic form. As
the first order term λ1 does not vanish, the implicit function theorem implies the existence
of an analytic local inverse function F−1. The power series coefficients of the inverse func-
tion can be found using Lagrange’s inversion theorem, see, for instance, [Knu98, p. 527].
Inverting the series (9), we thus obtain obtain a series for c in terms of λ

(10) c = c + c1λ + c2λ
2 + O(λ3),

where

c1 =
1
λ1

=
c̄(1 − p)

(1 + d)η − 1
, c2 = −

λ2

λ3
1

=

c̄(1 − p)
[
(1 + d)2η2 +

d2+(2−2p)d−1−2p
1−d η +

2p(p+pd−d)
1−d

]
2[(1 + d)η − 1]3 .

Again, we note that higher order coefficients can be obtained explicitly using symbolical
algorithms. �

Remark 5.3. When p ≥ 1/2, Proposition 5.2 yields a nice economic interpretation. In-
deed, c1 is positive and increasing in d and decreasing in p. Hence, the investor becomes
more conservative in the presence of transaction costs, as c1 ≥ 0, and this is more pro-
nounced when d is large or p is small, as in these cases the potential average gains from
investment in the risky asset are relatively small. For p < 1/2, the situation is less intuitive,
as then the optimal fraction c can become negative, and it does so in a singular way – by a
jump from +∞ to −∞.

When following the optimal strategy given in Theorem 4.6, the fraction πt of the total
wealth invested in the stock is kept in the interval [(1 + c)−1, (1 + c/s)−1], the no-trade
region.
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Theorem 5.4. The lower and upper boundaries θ and θ of the no-trade-region satisfy the
asymptotic expansions

θ B
1

1 + c
=

p + pd − d
1 − d

−
(1 − p − pd)(p + pd − d)(1 − p)

((1 + d)η − 1)(1 − d)2 λ + O(λ2),

θ B
1

1 + c/s̄
=

p + pd − d
1 − d

+
(1 − p − pd)(p + pd − d)((1 + d)η − (1 − p))

((1 + d)η − 1)(1 − d)2 λ + O(λ2)

for p , 1/2 and

θ B
1
2
−

1
4

1 − d
(1 + d) log(d−1) − 2(1 − d)

λ + O(λ2),

θ B
1
2

+
1
4

1 − d + (1 + d) log(d)
2(1 − d) + (1 + d) log(d)

λ + O(λ2)

for p = 1/2. The width of the no-trade-region is therefore given by

θ − θ =
(1 − p − pd)(p + pd − d)(1 + d)η

((1 + d)η − 1)(1 − d)2 λ + O(λ2)

for p , 1/2 and similarly for p = 1/2.

Proof. We again assume p , 1
2 , the case p = 1

2 being similar. We first need to compute
the expansion for s̄ = uk. Inserting the expansion for c given in Proposition 5.2 into the
formula for s given in Proposition 4.2, we obtain

s̄ = 1 + s1λ + O(λ2),

where s1 =
(1+d)η

(1+d)η−1 and the further coefficients can, as usually, be computed using sym-
bolic algorithms. Then, again taking advantage of Mathematica [Res10], we find that the
lower boundary and the upper boundaries of the no-trade region have the asymptotic series
expansions

θ =
1

1 + c
=

p + pd − d
1 − d

−
(1 − p)(1 − p − pd)(p + pd − d)

((1 + d)η − 1)(1 − d)2 λ + O(λ2),

θ =
1

1 + c/s̄
=

p + pd − d
1 − d

+
(1 − p − pd)(p + pd − d)((1 + d)η − (1 − p))

((1 + d)η − 1)(1 − d)2 λ + O(λ2).

By subtracting, we get the desired formula for the width of the no-trade region. �

Remark 5.5. Note that the width of the no-trade-region is positive and increasing in d
to first order. This makes sense economically as larger d means that the returns in the
risky asset are smaller, so it makes sense to be more stringent about the transactions costs.
Moreover, to first order the width of the no-trade-region is increasing in p for p < 1/2 and
decreasing for p > 1/2. In other words, the size of the no-trade-regions increases with the
“variability” of the stock returns.

Finally, we prove the second part of Corollary 2.7.

