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Abstract. We consider rough stochastic volatility models where the driving

noise of volatility has fractional scaling, in the “rough” regime of Hurst pa-
rameter H < 1/2. This regime recently attracted a lot of attention both from

the statistical and option pricing point of view. With focus on the latter, we

sharpen the large deviation results of Forde-Zhang (2017) in a way that allows
us to zoom-in around the money while maintaining full analytical tractability.

More precisely, this amounts to proving higher order moderate deviation es-

timates, only recently introduced in the option pricing context. This in turn
allows us to push the applicability range of known at-the-money skew approxi-

mation formulae from CLT type log-moneyness deviations of order t1/2 (recent

works of Alòs, León & Vives and Fukasawa) to the wider moderate deviations
regime.
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1. Introduction

Since the groundbreaking work of Gatheral, Jaisson and Rosenbaum [GJR14a],
the past two years have brought about a gradual shift in volatility modeling, leading
away from classical diffusive stochastic volatility models towards so-called rough
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volatility models. The term was coined in [GJR14a] and [BFG16], and it essen-
tially describes a family of (continuous-path) stochastic volatility models where the
driving noise of the volatility process has Hölder regularity lower than Brownian
motion, typically achieved by modeling the fundamental noise innovations of the
volatility process as a fractional Brownian motion with Hurst exponent (and hence
Hölder regularity) H < 1/2. Here, we would also like to mention pioneering work
on asymptotics for rough volatility models in [ALV07] and [Fuk11]. A major appeal
of such rough volatility models lies in the fact that they effectively capture several
stylized facts of financial markets both from a statistical [GJR14a, BLP16] and
an option-pricing point of view [BFG16]. In particular, with regards to the latter
point of view, a widely observed empirical phenomenon in equity markets is the
“steepness of the smile on the short end” describing the fact that as time to matu-
rity becomes small the empirical implied volatility skew follows a power law with
negative exponent, and thus becomes arbitrarily large near zero. While standard
stochastic volatility models with continuous paths struggle to capture this phenom-
enon, predicting instead a constant at-the-money implied volatility behaviour on
the short end [Gat11], models in the fractional stochastic volatility family (and
more specifically so-called rough volatility models) constitute a class, well-tailored
to fit empirical implied volatilities for short dated options.

Typically, the popularity of asset pricing models hinges on the availability of
efficient numerical pricing methods. In the case of diffusions, these include Monte
Carlo estimators, PDE discretization schemes, asymptotic expansions and trans-
form methods. With fractional Brownian motion being the prime example of a
process beyond the semimartingale framework, most currently prevalent option
pricing methods – particularly the ones assuming semimartingality or Markovian-
ity – may not easily carry over to the rough setting. In fact, the memory prop-
erty (aka non-Markovianity) of fractional Brownian motion rules out PDE meth-
ods, heat kernel methods and all related methods involving a Feynman-Kac-type
Ansatz. Previous work has thus focused on finding efficient Monte Carlo simu-
lation schemes [BFG16, BLP15, BFG+17] or – in the special case of the Rough
Heston model – on an explicit formula for the characteristic function of the log-
price (see [ER16]), thus in this particular model making pricing amenable to Fourier
based methods. In our work, we rely on small-maturity approximations of option
prices. This is a well-studied topic. See, e.g., [ALV07, GVZ15] (the at-the-money
(ATM) regime) or [DFJV14a, DFJV14b, GJR14b, GHJ16, GVZ15] (the out-of-
the-money (OTM) regime, where large deviations results are used). We also refer
the reader to the papers [Fuk11, Fuk17, FZ17] concerning large deviations, and
to [MT16, Osa07, MS03, MS07] for related work. Based on the moderate devia-
tions regime, Friz et al. [FGP17] have recently introduced another regime called
Moderately-out-of-the-money (MOTM), which, in a sense, effectively navigates be-
tween the two regimes mentioned above, by rescaling the strike with respect to
the time to maturity. This approach has various advantages. On the one hand, it
reflects the market reality that as time to maturity approaches zero, strikes with
acceptable bid-ask spreads tend to move closer to the money (see [FGP17] for more
details). On the other hand, it allows us to zoom in on the term structure of implied
volatility around the money at a high resolution scale. To be more specific, our
paper adds to the existing literature in two ways. First, we obtain a generalization
of the Osajima energy expansion [Osa15] to a non-Markovian case, and using the
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new expansion, we extend the analysis of [FGP17] to the case, where the volatil-
ity is driven by a rough (H < 1/2) fractional Brownian motion. Indeed, Laplace
approximation methods on Wiener space in the spirit of Ben Arous [BA88] and Bis-
mut [Bis84] remain valid in the present context, and our analysis builds upon this
framework in a fractional setting. Second, we use an asymptotic expansion going
back to Azencott [Aze85] to bypass the need for deriving an asymptotic expansion
of the density of the underlying process to obtain asymptotics for option prices. We
display the potential prowess of this approach by applying it to our specific model,
and derive asymptotics for call prices directly, irrespectively of corresponding den-
sity asymptotics. Finally, using a version of the ”rough Bergomi model” [BFG16],
we demonstrate numerically that our implied volatility asymptotics capture very
well the geometry of the term structure of implied volatility over a wide array of
maturities, extending up to a year.

