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Abstract. We consider a stochastic model for the dynamics of the two-sided limit order book (LOB).
Our model is flexible enough to allow for a dependence of the price dynamics on volumes. For the
joint dynamics of best bid and ask prices and the standing buy and sell volume densities, we derive a
functional limit theorem, which states that our LOB model converges in distribution to a fully coupled
SDE-SPDE system when the order arrival rates tend to infinity and the impact of an individual order
arrival on the book as well as the tick size tends to zero. The SDE describes the bid/ask price dynamics
while the SPDE describes the volume dynamics.
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1. Introduction

In modern financial markets almost all transactions are settled through Limit Order Books (LOBs).
An LOB is a record – maintained by an exchange or specialist – of unexecuted orders awaiting ex-
ecution. Unexecuted (standing) orders are executed against incoming market orders according to a
set of precedence rules. Most exchanges give orders at better price levels priority over orders sub-
mitted at less competitive price levels (“price priority”) and orders with the same price-priority are
typically (though not always) executed on a first-in-first-out basis (“time-priority”)1 From a mathe-
matical perspective, LOBs can thus be viewed as high-dimensional complex priority queuing systems.
In this paper, we present a probabilistic framework within which to derive functional scaling limits
for LOBs from individual order arrival dynamics. We assume that orders arrivals and cancellations
follows a occur according to a Poisson dynamics relative to the best bid and ask prices. With our
choice of scaling, prices follow a diffusion process while volume density functions can be described
by an infinite dimensional SDE, that is coupled with the price process. As a special case we obtain
law-of-large-numbers-type scaling with absolutely continuous (in time) volume density functions.

†Financial support from the SFB 649 “Economic Risk” is gratefully acknowledged. We thank seminar and conference
participants at various institutions for helpful comments and suggestions. The paper was finished while Horst was visiting
the Center for Interdisciplinary Research at Bielefeld University. Grateful acknowledgment is made for hospitality. An
earlier version of this paper was entitled A Functional Limit Theorem for Limit Order Books.

1We note that some exchanges also use matching algorithms based on pro-rata allocations.

ar
X

iv
:1

40
5.

52
30

v4
  [

q-
fi

n.
M

F]
  3

 A
ug

 2
01

6



2 CHRISTIAN BAYER, ULRICH HORST, AND JINNIAO QIU

1.1. Literature review. There is a substantial economic and econometric literature on LOBs [2, 4,
12, 8, 10, 29] that puts a lot of emphasis on the realistic modeling of the working of the LOB. At
the same time, only few authors have analyzed LOB dynamics from a more probabilistic perspective.
Kruk [22] studied a queuing theoretic LOB model with finitely many price levels. For the special
case of two price levels, in his model the scaled number of standing buy and sell orders at the top
of the book converges weakly to a semimartingale reflected two-dimensional Brownian motion in the
first quadrant. Cont, Stoikov and Talreja [6] proposed an LOB model with finitely many submission
price levels where the LOB dynamics follows an ergodic Markov process. Cont and DeLarrard [5]
established a scaling limit for a Markovian limit order market in which the state of the book is rep-
resented by the best bid and ask prices along with the liquidity standing at these prices (“top of the
book”). Under heavy traffic conditions their bid and ask queue lengths are given by a two-dimensional
Brownian motion in the first quadrant with reflection to the interior at the boundaries, similar to the
diffusion limit for two price levels in [22].

When scaling limits of financial price fluctuations or joint price and volume fluctuations at selected
price levels [5, 22] are studied, the limit can naturally be described by ordinary differential equa-
tions or finite-dimensional diffusion processes, depending on the choice of scaling. The mathematical
analysis is more challenging when the dynamics of the full book is considered. To the best of our
knowledge, Osterrieder [28] was the first to model LOBs as measure-valued diffusions. Horst and
Paulsen [14] were the first to prove a scaling limit for the full order book. With their choice of scaling
the joint dynamics of volumes and prices converges to a coupled system of two PDEs that describe
the limiting volume dynamics and two ODEs that describe the limiting price dynamics. A related
model with state-dependent prices in the approximating sequence but constant prices in the limit is
analyzed in [11] where the scaling limit is also empirically tested against real LOB data. Lakner et al
[15] derived a scaling limit for a one-sided limit order book model under the assumption that average
investors place their limit orders above the current best ask price. The opposite case when orders are
placed in the spread with higher probability is analyzed in [16], where the authors use a coupling
between a simple one-sided limit order book model and a branching random walk to characterize the
diffusion limit. Lasry and Lions [25], starting from a mean-field game perspective, also describe the
LOB by a coupled PDE model with the interface given by the price; see also [26]. Keller-Ressel and
Müller [21] describe the LOB as a coupled system of SPDEs separated by a random interface (Sto-
chastic Stefan problem) that can again be interpreted as the price.

Despite the considerable empirical evidence that the state of the order book, especially order imbal-
ance at the top of the book, has a noticeable impact on order dynamics (see [2, 4, 12] and references
therein) the order flow in most limit order book models either follows independent Poisson dynam-
ics or depends on the price process only as in [11, 14, 15, 16]. Notable exceptions are the papers
by Abergel and Jeddi [1], where Hawkes-type dynamics are used, Huang et al [17] and Huang and
Rosenbaum [18] where the ergodicity of a general Markovian order book model is studied and the
diffusivity of the rescaled price process in this general framework is derived, and Horst and Kreher
[13] who obtained a deterministic scaling limit for LOBs with fully state dependent event dynamics.
In this paper we consider a diffusion limit for the full LOB dynamics, both prices and volumes, where
the price dynamics depends on standing volumes.

1.2. Our contribution. As in [14] our limit result requires two time scales: a fast time scale for
cancellations and limit order placements outside the spread and a comparably slow time scale for



A FUNCTIONAL LIMIT THEOREM FOR LIMIT ORDER BOOKS WITH STATE DEPENDENT PRICE DYNAMICS† 3

market order arrivals and limit order placements in the spread. The different time scales account for
the well-documented fact that placements and cancellations occur much more frequently than price
changes. For instance, using LOBSTER data for Jan 2, 2014 Horst and Paulsen [14] computed the
empirical probabilities for an incoming order to trigger price change for Apple (0.016), Ebay (0.02),
Facebook (0.02), and Microsoft (0.002). Estimates of similar order are reported in [11] for the stock
Bank of America.

In our model, market orders and limit order placements in the spread trigger price changes. We refer
to these order types as active orders. The probability of an active order being a market order or spread
placement at the bid or ask side of the book depends on the standing volume. Limit order placements
outside the spread and cancellations of standing volume do not lead to price changes. We refer to
these order types as passive orders. Passive orders arrive according to an independent Poisson at
random distances from the best bid and ask price for random amounts (placements) and propositions
(cancellations), respectively.

In this framework, after suitable scaling the price processes follow diffusion processes whose coef-
ficients depend on standing volumes, and the volume density functions (in absolute coordinates) are
deterministic and absolutely continuous (in time) functions of the price process. In particular, all fluc-
tuations in standing volumes result from fluctuations in the price process. While such a scaling already
results in a realistic limiting LOB dynamics, it seems desirable to us to allow for additional fluctu-
ations in standing volumes that do not originate from price fluctuations. Our framework is flexible
enough to allow for such fluctuations. In a model with both positive and negative placements (additive
cancellations), we may allow placements to be correlated on a common factor that translates into an
additive martingale part driving the volume dynamics. While the “common factor extension” should
be viewed as a mostly mathematical extension it does shed further light on the importance of time
scales in our model. Our analysis suggests that even the simple case of correlated additive volume
fluctuations requires some form of “common factor” upon which to condition volume fluctuations
that changes on a much slower time scale than individual order arrival dynamics and cancellations.
Of course, many other approaches to modelling volume fluctuations are perceivable.

Our main result states that when the rate of active order arrivals scales by a factor n, the rate of passive
order arrivals scales by a factor n2, the tick size scales by a factor 1/

√
n, the sizes (proportions) of

incoming orders (canceled volumes) scale by a factor 1/n2 and the impact of the common factor
scales by a factor 1/n, then the price processes converge to an SDE and the volume density functions
in absolute coordinates converge to an infinite dimensional SDE (SPDE in relative coordinates) as
n → ∞. The convergence concept we use is weak convergence in the class of càdlàg stochastic
processes with sample paths in R2 × (H−1)2 where H−1 denotes the Sobolev space of order −1. The
main challenge is to prove convergence of the

(
H−1

)2
-valued volume processes. To prove tightness

we decompose the volume processes into three components describing the aggregate placements, the
proportionality of the cancellations and the impact of the common factor at the various price levels,
respectively. We establish norm-bounds for each of these processes from which we then deduce that
the volume process as a whole satisfies a standard tightness criteria. To characterize the limit we first
prove joint convergence of prices and the martingale part of the volume processes. Subsequently,
we identify the limits of aggregate placements and cancellations and use C-tightness (i.e., tightness
with continuous limit processes) of the price and martingale part to prove joint convergence of all the
processes to the desired limit.
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The key observation is that tightness of the volume processes is guaranteed under mild assumptions
on the price process; it does not require any particular dependence of prices on volumes. In particular,
it does not require the price process to be independent from volumes. The characterization of the
limiting volume dynamics requires joint convergence of volumes and prices along a subsequence. This
is guaranteed if the price process is C-tight, a condition which, too, does not require any particular
assumptions on the interplay between prices and volumes. If the limiting price process is known
upfront, either because the approximating price process is independent from volumes as in [14] or the
limiting price process is state-independent as in [11], then the limiting volume process exists and the
joint dynamics of prices and volumes is fully specified. The added difficulty under state dependence
is the identification of the limiting price/volume process. To this end, we first characterize the limiting
volume dynamics as a function of the—unknown yet existing—weak accumulation point of the price
process. Based on this partial characterization result, we then fully characterize the joint evolution of
prices and volumes.

The remainder of this paper is organized as follows. In Section 2 we define a sequence of limit
order books in terms of our scaling parameters, state the main result and give an outline of the proof.
Section 3 is devoted to the analysis of the volume dynamics. Section 4 characterizes the joint limit of
the price/volume process. A general result on the characterization of stochastic process limits, general
tightness results and some technical proofs are collected in an appendix.

Notational conventions. For any (deterministic or random) function u : [0,∞) × R→ R we denote by
u(t) : R→ R the function x 7→ u(t, x) for t ∈ [0,∞). Unless otherwise stated, (Lp, ‖ · ‖Lp) (p ∈ [1,∞])
refers to the space Lp (R,B(R), dx). L2 is equipped with the usual inner product 〈·, ·〉. For σ-algebras
G ⊂ F we shall write EG [·] B E [· | G]. Further, all random variables are defined on a common
probability space (Ω,F ,P). We may write X(t) or Xt for the value of a stochastic process X at time
t ≥ 0.

2. Model and main results

2.1. The discrete model. In this section we introduce a sequence of continuous time order book
models with state-dependent price dynamics. The set of price levels at which orders can be submitted
in the n-th model is {xn

j } j∈Z. We put xn
j := j · ∆xn for each j ∈ Z where ∆xn is the tick size, i.e. the

minimum difference between two consecutive price levels.

The state of the order book at time t ≥ 0 is given by a pair
(
Bn

t , A
n
t
)

with Bn
t ≤ An

t of best bid and
ask prices together with the buy and sell limit order volumes standing at the different price levels. We
identify volumes at the best bid and ask side of the book with step functions vb/a : [0,∞)→ R,

vn
b(t, x) :=

∑
j∈Z

vn, j
b,t1[xn

j ,x
n
j+1)(x), vn

a(t, x) :=
∑
j∈Z

vn, j
a,t1[xn

j ,x
n
j+1)(x) (x ∈ R)

with the interpretation that the liquidity available for selling j ∈ N ticks below the best bid price at
time t ≥ 0 is given by ∫ Bn

t +( j+1)∆xn

Bn
t + j∆xn

vn
b(x)dx = ∆xn · vn,Bn

t /∆xn+ j
b ,
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while the liquidity available for buying j ∈ N ticks above the best ask price at that time is given by∫ An
t +( j+1)∆xn

An
t + j∆xn

vn
a(x)dx = ∆xn · vn,An

t /∆xn+ j
a .

Our choice of notation allows to treat both sides of the books symmetrically and hence simplifies
the presentation of the results.2 We are mainly interested in the volume density functions in relative
coordinates, denoted

un
b(t, x) := vn

b(t, Bn
t + x) and ua(t, x) := vn

a(t, An
t + x)

respectively. That is, un
b(t, j ·∆xn) denotes the liquidity standing j ticks below the best bid and un

a(t, j ·
∆xn) denotes the liquidity standing j ticks above the best ask.

We call {un
b/a(t, x) : x ≥ 0} the visible book and {un

b/a(t, x) : x < 0} the shadow book at time t ≥ 0
of the bid (b), respectively the ask (a) side of the book. The visible book collects the orders awaiting
execution. The shadow book specifies the volumes that will be placed into the spread, should such an
event occur next. Since several consecutive spread placements may occur the shadow book is defined
on the whole negative half-line. It will undergo random fluctuations similar to the visible book and
is just convenient tool to describe spread placements. Its precise working will be further described in
Section 2.1.1 below. See also [13, 14] for a discussion of the shadow book.

Throughout, indices b and a refer to bid and ask side volumes, respectively. We often use the index r
to refer to either side of the book. Occasionally, we drop the index altogether and write for instance
just v(t, x) if we give generic arguments that apply to both sides of the book. In both cases, we use
Rn(t) or Rn

t to denote either the best bid (r = b) or the best ask (r = a) price.

Assumption 2.1. The sequence of initial data (An
0, B

n
0, v

n
a(0, ·), vn

b(0, ·)) converges to (A0, B0, va,0(·), vb,0(·))
in both R2 × L2 × L2 and R2 × L∞ × L∞.

There are eight events – labeled Mr,Lr,Cr,Pr (r = a, b) – that change the state of the book. The
events Mb,Lb,Cb,Pb affect the bid side of the book:

Mb . . .market sell order Lb . . . buy limit order placed in the spread

Cb . . . cancellation of buy volume Pb . . . buy limit order not placed in spread

The events Ma,La,Ca,Pa affect the ask side of the book:

Ma . . .market buy order La . . . sell limit order placed in the spread

Ca . . . cancellation of sell volume Pa . . . sell limit order not placed in the spread.

In the sequel we specify how different order types change the state of the book.

2.1.1. Active orders and price dynamics. We assume that market order arrivals (Events Mb/a) and
placements of limit orders in the spread (Events Lb/a) lead to price changes. In fact, a market order
that does not lead to a price change is equivalent to a cancellation at the top of the book. We refer to
these order types as active orders.

2We acknowledge that the choice of notation for the bid side is not intuitive as it implies that the volume standing at
price level x at time t is given by vb(t, 2Bn

t − x). However, it greatly unifies the presentation of the results and proofs.
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Assumption 2.2. Active orders arrive according to a Poisson process Ñn with intensity µn. The
corresponding jump times

(̃
τn

i

)∞
i=1

will be called active order times.

In our model market orders match precisely against the volume at the top of the book. In other words,
a market order arriving at time τ̃n

i is good for vn
r (̃τn

i −,R
n(̃τn

i −)) · ∆xn shares. We further assume that
limit orders placed into the spread are placed at the first best price increment and that their sizes are
determined by the shadow book. Specifically, a limit order placed into the spread at time τ̃n

j is placed
at the price level Rn(̃τn

j−) − ∆xn and its size is vn
r (̃τn

j−,R
n(̃τn

j−) − ∆xn) · ∆xn. If another limit order
placement occurs at the next active order time τ̃n

j+1, then the order is placed at Rn(̃τn
j−) − 2∆xn and its

size is vn
r (̃τn

j+1−,R
n(̃τn

j−) − 2∆xn) · ∆xn. In between two active orders cancellations and placements
may occur in the shadow book so typically vn

r (̃τn
j+1−,R

n(̃τn
j−) − 2∆xn) , vn

r (̃τn
j−,R

n(̃τn
j−) − 2∆xn); cf.

Section 2.1.2 and Figures 1 and 2 below.

We allow the probabilities of price changes to depend on standing volumes. To this end, we fix smooth
non-negative functions ϕr : R→ R and put

Yr,n
t := 〈vn

r (t, ·), ϕr(· − Rn(t))〉 (r = a, b).