Lemma 5.6. Let (ϕ0, ϕ) be the log-optimal portfolio of the shadow-price process. For λ
small enough we can find a positive, bounded random variable Y = Y(λ) having a finite,
deterministic limit Y(0) = limλ→0 Y(λ) such that

sup
(ψ0,ψ)
E[log(VT (ψ0, ψ))] + E[log(1 − λY(λ))] ≤ E[log(VT (ϕ0, ϕ))] ≤ sup

(ψ0,ψ)
E[log(VT (ψ0, ψ))].
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Proof. It is easy to see that (1 − ξ)ṼT (ϕ0, ϕ) ≤ VT (ϕ0, ϕ) provided that

ξ ≥ λmax

− 1 − λ +
ϕ0

T

ϕT S t

−1

,

1 +
ϕ0

T

ϕT S T

−1 C λY(λ).

Boundedness and positivity of Y now follows from Theorem 4.6 above, and we note that
the limit for λ → 0 is precisely given by the Merton proportion. The rest of the argument
works just as for Corollary 2.7. �

6. The optimal growth rate

In the following, we are going to consider the optimal growth rate as given in Defini-
tion 2.8. In the frictionless binomial model, we recall from the proof of Proposition 2.1
that the value of the log-optimal strategy satisfies VT =

V0
ZT

and hence the expected utility
is given by

E[log(VT )] = log(V0) + T log
(

(1 + d)pp(1 − p)1−p

dp

)
.

Therefore, the optimal growth rate satisfies

(11) lim
T→∞

E[log(VT )]
T

= log
(

(1 + d)pp(1 − p)1−p

dp

)
.

Theorem 6.1. The optimal growth rate in a binomial model with proportional transaction
costs satisfies

R =
c(1 − d)
c2 − d

log
(

(c + d)
√

d(c + 1)

)
when p = 1

2 and

R =
1 − 2p

(1 − p)(1 − ( p
1−p )k+1)

(1 − p) log
(

c + d
c + 1

)
+ p

(
p

1 − p

)k

log
(

(c + d)p
(c − 1)(1 − p)d

)
otherwise.

Proof. We recall from Proposition 4.5 that up and down factors for S̃ are ũt+1 =
g(Ztu)
g(Zt)

and d̃t+1 =
g(Ztd)
g(Zt)

, where Zt B
S t
mt
. Hence, using Proposition 2.1, we compute the expected

log-utility as

E[log(ṼT )] = log(Ṽ0) −
T∑

t=1

E

[
log

(
p̃t

p
1{1}(wt) +

q̃t

1 − p
1{−1}(wt)

)]

= log(Ṽ0) − p
T∑

t=1

E

log

 1 − d̃t

p
(̃
ut − d̃t

) 
 − (1 − p)

T∑
t=1

E

log

 ũt − 1

(1 − p)
(̃
ut − d̃t

) 


= log(Ṽ0) − p
T∑

t=1

E

[
log

(
g(Zt−1) − g(Zt−1d)

p (g(Zt−1u) − g(Zt−1d))

)]

− (1 − p)
T∑

t=1

E

[
log

(
g(Zt−1u) − g(Zt−1)

(1 − p) (g(Zt−1u) − g(Zt−1d))

)]
.

Now, we know from Proposition 4.4 that pg(us)+(1−p)g(ds)−1
(g(us)−g(s))(g(s)−g(ds)) = 1

c+g(s) for 1 ≤ s ≤ s̄. Then,
an elementary calculation implies

g(s) − g(ds)
p(g(us) − g(ds))

=
c + g(s)

c + g(us)
,

g(us) − g(s)
(1 − p)(g(us) − g(ds))

=
c + g(s)

c + g(ds)
.



16 CH. BAYER AND B. VELIYEV

Thus, using these identities we obtain that

R = lim
T→∞

−p
1
T

T∑
t=1

E

[
log

(
c + g(Zt−1)

c + g(Zt−1u)

)]
− (1 − p)

1
T

T∑
t=1

E

[
log

(
c + g(Zt−1)

c + g(Zt−1d)

)]
= −pE∗

[
log

(
c + g(Zt)

c + g(uZt)

)]
− (1 − p)E∗

[
log

(
c + g(Zt)

c + g(dZt)

)]
,

where the last step is due to the ergodic theorem and E∗ denotes the expectation with
respect to the invariant distribution of Zt. Note that Zt is a Markov chain with state space
{1, u, u2, . . . , uk} and transition matrix

Pi, j B P[Zt+1 = u j|Zt = ui] =



p, j = i + 1, 0 ≤ i ≤ k − 1,
1 − p, j = i − 1, 1 ≤ i ≤ k,
p, j = i = k,
1 − p, j = i = 0,
0, else.