The paper is organized as follows: In Section 2 we set the scene, describing
the class of models included in our framework ((2.1) and (2.2)) and recalling some
known results ((2.4) and (2.8)), which are the starting point of our analysis. Most
importantly, we argue that for small-time considerations it would suffice to restrict
our attention to a class of stochastic volatility models of the form (2.3) with a
volatility process driven by a Gaussian Volterra process such as in (2.2). We for-
mulate general assumptions on the Volterra kernel (Assumptions 2.1 and 2.5) and
on the function σ in (2.3) (Assumption 2.4) under which our results are valid. In
Section 3 we gather our main results, concerning a higher order expansion of the
energy (Theorem 3.1), and a general expansion formula for the corresponding call
prices. We derive the classical Black-Scholes expansion for the call price, using the
latter result mentioned above. In addition, in Section 3 we formulate moderate de-
viation expansions, which allow us to derive the corresponding asymptotic formulae
for implied volatilities and implied volatility skews. Finally, Section 4 displays our
simulation results. Sections 5, 6 and 7 are devoted to proofs of the energy expan-
sion, the price expansion and the moderate deviations expansion, respectively. In
the appendix, we have collected some auxiliary lemmas, which are used in different
sections.

2. Exposition and assumptions

We consider a rough stochastic volatility model, normalized to r = 0 and S0 = 1,
of the form suggested by Forde-Zhang [FZ17]

(2.1)
dSt
St

= σ(B̂t)d (ρWt + ρBt) .

Here (W,B) are two independent standard Brownian motions, ρ ∈ (−1, 1) a cor-
relation parameter, we use the by now standard notation that ρ2 = 1 − ρ2. Then
ρW + ρB is another standard Brownian motion which has constant correlation ρ
with the factor B, which drives stochastic volatility

σstoch (t, ω) := σ(B̂t (ω)) ≡ σ(B̂).

Here σ : R→ (0,∞) is some real-valued function and we will denote by σ0 := σ(0)

the spot volatility. Furthermore, B̂ is a Gaussian (Volterra) process of the form

(2.2) B̂t =

∫ t

0

K (t, s) dBs, t ≥ 0,
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for some kernel K, which shall be further specified in Assumptions 2.1 and 2.5

below. The log-price X̃t = log (St) satisfies

dX̃t = −1

2
σ2(B̂t)dt+ σ(B̂t)d (ρW + ρB) ,

but for the subsequent short-time considerations, it is enough (cf. [FZ17, Proof of
Theorem 4.1] and [DZ09, Definition 4.2.10]) to study its driftless version

(2.3) dXt = σ(B̂t)d (ρWt + ρBt) , X0 = 0.

Recall that by Brownian scaling, for fixed t > 0,

(Bts,Wts)s≥0
law
= ε(Bs,Ws)s≥0, where ε ≡ ε(t) ≡ t1/2.

As a direct consequence, classical short-time SDE problems can be analyzed as
small-noise problems on a unit time horizon. For our analysis, it will also be crucial

to impose such a scaling property on the Gaussian process B̂ (more precisely on
the kernel K in (2.2) driving the volatility process in our model:

Assumption 2.1 (Small time self-similarity). There exists a number t0 with 0 <
t0 ≤ 1 and a function t 7→ ε̂ = ε̂(t), 0 ≤ t ≤ t0, such that

(B̂ts : 0 ≤ s ≤ t0)
law
= (ε̂B̂s : 0 ≤ s ≤ t0).

In fact, we will always have

ε̂ ≡ ε̂(t) ≡ tH = ε2H ,

which covers the examples of interest, in particular standard fractional Brown-

ian motion B̂ = BH or Riemann-Liouville fBM with explicit kernel K (t, s) =√
2H |t− s|H−1/2. (This is very natural, even from a general perspective of self-

similar processes, see [Lam62].)

We insist that no (global) self-similarity of B̂ is required, as only B̂|[0,t] for
arbitrarily small t, matters.

Remark 2.2. In all likelihood, it should be possible to replace the fractional Brow-
nian motion by a certain fractional Ornstein-Uhlenbeck process in the results ob-
tained in this paper. Intuitively, this replacement creates a negligible perturbation
(for t << 1) of the fBm environment. A similar situation was in fact encountered
in [CF10], where fractional scaling at times near zero was important. To quantify
the perturbation, the authors of [CF10] introduced an easy to verify coupling con-
dition (see Corollary 2 in [CF10]). In our opinion, a version of this condition can
be employed in the present paper to justify the replacement mentioned above. We
will however not pursue this point further here.

Remark 2.3. Throughout this article, one can consider a classical (Markovian, dif-
fusion) stochastic volatility setting by taking K ≡ 1, or equivalently H ≡ 1/2,
by simply ignoring all hats ( ·̂ ) in the sequel. In particular then, ε̂

ε ≡ 1 in all
subsequent formulae.

General facts on large deviations of Gaussian measures on Banach spaces [DS89]
such as the path space C([0, 1],R3) imply that a large deviation principle holds for

the triple {ε̂(W,B, B̂) : ε̂ > 0}, with speed ε̂2 and rate function

(2.4)

{
1
2 ‖h‖

2
H1

0
+ 1

2 ‖f‖
2
H1

0
, f, h ∈ H1

0 and f̂ = Kḟ,

+∞, else,
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where

Kḟ(t) :=

∫ t

0

K (t, s) ḟ(s)ds

for f ∈ H1
0 , and

(2.5) H1
0 :=

{
f : [0, 1]→ R

∣∣∣∣ ‖f‖2H1
0

:=

∫ 1

0

∣∣∣ḟ(s)
∣∣∣2 ds <∞, f(0) = 0

}
.