We interpret Yr,n
t as a measure for the volume standing at the top of the book or the total bid (r = b)

or ask (r = a) side volume, depending on the choice of ϕr. The price dynamics is now defined as

(2.1) dRn(t) = ∆xnξn
r,Ñn(t)

dÑn(t)

where the random variables ξn
r,Ñn(t)

take values in {0,−1,+1}. Their distribution will depend on the
bid and ask price and on the state of the volumes placed. Hence, the model considered is not of
zero-intelligence type. More precisely, we work under the following assumption.

Assumption 2.3. Let
(
F n

t
)

denote the filtration generated by the n-th model (the precise definition is
given in (2.9) below). For r = a, b there exist functions bn

r ∈ C1(R4) and σn
r ∈ C1(R4;R2×1) such that

EF n
t−∨σ(Ñn(t))

[
ξn

r,Ñn(t)

]
=

1
√

n
bn

r (Bn
t−, A

n
t−,Y

b,n
t− ,Y

a,n
t− ),(2.2)

CovF n
t−∨σ(Ñn(t))


ξn

b,Ñn(t)
ξn

a,Ñn(t)


 =

(
σn

b
σn

a

)
·

(
σn

b
σn

a

)>
(Bn

t−, A
n
t−,Y

b,n
t− ,Y

a,n
t− ),(2.3)

for any t > 0, and (bn
r , σ

n
r ) converges to (br, σr) in C(R4) × C(R4;R2×1) (uniformly) such that the

matrix
(
σb

σa

)
is invertible and (br, σr) ∈ C1(R4) × C1(R4;R2×1) and the limiting objects are uniformly

bounded.

Lemma 2.4. The sequence of price processes (An, Bn) is C-tight.

Proof. Immediately by Theorem C.1 and Lemma C.2 as price increments are bounded by ∆xn. �

It is clearly desirable to avoid crossing of bid and ask prices. One possibility is to introduce a reflection
term and to scale the prices such that they converge to reflected Brownian motion in the limit as in
[20]. Another is to consider short time scales as illustrated by the following example.
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Figure 1. Ask–side volume function at time τ̃n
i − (left) and τ̃n

i (right) of the visible
(dark coloured) and shadow book (light coloured) when a market order arrives at τ̃n

i .
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Figure 2. Ask–side volume function at time τ̃n
i+1− (left) and τ̃n

i+1 (right) of the visible
and shadow book when a spread placement occurs at τ̃n

i+1.

Example 2.5. Let us assume that

PF n
t−∨σ(Ñn(t))[ξ

n
b/a,Ñn(t)

= ±1] = gn
r (±1, Bn

t−, A
n
t−,Y

b,n
t− ,Y

a,n
t− )

for smooth functions gn
r (±1, ·) that satisfy for any (y1, y2, y3, y4) ∈ R4,

gn
b(+1, y1, y2, y3, y4) = gn

a(−1, y1, y2, y3, y4) = 0, if y2 − y1 < ε for some ε > 0
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and

gn
r (+1, y1, y2, y3, y4) − gn

r (−1, y1, y2, y3, y4) =
1
√

n
bn

r (y1, y2, y3, y4).

Then Assumption 2.3 is satisfied up to some stopping time. If we further assume that ξn
b,Ñn(t)

·ξn
a,Ñn(t)

=

0, then at most one price moves at any active order time.

Notice that the above example makes sense for short times. The next example avoids this limitation.

Example 2.6. For simplicity, we give an example where price dynamics do not depend on Y . It is,
however, simple to extend the example. Let ζn

l,i, l = 1, 2, i ∈ N, be the increments (indexed by i) of two
independent Donsker type approximations of two independent geometrical Brownian motions denoted
by S l

t, l = 1, 2, both of which are constructed such that positivity of the cumulative sum of (ζn
l,i)i∈N is

ensured for any n—for instance, by reflection. We may suppose that ζn
l,i takes values in {0,±1}. Define

ξn
b,i B ζn

1,i and ξn
2,i B ζn

1,i + ζn
2,l. Hence, ξn

r,i take values in {0,±1,±2}—an inconsequential violation of
the assumption that −1 ≤ ξ ≤ 1. In the limit we have Bt = S 1

t and At = S 1
t + S 2

t ≥ Bt.

2.1.2. Passive orders and volume changes. Limit order placements outside the spread and cancella-
tions of standing volume do not change prices. We refer to these order types as passive orders. In our
model cancellations (Events Cb/a) occur for random proportions of the standing volume while limit
order placements outside the spread (Events Pb/a) occur for random volumes at random price levels.

Assumption 2.7. Passive orders arrive according to independent Poisson processes Nn
b and Nn

a that
are independent of Ñn with intensities λn

b and λn
a at the bid and ask side of the book, respectively. The

corresponding jump times
(
τn

b/a,i

)∞
i=1

will be called passive order times.

The submission and cancellation price levels are chosen relative to the best prices. Specifically, we as-
sume that the distances to the best prices are chosen according to a sequence of i.i.d.random variables
(πi)∞i=0 where each πi is of the form:

(2.4) πi =
(
πCb

i , πCa
i , πPb

i , π
Pa
i , π

Nb
i , πNa

i

)
.

The entries take values in an interval [−M,M], for some M > 0; positive values indicate changes in the
visible book while negative values indicate changes in the shadow book. Superscripts indicate event
types and ‘N’ stands for ‘noise’. For instance, πCa

i ∈ [0,∆xn) means that if the i-th event is a passive
order, then it triggers a ask-side cancellation at the top of the visible book while πCa

i ∈ [−∆xn, 0)
corresponds to an ask-side cancellation one tick below the best ask, i.e. a cancellation in the shadow
book. The precise meaning of the entries will become clear in (2.6) below.

For r = a, b passive order sizes are described by a sequence of i.i.d. random variables (ωi)∞i=0 where
each ωi is of the form

(2.5) ωi =
(
ωCb

i , ωCa
i , ωPb

i , ω
Pa
i , ω

Nb
i , ωNa

i

)
.

The random variables ωPr
i take values in [0,∞); they describe the sizes of order placements. Likewise,

the random variables ωCr
i take values in [0, 1] and describe the proportions of cancellations. We

notice that ωCr
i = 1 corresponds to a wipe-out of the orders at the corresponding price level that is,
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in principle, not forbidden. The resulting dynamics of the buy and sell side volume density functions
satisfies:

dvn
r (t, ·) =

[
1

In
(
Rn (̃τn

Ñn(t−)
)+πPr

Nn
r (t)

)(·)ωPr
Nn

r (t−)
∆vn

∆xn

− 1
In

(
Rn (̃τn

Ñn(t−)
)+πCr

Nn
r (t)

)(·)ωCr
Nn

r (t−)v
n
r (τn

r,Nn
r (t−), ·)

∆vn

∆xn

](2.6)

where ∆vn is a scaling parameter that measures the impact of an individual order on the state of the
book and In(y) is the subinterval corresponding to tick-size ∆xn that y belongs to, i.e.,

(2.7) 1In(y)(x) B
∑
j∈Z

1[xn
j ,x

n
j+1[(y)1[xn

j ,x
n
j+1[(x).

The specific structure of the dependence of the volume density functions on the bid and ask price
as well as the random submission price levels reflects the fact that submission and cancellation price
levels are chosen relative to the best bid/ask price.

Remark 2.8. In real-world markets only one event (market order arrival, cancellation, placement)
happens at a time. Within our framework this corresponds to the special case where only one of the
four random variables ωCb/a , ωPb/a is different from zero. Our mathematical framework is flexible
enough to allow for such a dependence structure.

Within the framework described thus far, (random) fluctuations in limiting volumes will originate
entirely from fluctuations in prices through the price-dependent order arrival and cancellation dynam-
ics.3 Our mathematical framework is flexible enough to also allow fluctuations in volumes to originate
directly from order placements if we allow for a second type of placements that are correlated on a
“common factor” rather than the price process. In the simplest case the “common factor” dynamics
is specified by sequences of i.i.d. random variables (̃ξr,i)∞i=0 (r = a, b). For the scaling limit it will
be important that this common factor changes at the same rate as prices do. To simplify the analy-
sis, we assume that it actually stays constant between two active order times and specify our volume
dynamics as:

dvn
r (t, ·) =

[
1

In
(
Rn (̃τn

Ñn(t−)
)+πPr

Nn
r (t)

)(·)ωPr
Nn

r (t−)
∆vn

∆xn

− 1
In

(
Rn (̃τn

Ñn(t−)
)+πCr

Nn
r (t)

)(·)ωCr
Nn

r (t−)v
n
r (τn

r,Nn
r (t−), ·)

∆vn

∆xn

+ 1
In

(
Rn (̃τn

Ñn(t−)
)+πNr

Nn
r (t)

)(·)ωNr
Nn

r (t−)ξ̃r,Ñn(t−)

√
∆vn

]
dNn

r (t).

(2.8)

We notice that the common factor is modulated by the non-negative i.i.d. noise variables ωNr
i that

change between two consecutive passive orders. We motivate the particular choice of the noise terms
after the main result is formulated, below Corollary 2.11.

We assume that the following condition holds.

Assumption 2.9.

3Loosely speaking, the scaling of price is of CLT-type while the scaling of placements and cancellations is of LLN-type.



10 CHRISTIAN BAYER, ULRICH HORST, AND JINNIAO QIU

• The random variables
(
πT

i

)
T=Cr ,Pr ,Nr , r=a,b

, i ∈ N, are i.i.d. with Lipschitz continuous densities

f T on some compact interval [−M,M] and independent of the Poisson processes.

• The variables
(
ωT

i

)
T=Cr ,Pr ,Nr , r=a,b

, i ∈ N, are i.i.d., independent of the Poisson processes and
have a finite fourth moment.

• The variables ξ̃r,i are i.i.d., independent of all other random variables and take the values ±1
with equal probability.

For future use, we also introduce the filtration F n generated by the n-th model. More precisely, we
set

(2.9) F n
t B σ

((
Ñn

s

)
0≤s≤t

,
(
ξn

a,k

)Ñn(t)

k=1
,
(
ξn

b,k

)Ñn(t)

k=1
,
(
Nn

a (s)
)
0≤s≤t ,

(
Nn

b (s)
)
0≤s≤t

,
(
ωCa

k , ωPa
k , ω

Na
k

)Nn
a (t)

k=1
,(

ωCb
k , ωPb

k , ω
Nb
k

)Nn
b (t)

k=1
,
(
πCa

k , πPa
k , π

Na
k

)Nn
a (t)

k=1
,
(
πCb

k , πPb
k , π

Nb
k

)Nn
b (t)

k=1
,
(̃
ξn

b,k

)Ñn
a (t)

k=1
,
(̃
ξn

a,k

)Ñn
b (t)

k=1

)
.

2.2. The main result. We prove below that our LOB model converges to a continuous time limit if
the order arrival rates tend to infinity and the impact of an individual order arrival on the book as well
as the tick size tends to zero in a particular way. In order to make the convergence concept precise,
and to state the main result, we need to introduce further notation. For m ∈ (−∞,∞), we denote by
(Hm, ‖ · ‖m) the space of Bessel potentials equipped with the usual Sobolev norm and inner product.
Set

E′ = ∪mH−m ⊃ · · · ⊃ H−1 ⊃ L2 ⊃ H1 ⊃ · · · ⊃ ∩mHm = E.

It is well known that H0 = L2 and that E is a complete separable metric space. Sobolev’s embedding
theorem indicates that each element of E is an infinitely differentiable function. In what follows,
denote the dual between E′ and E by 〈·, ·〉, which is consistent with the inner product of H0 = L2.

The convergence concept we use is weak convergence in the Skorokhod space D := D([0,∞);R2 ×

H−1 ×H−1) of all càdlàg functions on [0,∞) taking values in the space R2 ×H−1 ×H−1. The spaceD
is equipped with the usual Skorokhod metric (see Jacod and Shiryaev [19]).

We are now ready to state the main result of this paper. The main assumptions and the assertions of
the theorem are discussed below. The proof is carried out in the subsequent sections.

Theorem 2.10. Let Assumptions 2.1–2.9 be satisfied and assume that the scaling parameters λn
b/a

(arrival rate of passive orders), µn (arrival rate of active orders), ∆vn (order sizes) and ∆xn (tick size)
satisfy the following conditions:

λn
b/a = n2; µn = n; ∆vn = n−2; ∆xn = n−1/2.

Then there are three independent Wiener processes W̃, Wa and Wb (W̃ being two-dimensional) such
that the sequence (An, Bn, vn

a, v
n
b) of stochastic processes converges in distribution in D([0,∞);R2 ×

H−1 × H−1) to (A, B, va, vb). Here (A, B) is a two-dimensional diffusion process satisfying the SDE

dAt =ba(Bt, At,Yb
t ,Y

a
t )dt + σa(Bt, At,Yb

t ,Y
a
t )dW̃t; A0 = a0;

dBt =bb(Bt, At,Yb
t ,Y

a
t )dt + σb(Bt, At,Yb

t ,Y
a
t )dW̃t; B0 = b0;
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with σa = (σ11, σ12), σb = (σ21, σ22), Ya
t = 〈va(t, ·) , ϕa(· − At)〉 and Yb

t =
〈
vb(t, ·) , ϕb(· − Bt)

〉
,

respectively. Moreover, the volume density processes satisfy the infinite-dimensional SDE

vb(t, ·) =vb,0(·) +

∫ t

0

(
E[ωPb

1 ] f Pb(· − Bs) − E[ωCb
1 ] f Cb(· − Bs)vb(s, ·)

)
ds

+
√

2E
[
ωNb

1

] ∫ t

0
f Nb(· − Bs) dWb(s), t ≥ 0;

va(t, ·) =va,0(·) +

∫ t

0

(
E[ωPa

1 ] f Pa(· − As) − E[ωCa
1 ] f Ca(· − As)va(s, ·)

)
ds

+
√

2E
[
ωNa

1

] ∫ t

0
f Na(· − As) dWa(s), t ≥ 0.

If ωNr
1 = 0 (no common factor), then the volume density functions are absolutely continuous in time.

For any T ∈ (0,∞), existence and uniqueness of an adapted solution to the above coupled SDE
system in L2(Ω; C([0,T ];R2)) × L2(Ω; C([0,T ]; L2(R;R2))) is obvious; see [7] for a general theory
on stochastic equations in infinite dimensions. If the model parameters are sufficiently smooth, then
the density functions are smooth as well. The following corollary is a consequence of the Itô-Kunita
formula.

Corollary 2.11. If vr,0 and the densities f T belong to Hm with m > 3, then vr(t) take values in
Hm and hence by embedding, in C2(R). Then the relative volume processes ub(t, x) = vb(t, Bt + x),
ua(t, x) = va(t, At + x) satisfy the non-local stochastic partial differential equations

dua(t, x) =
[
E[ωPa

1 ] f Pa(x) − E[ωCa
1 ] f Ca(x)ua(t, x) + Dua(t, x)ba(Bt, At, 〈ub(t), ϕb〉, 〈ua(t), ϕa〉)

]
dt

+
1
2

tr
{
σaσ

>
a (Bt, At, 〈ub(t), ϕb〉, 〈ua(t), ϕa〉)D2ua(t, x)

}
dt +

√
2E

[
ωNa

1

]
f Na(x)dWa(t)

+ Dua(t, x)σa(Bt, At, 〈ub(t), ϕb〉, 〈ua(t), ϕa〉) dW̃(s), t ≥ 0;

ua(0, x) =va,0(x + a0);

dub(t, x) =
[
E[ωPb

1 ] f Pb(x) − E[ωCb
1 ] f Cb(x)ub(t, x) + Dub(t, x)bb(Bt, At, 〈ub(t), ϕb〉, 〈ua(t), ϕa〉)

]
dt

+
1
2

tr
{
σbσ

>
b (Bt, At, 〈ub(t), ϕb〉, 〈ua(t), ϕa〉)D2ua(t, x)

}
dt +

√
2E

[
ωNb

1

]
f Nb(x)dWb(t)

+ Dub(t, x)σb(Bt, At, 〈ub(t), ϕb〉, 〈ua(t), ϕa〉) dW̃(s), t ≥ 0;

ub(0, x) =vb,0(x + b0)

which are coupled with the SDE for the price system given in Theorem 2.10.