Then the invariant distribution is the solution of αT P = αT normalized to
∑

n αn = 1.
If p = 1

2 , the solution satisfies αn = 1
k+1 , for 0 ≤ n ≤ k. If p , 1

2 , we get αn =
1−2p

(1−p)
(
1−

(
p

1−p

)k+1
) (

p
1−p

)n
, for 0 ≤ n ≤ k.

For the remainder of the proof, we assume p , 1
2 , the other case being similar. Then,

the optimal growth rate becomes

R = − pE∗
[
log

(
c + g(Zt)

c + g(uZt)

)]
− (1 − p)E∗

[
log

(
c + g(Zt)

c + g(dZt)

)]
=E∗

[
log

(
−

(
1 − (

1 − p
p

)
log(Zt )
log(u)

)
+ βp

)]
− pE∗

[
log

(
−

(
1 − (

1 − p
p

)
log(uZt )
log(u)

)
+ βp

)]
− (1 − p)E∗

[
log

(
−

(
1 − (

1 − p
p

)
log(dZt )
log(u)

)
+ βp

)]
=

1 − 2p
(1 − p)(1 − ( p

1−p )k+1)

[
(1 − p)

log(βp) − log

(1 − p
p

)−1

+ βp − 1


+ p

(
p

1 − p

)k log

(1 − p
p

)k

+ βp − 1

 − log

(1 − p
p

)k+1

+ βp − 1

 ]
=

1 − 2p
(1 − p)(1 − ( p

1−p )k+1)

(1 − p) log
(

c + d
c + 1

)
+ p

(
p

1 − p

)k

log
(

(c + d)p
(c − 1)(1 − p)d

) . �
Writing k in terms of c and plugging in the series expansion for c, we get

Corollary 6.2. The optimal growth rate has the expansion

R = log
(

(1 + d)pp(1 − p)1−p

dp

)

+

(p + pd − d)(1 − p − pd) − (1 + d)2(1 − p)p log
(

(1+d)2(1−p)p
d

)
(1 − d2)

[
(1 + d)η − 1

] λ + O(λ2).
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Remark 6.3. The first order correction term in Corollary 6.2 is negative, reflecting the
trivial observation that transaction costs reduce the optimal growth rate. Moreover, con-
trary to the width of the no-trade-region, the term is decreasing in d and increasing in p
for p > 1/2 and decreasing for p < 1/2. Thus, the optimal growth rate is most effected by
transactions costs, when the model is close to the Black-Scholes model.

7. Conclusions

Using the shadow price approach, we compute the optimal trading strategy, the no-trade
region and the optimal growth rate for a binomial model under proportional transaction
costs λ for λ small, in the sense of an asymptotic expansion. (In fact, the results are fully
explicit up to the solution of a rather complicated, non-linear equation (6).) Comparing
these results to the corresponding results for the Black-Scholes model, we see a markedly
different effect of small transaction costs in discrete time compared to continuous time:
to first order, the size of the no-trade region as well as the optimal growth rate depend
only linearly on λ, instead of dependence of the order λ1/3 and λ2/3, respectively, as in the
continuos time case. This result is intuitive, as the punishment for all-too-frequent trading
in discrete time is less severe than in continuous time – where blindly following the Merton
rule would lead to negative infinite utility under transaction costs.

Despite the very different asymptotic expansions, it is not very difficult to see that both
the no-trade regions (and thus the optimal trading strategies) and the optimal growth rate
will finally converge to the ones obtained in [GMKS11] for the Black-Scholes model, if
one approximates a Black-Scholes model by binomial models on finer and finer grids in
the usual way.

Nevertheless, we think that the connections between continuous and discrete time mod-
elling of financial markets under transaction costs should be further studied. In particular,
it would be highly desirable to study the effects of transaction costs on a continuous time
model, when trading is restricted to a discrete grid of trading times. Indeed, portfolio man-
agers would often only check individual positions and portfolios, say, once per day or even
once per week, implying that such discrete trading times seem to have high practical rele-
vance. Unfortunately, an extension of the techniques of this paper to such a model is not
immediate.
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Appendix A. Proofs of Some Theorems

Proof of Proposition 4.1. For p = 1
2 , we have c̄ = 1 and F(c̄) = F(1) = 0. Moreover,

F′(c) = −
log(d)
1 − d

d
(c+d)(c−1)

c(1−d)

[
c2 + d + 2

1 − d
log(d)

c
]
.

We see that F is increasing on [x1,∞) where x1 = 1−d
− log(d) +

√
( 1−d
− log(d) )

2 − d is the larger

root of the parabola c2 + d + 2 1−d
log(d) c. Elementary calculus shows that 1 > x2. Hence, we

conclude that there exists a unique c > 1 s.t. F(c) = λ.