This enables us to derive a large deviations principle for the X in (2.3): The (local)

small-time self similarity property of B̂ (Assumption 2.1) implies that Xt
law
= Xε

1

where
dXε

t = σ(ε̂B̂t)εd (ρWt + ρBt) , Xε
0 = 0.

For what follows, it will be convenient to consider a rescaled version of (2.3)

dX̂ε
t ≡ d

(
ε̂

ε
Xε
t

)
= σ(ε̂B̂t)ε̂d (ρWt + ρBt) , X̂ε

0 = 0.

since indeed X̂ε
1 ≡ Φ1(ε̂W, ε̂B, ε̂B̂) in terms of an “Itô-type map1”

(2.6) Φ1(W,B, B̂) :=

∫ 1

0

σ(B̂)d (ρW + ρB) .

Thanks to the (extended) contraction principle, a large deviations principle also

holds for (X̂ε
1), again with speed ε̂2. With

(2.7) ϕ1 (h, f) := Φ1(h, f, f̂) =

∫ 1

0

σ(f̂)d (ρh+ ρf) ,

we so obtain the following rate function

I (x) = inf
h,f∈H1

0

{
1

2

∫ 1

0

ḣ2dt+
1

2

∫ 1

0

ḟ2dt : ϕ1 (h, f) = x

}

= inf
f∈H1

0

1

2

(
x− ρ

〈
σ(f̂), ḟ

〉)2
ρ2
〈
σ2(f̂), 1

〉 +
1

2

∫ 1

0

ḟ2dt

 ,

(2.8)

the exact proof of which may be found in [FZ17].
We have not yet said anything about the restrictions on the function σ.

Assumption 2.4. Assume σ : R→ (0,∞) is smooth and such that

E

[∫ 1

0

σ2(B̂t)dt

]
<∞.

This is satisfied (trivially) for σ bounded, no matter the precise nature of B̂.

But also σ (x) = exp (ηx) with fractional Brownian motion B̂ and η ∈ R is covered.
In addition to Assumption 2.1, we impose from now on further conditions on the
kernel K.

Assumption 2.5. The kernel K satisfies

(i) B̂t =
∫ t
0
K(t, s)dBs has a continuous (in t) version on [0, 1].

(ii) ∀t ∈ [0, 1] :
∫ t
0
K(t, s)2ds <∞.

1 Note that Φ1 is measurable, but not necessarily continuous.
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Note that the Riemann-Liouville kernel K(t, s) =
√

2H(t − s)γ , γ = H − 1/2
satisfies Assumption 2.5.

Remark 2.6. Assumption 2.5 implies that the Cameron-Martin space H of B̂ is
given by the image of H1

0 under K, i.e.,

H = {Kḟ | f ∈ H1
0}.

See Lemma 5.3 and Remark 5.4 for more details. A reference and also a sufficient
condition for Assumption 2.5 (i) can be can be found in [Dec05, Section 3].

3. Main results

The following result can be seen as a non-Markovian extension of work by Os-
ajima [Osa15]. The statement here is a combination of Theorem 5.10 and Propo-
sition (5.13) below. Recall that σ0 = σ (0) represents spot-volatility. We also set
σ′0 ≡ σ′ (0).

Theorem 3.1 (Energy expansion). The rate function (or energy) I in (2.8) is
smooth in a neighbourhood of x = 0 (at-the-money) and it is of the form

I (x) =
1

σ2
0

x2

2
−
(

6ρ
σ′0
σ4
0

∫ 1

0

∫ t

0

K(t, s)dsdt

)
x3

3!
+O(x4).

The next result is an exact representation of call prices, valid in a non-Markovian
generality, and amenable to moderate- and large-deviation analysis (Theorem 3.4
below) as well as to full asymptotic expansions, which will be explored in forth-
coming work.

Theorem 3.2 (Pricing formula). For a fixed log-strike x ≥ 0 and time to maturity
t > 0, set x̂ := ε

ε̂x, where ε = t1/2 and ε̂ = tH = ε2H , as before. Then we have

c(x̂, t) = E
[
(exp (Xt)− exp x̂)

+
]

= e−
I(x)

ε̂2 e
ε
ε̂x J (ε, x) ,

where

J (ε, x) := E

[
e−

I′(x)
ε̂2

Ûε
(

exp
(
ε
ε̂ Û

ε
)
− 1
)
eI

′(x)R2 1Ûε≥0

]
and Ûε is a random variable of the form

Ûε = ε̂g1 + ε̂2R2

with g1 a centred Gaussian random variable, explicitly given in equation (6.3) below
and R2 is a (random) remainder term, in the sense of a stochastic Taylor expansion
in ε̂, see Lemma (6.2) for more details.