Some comments on our scaling assumptions are in order. The assumption that market orders match
precisely against the standing volume at the top of the book and that market orders of smaller size
are viewed as cancellation is made for mathematical convenience. There is some empirical evidence,
though, that this assumption is not too restrictive. In an empirical study the authors of [9] found that
in their data sample around 85% of the sell market orders that lead to price changes match exactly the
size of the volume standing at the best bid price.
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The assumptions that market orders and limit order placements in the spread occur at the same rate
and that the liquidity at the top of the book is an indicator for volumes placed in the spread are key to
our analysis. They await empirical verification.4

The assumption that µ
n

λn → 0 has also been made in [13, 14]. It states that passive events happen much
more frequently than active ones. There is strong empirical evidence supporting the assumption that
spread placements . For instance, Figure 3 (left) shows the intraday evolution of the proportion of
spread placements among all orders for all NASDAQ traded stocks for the month of March 2016. The
proportions of spread placements is particularly low for very liquid stocks such as APPL, MSFT or
BAC; see [14] and references therein. Moreover, it is well known, that many spread placements have
very short lifetimes. As an example, Figure 3 (right) displays the cumulative distribution function of
the time to cancellation of spread placements for APPL (consolidated NASDAQ data; March 2016).
As we can see, more than 60% of all spread placements are cancelled after less than 5 milli-seconds5.
Of course, our model can not reasonably account for such ping-orders.
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Figure 3. Average percentage of spread placement per second (left) and empirical
lifetime distribution of spread placements for APPL (right).

The scaling assumptions µn ∼ (∆xn)−1 as in [13, 14], respectively our assumption
√
µn ∼ (∆xn)−1 are

standard to obtain an ODE, respectively, diffusion approximations of the price process. The assump-
tion λn

r ∼ ∆vn is as in [13, 14]. It guarantees that the order of magnitude of aggregate placements
and cancellations over a given period of time does not change with the model index n. Furthermore,
from the proof of Lemma 3.11 we see that our proof requires µn ∼ λn(∆xn)2. This is again the same
condition as in [13, 14] taking into account that the different scaling of the tick size (with our choice
of rates, ∆pn = ∆xn = n−1 in [13, 14]). Altogether, this explains the absolutely continuous part of the
limiting volume process; it describes the expected volume placement and cancellation activity; see
[13, 14] for details. Summarizing, the absolutely continuous part requires the scaling conditions

µn ∼ ∆xn, λn
r ∼ ∆vn, µn ∼ λn

r (∆xn)2.

4To the best of our knowledge spread placement dynamics have not yet been extensively investigated in the financial
econometrics literature. In any case, the assumption that market orders and limit order placements in the spread occur at the
same rate implies that orders that are placed in the spread and almost immediately canceled (“ping orders”) are not allowed
in our model as they do not really provide liquidity.

5We thank Michael Noé for the data analysis and Nikolaus Hautsch for data provision.
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The specific choice µn ∼ n, λn
r ∼ n2 and ∆xn ∼ n−1/2 was made for notational convenience.

The diffusion part of the limiting volume density function is a direct consequence of the noise term ξ̃n
r,i

in (2.8) that does not change in-between price changes. The intuition is that in between two consec-
utive price changes a law of large numbers applies to the volume density function whose increment
can hence be approximated by its expected value plus a random term of order

√
∆vn that translates

into a Brownian motion as n → ∞. If the scaling constant
√

∆vn is replaced by a smaller one, then
the dynamics of the limiting volume density function will take the form of an (infinite-dimensional)
ODE in a random environment generated by the price process. The SPDE dynamics of the volume
process in relative coordinates is a direct consequence of the diffusive limiting price process and does
not depend on the scaling of the noise terms.

The requirement of a single common factor driving the noise along all passive events can easily be
relaxed. Indeed, suppose that we have finitely or infinitely many factors with weights depending
on the location of the passive event. This would result in limiting dynamics of the same form as
above, except that the single driving Brownian motions were to be replaced by sums of the form∑

i ei
a/b(·)dW i

a/b(s). As long as the (coloured) noise
∑

i ei
a/b(x)dW i

a/b(s) exists in a suitable space of
square integrable smooth functions (in x), the analysis should essentially stay the same.

2.3. Outline of the proof. The proof of Theorem 2.10 is carried out in the following sections. The
main challenge is convergence, especially tightness of the volume densities. Since the price process is
C-tight by construction tightness of the volume process implies tightness of the price-volume process
and hence existence of an accumulation point.

We split the dynamics of the volume density functions into the three processes Vn,i
r (t, ·) (i = 1, 2, 3)

that we are going to handle separately, before finally pasting them back together to obtain the limiting
dynamics. From equation (2.8) we identify the following three processes which drive the evolution of
the volume density function (r = a, b):

Vn,1
r (t, x) =

Nn
r (t)∑

i=1

1
In

(
Rn (̃τn

Ñn(τn
r,i)

)+πPr
i

)(x)ωPr
i

∆vn

∆xn ,(2.10a)

Vn,2
r (t, x) =

Nn
r (t)∑

i=1

1
In

(
Rn (̃τn

Ñn(τn
r,i)

)+πCr
i

)(x)ωCr
i

∆vn

∆xn ,(2.10b)

Vn,3
r (t, x) =

Nn
r (t)∑

i=1

1
In

(
Rn (̃τn

Ñn(τn
r,i)

)+πNr
i

)(x)ωNr
i ξ̃r,Ñn(τn

r,i)+1

√
∆vn,(2.10c)

corresponding to the volume changes due to incoming order placements (Vn,1
r ), the proportional can-

cellations of standing volume (Vn,2
r ) and aggregated random fluctuations (V3,n

r ). In the limit the in-
creasing functions (in time) Vn,1

r and Vn,2
r will translate into the integrals w.r.t. the functions f Pr and

f Cr . The process Vn,3
r will contribute the martingale part. 6

6Note that Vn,3
b itself is not a martingale (in the filtration F n generated by the full model), as the fluctuations ξ̃ are

constant between two active order times.
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Unfortunately, these processes are not convenient for characterizing the limit process. They are not
Markov chains, and Vn,3

r is not a martingale. The ‘markovization’ is achieved by registering changes
to the order book only along active order times and by considering the process as if these times were
deterministic. More precisely, we define time-changes together with their inverses by

ηn
u B τ̃n

bnuc, u ∈ [0,∞);

ηn
u B inf{t : t > 0, ηn

t > u} −
1
n
, u ∈ [0,∞).(2.11)

and introduce the following processes:

A
n
(u) B An

0 + ∆xn
bnuc∑
i=1

ξn
a,i(2.12a)

B
n
(u) B Bn

0 + ∆xn
bnuc∑
i=1

ξn
b,i(2.12b)

V
n,1
r (u, x) B

Nn
r (̃τn
bnuc)∑

i=1

ωPr
i 1

In

(
R̄n

(
ηn
τn
r,i

)
+πPr

i

)(x)
∆vn

∆xn ,(2.12c)

V
n,2
r (u, x) B

Nn
r (̃τn
bnuc)∑

i=1

ωCr
i 1

In

(
R̄n

(
ηn
τn
r,i

)
+πCr

i

)(x)
∆vn

∆xn ,(2.12d)

V
n,3
r (u, x) B

Nn
r (̃τn
bnuc)∑

i=1

ωNr
i 1

In

(
R̄n

(
ηn
τn
r,i

)
+πNr

i

)(x)̃ξr,Ñn(τn
r,i)+1

√
∆vn,(2.12e)

vn
r (u, x) B vn

r (0, x) + V
n,1
r (u, x) + V

n,3
r (u, x)(2.12f)

−

Nn
r (̃τn
bnuc)∑

i=1

ωCr
i 1

In

(
R̄n

(
ηn
τn
r,i

)
+πCr

i

)(x)vn
r (τn

r,i, x)
∆vn

∆xn ,

In a first step we prove in Section 3.1 tightness of each of the processes V
n,i
r and of vn

r in the distri-
butional sense indicated above. For this part, we heavily rely on Mitoma’s theorem (Theorem C.3)
together with Kurtz’s criterion (Theorem C.1). Extending the tightness result from vn

r to vn
r requires

C-tightness of vn
r . Hence, in Section 3.2, we first characterize the limit vr of vn

r , depending on the
yet unknown limiting price process (A, B). Convergence of the placement term is standard; conver-
gence of the martingale term follows from a general result on the convergence of stochastic process
limits, given in Appendix A. The challenge is to prove convergence of aggregate cancellations7. In
Section 3.3 we extend our tightness result to the process

v̂n
r := v̄n

r ◦ η
n

that accounts for the random event times. As a byproduct we obtain that the limits of all the processes
vn

r , v̂n
r and vn

r coincide. More precisely, we first use C-tightness of the sequence vn
r to establish the joint

7The process V
n,2
r only describes the proportionality of cancellation but not the actual volumes.
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convergence
(
vn

r , η
n) n→∞
−−−−→ (vr , id) (in a weak sense). By Lemma C.5, this implies that

lim
n→∞

v̂n
r = lim

n→∞
vn

r ◦ (ηn) = vr.

Subsequently we prove the tightness of vn
r and further verify that v̂n

r−vn
r converges to 0 in an L2(Ω; L2(R))-

sense (this is where we need v̂n
r ), thereby implying that

lim
n→∞

vn
r = lim

n→∞
v̂n

r = vr.

At this stage, we have only treated the convergence of each of the individual sequences of processes
(An, Bn, vn

b) and (An, Bn, vn
a) to some limiting processes. However, as all these limiting processes are

actually continuous, joint tightness and, finally, joint weak convergence of
(
An, Bn, vn

b, v
n
a

)
follows by

Corollary C.4. The last step, performed in Section 4 is then to characterize the limit of the price
processes, and consequently, of the full model.

3. The scaling limit of the volume density

In this section, we prove weak convergence in a distributional sense of the volume density function.
While we do not yet know at this point whether there is a unique accumulation point of the sequence
of processes (An, Bn), we do know that there are such accumulation points and all these points are
processes, which are continuous in time, see Lemma 2.4. By choosing a proper sub-sequence, we
can, therefore, assume that (An, Bn) does converge to a continuous limiting process (A, B), and we will
often do so in this section.

Throughout, we use the symbol C for deterministic constants which may change from occurrence to
occurrence.

3.1. Tightness of the auxiliary process v
n
r . We first prove tightness of the processes vn

r . The argu-
ments are the same for the bid and ask side of the book. We shall therefore drop the index indicating
of the bid/ask side and write Rn or R̄n for the price process in what follows. Further, where appropriate
we drop the index n and denote the random location of any activity in the book simply by π or πi and
its size by ω or ωi, disregarding the type (placement, cancellation, noise).

We start with an elementary auxiliary lemma on the distribution of a Poisson process as seen from a
second, independent Poisson process. The lemma will be key to compute the distribution of passive
order arrivals between two consecutive active order times.

Lemma 3.1. Let N1 and N2 be two independent Poisson processes with intensities λ1 and λ2, re-
spectively. Moreover, let Ti, i = 1, . . ., denote the jump times of the Poisson process N1. For any
α = 1, 2, . . ., the random variable N2(Tα) has a negative binomial (NB) distribution with parameters
r = α and p =

λ2
λ1+λ2

, i.e., we have

P (N2(Tα) = l) =

(
l + α − 1
α − 1

) (
λ2

λ1 + λ2

)l (
λ1

λ1 + λ2

)α
, l = 0, 1, . . .

In particular, the moment-generating function reads

EetN2(Tα) =

( 1 − p
1 − pet

)α
, for t < − log p,
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and

E

k−1∏
i=0

(N2(Tα) − i)

 =

k−1∏
i=0

(α + i)

 λk
2

λk
1

, k = 1, . . . , 4.

In what follows we denote by F
n

the filtration generated by the processes V
n,1/2/3
r and vn

r (r = a, b).

In the next two lemmas we provide Lp estimates for the processes V
n,1/2

and V
n,3

, respectively. The
arguments for V

n,1
and V

n,2
are the same. The arguments for V

n,3
are similar. However, since the

scaling for V
n,3

is much smaller we need to take advantage of the martingale-difference structure in
order to avoid mixed terms.

Lemma 3.2. There is a constant C > 0 (independent of n, s, t) such that for any 0 < s ≤ t we have

E
F

n
s

[∥∥∥∥V
n,1/2

(t, ·) − V
n,1/2

(s, ·)
∥∥∥∥2

L2

]
≤ C

(
(t − s)2 +

|t − s|
n

)
,

sup
x∈R

E
F

n
s

[(
V

n,1/2
(t, x) − V

n,1/2
(s, x)

)2
]
≤ C

(
(t − s)2 +

|t − s|
n

)
,

E
F

n
s

[∥∥∥∥V
n,1/2

(t, ·) − V
n,1/2

(s, ·)
∥∥∥∥4

L4

]
≤ C

(
(t − s)4 +

|t − s|3

n
+
|t − s|2

n2 +
|t − s|

n3

)
,

sup
x∈R

E
F

n
s

[(
V

n,1/2
(t, x) − V

n,1/2
(s, x)

)4
]
≤ C

(
(t − s)4 +

|t − s|3

n
+
|t − s|2

n2 +
|t − s|

n3

)
.

Proof. We drop the superscripts. Without any loss of generality, we can choose s = 0. Let α B bntc
and consider

E
[
V(t, x)2

]
= E


N (̃τα)∑

i=1

1I(R̄(ητi )+πi)(x)ωi


2

(
∆v
∆x

)2

.

Using the fact that the random variables ωi are i.i.d. and independent of the Poisson processes, we get

E
[
V(t, x)2

]
= E

[ N (̃τα)∑
i< j;i, j=1

2E
Fτi∨σ(πi,ωi,Rητi

)

[
ω j1I

(
R̄(ητ j )+π j

)(x)
]
ωi1I(R̄(ητi )+πi)(x)+

+

N (̃τα)∑
i=1

E
[
ω2

i

]
1I(R̄(ητi )+πi)(x)

] (
∆v
∆x

)2

.

As the random variable π has a density f with support in [−M,M], for any deterministic y we can
bound

(3.1) E
[
1I(y+πi)(x)

]
=

∑
j∈Z

1[x j,x j+1[(x)
∫ x j+1−y

x j−y
f (z)dz ≤ ‖ f ‖L∞ ∆x1[y−M−∆x,y+M+∆x](x).

Conditioning on the σ-algebra generated by all sources of randomness except (πi)i∈N, these bounds
enable us to estimate:

E
[
V(t, x)2

]
≤E

[
2E [ω1]2 ‖ f ‖2L∞ ∆x2

N (̃τα)∑
i< j;i, j=1

1[R̄(ητi )−M−∆x, R̄(ητi )+M+∆x](x)+
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+ E
[
ω2

1

]
‖ f ‖L∞ ∆x

N (̃τα)∑
i=1

1[
R̄(ητi )−M−∆x, R̄(ητi )+M+∆x

](x)
] (

∆v
∆x

)2

.

At this stage, we can easily bound V both in L2(R) and as a supremum in x. More precisely, we have

E
[∥∥∥V(t)

∥∥∥2
L2

]
+ sup

x∈R
E

[
V(t, x)2

]
≤ (4(M + ∆x) + 1)

(
E[ω1]2 ‖ f ‖2L∞ ∆x2E

[
N (̃τα) (N (̃τα) − 1)

]
+E

[
ω2

1

]
‖ f ‖L∞ ∆xE

[
N (̃τα)

]) (∆v
∆x

)2

.

Finally, inserting the moment formulas given in Lemma 3.1 and applying the trivial estimate α =

bntc ≤ nt together with Assumption 2.9, we arrive at

E
[∥∥∥V(t)

∥∥∥2
L2

]
+ sup

x∈R
E

[
V(t, x)2

]
≤ Cn−7/2

{
n−1/2nt(1 + nt)

n4

n2 + nt
n2

n

}
= C

(
t2 + (n−1 + n−3/2)t

)
≤ C

(
t2 +

t
n

)
.