Now, let p , 1
2 . Denote c1 =

d(1−2p)
p+pd−d and c2 =

1−p−pd
2p−1 which are the roots of c(p + pd −

d) + d(2p − 1) and 1 − p − dp − c(2p − 1), respectively. Moreover, denote

(12) r(c) =
[c(p − d + pd) + d(2p − 1)][1 − p − dp − c(2p − 1)]

c(1 − d)2(1 − p)2 .

We see that F(c̄) = 0 and

F′(c) = (2p − 1)(p + pd − d)
(

c2(1 + b) − 2c2c + (b − 1)dc̄[
1 − p − dp − c(2p − 1)

]2

)
r(c)b.

If 1
2 < p < 1

1+d , then c1 < 0 < c̄ < c2 and b > 1. Note that r(c) > 0 for c̄ < c < c2 and
r(c) → 0 for c ↑ c2. Hence, we obtain F(c) → 1 for c ↑ c2. Intermediate value theorem
implies that there is a c on (c̄, c2). s.t. F(c) = λ.

We see that if c̄ < c < c2, then the sign of the parabola c2(1 + b) − 2c2c + (b − 1)dc̄
determines the sign of F′. If the parabola has no root, then F′(c) > 0 for c̄ < c < c2.
Recalling F(c̄) = 0, we conclude that there exists a unique c on (c̄, c2) s.t. F(c) = λ. If the
parabola has a root, then the smaller root x1 satisfies

x1 ≤
c2

1 + b
<

c2

c2 + 2
≤ c̄.

Hence, depending on whether c̄ < x2 or not, F decreases on (c̄, x2) and increases on (x2, c2)
or only increases on (c̄, c2).Due to F(c̄) = 0, in both cases, we get that there exists a unique
c on (c̄, c2) s.t. F(c) = λ.
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If d
1+d < p < 1

2 , then c2 < 0 < c1 < c̄ and b < −1. Note that r(c) > 0 for c > c̄ and

r(c)
c(p+pd−d)+d(2p−1)

(1−d)(1−p)

→
1 − 2p

(1 − d)(1 − p)
> 0 for c ↑ ∞.

Since b − 1 < −2, we get F(c) → 1 for c ↑ ∞. Now, intermediate value theorem implies
that there is a c ∈ (c̄,∞) s.t. F(c) = λ.

If c > c̄, then the sign of F′ is the opposite of the sign of the parabola c2(1 + b)− 2c2c +

(b − 1)dc̄ due to 2p − 1 < 0. The leading coefficient of the parabola, 1 + b, is negative.
Hence, if the parabola has no root, then F′(c) > 0 for c > c̄. Hence, there exists a unique c
on (c̄,∞) s.t. F(c) = λ. If the parabola has a root, then the smaller root x1 satisfies

x1 ≤
c2

1 + b
≤ c̄,

where the last inequality follows due to the fact that the function w(z) =
z log(z)

z−1 is increasing
on (1,∞) and hence w( 1−p

p ) ≤ w(u). Hence, by the same argument as in the previous case,
we obtain that there exist a unique root on (c̄,∞). �

Proof of Proposition 4.2. For p = 1
2 ,we know from Proposition 4.1 that c > 1.As (c+d)(c−1)

c(1−d)
is strictly increasing for c > 0, we get k > 0.

Now let p , 1
2 . Recall, how we defined r(c). Differentiation yields

r′(c) =
(1 − 2p)

(1 − d)2(1 − p)2

(p + pd − d)c2 + d(1 − p − pd)
c2 .

If 1
2 < p < 1

1+d , then c1 < 0 < c̄ < c < c2. We see that r is strictly decreasing and
positive function on (0, c2). This implies 0 < r(c) < r(c̄) = 1. As p > 1

2 , we get k > 0.
If d

1+d < p < 1
2 , then we note that c2 < 0 < c1 < c̄ < c. Since r is strictly increasing and

positive on [c̄,∞) we get r(c) > r(c) = 1. Due to p < 1
2 , we obtain k > 0. �

Proof of Proposition 4.4. We assume p , 1
2 , the other case being similar. To start with,

we shall prove that g is well-defined on {d, 1, . . . , s̄, us̄}. If d
1+d < p < 1