Example 3.3. In the case of Black-Scholes one has σ (·) ≡ σ > 0, R2 ≡ 0 (re-
call from (2.3) that we consider the driftless version) and ε̂ = ε. Moreover, here

g1 ≡ σW1
law
= N

(
0, σ2

)
, the energy is I (x) = x2

2σ2 and

J (ε, x) = E
(
e−

I′(x)
ε g1 (eεg1 − 1) 1U≥0

)
= M

(
−I
′ (x)σ

ε
+ εσ

)
−M

(
−I
′ (x)σ

ε

)
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where M (α) := eα
2/2F (α) and F the standard Gaussian distribution function.

Using J(ε, x) ∼ M ′
(
− I

′(x)σ
ε

)
εσ and M ′ (α) ∼ (2π)

−1/2 |α|−2 as α ↓ −∞ one

deduces that, as long as x/ε→∞,

J (ε, x) ∼ 1√
2π

∣∣∣∣I ′ (x)σ

ε

∣∣∣∣−2 εσ
=

1√
2π

ε3σ3

x2
.

This analysis is valid in the large deviations regime with fixed x > 0. But we
can also take x = xε ∼ c1ε

2β for some c1 > 0, and (recall the moderate regime,
with ε2 = t) as long as β ∈ [0, 1/2) the above analysis is justified. In particular,
the term J(ε, xε) ∼ c2ε

c3 in the pricing formula is of polynomial order in ε and so
J is negligible on the moderate / large deviation scale, since, for any θ > 0, we
have εθ log J(ε, xε) → 0 as ε → 0. Consequently, with kt = ktβ , for t = ε2, k > 0,
β ∈ [0, 1/2) we get the “moderate” Black-Scholes call price expansion,

− log cBS(kt, t) =
1

t1−2β
k2

2σ2
(1 + o (1)) as t ↓ 0.

While the above can be confirmed by elementary analysis of the Black–Scholes
formula, the following theorem exhibits it as an instance of a general principle. See
[FGP17] for a general diffusion statement.

In what follows, we assume that the kernel is such that “fractional scaling”
applies, i.e., ε̂ = tH .

Theorem 3.4 (Moderate Deviations). In the rough volatility regime H ∈ (0, 1/2],
consider log-strikes of the form

kt = kt
1
2−H+β for a constant k ≥ 0.

(i) For β ∈ (0, H), we have

− log c(kt, t) =
I ′′ (0)

t2H−2β
k2

2
+O

(
t3β−2H

)
+O(log

1

t
) as t ↓ 0.

(ii) For β ∈ (0, 23H) we have

− log c(kt, t) =
I ′′ (0)

t2H−2β
k2

2
+
I ′′′ (0)

t2H−3β
k3

6
+O

(
t4β−2H

)
+O(log

1

t
).

Moreover,

I ′′ (0) =
1

σ2
0

,

I ′′′ (0) = −6ρ
σ′0
σ4
0

∫ 1

0

∫ t

0

K(t, s)dsdt = −6ρ
σ′0
σ4
0

〈K1, 1〉,

and 〈· , ·〉 is the inner product in L2 ([0, 1]).

Proof. We apply Theorem 3.2 with x̂ = kt = kt1/2−H+β , i.e., with x = ktβ . In
Proposition 7.1, we will show that log J(ε, x) ∼ log(ε), uniformly for x in a neigh-
borhood of 0. Furthermore, it is clear that ε

ε̂ = O(log 1
t ), and hence we have

− log c(kt, t) =
I(ktβ)

t2H
+O(log

1

t
).
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The theorem now follows immediately from the Taylor expansion of I(x) around
x = 0 (see Theorem 3.1), plugging in x = ktβ . �

Fix real numbers k > 0, 0 < H < 1
2 , 0 < β < H, and an integer n ≥ 2. For

every t > 0, set

kt = kt
1
2−H+β ,

and denote

φn,H,β(t) = max

{
t2H−2β log

1

t
, t(n−1)β

}
.

It is clear that for all small t,

φn,H,β(t) = t2H−2β log
1

t
⇔ 2H − 2β ≤ (n− 1)β ⇔ 2H

n+ 1
≤ β,

while

φn,H,β(t) = t(n−1)β ⇔ 2H − 2β > (n− 1)β ⇔ β <
2H

n+ 1
.

The following statement provides an asymptotic formula for the implied variance.

Theorem 3.5. Suppose 0 < β < 2H
n . Then as t→ 0,

σimpl(kt, t)
2 =

n−2∑
j=0

(−1)j2j

I ′′(0)j+1

(
n∑
i=3

I(i)(0)

i!
ki−2t(i−2)β

)j
+O (φn,H,β(t)) .(3.1)

The O-estimate in (3.1) depends on n, H, β, and k. It is uniform on compact
subsets of [0,∞) with respect to the variable k.

Remark 3.6. Using the multinomial formula, we can represent the expression on
the left-hand side of (3.1) in terms of certain powers of t. However, the coefficients
become rather complicated.

Remark 3.7. Let an integer n ≥ 2 be fixed, and suppose we would like to use only
the derivatives I(i)(0) for 2 ≤ i ≤ n in formula (3.1) to approximate σimpl(kt, t)

2.

Then, the optimal range for β is the following: 2H
n+1 ≤ β <

2H
n . On the other hand,

if β is outside of the interval [ 2H
n+1 ,

2H
n ), more derivatives of the energy function at

zero may be needed to get a good approximation of the implied variance in formula
(3.1).

We will next derive from Theorem 3.5 several asymptotic formulas for the implied
volatility. In the next corollary, we take n = 2.