The estimate for the fourth moment follows analogously and is therefore skipped. �

Lemma 3.3. There is a constant C (independent of n, s, t) such that for every 0 < s ≤ t

E
F

n
s

[
sup

s≤u≤t

∥∥∥∥V
n,3

(u) − V
n,3

(s)
∥∥∥∥2

L2

]
+ sup

x∈R
E
F

n
s

[
sup

s≤u≤t

∣∣∣∣Vn,3
(u, x) − V

n,3
(s, x)

∣∣∣∣2] ≤ C|t − s|,

(3.2)

E
F

n
s

[
sup

s≤u≤t

∥∥∥∥V
n,3

(u) − V
n,3

(s)
∥∥∥∥4

L4

]
+ sup

x∈R
E
F

n
s

[
sup

s≤u≤t

∣∣∣∣Vn,3
(u, x) − V

n,3
(s, x)

∣∣∣∣4] ≤ C
(
(t − s)2 +

|t − s|
n

)
.

(3.3)

Proof. Again, we restrict ourselves to proving the case s = 0 and drop all superscripts from the
notation. Re-writing V in a form more clearly expressing its martingale structure, we consider

V(t) =

N (̃τα)∑
i=1

1
I
(
R̄(ηn

τn
i

)+πi

)(x)ωiξ̃Ñ(τi)

√
∆v =

α−1∑
j=0

N (̃τ j+1)∑
i=N (̃τ j)+1

1I(R̄( j/n)+πi)(x)ωiξ̃ j
√

∆v,

where we again use the short-hand notation α = btnc. Using Doob’s inequality and the fact that
E

[̃
ξiξ̃ j

]
= δi j with ξ̃2

i = 1, we have

E
[

sup
0≤u≤t

|V(u, x)|2
]
≤ 4E

[
|V(t, x)|2

]
= 4∆vE


α−1∑

j=0

ξ̃ j

N (̃τ j+1)∑
i=N (̃τ j)+1

1I(R̄( j/n)+πi)(x)ωi


2

= 4∆vE


α−1∑
j=0


N (̃τ j+1)∑

i=N (̃τ j)+1

1I(R̄( j/n)+πi)(x)ωi


2 .
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Next, we estimate the contribution of the random locations π as in (3.1). We have:

E
[

sup
0≤u≤t

∥∥∥V(u)
∥∥∥2

L2

]
≤ 4∆vE

[α−1∑
j=0

{ N (̃τ j+1)∑
i,i′=N (̃τ j)+1

ωiωi′

∫
R

1I(R̄( j/n)+πi)(x)1I(R̄( j/n)+πi′)(x) dx
}]

+

+

N (̃τ j+1)∑
i=N (̃τ j)+1

ω2
i

∫
R

1I(R̄( j/n)+πi)(x) dx
]

≤ 4∆vE

α−1∑
j=0


N (̃τ j+1)∑

i,i′=N (̃τ j)+1

E[ω1]2 ‖ f ‖2L∞ ∆x2(2M) +

N (̃τ j+1)∑
i=N (̃τ j)+1

E[ω2
1] ‖ f ‖L∞ ∆x(2M)


 ,

and similarly,

sup
x∈R

E
[

sup
0≤u≤t

|V(u, x)|2
]
≤ 4∆vE

α−1∑
j=0


N (̃τ j+1)∑

i,i′=N (̃τ j)+1

E[ω1]2 ‖ f ‖2L∞ ∆x2 +

N (̃τ j+1)∑
i=N (̃τ j)+1

E[ω2
1] ‖ f ‖L∞ ∆x


 .

Since the distribution of the increments N (̃τ j+1) − N (̃τ j) does not depend on j, we see that

E
[

sup
0≤u≤t

∥∥∥V(u)
∥∥∥2

L2

]
+ sup

x∈R
E

[
sup

0≤u≤t
|V(u, x)|2

]
≤ C ∆vE

[
α
{
E[ω1]2 ‖ f ‖2L∞ (∆x)2N (̃τ1) (N (̃τ1) − 1) + E

[
ω2

1

]
‖ f ‖L∞ ∆xN (̃τ1)

}]
.

Again appealing to Lemma 3.1 (with α = 1) together with Assumption 2.9, we obtain

E
[

sup
0≤u≤t

∥∥∥V(u)
∥∥∥2

L2

]
+ sup

x∈R
E

[
sup

0≤u≤t
|V(u, x)|2

]
≤ C

1
n2 nt

{
2
n

n4

n2 +
1
√

n
n2

n

}
= Ct{2 + 1/

√
n} ≤ Ct.

As in the proof of Lemma 3.2, the estimate for the fourth moment follows by the similar arguments.
�

At this stage we can patch together the estimates in Lemmas 3.2 and 3.3 to obtain a similar one for the
process vn. The proof is based on an event-by-event decomposition of the limit order book dynamics.
More precisely, in terms of the increments (again, we drop indices indicating the order book side)

hn,1
i (x) B ωP

i 1
In

(
R̄n

(
ηn
τn
i

)
+πP

i

)(x)
∆vn

∆xn ,

hn,2
i (x) B ωC

i 1
In

(
R̄n

(
ηn
τn
i

)
+πC

i

)(x)
∆vn

∆xn ,

hn,3
i (x) B 1

In

(
R̄n

(
ηn
τn
i

)
+πN

i

)(x)ωN
i ξ̃a,Ñn(τn

i )+1

√
∆vn

of the processes V
n, j

( j = 1, 2, 3) one has the following generic decomposition,

(3.4) vn(t, x) =

Nn (̃τn
bntc)∏

i=1

(
1 − hn,2

i (x)
)

vn(0, x)+
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+

Nn
a/b (̃τn

bntc)∏
i=1

(
1 − hn,2

i (x)
) 

Nn (̃τn
bntc)∑

i=1

1∏i
m=1

(
1 − hn,2

m (x)
) (

hn,1
i (x) + hn,3

i (x)
) .

Lemma 3.4. There exists a sequence of non-negative adapted process Cn
t and a deterministic constant

C such that for p ∈ {2, 4}

E
F

n
s

[
sup
s≤r≤t

∥∥∥vn(r) − vn(s)
∥∥∥p

Lp

]
≤ Cn

s
(
(t − s)p + (t − s)

)
,

E
[
sup
r≤t

∥∥∥vn(r)
∥∥∥p

Lp

]
≤ C

(
tp + t + 1

)
,

sup
x∈R

E
[
sup
r≤t

∣∣∣vn(r, x)
∣∣∣p] ≤ C

(
tp + t + 1

)
,

with

Cn
s ≤ C

(∥∥∥vn(s)
∥∥∥4

L4 +
∥∥∥vn(s)

∥∥∥2
L2 + 1

)
,

sup
n

E
[

sup
0≤s≤t

Cn
s

]
≤ C(t4 + t + 1).(3.5)

Proof. We may again drop the dependence on n from the notation and w.l.o.g. assume s = 0. Note
that 0 ≤ 1 − h2

i (x) ≤ 1 and ∣∣∣∣∣∣∣∣
N (̃τbntc)∏

i=1

(1 − h2
i (x)) − 1

∣∣∣∣∣∣∣∣ ≤
N (̃τbntc)∑

i=1

h2
i (x) = V

2
(t, x).

Hence, (3.4) together with Lemma 3.2 and 3.3 implies that for p ∈ {2, 4},

E
[
|v(t, x) − v(0, x)|p

]
(3.6)

= E


∣∣∣∣∣∣∣∣
N (̃τbntc)∏

i=1

(
1 − h2

i

)
− 1

 v(0, x) +

N (̃τbntc)∏
i=1

(
1 − h2

i

) N (̃τbntc)∑
i=1

1∏i
m=1

(
1 − h2

i

) (
h1

i + h3
i

)
∣∣∣∣∣∣∣∣
p

≤ C
{
|v(0, x)|p sup

x∈R
E

[(
V

2
(t, x)

)p]
+ E

[∣∣∣∣V1
(t, x)

∣∣∣∣p + sup
0≤s≤t

∣∣∣∣V3
(s, x)

∣∣∣∣p]} .(3.7)

It follows for p ∈ {2, 4} that,

E
[

sup
0≤u≤t

‖v(u) − v(0)‖pLp

]
≤ C

(
‖v(0)‖pLp + 1

)
(tp + t).

For a general s ∈ [0, t], this proves the estimate for a F
n
s-measurable random variable Cn

s that depends
in an affine way on ‖v(s)‖pLp +‖v(s)‖2L2 . Note, however, that it follows in a similar way that for p ∈ {2, 4}

sup
n∈N+

(
E

[
sup

0≤s≤t

∥∥∥vn(s)
∥∥∥p

Lp

]
+ sup

x∈R
E

[
sup

0≤s≤t

∣∣∣vn(s, x)
∣∣∣p]) < C(t4 + t + 1),

so that we can, indeed, find a deterministic constant C which is independent of s, t and n and bounds
E

[
sup0≤s≤t Cn

s

]
≤ C(t4 + t + 1). �
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Remark 3.5. Using the same arguments as in the above proof, we obtain for p ∈ {2, 4} and k =

0, 1, 2, · · · ,

E

 sup
i∈[Nn (̃τn

k ),Nn (̃τn
k+1)]∩N+

‖vn(τa,i) − vn(ηn
k)‖pLp

 ≤ C
t + tp

n
,

where the constant C is independent of n, k and t.

We are now ready to state and prove the main result of this section.

Proposition 3.6. The processes vn
r and V

n,i
r (r = a, b; i = 1, 2, 3) are tight as processes with paths in

D
(
[0,∞); H−1

)
.

Proof. Let Xn ∈

{
vn

r ,V
n,1
r ,V

n,2
r ,V

n,3
r

}
. By Mitoma’s theorem (see Theorem C.3), we need to prove

tightness of the processes 〈Xn , φ〉 for any test function φ ∈ E ⊂ L2(R), for which we, in turn, will
appeal to Kurtz’s criterion (see Theorem C.1). Hence, we need to estimate

EF n
s

[∣∣∣〈Xn(t) − Xn(s) , φ
〉∣∣∣2] .

As Xn takes values in L2, the bracket 〈Xn , φ〉 is equal to the L2 inner product 〈Xn , φ〉L2 . By Lem-
mas 3.2, 3.3 and 3.4, for each T > 0 and 0 ≤ s < t ≤ T ,

EF n
s

[〈
Xn(t) − Xn(s) , φ

〉2
]
≤ EF n

s

[∥∥∥Xn(t) − Xn(s)
∥∥∥2

L2

]
‖φ‖2L2

≤ Cn
s

[
(t − s)2 + (t − s)

]
‖φ‖2L2

for some sequence of adapted processes Cn
t with

sup
n

E
[

sup
0≤τ≤T

Cn
τ

]
< ∞.

Hence, the second condition of Theorem C.1 follows with γn(δ) = supτ∈[0,T ] Cn
τ(δ2 + δ). The first

condition, tightness of the sequence of random variables 〈Xn(t) , φ〉 for each rational t, follows from
uniform boundedness of the sequence of random variables 〈Xn(t) , φ〉 in L2(Ω,F , P).

Furthermore, again by Lemmas 3.2, 3.3 and 3.4,

sup
n

E
 sup
t∈[0,T ]

‖Xn(t)‖2L2

 ≤ C(T + T 2),

for some constant C that is independent of n and T . As a result, it follows from the Markov inequality
that

sup
n

P
 sup

t∈[0,T ]
‖Xn(t)‖2L2 > N

 ≤ C(T + T 2)
N

→ 0, as N → ∞.

Thus, by Mitoma’s theorem Xn is tight as sequences of processes with paths inD
(
[0,∞); H−1

)
. �

Remark 3.7. The preceding proof almost gives us tightness in D
(
[0,∞); L2(R)

)
for L2(R) equipped

with the weak topology. Note, however, that L2(R) is not a metric space when equipped with the weak
topology. Hence we cannot use Kurtz’s criterion as it does not apply to non-metric state spaces.
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3.2. Characterization of the limit of v
n
r . In this section, we characterize the limit of the sequence vn

r .
Again, we drop indices where appropriate. We start with establishing joint convergence in distribution
of bid/ask prices along with the aggregate fluctuations of standing volumes on one side of the book.

Proposition 3.8. For r = a, b, (A
n
, B

n
,V

n,3
r ) ⇒ (A, B,V

3
r ), with (A, B) being a two-dimensional con-

tinuous process, and for any choice φ1, . . . , φl ∈ E the l-dimensional process
(〈

V3
r , φ1

〉
, . . . ,

〈
V3

r , φl
〉)

is a martingale w.r.t. the filtration generated by the process (A, B,V
3
r ) with quadratic co-variation[〈

V3
r , φi

〉
,
〈
V3

r , φ j
〉]

t
=

∫ t

0
σ(φi)(Rs)σ(φ j)(Rs)ds, t ≥ 0, 1,≤ i, j ≤ l,

σ(φ)(y) B
√

2E[ωN
1 ]

∫
R

f Nr (x − y)φ(x)dx.

Proof. Combining Proposition 3.6, Corollary C.4 and C-tightness of the price process (Lemma 2.4),
we conclude that (A

n
, B

n
,V

n,3
) is tight as a sequence of processes with sample paths inD([0,∞);R2×

H−1) and that (A
n
, B

n
) converges in distribution to a two-dimensional continuous process (A, B) along

a sub-sequence.

Since the sequence of price processes is C-tight and converges to (A, B) it is sufficient to characterize
the weak accumulation point V

3
. To this end, we assume w.l.o.g. that E[ωN

1 ] > 0. We now proceed in
several steps.

i) First, we define, for any φ ∈ E,

Y
n
t (φ) = 〈φ, V

n,3
(t)〉, t ∈ [0,∞),

and denote by Gn the filtration generated by the processes
(
A

n
t , B

n
t ,V

n,3
(t)

)
. Note that the sequence

(A
n
, B

n
,Y

n
(φ)) converges in distribution to (A, B, Ȳ(φ)) where Ȳ(φ) := 〈φ, V

3
〉 as a sequence of pro-

cesses whose sample paths belong toD(0,∞;R3).

We are now going to use Lemma A.2 to verify the claimed form of the quadratic variation. For
simplicity, we start with the special case l = 1. For this, we assume that φ ≥ 0; otherwise, we make
the decomposition φ = φ+ − φ− and consider φ+ and φ− respectively, just noting that both φ+ and φ−

belong to H1. Let

an
0(φ)(R) B

(∑
j

∫ xn
j+1

xn
j

f (x − R) dx
∫ xn

j+1

xn
j

φ(x) dx
)2

(∆xn)−2E
[
ωN

1

]2
,

an
1(φ)(R) B

∑
j

∫ xn
j+1

xn
j

f (x − R) dx
∣∣∣∣ ∫ xn

j+1

xn
j

φ(x) dx
∣∣∣∣2(∆xn)−2E

[
(ωN

1 )2
]

σn(φ)(R) B
(
2an

0(φ)(R) +
1
n

an
1(φ)(R)

)1/2

.

Note that for any deterministic y and any random variable π with density f , (2.7) implies

E
[∫

1In(y+π)(x)φ(x)dx
]

=
∑

j

∫
1[xn

j ,x
n
j+1[(y + z) f (z)dz

∫
1xn

j ,x
n
j+1[(x)φ(x)dx
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=
∑

j

∫
1[xn

j ,x
n
j+1[(x) f (x − y)dx

∫
1[xn

j ,x
n
j+1[(x)φ(x)dx.

Since the number of passive order arrivals
(
Nn
τ̃n

k
− Nn

τ̃n
k−1

)
on [ k−1

n , k
n ) follows a negative binomial dis-

tribution NB
(
1, λn

λn+µn

)
(see Lemma 3.1), we have (using (2.12e)):

EGn
k−1

n

[
|Y

n
k
n
(φ) − Y

n
k−1

n
(φ)|2

]
= ∆vn

{
E

[(
Nn
τ̃n

k
− Nn

τ̃n
k−1

) (
Nn
τ̃n

k
− Nn

τ̃n
k−1
− 1

)] (∑
j

∫ xn
j+1

xn
j

f (x − R̄n
k−1

n
) dx

∫ xn
j+1

xn
j

φ(x) dx
)2

E
[
ωN

1

]2

+ E
[(

Nn
τ̃n

k
− Nn

τ̃n
k−1

)]∑
j

∫ xn
j+1

xn
j

f (x − R̄n
k−1

n
) dx

∣∣∣∣ ∫ xn
j+1

xn
j

φ(x) dx
∣∣∣∣2E

[(
ωN

1

)2
] }

= ∆vn(∆xn)2
{

E
[(

Nn
τ̃n

k
− Nn

τ̃n
k−1

) (
Nn
τ̃n

k
− Nn

τ̃n
k−1
− 1

)]
an

0(φ)(R̄n
k−1

n
) + E

[(
Nn
τ̃n

k
− Nn

τ̃n
k−1

)]
an

1(φ)
(
R̄n

k−1
n

) }
=

1
n3

(
2n2an

0(φ) + nan
1(φ)

) (
R̄n

k−1
n

)

=
1
n

(
σn(φ)

(
R̄n

k−1
n

))2
.