2 , then 1−p
p > 1 and

hence the numerator satisfies

−

(
1 − (

1 − p
p

)−
log(s)
log d

)
+ βp ≤ (

1 − p
p

)k+1 + βp − 1 =
1 − p

p
r(c) +

c(2p − 1) + p + pd − 1
(1 − d)(1 − p)

=
1 − p − pd − c(2p − 1)

(1 − d)(1 − p)
(c + 1)d(2p − 1)

cp(1 − d)
< 0,

which shows that g is well-defined. If 1
2 < p < 1

1+d , then 1−p
p < 1 and so we get

−

(
1 − (

1 − p
p

)−
log(s)
log d

)
+ βp ≥ (

1 − p
p

)k+1 + βp − 1 =
1 − p

p
r(c) +

c(2p − 1) + p + pd − 1
(1 − d)(1 − p)

=
1 − p − pd − c(2p − 1)

(1 − d)(1 − p)
(c + 1)d(2p − 1)

cp(1 − d)
> 0,

where 1 − p − pd − c(2p − 1) > 0 is due to c < 1−p−pd
2p−1 (recall Proposition 4.1). As a result,

we obtain that g is well-defined.
To show that g is increasing, we calculate

g′(s) =
(c + 1)βp( 1−p

p )
− log(s)
log(d) log

(
1−p

p

)
s log(d)

[
−

(
1 − ( 1−p

p )
log(s)
log(u)

)
+ βp

]2 .
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Here, the denominator is negative since log(d) < 0. The sign of the numerator depends on
the signs of βp and log

(
1−p

p

)
. We easily check that βp log

(
1−p

p

)
is negative for both cases

d
1+d < p < 1

2 and 1
2 < p < 1

1+d . Therefore, we conclude that g is increasing.
Moreover, we observe that elementary calculation shows that g indeed satisfies the

“smooth pasting” conditions after plugging the values for c, s̄ and βp.

Now, we show that (1−λ)s ≤ g(s) ≤ s for 1 ≤ s ≤ s̄.Define H(s) =
g(s)

s . Since H(1) = 1
and H(s̄) = g(s̄)/s̄ = 1 − λ, it is enough to prove that H is decreasing. Calculation yields

H′(s) =

c( 1−p
p )

−2 log(s)
log(d) +

[
(c + 1)βp

(
log( 1−p

p )
log(d)

)
+ βp(c − 1) − 2c

]
( 1−p

p )
− log(s)
log(d) − (β + c)(β − 1)

s2
[
−

(
1 − ( 1−p

p )
log(s)
log(u)

)
+ βp

]2 .

The denominator is positive, hence it suffices to show that the numerator is negative. We
observe that the numerator is a parabola in ( 1−p

p )
− log(s)
log(d) with positive leading coefficient c.

Thus, the numerator attains its maximum value at the boundaries of [1, s̄]. Denoting the
numerator by N(s), we obtain that N(s̄) = r(c)N(1) where

N(1) = βp

(c + 1)

 log( 1−p
p )

log(d)
−

2p − 1
(1 − p)(1 − d)

 +
2p − 1
1 − p

 .
Since r(c) > 0, we are done if we show that N(1) < 0. If 1

2 < p < 1
1+d , then we obtain

log( 1−p
p )

log(d) < 2p−1
p(1−d) since the function log(z)

z−1 is decreasing on (0, 1) and 0 < d < 1−p
p < 1.

Combining this with c < 1−p−pd
2p−1 (recall Proposition 4.1), we obtain N(1) < 0. If d

1+d < p <

1
2 , then by similar arguments we get

log( 1−p
p )

log(d) > (2p−1)d
p(1−d) . Recalling from Proposition 4.1 that

c > c̄, we again obtain N(1) < 0.
Lastly, denoting n =

log(s)
log(u) and x =

1−p
p , we obtain

p g(us)
g(s) + (1 − p) g(ds)

g(s) − 1

( g(us)
g(s) − 1)(1 − g(ds)

g(s) )
=

[p(g(us) − g(s)) + (1 − p)(g(ds) − g(s))]g(s)
[g(us) − g(s)][g(s) − g(ds)]

=
[p (c+1)βp(xn−xn+1)

(xn+1+βp−1)(xn+βp−1) + (1 − p) (c+1)βp(xn−xn−1)
(xn−1+βp−1)(xn+βp−1) ]g(s)

(c+1)βp(xn−xn+1)
(xn+1+βp−1)(xn+βp−1)

−(c+1)βp(xn−xn−1)
(xn−1+βp−1)(xn+βp−1)

=
(xn + βp − 1)g(s)

(c + 1)βp
=

g(s)
c + g(s)

. �
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