Corollary 3.8. As t→ 0,

σimpl(kt, t) = σ0 +O(φ2,H,β(t)).(3.2)

Corollary 3.8 follows from Theorem 3.5 with n = 2, the equality

(3.3) I ′′(0) = σ−20

given in Theorem 3.4, and the Taylor expansion
√

1 + h = 1 +O(h) as h→ 0.
In the next corollary, we consider the case where n = 3.

Corollary 3.9. Suppose β < 2H
3 . Then, as t→ 0,

σimpl(kt, t) = σ0 + ρ
σ′0
σ0
〈K1, 1〉ktβ +O(φ3,H,β(t)).(3.4)
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Corollary 3.9 follows from Theorem 3.5 with n = 3, formula (3.3), the equality

(3.5) I ′′′(0) = −6ρ
σ′0
σ4
0

〈K1, 1〉

(see Theorem 3.4), and the expansion
√

1 + h = 1 + 1
2h+O(h2) as h→ 0.

Using Corollary 3.9, we establish the following implied volatility skew formula
in the moderate deviation regime.

Corollary 3.10. Let 0 < H < 1
2 , 0 < β < 2

3H, and fix y, z > 0 with y 6= z. Then
as t→ 0,

(3.6)
σimpl(yt

1
2−H+β , t)− σimpl(zt

1
2−H+β , t)

(y − z)t 1
2−H+β

∼ ρσ
′
0

σ0
〈K1, 1〉tH− 1

2 .

Remark 3.11. Corollary 3.10 complements earlier works of Alòs et al. [ALV07]
and Fukasawa [Fuk11, Fuk17]. For instance, the following formula can be found in
[Fuk17, p. 6], see also [Fuk11, p. 14]:

(3.7)
σimpl(yt

1
2 , t)− σimpl(zt

1
2 , t)

(y − z)t 1
2

∼ ρC(H)
σ′0
σ0
tH−

1
2 .

In formula (3.7), we employ the notation used in the present paper. Our analysis
shows that the applicability range of skew approximation formulas is by no means
restricted to the Central Limit Theorem type log-moneyness deviations of order
t1/2. It also includes the moderate deviations regime of order t1/2−H+β . The
previous rate is clearly >> t1/2 as t→ 0.

Finally, we turn our attention to the case where n = 4. We will next provide a
general asymptotic formula for the implied volatility that uses the fourth derivative
I(4)(0).

Corollary 3.12. Suppose β < H
2 . Then as t→ 0,

σimpl(kt, t) = σ0 + ρ
σ′0
σ0
〈K1, 1〉ktβ

+

(
ρ2

(σ′0)2

σ3
0

〈K1, 1〉2 − I(4)(0)σ3
0

24

)
k2t2β +O(φ4,H,β(t))).(3.8)

Remark 3.13 (Symmetry). Write Φ1(W,B, B̂; ρ;σ) for the “Itô-type map” intro-

duced in (2.6). It equals, in law, Φ1(W,−B,−B̂;−ρ;σ(−·)), and indeed all our
formulae are invariant under this transformation. In particular, the skew remains
unchanged when the pair (ρ, σ′0) is replaced by (−ρ,−σ′0).

4. Simulation results

We verify our theoretical results numerically with a variant of the rough Bergomi
model [BFG16] which fits nicely into the general rough volatility framework con-
sidered in this paper. As before, the model has been normalized such that S0 = 1
and r = 0. We let (W,B) be two independent Brownian motions and ρ ∈ (−1, 1)
with ρ2 = 1− ρ2 such that Z = ρW + ρB is another Brownian motion having con-
stant correlation ρ with B. For some spot volatility σ0 and volatility of volatility
parameter η, we then assume the following dynamics for some asset S:
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dSt
St

= σ(B̂t)dZt(4.1)

σ(x) = σ0 exp

(
1

2
ηB̂t

)
(4.2)

where B̂ is a Riemann-Liouville fBM given by

B̂t =
√

2H

∫ t

0

|t− s|H−1/2dBs.

The approach taken for the Monte Carlo simulations of the quantities we are
interested in is the one initially explored in the original rough Bergomi pricing
paper [BFG16]. That is, exploiting their joint Gaussianity, where we use the well-

known Cholesky method to simulate the joint paths of (Z, B̂) on some discretization
grid D. With (4.2) being an explicit function in terms of the rough driver, an Euler
discretisation of the Ito SDE (4.1) on D then yields estimates for the price paths.

The Cholesky algorithm critically hinges on the availability and explicit com-

putability of the joint covariance matrix of (Z, B̂) whose terms we readily compute
below.2

Lemma 4.1. For convenience, define constants γ = 1
2−H ∈ [0, 12 ) and DH =

√
2H

H+ 1
2

and define an auxiliary function G : [1,∞)→ R by

G(x) = 2H

(
1

1− γ
x−γ +

γ

1− γ
x−(1+γ)

1

2− γ 2F1(1, 1 + γ, 3− γ, x−1)

)
(4.3)

where 2F1 denotes the Gaussian hypergeometric function [Olv10]. Then the joint

process (Z, B̂) has zero mean and covariance structure governed by
Var[B̂2

t ] = t2H , for t ≥ 0,

Cov[B̂sB̂t] = t2HG (s/t) , for s > t ≥ 0,

Cov[B̂sZt] = ρDH

(
sH+ 1

2 − (s−min(t, s))
H+ 1

2

)
, for t, s ≥ 0,

Cov[ZtZs] = min(t, s), for t, s ≥ 0.