(3.8)

Set

σ(φ)(R) =
√

2
∫
R

f (x − R)φ(x) dxE
[
ωN

1

]
, t ∈ [0,∞).

Note that σ ≥ 0 since φ is non-negative.

ii) We claim that σn(φ)→ σ uniformly. First note that
∥∥∥an

1(φ)
∥∥∥

L∞ ≤ ‖φ‖
2
∞ E[ωN

1 ]. Hence, 1
n an

1(φ)→ 0
uniformly, and we may ignore the second term in the definition of σn. Further note that∣∣∣∣∣∣∣∣

∑
j

∫ xn
j+1

xn
j

f (x − R)dx
∫ xn

j+1

xn
j

φ(x)dx
1

∆xn −

∫
R

f (x − R)φ(x)dx

∣∣∣∣∣∣∣∣
≤

∑
j

∫ xn
j+1

xn
j

f (x − R)

∣∣∣∣∣∣∣ 1
∆xn

∫ xn
j+1

xn
j

φ(y)dy − φ(x)

∣∣∣∣∣∣∣ dx.

By the mean value theorem, there exists y ∈ [xn
j , x

n
j+1] with 1

∆xn

∫ xn
j+1

xn
j

φ(y)dy = φ′(y). For x < y,

|x − y| ≤ ∆xn we have

|φ(x) − φ(y)| =
∫
R

1[x,y](z)φ′(z)dz ≤
√

∆xn ‖φ‖H1 .

Therefore, ∥∥∥σn(φ) − σ(φ)
∥∥∥

L∞ ≤
√

2E[ωN
1 ]
√

∆xn ‖φ‖H1 + o(1),
and we have established uniform convergence of σn(φ) to σ(φ).

iii) We need to verify the conditions of Lemma A.2 outlined in Assumption A.1, i.e.:

sup
n

∥∥∥σn
∥∥∥

L∞ < ∞,(A.1)
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E
bntc+1∑

k=1

|Y
n
k
n
(φ) − Y

n
k−1

n
(φ)|4 → 0,(A.2)

sup
n

E
 sup
k≤bntc

∣∣∣∣Yn
k/n − Y

n
(k−1)/n

∣∣∣∣ < ∞.(A.3)

Note that (A.1) follows immediately from boundedness of f Nr and of φ. (A.3) is a direct consequence
of Lemma 3.3. As for (A.2),

EGn
k−1

n

[
|Y

n
k
n
(φ) − Y

n
k
n
(φ)|4

]
≤ C(∆vn)2(∆xn)4E

[∣∣∣∣Nn
τ̃n

k
− Nn

τ̃n
k−1

∣∣∣∣4]
≤ C

1
n6

[
n4 + n

]
≤ C

1
n2 ,

where C is a positive constant which is independent of n and may vary from line to line. Thus, for any
t ∈ (0,∞),

E
bntc+1∑

k=1

|Y
n
k
n
(φ) − Y

n
k−1

n
(φ)|4 ≤ C(nt + 1)

1
n2 → 0 as n→ ∞.

iv) The previous arguments easily extend to the finite dimensional case. For each l ∈ N+ and
any family of non-negative functions φ1, . . . , φl, the process (Y

n
(φ1), . . . ,Y

n
(φl)) converges jointly

to (Y(φ1), . . . ,Y(φl)) in distribution.We compute for i, j = 1, . . . , l,

EGn
k−1

n

[(
Y

n
k
n
(φ j) − Y

n
k−1

n
(φ j)

) (
Y

n
k
n
(φi) − Y

n
k−1

n
(φi)

)]
=

(σn(φ j + φi))2 − (σn(φ j − φi))2

4n

(
R̄n

k−1
n

)
=

1
n
σn(φ j)σn(φi)

(
R̄n

k−1
n

)
.

Since E is dense in H1, this completes the proof. �

The previous proposition characterizes the quadratic variation of the limiting volume density pro-
cesses. Next we are going to study the limiting dynamics of aggregate order placements and cancel-
lations, disregarding the random fluctuations. As we expect order placements and cancellations to
contribute to the drift part of the limiting model, we find it helpful to re-write their dynamics in the
form of an integral in time. That is, if we write

V
n,2

(t, x) =

∫ bntc
n

0
gn(s, x)ds,

V
n,1

(t, x) =

∫ bntc
n

0
g̃n(s, x)ds,

it is clear that we can identify the limiting drift term by studying the limits of gn and g̃n. Comparing
with (2.12), we have

gn(t, x) B
∞∑

k=1

Nn (̃τn
k )∑

i=Nn (̃τn
k−1)+1

1
In

(
πC

i +R̄n
k−1

n

)(x)ωC
i 1[ k

n ,
k+1

n )(t)
∆vn

∆xn n,
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g̃n(t, x) B
∞∑

k=1

Nn (̃τn
k )∑

i=Nn (̃τn
k−1)+1

1(
πP

i +R̄n
k−1

n

)(x)ωP
i 1[ k

n ,
k+1

n )(t)
∆vn

∆xn n.

With regards to aggregate cancellations, gn only captures the proportionality of cancellations in terms
of present volume. Therefore, we need to introduce another term gn describing the actual cancella-
tions, i.e.,

vn(t, x) − v(0, x) − V
n,1

(t, x) − V
n,3

(t, x) =

∫ bntc
n

0
gn(s, x)ds.

Clearly, gn is given by

gn(t, x) B
∞∑

k=1

Nn (̃τn
k )∑

i=Nn (̃τn
k−1)+1

1
In

(
πC

i +R̄n
k−1

n

)(x)ωC
i vn(τn

i−1, x)1[ k
n ,

k+1
n )(t)

∆vn

∆xn n.

We will analyze the impact of order cancellations in the limit in two steps: first we show that we can
replace gn by the (much simpler) expression gnvn in the limit (see Lemma 3.10). Then we characterize
the limit of the latter term in the appropriate sense (see Lemma 3.11, where we also characterize the
limiting object of the order placements).

Remark 3.9. From the proof of Lemma 3.2, it follows that for p ∈ {2, 4},

E
[∥∥∥gn(t)

∥∥∥p
Lp

]
+ sup

x∈R
EF n

s E
[∣∣∣gn(t, x)

∣∣∣p] ≤ C,

which implies that

sup
x∈R

E
∫ t

0

∣∣∣gn(s, x)
∣∣∣p ds + E

∫
R

∫ t

0

∣∣∣gn(s, x)
∣∣∣p dsdx ≤ Ct,

with the constants C being independent of n and t.

Lemma 3.10. For any t > 0, we have

lim
n→∞

E

∫
R

∫ bntc
n

0

∣∣∣∣gn(s, x) − gn(s, x)vn(s, x)
∣∣∣∣2 dsdx

 = 0.(3.9)

Proof. Using Fubini’s theorem and Remark 3.5, we have

E
∫
R

∫ bntc
n

0

∣∣∣∣gn(s, x) − gn(s, x)vn(s, x)
∣∣∣∣2 dsdx

=

∫ bntc
n

0
E

∫
R

∣∣∣∣∣ ∑
k∈N+

Nn (̃τn
k )∑

i=Nn (̃τn
k−1)+1

1
In

(
πC

i +R̄ k
n

)(x)ωC
i

(
vn(τn

i−1, x) − vn(s, x)
)
1[ k

n ,
k+1

n )(s)
∆vn

∆xnn−1

∣∣∣∣∣2 dxds

≤

∫ bntc
n

0

∑
k∈N+∪{0}

1[ k
n ,

k+1
n )(s)

(
E

∫
R
|gn(s, x)|4dx

)1/2(
E sup

i∈[Nn (̃τn
k−1),Nn (̃τn

k )]∩N+

‖vn(τi) − vn(̃τn
k−1)‖4L4

)1/2
ds

≤ C
1
√

n

∫ bntc
n

0

(
E

∫
R
|gn(s, x)|4dx

)1/2
ds
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≤ C
1
√

n

(
E

∫ bntc
n

0

∫
R
|gn(s, x)|4dx

)1/2

,

which by Remark 3.9 converges to zero as n tends to infinity. �

We can now analyze the limiting objects obtained from order placements and cancellations. The proof
of Lemma 3.11 is technical and rather long and hence postponed to Appendix B.

Lemma 3.11. For any t =
bntc

n with n ∈ N,

∀α ∈ {0, 1} : lim
n→∞

sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(
gn(s, x) − E[ωC

1 ] f C(x − Rs)
) (

1 − α + αvn(s, x)
)

ds

∣∣∣∣∣∣2
 = 0,(3.10)

lim
n→∞

sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(̃
gn(s, x) − E[ωP

1 ] f P(x − Rs)
)

ds

∣∣∣∣∣∣2
 = 0.(3.11)

Combining the characterization of the limit of the fluctuation part of vn
r obtained in Proposition 3.8

with the characterization of the limits of order cancellations and placements obtained in Lemma 3.11
together with Lemma 3.10, we are in the position to study the limit of vn itself.

Theorem 3.12. Suppose that (along a properly chosen subsequence) (A
n
, B

n
,V

n,3
r , vn

r )⇒ (A, B,V3
r , vr),

where (A, B) is the (not yet identified) limit of (An, Bn) (along the chosen subsequence) and V3
r the limit

obtained in Proposition 3.8. Then

vr(t, ·) = vr(0, ·) +

∫ t

0

(
E[ωP

1 ] f P(· − Rs) − E[ωC
1 ] f C(· − Rs)vr(s, ·)

)
ds + V3

r (t, ·), t ≥ 0,

and V3
r remains a martingale under the filtration generated by (A, B, vr,V3

r ).

Proof. First, note that the vr is already measurable w.r.t. R and V3
r , hence the filtration does not change

when vr is added and V3
r trivially stays a martingale.

The sequence of price processes is C-tight and converges in distribution to some limit (A, B) along
a subsequence. The processes V

n,3
r and vn

r are tight, due to Proposition 3.6 and V
n,3
r is even C-tight,

due to Proposition 3.8. Hence, the sequence
(
A

n
, B

n
,V

n,3
r , vn

r
)

is tight as a sequence of processes with
sample paths in D(0,∞;R2 × H−1 × H−1). In order to identify the limit of vn

r as a function of the
(existing, yet still to be identified) limit of the price process we use the additive decomposition

vn
r (t, x) − vn

r (0, x) = V
n,1
r (t, x) + Ṽn,2

r (t, x) + V
n,3

(t, x), (t, x) ∈ [0,∞) × R,(3.12)

where

Ṽn,2
r (t, x) :=

∫ [nt]
n

0
gn(s, x)ds.

In view of Skorohod’s lemma (see Lemma C.6) we may w.l.o.g. assume that all processes are defined
on a common probability space (Ω,F ,P) such that, for some process vr to be determined, the sequence(
A

n
, B

n
,V

n,3
r , vn

r
)

converges almost surely to some limit (A, B,V3
r , vr) as a sequence of processes with

sample paths inD(0,∞;R2 × H−1 × H−1). In particular, and this will be used below, as a sequence in
R2 × H−1 × H−1,

lim
n→∞

(
A

n
, B

n
,V

n,3
r , vn

r
)

= (A, B,V3
r , vr) P ⊗ dt-a.e.
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Indeed, taking vn
r for example, the sample paths are cádlág, and hence they have at most countably

many discontinuities. For almost all ω ∈ Ω the convergence limn→∞ ||vn
r (t, ·) − vr(t, ·)||2H−1 = 0 at

each point of continuity can be derived in a similar way to [19, Prop. VI.1.17]. Then, dominated
convergence yields

lim
n→∞

E
∫ T

0
||vn

r (t, ·) − vr(t, ·)||2H−1 ∧ 1 dt = 0 for all T > 0.

This allows us to choose a subsequence that is converging a.e. in H−1.

Operating in the probability space (Ω,F ,P) the decomposition (3.12) of the volume process shows
that we need to identify the limit of Ṽn,2 in order to identify that of vn

a. For this, we first show that it is
enough to identify weak limits in the Hilbert space L2(Ω × [0,T ] × R) for arbitrary T > 0. In fact, by
Lemma 3.4 the sequence vn

r is uniformly bounded in L2(Ω × [0,T ] × R). By Lemma 3.2 and Lemma
3.3 the same applies to V

n,1
and V

n,3
. Hence, the sequence

(
vn,V

n,1
,V

n,3)
has a weak accumulation

point in L2(Ω × [0,T ] × R). By the Banach-Saks theorem, the weak accumulation point is a strong
limit in Cesaro sense of a subsequence. Since L2(Ω × [0,T ] × R) ⊂ L2

(
Ω × [0,T ]; H−1

)
this shows

that the weak limit coincides with
(
vr,V1,V3) as a weak limit in L2 (Ω × [0,T ] × R). As a result, it is

enough to identify the weak limit K of Ṽn,2
r in L2(Ω × [0,T ] × R). By Lemma 3.10 and 3.11 this is

equivalent to identifying the weak limit of the process

(t, x) 7→
∫ t

0
E[ωC

1 ] f C(x − Rs)vn
r (s, x) ds.

In order to identify K we test against test functions ψ ∈ L∞(Ω × [0,T ]) and φ ∈ L2(R). Weak
convergence of vn and Ṽn,2 in L2(Ω × [0,T ] × R) yields that

E
∫ T

0

∫
R
ψ(t)K(t, x)φ(x) dx dt = lim

n→∞
E

∫ T

0
ψ(t)〈Ṽn,2

r (t), φ〉 dt

= lim
n→∞

E
∫ T

0
ψ(t)

∫ [nt]
n

0

∫
R

gn(s, x)φ(x) dxds dt

(by Lemma 3.10)

= lim
n→∞

E
∫ T

0
ψ(t)

∫ [nt]
n

0

∫
R

gn(s, x)vn
r (s, x)φ(x) dxds dt

(by Lemma 3.11)

=E[ωC
r,1] lim

n→∞
E

∫ T

0
ψ(t)

∫ [nt]
n

0

∫
R

f C(x − Rs)vn
r (s, x)φ(x) dxds dt

=E[ωC
r,1] lim

n→∞
E

∫ T

0

∫
R

f C(x − Rs)vn
r (s, x)φ(x) dxE

F dnse/n

[ ∫ T

dnse/n
ψ(t) dt

]
ds

(by the weak convergence in Hilbert space)

=E[ωC
r,1]E

∫ T

0

∫
R

f C(x − Rs)vr(s, x)φ(x) dxE
F s

[ ∫ T

s
ψ(t) dt

]
ds

=E[ωC
r,1]E

∫ T

0
ψ(t)

∫ t

0

∫
R

f C(x − Rs)vr(s, x)φ(x) dxds dt,
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where F t denotes the filtration generated by all the processes A
n
, B

n
, A, B, vn

r and vr. Since φ ∈ L2

and ψ ∈ L∞(Ω × [0,T ]) are arbitrary, we get

K(t, x) = E[ωC
1 ]

∫ t

0
f C(x − Rs)vr(s, x) ds

for almost every (t, ω, x) ∈ [0,T ] ×Ω × R. Hence, the limit vr satisfies

vr(t, ·) = vr(0, ·) +

∫ t

0

(
E[ωPr

1 ] f Pr (· − Rs) − E[ωCr
1 ] f Cr (· − Rs)vr(s, ·)

)
ds + V3

r (t, ·), t ≥ 0. �

3.3. The limit of the volume density. With tightness of the sequence of auxiliary processes vn
r estab-

lished in Proposition 3.6, we can now turn to the actual volume densities vn
r . To this end, we introduce

the processes

v̂n
r (u) := vn

r ◦ η
n
u, V̂n,i

r (u) := V
n,i
r ◦ η

n
u (r = a, b; i = 1, 2, 3)

where the time-change ηn
u was defined in (2.11). In view of Kurtz’s [23] strong approximation result

for Poisson processes by Brownian motion, for any T > 0

lim
n→∞

sup
0≤t≤T

|ηn
t − t| = 0 P-a.s.