Numerical simulations3 confirm the theoretical results obtained in the last sec-
tion. In particular - as can be seen in Figure 1 – the asymptotic formula for the
implied volatility (3.4) captures very well the geometry of the term structure of
implied volatility, with particularly good results for higher H and worsening results
as H ↓ 0. Quite surprisingly, despite being an asymptotic formula, it seems to be
fairly accurate over a wide array of maturities extending up to a single year.

5. Proof of the energy expansion

Consider

dX = σ (Y ) d (ρdW + ρdB) , X0 = 0

dY = dB̂, Y0 = 0

2 Note that expressions for the exact same scenario have have been computed before in the

original pricing paper [BFG16], yet in that version the expression for the autocorrelation of the fBM

B̂ was incorrect. We compute and state here all the relevant terms for the sake of completeness.
3 The Python 3 code used to run the simulations can be found at github.com/RoughStochVol.

https://github.com/RoughStochVol
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Figure 1. Illustration of the term structure of implied volatility of the Modified Rough Bergomi model in the Moderate deviations
regime with time-varying log-strike kt = 0.4tβ . Depicted are the asymptotic formula (Eq. (3.4), dashed line) and an estimate based on
N = 108 samples of a MC Cholesky Option Pricer (solid line) with 500 time steps. Model parameters are given by spot vol σ0 ≈ 0.2557,
vvol η = 0.2928 and correlation parameter ρ = −0.7571.
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where B̂t =
∫ t
0
K (t, s) dBs for a fixed Volterra kernel (recall (2.3) in the previous

section) We study the small noise problem (Xε, Y ε) where
(
W,B, B̂

)
is replaced

by
(
εW, εB, ε̂B̂

)
. The following proposition roughly says that

P
(
Xε

1 ≈
ε

ε̂
x
)
≈ exp

(
−I (x)

ε̂2

)
.

Proposition 5.1 (Forde-Zhang [FZ17]). The rescaled process
(
ε̂
εX

ε
1 : ε ≥ 0

)
satis-

fies an LDP (with speed ε̂2) and rate function

(5.1) I (x) = inf
f∈H1

0

[
(x− ρG (f))

2

2ρ2F (f)
+

1

2
E (f)

]
≡ inf
f∈H1

0

Ix (f)

where

G (f) =

∫ 1

0

σ
((
Kḟ
)

(s)
)
ḟsds ≡

〈
σ
(
Kḟ
)
, ḟ
〉
≡
〈
σ(f̂), ḟ

〉
F (f) =

∫ 1

0

σ
((
Kḟ
)

(s)
)2
ds ≡

〈
σ2
(
Kḟ
)
, 1
〉
≡
〈
σ2(f̂), 1

〉
E (f) =

∫ 1

0

∣∣∣ḟ (s)
∣∣∣2 ds ≡ 〈ḟ , ḟ〉

Next we derive the first order optimality condition for the above minimization
problem.

Proposition 5.2 (First order optimality condition). For any x ∈ R we have at
any local minimizer f = fx of the functional Ix in (5.1) that

(5.2) fxt =
ρ (x− ρG (fx))

{〈
σ
(
Kḟx

)
, 1[0,t]

〉
+
〈
σ′
(
Kḟx

)
ḟx,K1[0,t]

〉}
ρ2F (fx)

+
(x− ρG (fx))

2

ρ2F 2 (fx)

〈
(σσ′)

(
Kḟx

)
,K1[0,t]

〉
,

for all t ∈ [0, 1].

Proof. We denote a ≈ b whenever a = b+o (δ), for a small parameter δ, we expand

E (f + δg) ≈ E (f) + 2δ
〈
ḟ , ġ
〉

F (f + δg) ≈ F (f) + δ
〈(
σ2
)′ (

Kḟ
)
,Kġ

〉
G (f + δg) ≈ G (f) + δ

{〈
σ
(
Kḟ
)
, ġ
〉

+
〈
σ′
(
Kḟ
)
ḟ ,Kġ

〉}
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If f = fx is a minimizer then δ 7→ Ix (f + δg) has a minimum at δ = 0 for all g.
We expand

Ix (f + δg) =
(x− ρG (f + δg))

2

2ρ2F (f + δg)
+

1

2
E(f + δg)

≈

(
x− ρG (f)− δρ

{〈
σ
(
Kḟ
)
, ġ
〉

+
〈
σ′
(
Kḟ
)
ḟ ,Kġ

〉})2
2ρ2

[
F (f) + δ

〈
(σ2)

′
(
Kḟ
)
,Kġ

〉]
+

1

2
E(f) + δ

〈
ḟ , ġ
〉

≈
(x− ρG (f))

2 − δ2ρ (x− ρG (f))
{〈
σ
(
Kḟ
)
, ġ
〉

+
〈
σ′
(
Kḟ
)
ḟ ,Kġ

〉}
2ρ2F (f)

[
1 + δ

F (f)

〈
(σ2)

′
(
Kḟ
)
,Kġ

〉]
+

1

2
E (f) + δ

〈
ḟ , ġ
〉

≈
(x− ρG (f))

2 − δ2ρ (x− ρG (f))
{〈
σ
(
Kḟ
)
, ġ
〉

+
〈
σ′
(
Kḟ
)
ḟ ,Kġ

〉}
2ρ2F (f)

− (x− ρG (f))
2

2ρ2F (f)

δ

F (f)

〈(
σ2
)′ (

Kḟ
)
,Kġ

〉
+

1

2
E (f) + δ

〈
ḟ , ġ
〉
.