As a result, Lemma C.5 and Theorem 3.12 imply that the limit of (An, Bn, v̂n
r ) coincides with that of

(A
n
, B

n
, vn

r ), namely (A, B, vr) of Theorem 3.12.

Let δvn
r B vn

r − v̂n
r and δVn,i

r B Vn,i
r − V̂n,i

r (i = 1, 2, 3). Our goal is to prove that δvn
r converges weakly

to 0 as n → ∞. We shall then deduce that convergence of v̂n implies convergence of vn. The first
step is to establish moment estimates for the processes Vn,i (i = 1, 2, 3) similar to Lemmas 3.3 and
3.4. Analogous to Proposition 3.6 these estimates indicate tightness of vn

r and thus the tightness of
(An, Bn, vn

r ). The rather technical proof is deferred to Appendix B.

Lemma 3.13. For r = a, b and i = 1, 2, 3 it holds that

EF n
s

 3∑
i=1

∥∥∥Vn,i
r (t) − Vn,i

r (s)
∥∥∥2

L2

 ≤Cn
s

[
(t − s) + (t − s)2

]
, 0 ≤ s ≤ t < ∞,

EF n
s

[∥∥∥vn
r (t) − vn

r (s)
∥∥∥2

L2

]
≤Cn

s

[
(t − s) + (t − s)2

]
, 0 ≤ s ≤ t < ∞,

with supn E
[
sups∈[0,t] Cn

s

]
≤ C(t2 + t), t ∈ [0,∞), where the constant C is independent of n, s and t.

Furthermore, we will show that δvn
r (t) converges point-wise to 0 in an L2-sense for which we need

some elementary results on Poisson processes.

Lemma 3.14. Let N1 and N2 be two independent Poisson processes with intensities λ1 and λ2, re-
spectively. Moreover, let Ti, i = 1, . . ., denote the jump times of the Poisson process N1. Then we
have

E
[
N2(t) − N2(TN1(t))

]
=
λ2

λ1

(
1 − e−λ1t

)
,

E
[(

N2(t) − N2(TN1(t))
) (

N2(t) − N2(TN1(t)) − 1
)]

= 4
λ2

2

λ2
1

(
1 − (1 + tλ1)e−λ1t

)
.
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Proof. Notice that conditional on N1(t) = l, the relative difference (t − Tl)/t has a beta distribution
with parameters 1 and l, as this is the distribution of the differences in the order statistics of l random
variables distributed uniformly on [0, 1]. Hence, elementary calculations give

E [N2(t) − N2(Tl) |N1(t) = l] =

∞∑
k=0

k
∫ 1

0
e−λ2tx (λ2tx)k

k!
1 − x)l−1

B(1, l)
dx =

λ2t
1 + l

and

E [(N2(t) − N2(Tl)) (N2(t) − N2(Tl) − 1) |N1(t) = l] =

∞∑
k=0

k(k − 1)
∫ 1

0
e−λ2tx (λ2tx)k

k!
1 − x)l−1

B(1, l)
dx

=
2λ2

2t2

2 + 3l + l2
.

Multiplying these terms with P(N1(t) = l) = e−λ1t (λ1t)l

l! and summing over l gives the formulas from
above. �

Lemma 3.15. Let u = u(t) = u(t, x) denote any of the processes δvn
r , δVn,i

r , i = 1, 2, 3. Moreover,
assume that the sequence vn

r (0) is uniformly bounded in L2. Then there is a constant C independent of
n or t such that

E
[
‖u(t)‖2L2

]
≤ C

1
n

(1 + t + t2), ∀ t ∈ [0,∞).

Proof. Let us first consider u = δVn,i
r for some i = 1, 2, 3, r = a, b. Note that for some random

variables ωi and πi we have for some scaling constant ε (either equal to ∆v/∆x or equal to
√

∆v)

u(t, x)2 =


N(t)∑

i=N
(̃
τÑ(t)

) 1
I
(
Rn (̃τn

Ñ(t)
)+πi

)(x)ωi


2

ε2,

as ξ̃r,i is constant in i and ξ̃2
r,i = 1. Letting G denote the σ-algebra generated by all sources of random-

ness except (ωi)i∈N+ , we have

E
[
u(t, x)2

]
= E




N(t)∑
i,i′=N

(̃
τÑ(t)

)EG [ωiωi′] 1
I
(
Rn (̃τn

Ñ(t)
)+πi

)(x)1
I
(
Rn (̃τn

Ñ(t)
)+πi′

)(x) +

N(t)∑
i=N

(̃
τÑ(t)

)EG
[
ω2

i

]
1

I
(
Rn (̃τn

Ñ(t)
)+πi

)(x)


 ε2

= E




N(t)∑
i,i′=N

(̃
τÑ(t)

) 1
I
(
Rn (̃τn

Ñ(t)
)+πi

)(x)1
I
(
Rn (̃τn

Ñ(t)
)+πi′

)(x)E[ω1]2 +

N(t)∑
i=N

(̃
τÑ(t)

) 1
I
(
Rn (̃τn

Ñ(t)
)+πi

)(x)E
[
ω2

1

]
 ε2.

Furthermore, conditioning on theσ-algebra generated by all sources of randomness except for (πi)i∈N+ ,
we can bound in a similar way to (3.1)

E
[
u(t, x)2

]
≤ E

[
E [ω1]2 ‖ f ‖2L∞ ∆x2

(
N(t) − N

(̃
τÑ(t)

)) (
N(t) − N

(̃
τÑ(t)

)
− 1

)
1[

R(̃τÑ(t))−M,R(̃τÑ(t))+M
](x)+

+ E
[
ω2

1

]
‖ f ‖2L∞ ∆x

(
N(t) − N

(̃
τÑ(t)

))
1[

R(̃τÑ(t))−M,R(̃τÑ(t))+M
](x)

]
ε2.
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Hence, plugging in Lemma 3.14, we obtain

E
[
‖u(t)‖2L2

]
≤ C

(
∆x2E

[(
N(t) − N

(̃
τÑ(t)

)) (
N(t) − N

(̃
τÑ(t)

)
− 1

)]
+ ∆xE

[(
N(t) − N

(̃
τÑ(t)

))])
ε2

= C
(
∆x24

λ2

µ2

[
1 − (1 + tµ)e−µt

]
+ ∆x

λ

µ

[
1 − e−µt

])
ε2

≤ C
(
1
n

n4

n2 +
1
√

n
n2

n

)
ε2

= C
(
n +
√

n
)
ε2.

Now we recall that ε2 = ∆v2

∆x2 = n−3 in case i = 1, 2 and ε2 = ∆v = n−2 in case i = 3.

The proof for the estimate of δvn
r works in precisely the same way as the proof of Lemma 3.4, taking

into account the appropriate estimates for δVn,i
r derived above. �

Combining these lemmas with the results in Theorem 3.12 we can now prove convergence of the
volume densities. We denote by (A, B) an accumulation point of the sequence of price processes. Ex
post, we shall see that the limit is unique, and hence we do not actually need to work with such a
sub-sequence.

Theorem 3.16. The sequence of processes
(
An, Bn, vn

a, v
n
b

)
is tight. Given a subsequence such that

(An, Bn, vn
a, v

n
b)⇒ (A, B, va, vb) for some volume processes va and vb. Then

(3.13) vr(t, ·) = vr,0(·) +

∫ t

0

(
E[ωPr

1 ] f Pr (· − Rs) − E[ωCr
1 ] f Cr (· − Rs)vr(s, ·)

)
ds + V3

r (t, ·), t ≥ 0.

V3
a and V3

b are martingales w.r.t. the filtration generated by (A, B, va, vb), and their quadratic co-
variance diagonalizes. More precisely, given test functions φ1

a, . . . , φ
l
a, φ

1
b, . . . , φ

k
b ∈ E, then for any

1 ≤ i ≤ l, 1 ≤ j ≤ k we have [〈
φi

a ,V
3
a

〉
,
〈
φ

j
b ,V

3
b

〉]
t
= 0, t ≥ 0.

Proof. Recall that
(An, Bn, v̂n

a)(u) = (A
n
, B

n
, vn

a) ◦ ηn
u.

Since the time change process converges almost surely to the identity uniformly on compact time
intervals, it follows from Lemma C.5 and Theorem 3.12 that (An, Bn, v̂n

a) ⇒ (A, B, va). On the other
hand, in a similar way to Proposition 3.6 we derive from Lemma 3.13 the tightness of (An, Bn, vn

a).
Additionally, Lemma 3.15 implies that the limit of (An, Bn, vn

a) coincides with that of (An, Bn, v̂n
a),

namely (A, B, va). This implies the C-tightness of (An, Bn, vn
a) and thus the tightness of (An, Bn, vn

a, v
n
b)

by Corollary C.4. Finally, we verify that (An, Bn, vn
a, v

n
b) ⇒ (A, B, va, vb) as in Theorem 3.12, i.e., by

once more referring to Lemma A.2. The diagonalization of the quadratic covariation in the limit is
clear as the quadratic covariation is diagonal at each level n. �

4. Characterization of the limit price process—proof of the main theorem

So far, we have shown that the sequence of processes (Bn, An, vn
a, v

n
b) is C-tight. As Yr,n is a continuous

function of vr,n together with Rn, it follows that (Bn, An, vn
a, v

n
b,Y

a,n,Yb,n) is tight, as well. As a result,
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any accumulation point (Yr) of (Yr,n) is of the form:

(4.1) Yr
t = 〈vr(t, ·), ϕr(· − Rt)〉

where (A, B) is a weak accumulation point of the sequence of price processes. In this section we first
characterize the process (A, B); then we characterize the full limiting dynamics and prove convergence
to a unique limit.

4.1. Convergence of the limiting price process. In order to characterize the limiting price dynamics
notice that the price processes satisfy

R
n
t = Rn

0 + ∆xn
bntc∑
i=1

ξn
r,i

= Rn
0 +

∫ t

0
br(B

n
s , A

n
s ,Y

b,n
s ,Y

a,n
s ) ds + Mn

r (t) + S n
r (t),

(4.2)

with

Mn
r (t) B ∆xn

bntc∑
i=1

(
ξn

r,i − EF n
i−1
n

ξn
r,i

)
S n

r (t) B
∫ t

0
bn

r (B
n
s−, A

n
s−,Y

b,n
s− ,Y

a,n
s− ) ds −

∫ t

0
br(B

n
s , A

n
s ,Y

b,n
s ,Y

a,n
s ) ds.

Denoting Z
n
s B (B

n
s , A

n
s ,Y

b,n
s ,Y

a,n
s ), we have

E
[∣∣∣S n

r (t)
∣∣∣2] ≤ CE

∣∣∣∣∣∣
∫ t

0

(
bn

r (Z
n
s−) − br(Z

n
s−)

)
ds

∣∣∣∣∣∣2
 + CE

∣∣∣∣∣∣
∫ t

0

(
br(Z

n
s−) − br(Z

n
s)
)

ds

∣∣∣∣∣∣2
 + o(1)

≤ C
∥∥∥bn

r − br
∥∥∥2

L∞ + o(1),

where in view of the fact br ∈ C(R4;R) and the continuity of limit process
(
B, A,Yb,Ya

)
, we apply

dominated convergence theorem to the second term on the right-hand side of the first inequality. In
view of Assumption 2.3, this implies limn→∞ E|S n

r (t)|2 = 0 for any t > 0. By Lemma A.2, the
martingale Mn

r converges in distribution to a martingale Mr (r = a, b) with quadratic co-variation

(4.3)
[
(Mb,Ma)

]
t
=

∫ t
0

∣∣∣σb(Bs, As,Yb
s ,Y

a
s )

∣∣∣2 ds
∫ t

0 σaσ
>
b (Bs, As,Yb

s ,Y
a
s )ds∫ t

0 σaσ
>
b (Bs, As,Yb

s ,Y
a
s )ds

∫ t
0

∣∣∣σa(Bs, As,Yb
s ,Y

a
s )

∣∣∣2 ds

 , t ≥ 0.

Indeed, condition (A.1) of the lemma is true by Assumption 2.3, whereas condition (A.2) is clear from
the scaling ∆xn = 1/

√
n. Finally, (A.3) is trivial as the jumps are even uniformly bounded.

Since we have joint tightness of the drift and the martingale part in (4.2) we conclude that the limiting
price process must be of the form:

At =A0 +

∫ t

0
ba(Bs, As,Yb

s ,Y
a
s ) ds + Ma

t

Bt =B0 +

∫ t

0
bb(Bs, As,Yb

s ,Y
a
s ) ds + Mb

t , t ≥ 0.
(4.4)
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4.2. Characterization of the limiting dynamics. It remains to characterize the full limiting dynam-
ics. As the respective bounded variation parts have already been determined, we need to prove that
the martingale parts can be represented in terms of four independent Brownian motions. To this end,
we fix finitely many test function φ1

a, ..., φ
m
a , φ

1
b, ..., φ

l
b, and consider the vector of processes(

B
n
, A

n
,
〈
vn

a , φ
1
a

〉
, . . . ,

〈
vn

a , φ
m
a
〉
,
〈
vn

b , φ
1
b

〉
, . . . ,

〈
vn

b , φ
`
b

〉)
along with a weak accumulation point(

B, A,
〈
va , φ

1
a

〉
, . . . ,

〈
va , φ

m
a
〉
,
〈
vb , φ

1
b

〉
, . . . ,

〈
vb , φ

`
b

〉)
.

Since Y
b,n

and Y
a,n

are obtained by integrating the volume densities against test functions, there is
no loss in generality in not including them in the above vector. There is also no loss in generality in
assuming that all test functions are strictly positive.

Let Zi
r denote the martingale part of the process

〈
vr , φ

i
r

〉
. From Proposition 3.8, Theorem 3.16 and the

independence of the Poisson processes Nn and Ñn
r (r = a, b) we conclude that for r, r̃ ∈ {a, b},

(4.5)
[
Zi

r ,Z
j
r

]
t
=

∫ t

0
σ(φi

r)(Rs)σ(φ j
r)(Rs)ds,

[
Zi

a ,Z
j
b

]
t
= 0.

[
Zi

r ,M
r̃
]
t
= 0, t ≥ 0.

The covariance structure of the martingale parts is as in Corollary A.3 with Ft being the matrix with
rows σa(Bt, At,Yb

t ,Y
a
t ) and σb(Bt, At,Yb

t ,Y
a
t ), σi

t := σ(φi
a)(At), and τl

t := σ(φl
b)(Bt). Since the test

functions are strictly positive we conclude from that corollary that there exist independent Wiener
processes W̃, Wa and Wb (W̃ being two-dimensional) such that the weak accumulation point has the
same distribution as the the system of coupled SDEs

dAt =ba(Bt, At,Yb
t ,Y

a
t )dt + σa(Bt, At,Yb

t ,Y
a
t )dW̃t; A0 = a0;

dBt =bb(Bt, At,Yb
t ,Y

a
t )dt + σb(Bt, At,Yb

t ,Y
a
t )dW̃t; B0 = b0;

vb(t, ·) =vb,0(·) +

∫ t

0

(
E[ωPb

1 ] f Pb(· − Bs) − E[ωCb
1 ] f Cb(· − Bs)vb(s, ·)

)
ds

+
√

2E
[
ωNb

1

] ∫ t

0
f Nb(· − Bs) dWb(s), t ≥ 0;

va(t, ·) =va,0(·) +

∫ t

0

(
E[ωPa

1 ] f Pa(· − As) − E[ωCa
1 ] f Ca(· − As)va(s, ·)

)
ds

+
√

2E
[
ωNa

1

] ∫ t

0
f Na(· − As) dWa(s), t ≥ 0

upon integration of the volume density functions with our test functions. In particular, by Corollary
A.3 the driving Wiener processes do not depend on the choice of the test functions.

Standard results on infinite-dimensional stochastic equations [7] guarantee that the above coupled
system does indeed admit a unique adapted solution (B, A,Yb,Ya, va, vb) in L2(Ω; C([0,T ];R4×(L2)2))
for any T > 0. Since two H−1-valued random variables have the same distribution if the inner products
with respect to any finite collection of test functions have the same distribution, this shows that

(Bn, An,Yb,n,Ya,n, vn
a, v

n
b)⇒ (B, A,Yb,Ya, va, vb)

and hence completes the proof of our main result.



32 CHRISTIAN BAYER, ULRICH HORST, AND JINNIAO QIU

Remark 4.1. The “volume at the top” follows a 2-dimensional Brownian motion with drift; for r =

a, b,

Yr
t =〈vr,0(·), ϕ〉 +

∫ t

0

(
E[ωPr

1 ]〈 f Pr , ϕr〉 + f r
s

)
ds

+
√

2E[ωNr
1 ]

∫ t

0
〈 f Nr , ϕr〉 dWr(s) −

∫ t

0
〈vr(s, ·), Dϕr(· − Rs)σr(Bt, At,Yb

t ,Y
a
t ) dW̃(s)〉, t ≥ 0

where

f r
t :=

〈
vr(t, ·),

1
2

tr
{
σrσ

′
r(Bt, At,Yb

t ,Y
a
t )D2ϕr(· − Rt)

}
− br(Bt, At,Yb

t ,Y
a
t )Dϕr(· − Rt)

〉
− E[ωCr

1 ]
〈

f Cr (·)vr(t, ·), ϕr
〉
.

Appendix A. A result on the characterization of stochastic process limits

In this appendix we establish a result on the characterization of stochastic process limits in terms of
Brownian integrals. Specifically, we assume that we are given a sequence of stochastic processes
(Xn,Zn) (piece-wise constant with jump times k/n) with

Zn
t B

bntc∑
k=1

∆Zn
k ,

such that

EBn
k/n

[∆Zn
k ] = 0

EBn
k/n

[
∆Zn

k (∆Zn
k )>

]
=

1
n
σnσ

>
n

(
Xn

k/n,
k
n

)
where Bn

k/n B σ
(
Xn

0 , . . . , X
n
k/n,∆Zn

1 , . . . ,∆Zn
k−1

)
and the processes may be multi-dimensional.

Assumption A.1. Let σ be a continuous function and assume that the following assumptions hold
(for any fixed t > 0 where appropriate):

‖σn − σ‖L∞
n→∞
−−−−→ 0, ‖σ‖L∞ < ∞,(A.1)

E

 bntc∑
k=1

∣∣∣∆Zn
k

∣∣∣4 n→∞
−−−−→ 0,(A.2)

sup
n∈N

E
 sup
k≤bntc

∣∣∣∆Zn
k

∣∣∣ < ∞.(A.3)

Notice that (A.1) directly implies

(A.4) E

1
n

∣∣∣∣∣∣∣
bntc∑
k=1

σnσ
>
n

(
Xn

k/n,
k
n

)
−

bntc∑
k=1

σσ>
(
Xn

k/n,
k
n

)∣∣∣∣∣∣∣
 n→∞
−−−−→ 0,
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Lemma A.2. Suppose that (Xn) is C-tight and that there are stochastic processes X and Z defined
on some probability space such that (Xn,Zn) ⇒ (X,Z). If Assumption A.1 is satisfied, then Z has
quadratic variation

[Z]t =

∫ t

0
σ(Xs, s)σ(Xs, s)>ds, t ≥ 0.

Moreover, Z is a martingale w.r.t. the filtration generated by X and Z.

Proof. By (A.3) the martingales Zn satisfy the condition of Jacod and Shiryaev [19, Corollary VI.6.30].
Therefore, we have that both Zn and their quadratic covariation processes [Zn] converge weakly and
that the limit of [Zn] is the quadratic covariation of the limiting process Z of the sequence Zn. Sym-
bolically, (

Zn,
[
Zn]) n→∞

====⇒ (Z, [Z]) .

By C-tightness of Xn, we may add Xn to the convergence and obtain(
Xn,Zn,

[
Zn]) n→∞

====⇒ (X,Z, [Z]) .

Hence, we are left with identifying

[Z]t = lim
n→∞

bntc∑
k=1

∆Zn
k (∆Zn

k )>.

To this end, by Skorokhod’s lemma, we may assume (changing probability spaces as needed) that
(Xn,Zn, [Zn])→ (X,Z, [Z]) a.s. Note that

E
[∣∣∣∣∣∣[Zn]

t −

∫ t

0
(σσ>)(Xs, s)ds

∣∣∣∣∣∣
]
≤

E


∣∣∣∣∣∣∣
bntc∑
k=1

∆Zn
k (∆Zn

k )> −
1
n

bntc∑
k=1

σσ>
(
Xk/n,

k
n

)∣∣∣∣∣∣∣
 + E


∣∣∣∣∣∣∣1n
bntc∑
k=1

σσ>
(
Xk/n,

k
n

)
−

∫ t

0
σσ>(Xs, s)ds

∣∣∣∣∣∣∣
 .

Convergence of the second term to 0 follows immediately from dominated convergence using conti-
nuity of σ and (A.1). We continue to further split up the first term:

E


∣∣∣∣∣∣∣
bntc∑
k=1

∆Zn
k (∆Zn

k )> −
1
n

bntc∑
k=1

σσ>
(
Xk/n,

k
n

)∣∣∣∣∣∣∣
 ≤ E


∣∣∣∣∣∣∣
bntc∑
k=1

∆Zn
k (∆Zn

k )> −
1
n

bntc∑
k=1

σnσ
>
n

(
Xn

k/n,
k
n

)∣∣∣∣∣∣∣


+ E


∣∣∣∣∣∣∣1n
bntc∑
k=1

σnσ
>
n

(
Xn

k/n,
k
n

)
−

1
n

bntc∑
k=1

σσ>
(
Xn

k/n,
k
n

)∣∣∣∣∣∣∣


+ E


∣∣∣∣∣∣∣1n
bntc∑
k=1

σσ>
(
Xn

k/n,
k
n

)
−

1
n

bntc∑
k=1

σσ>
(
Xk/n,

k
n

)∣∣∣∣∣∣∣


C I+II+III.

Regarding I, note that the sequence of random variables

Cn
k B ∆Zn

k (∆Zn
k )> −

1
n
σnσ

>
n

(
Xn

k/n,
k
n

)
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satisfy E[Cn
k ] = 0 and cov(Cn

k ,C
n
l ) = 0 if k , l. Moreover, since Cn

k is obtained from ∆Zn
k (∆Zn

k )> by
subtracting a conditional expectation, the fourth moment of ∆Zn

k is an upper bound of the variance of
Cn

k —where

cov(Cn
k ,C

n
l ) B E

[〈
Cn

k ,C
n
l

〉]
, var[Cn

k ] B E
[〈

Cn
k ,C

n
k

〉]
for the standard inner product on the space of matrices. Hence, by Jensen’s inequality and (A.2)

I ≤

√√√√√
E


∣∣∣∣∣∣∣
bntc∑
k=1

Cn
k

∣∣∣∣∣∣∣
2 =

√√√
bntc∑
k=1

var[Cn
k ] ≤

√√√
bntc∑
k=1

E
[∣∣∣∆Zn

k

∣∣∣4] n→∞
−−−−→ 0.

II converges to 0 by (A.4). For III, note that the integrand converges a.s. by the convergence of Xn to
X, and convergence of the expectation follows by dominated convergence.

Finally, note that if (X,Z, [Z]) =
(
X,Z,

∫ ·
0 σσ

>(Xs, s)ds
)

in law, then we really must have [Z] =∫ ·
0 σσ

>(Xs, s)ds as random variables, i.e., the proposed equality actually also holds on the original
probability space before applying Skorokhod’s lemma.

We are left to prove that the limiting process Z is a (local) martingale w.r.t. the filtration generated
by (X,Z). Note that this will follow by a combination of [19, Proposition IX.1.10 and IX.1.12] if we
can show uniform integrability of the family (Zn

t )n∈N+; t∈[0,T ] of random variables for arbitrary intervals
[0,T ]. This follows from (A.1) as

sup
n

sup
t∈[0,T ]

E
[∣∣∣Zn

t

∣∣∣2] ≤ sup
n

bnT c∑
k=1

E
[∣∣∣∆Zn

k

∣∣∣2] ≤ sup
n

1
n

bnT c∑
k=1

‖σn‖
2
L∞ ≤

(
sup

n
‖σn‖

2
L∞

)
T < ∞. �

The preceding lemma suggests that Z can be represented as a Brownian integral. As the quadratic
variation of a martingale does not determine its distribution in general we now prove that we can find
indeed a multi-dimensional Brownian motion W such that

Zt = Z0 +

∫ t

0
σ(Xs, s)dWs.

While probably standard, we have not been able to find a reference for this statement directly applica-
ble to our situation. Therefore, we give a formal proof of the special case needed for the representation
step in the main theorem.

Corollary A.3. Let Z = (ZA,ZB,ZC) be a continuous local martingale taking values in Rd+n+m such
that the differential quadratic co-variation satisfies

d [Z]t =


At 0 0
0 Bt 0
0 0 Ct

 dt,

where At = FtF>t for a d × d-dimensional invertible process F and where

Bi, j
t = σi

tσ
j
t , i, j = 1, . . . , n,

Cl,k
t = τl

tτ
k
t , l, k = 1, . . . ,m,
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for processes σ, τ taking values in Rn
>0 and Rm

>0, respectively. Then we can find a (d + 2)-dimensional
standard Brownian motion (W,U,V) such that

ZA
t = ZA

0 +

∫ t

0
FsdWs,

ZB
t = ZB

0 +

∫ t

0
diag

(
σ1

s , . . . , σ
n
s

)
dUs,

ZC
t = ZC

0 +

∫ t

0
diag

(
τ1

s , . . . , τ
m
s

)
dVs.

The proof of Corollary A.3 builds on the following multi-variate extension of Lévy’s characterization
of Brownian motion. The result appears to be standard; we provide a proof (taken from [27]) for
completeness.

Theorem A.4. Let X be an l-dimensional continuous local martingale with quadratic covariation
〈X〉t = Σt and X0 = 0. Suppose that Σ is deterministic, Σ0 = 0 and for any a ∈ Rd we have t 7→ a>Σta
is continuous and increasing. Then for any 0 ≤ s < t the increment Xt − Xs is independent of Fs and
distributed according to N (0,Σt − Σs).

Proof. Choose a ∈ Rd and set Y = aTX, so that [Y]t = aTΣta. The process

Mt = f (Yt, [Y]t) ≡ exp
(
iYt +

1
2

[Y]t

)
= exp

(
iaTXt +

1
2

aTΣta
)

is bounded by |Mt| ≤ exp(aTΣta/2). Applying Itô’s lemma for continuous semimartingales to f gives

dMt = f1(Yt, [Y]t) dYt + f2(Yt, [Y]t) d[Y]t +
1
2

f11(Yt, [Y]t) d[Y]t

= iMt dYt.

As a bounded local martingale on [0,T ], M is a (true) martingale. So,

E[exp(iaT(Xt − Xs)) | Fs] = E[Mt exp(−iaTXs − aTΣta/2) | Fs]

= Ms exp(−iaTXs − aTΣta/2)

= exp(aT(Σs − Σt)a/2).

This is the characteristic function of the multivariate normal, independently of Fs, with mean zero and
covariance matrix Σt − Σs, as required. �

Proof of Corollary A.3. Define processes W, Ũ, Ṽ taking values in Rd, Rn, Rm, respectively, by

Wt B

∫ t

0
F−1

s dZA
s ,

Ũt B

∫ t

0
diag

(
(σ1

s)−1, . . . , (σn
s)−1

)
dZB

s ,

Ṽt B

∫ t

0
diag

(
(τ1

s)−1, . . . , (τm
s )−1

)
dZC

s .
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We compute the quadratic covariation of the joint process
(
W, Ũ, Ṽ

)
. For any 1 ≤ i, j ≤ d we have

d
[
W i ,W j

]
t
=

d∑
ν,µ=1

(F−1
t )i,ν(F−1

t ) j,µd
〈
Zi ,Z j

〉
t
=

d∑
ν,µ=1

(F−1
t )i,νAi, j

t (F−1
t ) j,µdt = δi, jdt.

On the other hand, using the structure of Bt and Ct, respectively, we obtain for any 1 ≤ i, j ≤ n and
1 ≤ l, k ≤ m

d
[
Ũ i , Ũ j

]
t
= d

[
Ṽ l , Ṽk

]
t
= dt.

The cross terms
[
W i , Ũ j

]
,
[
W i , Ṽ l

]
,
[
Ũ j , Ṽ l

]
vanish. Hence, the quadratic covariation of the process

(W, Ũ, Ṽ) is the deterministic matrix-valued process

Σt = t


Id 0 0
0 En 0
0 0 Em

 ,
where Ek denotes the k × k matrix with all entries equal to 1. As one can immediately see that
t 7→ a>Σta is continuous and increasing for any a ∈ Rd+n+m, Theorem A.4 implies that

(
W, Ũ, Ṽ

)
is a

Gaussian process with increments distributed according to N(0,Σt − Σs).

The special structure of the matrices Σt implies that W is a d-dimensional standard Brownian mo-
tion, whereas all the components of Ũ and Ṽ are, respectively, identical one-dimensional Brownian
motions. Hence, we may choose U B Ũ1, V B Ṽ1, and obtain the conclusion. �

Remark A.5. The conditions of Corollary A.3 can clearly be relaxed. For instance, it is enough that
for any time t at least one of the non-negative processes σ1, . . . , σn is strictly positive. On the other
hand, if all of them vanish identically, then we may not be able to find a suitable Brownian motion on
the same probability space. In the non-regular case, we therefore need to weaken the statement to an
equality in distribution, and use techniques similar to [24] to derive the result.

Appendix B. Technical proofs

Proof of Lemma 3.11. We prove (3.10); the second assertion follows similarly. Without any loss of
generality, we assume E[ωC

1 ] = 1. For each s ∈ ( 1
n , t) with n ∈ N+, we choose kn

s ∈ Z such that
s ∈ [ kn

s +1
n ,

kn
s +2
n ). For s ∈ (0, 1

n ), put kn
s = 0. For notational simplicity, we set ṽn(s, x) = 1−α+αvn(s, x),

with α ∈ {1, 0}. Then

sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(
gn(s, x) − E[ωC

1 ] f C(x − Rs)
)

ṽn(s, x) ds

∣∣∣∣∣∣2
≤ 2 sup

x∈R
E

∣∣∣∣∣∣
∫ t

0

(
f C(x − R̄n

kn
s
n

) − f C(x − Rs)
)

ṽn(s, x) ds

∣∣∣∣∣∣2 + 2 sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(
gn(s, x) − f C(x − R̄n

kn
s
n

)
)

ṽn(s, x)ds

∣∣∣∣∣∣2
:= 2(Γ1 + Γ2).

Since f C is Lipschitz continuous and vanishes outside a compact interval there exists a constant C < ∞

such that

Γ1 = sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(
f C(x − R̄n

kn
s
n

) − f C(x − Rs)
)

ṽn(s, x) ds

∣∣∣∣∣∣2
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≤C sup
x∈R

E
∫ t

0
|̃vn(s, x)|2ds E

∫ t

0
|Rs − R̄n

kn
s
n

|2 ∧ 1 ds.

Hence, by Lemma 3.4, Γ1 → 0 as n → ∞ by dominated convergence, due to the a.s. continuity A.
Using independence of cancellation price levels and volumes, a direct computation yields:

Γ2 = sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(
gn(s, x) − f C(x − R̄n

kn
s
n

)
)

ṽn(s, x) ds

∣∣∣∣∣∣2

= sup
x∈R

E

∣∣∣∣∣∣∣∣∣∣
∫ t

0


Nn (̃τn

kn
s +1

)∑
i=Nn (̃τn

kn
s
)+1

∑
j∈Z

1[xn
j ,x

n
j+1)(πC

i + R̄n
kn
s
n

)ωC
i 1[xn

j ,x
n
j+1)(x)

∆vnn
∆xn − f C(x − R̄n

kn
s
n

)

 ṽn(s, x) ds

∣∣∣∣∣∣∣∣∣∣
2

≤ 3 sup
x∈R

E

∣∣∣∣∣∣∣∣∣∣
∫ t

0

Nn (̃τn
kn
s +1

)∑
i=Nn (̃τn

kn
s
)+1

∑
j∈Z

(
1[xn

j ,x
n
j+1)(πC

i + R̄n
kn
s
n

)ωC
i −

∫
[xn

j ,x
n
j+1)

f C(y − R̄n
kn
s
n

) dy
)
1[xn

j ,x
n
j+1)(x)

∆vñvn(s, x)n
∆xn ds

∣∣∣∣∣∣∣∣∣∣
2

+ 3 sup
x∈R

E

∣∣∣∣∣∣∣∣∣∣
∫ t

0

Nn (̃τn
kn
s +1

)∑
i=Nn (̃τn

kn
s
)+1

∑
j∈Z

1
∆xn

∫
[xn

j ,x
n
j+1)

f C(y − R̄n
kn
s
n

) dy1[xn
j ,x

n
j+1)(x) − f C(x − R̄n

kn
s
n

)

 n∆vñvn(s, x)ds

∣∣∣∣∣∣∣∣∣∣
2

+ 3 sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

((
Nn(̃τn

kn
s +1) − Nn(̃τn

kn
s
)
)

n∆vn − 1
)

f C(x − R̄n
kn
s
n

)̃vn(s, x) ds

∣∣∣∣∣∣2
:= 3

(
γ0 + γ1 + γ2

)
.