As a consequence, we must have, for f = fx and every ġ ∈ L2 [0, 1]

0 =
d

dδ
{Ix (f + δg)}δ=0 = −

ρ (x− ρG (f))
{〈
σ
(
Kḟ
)
, ġ
〉

+
〈
σ′
(
Kḟ
)
ḟ ,Kġ

〉}
ρ2F (f)

− (x− ρG (f))
2

ρ2F 2 (f)

〈
(σσ′)

(
Kḟ
)
,Kġ

〉
+
〈
ḟ , ġ
〉
.

Recall fx0 = 0, any x. We now test with ġ = 1[0,t] for a fixed t ∈ [0, 1] and obtain

fxt =
ρ (x− ρG (fx))

{〈
σ
(
Kḟx

)
, 1[0,t]

〉
+
〈
σ′
(
Kḟx

)
ḟx,K1[0,t]

〉}
ρ2F (fx)

+
(x− ρG (fx))

2

ρ2F 2 (fx)

〈
(σσ′)

(
Kḟx

)
,K1[0,t]

〉
. �

5.1. Smoothness of the energy. Having formally identified the first order condi-
tion for minimality in (5.1), we will now show that the energy x 7→ I(x) is a smooth
function. More precisely, we will use the implicit function theorem to show that
the minimizing configuration fx is a smooth function in x (locally at x = 0). As
Ix is a smooth function, too, this will imply smoothness of x 7→ Ix(fx) = I(x), at
least in a neighborhood of 0.

As the Cameron-Martin space H of the process B̂ continuously embeds into
C ([0, 1]), K maps H1

0 continuously into C ([0, 1]), i.e., there is a constant C > 0
such that for any f ∈ H1

0 we have

(5.3)
∥∥∥Kḟ∥∥∥

∞
≤ C ‖f‖H1

0
.

This result will follow from
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Lemma 5.3. Let (Vt : 0 ≤ t ≤ 1) be a continuous, centred Gaussian process and H
its Cameron-Martin space. Then we have the continuous embedding H ↪→ C [0, 1].
That is, for some constant C,

‖h‖∞ ≤ C ‖h‖H .

Proof. By a fundamental result of Fernique, applied to the law of V as Gauss-
ian measure on the Banach space (C [0, 1] , ‖·‖∞), the random variable ‖V ‖∞ has
Gaussian integrability. In particular,

σ2 := E( ‖V ‖2∞) <∞.

On the other hand, a generic element h ∈ H can be written as ht = E [VtZ] where

Z is a centred Gaussian random variable with variance ‖h‖2H. By Cauchy–Schwarz,

|ht| ≤ E [|Vt|]1/2 ‖h‖H ≤ σ ‖h‖H
and conclude by taking the sup over on the l.h.s. over t ∈ [0, 1]. �

Remark 5.4. Assume V is of Volterra form, i.e. Vt =
∫ t
0
K (t, s) dBs. Then it can

be shown (see [Dec05, Section 3]) that H is the image of L2 under the map

K : ḟ 7→ f̂ :=

(
t 7→

∫ t

0

K (t, s) ḟsds

)
and

∥∥∥Kḟ∥∥∥
H

=
∥∥∥ḟ∥∥∥

L2
. In particular then, applying the above with h = Kḟ ∈ H,

gives ∥∥∥Kḟ∥∥∥
∞
≤ C

∥∥∥Kḟ∥∥∥
H

= C
∥∥∥ḟ∥∥∥

L2
= C ‖f‖H1

0
.

5.1.1. The uncorrelated case. We start with the case ρ = 0 as the formulas are
much simpler in this case.

By Proposition 5.2, any local optimizer f = fx of the functional Ix : H1
0 → R

in the uncorrelated case ρ = 0 satisfies for any t ∈ [0, 1]

ft =
x2

F 2 (f)

〈
(σσ′)

(
Kḟ
)
,K1[0,t]

〉
.

We define a map H : H1
0 × R→ H1

0 by

(5.4) H(f, x)(t) := ft −
x2

F 2 (f)

〈
(σσ′)

(
Kḟ
)
,K1[0,t]

〉
.

Hence, for given x ∈ R, any local optimizer f must solve H(f, x) = 0. As one
particular solution is given by the pair (0, 0), we are in the realm of the implicit
function theorem. We need to prove that

• (f, x) 7→ H(f, x) is locally smooth (in the sense of Fréchet);
• DH(f, x) := ∂

∂fH(f, x) is invertible in (0, 0).

Note that invertibility should hold for x small enough, as DH(f, x) = idH1
0
−x2R

for some R, which is invertible as long as R has a bounded norm for sufficiently
small x.

Remark 5.5. The method of proof in this section is purely local in H1
0 . Hence, we

do not really need C∞-boundedness of σ, smoothness locally around 0 is enough.
Note, however, that stochastic Taylor expansions used in Section 6 will actually
require global smoothness of σ.
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Lemma 5.6. The functions F : H1
0 → R and R1 : H1

0 → C ([0, 1]) defined by

R1(f)(t) :=
〈

(σσ′)
(
Kḟ
)
,K1[0,t]

〉
, t ∈ [0, 1],

are smooth in the sense of Fréchet.