To estimate γ0 we use again independence of involved random variables, the fact that

EF n
kn
s
n

[
1[xn

j ,x
n
j+1)(πC

i + R̄n
kn
s
n

)ωC
i

]
=

∫
[xn

j ,x
n
j+1)

f C(y + R̄n
kn
s
n

) dy

along with Lemmas 3.1 and 3.4 and the properties of the scaling constants to conclude that:

γ0 ≤Ct2 sup
x∈R

E sup
s∈[0,t]

|̃vn(s, x)|2
λn

µn

(n∆vn

∆xn

)2
‖ f C‖L∞∆xn ≤ Ct2

(
t2 + t + 1

)
∆xn −→ 0, as n→ ∞.

To estimate γ1 we first deduce from Lipschitz continuity of f C for x ∈ [xn
j , x

n
j+1) that

1
∆xn

∫
[xn

j ,x
n
j+1)

∣∣∣ f C(y − R̄n
kn
s
n

) − f C(x − R̄n
kn
s
n

)
∣∣∣ dy ≤ L

1
∆xn

∫
[xn

j ,x
n
j+1)
|∆xn| dy = L∆xn.

Thus, using again Lemmas 3.1 and 3.4, the properties of the scaling constants and the fact that f C

vanishes outside a compact interval we find a constant C < ∞ such that:

γ1 ≤Ct2n−1 sup
x∈R

E sup
s∈[0,t]

|̃vn(s, x)|2 ≤ Ct2
(
t2 + t + 1

)
n−1 −→ 0, as n→ ∞.

In view of Lemma 3.1, boundedness of f C and independence of involved random variables, we have

γ2 = sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

((
Nn(̃τn

kn
s +1) − Nn(̃τn

kn
s
)
)

n∆vn − 1
)

f C(x − R̄n
kn
s
n

)̃vn(s, x) ds

∣∣∣∣∣∣2
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≤ 2 sup
x∈R

E

∣∣∣∣∣∣∣
bntc∑
l=1

((
Nn(̃τn

l ) − Nn(̃τn
l−1)

)
n∆vn − 1

)
f C(x − R̄n

l−1
n

)̃vn(
l − 1

n
, x)

1
n

∣∣∣∣∣∣∣
2

+ 2 sup
x∈R

E

∣∣∣∣∣∣∣
∫ 1

n

0
f C(x − R̄n

0)̃vn(0, x) ds

∣∣∣∣∣∣∣
2

≤ 2(∆vn)2E sup
x∈R

bntc∑
l=1

∣∣∣∣∣(Nn(̃τn
l ) − Nn(̃τn

l−1) − E[Nn(̃τn
l ) − Nn(̃τn

l−1)]
)

f C(x − R̄n
l−1
n

)̃vn(
l − 1

n
, x)

∣∣∣∣∣2 + C/n

≤
C
n

1 + t sup
x∈R

E sup
s∈[0,t]

|̃vn(s, x)|2
 −→ 0, as n→ ∞. �

Proof of Lemma 3.13. Without any loss of generality, we take s = 0 and drop the index r. First, we
have

E
∥∥∥Vn,1(t)

∥∥∥2
L2

=

(
∆vn

∆xn

)2 ∫
R

E
∣∣∣∣∣ Nn(t)∑

i=1

∑
j∈Z

ωP
i 1[xn

j ,x
n
j+1)(x)1[xn

j ,x
n
j+1)(Rn(̃τn

Ñn(τn
a,i)

) + πP
i )

∣∣∣∣∣2 dx

=

(
∆vn

∆xn

)2 ∫
R

∞∑
l=1

(λnt)l

l!
e−λ

ntENn(t)=l

[ l∑
i>i′;i,i′=1

2

∑
j∈Z

ωP
i 1[xn

j ,x
n
j+1)(x)1[xn

j ,x
n
j+1)(Rn(̃τn

Ñn(τn
a,i)

) + πP
i )


∑

j∈Z

ωP
i′1[xn

j ,x
n
j+1)(x)1[xn

j ,x
n
j+1)(Rn(̃τn

Ñn(τn
a,i′ )

) + πP
i′)


+

l∑
i=1

∑
j∈Z

E|ωP
i |

21[xn
j ,x

n
j+1)(x)1[xn

j ,x
n
j+1)(Rn(̃τn

Ñn(τn
a,i)

) + πP
i )

]
dx

≤ C
(
∆vn

∆xn

)2 ∫
R

∞∑
l=1

(λnt)l

l!
e−λ

ntENn(t)=l

[ l∑
i<i′;i,i′=1

2
(
EωP

1
)21[−M+Rn (̃τn

Ñn(τn
a,i)

),M+Rn (̃τn
Ñn(τn

a,i)
)](x)‖ f P‖2L∞(∆xn)2

+ E|ωP
1 |

2
l∑

i=1

1[−M+Rnτ̃n
Ñn(τn

a,i)
),M+Rn (̃τn

Ñn(τn
a,i)

))(x)‖ f Pa‖L∞∆xn
]

dx

≤ C
(
∆vn

∆xn

)2 ∞∑
l=1

(λnt)l

l!
e−λ

nt
[
l(l − 1)‖ f P‖2L∞(∆xn)2 + l‖ f P‖L∞∆xn

]

≤ C
(
∆vn

∆xn

)2 [
(λnt∆xn)2 + λnt∆xn

]
≤ C(t2 + t),

and similarly, we have E
∥∥∥Vn,2(t)

∥∥∥2
L2 ≤ C(t2 + t), where the constants C are independent of n. Taking

the supremum norm ‖ · ‖L∞ instead, we obtain

sup
x∈R

EF n
s |V

n,1(t) − Vn,1(s)|2 + sup
x∈R

EF n
s |V

n,2(t) − Vn,2(s)|2 ≤ C[t − s + (t − s)2], 0 ≤ s ≤ t < ∞.
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On the other hand,

E sup
s∈[0,t]

‖Vn,3
a (s)‖2L2

= E sup
s∈[0,t]

∥∥∥∥∥ Nn(s)∑
i=1

∑
j∈Z

1[xn
j ,x

n
j+1)(·)1[xn

j ,x
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j+1)(Rn(̃τn

Ñn(τn
a,i)

) + πP
i )̃ξa,Ñn(τn

a,i)+1

√
∆vn

∥∥∥∥∥2

L2

= E sup
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∥∥∥∥∥∥ Ñn(s)∑
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Nn (̃τn
k )∑

i=Nn (̃τn
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j∈Z
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j ,x
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j+1)(πP
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k−1))1[xn

j ,x
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j+1)(·) ξ̃a,k

√
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Nn(s)∑
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Ñn(s)
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∑
j∈Z
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j ,x
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j+1)(πP
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Ñn(s)

))1[xn
j ,x

n
j+1)(·)̃ξa,Ñn(s)+1

√
∆vn

∥∥∥∥∥∥2

L2
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[ Ñn(t)∑

k=1
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Nn (̃τn
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j ,x
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j+1)(πP
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j ,x
n
j+1)(·)
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L2

+
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n
j+1)(πP
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j ,x

n
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]
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(µnt)l
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e−µ
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i=Nn (̃τn
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n
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]
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lNn(β(1, l))(Nn(β(1, l)) − 1) (∆xn)2 + lNn(β(1, l)) + Nn(β(1, l))(∆xn)2 + Nn(β(1, l))
]

= C∆vn
∞∑

l=0

(µnt)l

l!
e−µ

nt
∞∑

m=0

[
lm(m − 1)(∆xn)2 + m2(∆xn)2 + (l + 1)m

] ∫ 1

0

(λntz)m

m!
e−λ

ntz (1 − z)l−1

B(1, l)
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≤Ct∆vn
[
(λn∆xn)2

µn + λn
]

≤Ct,

with the constant C independent of n and t.

The estimate of vn
a/b follows precisely in the same way as the proof of Lemma 3.4, taking into account

the appropriate estimates for Vn,i
a/b derived above. �

Appendix C. Classical tightness results

For the convenience of the reader, we recall some classical results on tightness which the derivations
of Section 3 are based on. We first note that though the following theorems and lemmas may be
originally established on finite time intervals, we state them on the half line [0,∞) since there is no
essential difficulty to make such extensions in the spirit of Jacod and Shiryaev [19].

The first result is a sufficient condition for tightness in the Skorokhod space D([0,∞); E) for a com-
plete separable metric state space (E, ρ) due to Aldous and Kurtz. We take it from [30, Th. 6.8].

Theorem C.1. Let Xn be a sequence of processes taking values in D([0,∞); E) such that the family
(Xn(t))n∈N+ of random variables is tight (in E) for any rational t. Moreover, assume that for each
N ∈ N+, there is a number p > 0 and processes (γn(δ))δ∈[0,∞), n ∈ N+, such that

E
[
ρ (Xn(t + δ), Xn(t))p

∣∣∣ F n
t

]
≤ E

[
γn(δ) | F n

t
]
, ∀ t, t + δ ∈ [0,N],

lim
δ→0

lim sup
n→∞

E
[
γn(δ)

]
= 0,

where the filtration F n is generated by Xn. Then (Xn)n∈N+ is tight inD ([0,∞); E).

Proof. See [30, Th. 6.8]. Note that Walsh assumes one joint filtration Ft, whereas we allow for
filtrations depending on n. This difference is, however, inconsequential, e.g., by choosing Xn to be
defined on a common probability space in an independent way and then choosing Ft to be the filtration
generated by all the filtrations F n

t . �

The following lemma on C-tightness is borrowed from [19, Proposition 3.26, Page 351].

Lemma C.2. For a sequence Xn with paths in D([0,∞);Rd) (d ∈ N+), it is C-tight if and only if it is
tight and for all N ∈ N+, ε > 0, there holds

lim
n→∞
Pn

(
sup
t≤N
|∆Xn

t | > ε

)
= 0.
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The main theoretical tool in this paper is Mitoma’s theorem, on basis of [30, Th. 6.13, Lem. 6.14,
Cor 6.16, Note on Page 365], which relates tightness of distribution-valued processes to real-valued
processes obtained by applying test-functions. We specialize the general formulation given in [30] so
that the theorem can be directly applied to our setting.

Theorem C.3 (Mitoma’s theorem). For any positive integer d, let Xn := (Xn
1 , · · · , X

n
d) be a sequence

of processes with sample paths lying in D
(
[0,∞); (E′)d

)
. The sequence Xn is tight as processes with

paths in D
(
[0,∞); (E′)d

)
, if and only if for any φ1, · · · , φd ∈ E we have tightness of the sequence

of D ([0,∞);R)-valued processes
∑d

i=1

〈
Xn

i , φi
〉
. If, furthermore, for any ε,N ∈ (0,∞) there exists

Ñ ∈ (0,∞) such that supn P
(
supt∈[0,N]

∑d
i=1 ‖X

n
i (t)‖L2 > Ñ

)
< ε, then Xn is tight as a sequence of

processes with paths inD
(
[0,∞);

(
H−1

)d
)
.

Here we choose H−1 for convenience. Indeed, in view of the arguments in [30, Page 335, Example 1a],
we can replace the space H−1 by H−m for any m > 1/2. On the other hand, an immediate application
of Theorem C.3 is the following corollary, which states that joint tightness of a pair of sequences
of stochastic processes follows from individual tightness assuming that at least one of the involved
sequences is C-tight, i.e., all its accumulation points are continuous processes.

Corollary C.4. Let Yn and Zn be sequences of stochastic processes taking values in (E′)d and (E′)l

respectively, with d, l ∈ N+. If Yn is C-tight with paths in D
(
[0,∞); (E′)d

)
and Zn is tight with paths

inD
(
[0,∞); (E′)l

)
, then the pair of processes (Yn,Zn) is tight with paths inD

(
[0,∞); (E′)d+l

)
.

Proof. We fist note that for the finite-dimensional case where (E′)d and (E′)l are replaced by Euclidean
spaces, Corollary C.4 coincides with [19, Cor. VI.3.33]. Obviously the C-tightness of Yn with paths
in D

(
[0,∞); (E′)d

)
implies that of

∑d
i=1〈Y

n
i , φi〉 with paths in D ([0,∞);R) for any φ1, · · · , φd ∈ E.

As Theorem C.3 allows us to prove the tightness of distribution-valued processes by verifying that of
the real-valued processes obtained by applying test-functions, there follows the tightness of pair of
processes (Yn,Zn) with paths inD

(
[0,∞); (E′)d+l

)
. �

We remark that the method of proof for the finite-dimensional case (see [19, Page 353, Cor. VI.3.33])
cannot directly be applied to Corollary C.4, as the compactness of the unit ball is key to their proof
of the finite-dimensional case. On the other hand, if we replace (E′)d for Yn by Rm × (E′)d with
m ∈ N+, then Corollary C.4 still holds, since the finite-dimensional space is isomorphic as well as
homeomorphic to some subspace of E′.

We also use a lemma of Billingsley about weak limits under time-changes.

Lemma C.5. Let Xn be a sequence of processes taking values in D([0,∞); E) for some separable
metric space E and let Φn be a sequence of non-decreasing processes with paths inD([0,∞); [0,∞)).
Assume that (Xn,Φn) converge weakly to a pair of processes (X,Φ) ∈ D ([0,∞); E × [0,∞)) such that
X ∈ C ([0,∞); E) with probability 1. Then

Xn ◦ Φn ⇒ X ◦ Φ.

Proof. The proof in Billingsley [3, p. 151] (for the special case E = R) can be immediately adapted
to this more general setting. �
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Finally, we recall Skorokhod’s lemma ([3, Theorem 6.7 on page 70]).

Lemma C.6. Let µn ⇒ µ be a weakly converging sequence of probability measures on a metric space
such that the support of µ is separable. Then there is a probability space (Ω,F , P) and a sequence of
random variables Xn with distribution µn together with a random variable X with distribution µ such
that

∀ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω).
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Flour, XIV—1984, volume 1180 of Lect. Notes Math., pages 265–439. Springer, Berlin, 1986.

Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany

E-mail address: christian.bayer@wias-berlin.de

Humboldt University Berlin, Department ofMathematics, Unter den Linden 6, 10099 Berlin, Germany

E-mail address: horst@math.hu-berlin.de

University ofMichigan, Department ofMathematics, East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA

E-mail address: qiujinn@gmail.com

https://almostsure.wordpress.com/2010/04/13/levys-characterization-of-brownian-motion/
https://almostsure.wordpress.com/2010/04/13/levys-characterization-of-brownian-motion/

	1. Introduction
	1.1. Literature review
	1.2. Our contribution

	2. Model and main results
	2.1. The discrete model
	2.2. The main result
	2.3. Outline of the proof

	3. The scaling limit of the volume density
	3.1. Tightness of the auxiliary process bold0mu mumu vnrvnrvnrvnrvnrvnr
	3.2. Characterization of the limit of bold0mu mumu vnrvnrvnrvnrvnrvnr
	3.3. The limit of the volume density

	4. Characterization of the limit price process—proof of the main theorem
	4.1. Convergence of the limiting price process
	4.2. Characterization of the limiting dynamics

	Appendix A. A result on the characterization of stochastic process limits
	Appendix B. Technical proofs
	Appendix C. Classical tightness results
	References