Proof. For N ≥ 1 we note that the Gateaux derivative of F satisfies

DNF (f) · (g1, . . . , gN ) =

∫ 1

0

dN

dxN
σ2(Kḟ)Kġ1 · · ·KġNds.

By Lemma 5.3, we can bound∣∣DNF (f) · (g1, . . . , gN )
∣∣ ≤ const

∫ 1

0

|Kġ1(s)| · · · |K ˙gN (s)| ds

≤ const ‖Kġ1‖∞ · · · ‖KġN‖∞
≤ const CN ‖g1‖H1

0
· · · ‖gN‖H1

0
,

for const =
∥∥ dn

dxnσ
2
∥∥
∞. Thus, DNF (f) is a multi-linear form on H1

0 with operator

norm
∥∥DNF (f)

∥∥ ≤ ∥∥ dn

dxnσ
2
∥∥
∞ CN independent of f . As f 7→ DNF (f) is continu-

ous, we conclude that DNF (f) as given above is, in fact, a Fréchet derivative.
Let us next consider the functional R1. Note that(

DNR1(f) · (g1, . . . , gN )
)

(t) =
〈
sN (Kḟ)Kġ1 · · ·KġN ,K1[0,t]

〉
for sN (x) := dN

dxN
σ(x)σ′(x). Hence, Assumption 2.5 implies that

∥∥DNR1(f) · (g1, . . . , gN )
∥∥2
H1

0
=

∫ 1

0

(∫ 1

t

sN

(
(Kḟ)(s)

) N∏
i=1

(Kġi)(s)K(s, t)ds

)2

dt

≤ ‖sN‖2∞
N∏
i=1

‖Kġi‖2∞
∫ 1

0

∫ 1

t

K(s, t)2dsdt

≤ ‖sN‖2∞ C2N
N∏
i=1

‖gi‖2H1
0

∫ 1

0

∫ s

0

K(s, t)2dtds

≤ ‖sN‖2∞ C2N

∫ 1

0

∫ s

0

K(s, t)2dtds

N∏
i=1

‖gi‖2H1
0
.

We see that the multi-linear map DNR1(f) has operator norm bounded by

∥∥DNR1(f)
∥∥ ≤ ‖sN‖∞ CN

√∫ 1

0

∫ s

0

K(s, t)2dtds,

independent of f . From continuity of f 7→ DNR1(f), it follows that DNR1(f) is
the N ’th Fréchet derivative. �

Theorem 5.7 (Zero correlation). Assuming ρ = 0, the energy I(x) is smooth in a
neighborhood of x = 0.

Proof. By construction, we have

DH(f, x) = idH1
0
−x2A(f)
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for A : H1
0 → L(H1

0 , H
1
0 ) defined by

A(f) := R(f)⊗DF−2(f) + F−2(f)DR1(f).

Here, (
R(f)⊗DF−2(f)

)
· g = (DF−2(f) · g)︸ ︷︷ ︸

∈R

R1(f)︸ ︷︷ ︸
∈H1

0

.

As verified above, H is smooth in the sense of Fréchet. Trivially, DH(0, 0) = idH1
0

is invertible and H(0, 0) = 0. Therefore, the implicit function theorem implies that
there are open neighborhoods U and V of 0 ∈ H1

0 and 0 ∈ R, respectively, and a
smooth map x 7→ fx from V to U such that H(fx, x) ≡ 0 and fx is unique in U
with this property.

For the energy, we prove that I(x) = Ix(fx) in a neighborhood of x = 0. First
of all, we show that a minimizer exists. If not, there is a function g ∈ H1

0 with
Ix(g) < Ix(fx). For small enough x such a g must be inside a ball with radius ε

around 0 ∈ H1
0 , as Ix(g) ≥ 1

2 ‖g‖
2
H1

0
and limx→0 Ix(fx) = 0. Then note that for

any g ∈ H1
0

D2I0(0) · (g, g) = ‖g‖2H1
0
> 0,

where D2Ix(f) denotes the second derivative of f 7→ Ix(f). By continuity, D2Ix(f)
stays positive definite for (x, f) in a neighborhood of (0, 0). As noted, for x small
enough, both g and fx (and the line connecting them) lie in this neighborhood.
For h := g − fx, this implies

Ix(g)− Ix(fx) = DIx(fx) · h+

∫ 1

0

D2Ix(fx + th) · (h, h) dt > 0,

since DIx(fx) ·h = 0 and D2Ix(fx+ tsh) · (h, h) > 0. This contradicts the assump-
tion that Ix(g) < Ix(fx), and we conclude that fx is, indeed, a minimizer of Ix,
implying that I(x) = Ix(fx) locally.

Finally, as x 7→ fx is smooth and (f, x) 7→ Ix(f) = x2

2F (f) + 1
2 ‖f‖

2
H1

0
is smooth,

we see that x 7→ I(x) = Ix(fx) is smooth in a neighborhood of 0. �

Remark 5.8. Classical counter-examples in the context of the direct method of
calculus of variations show that the step of verifying the existence of a minimizer
should not be taken too lightly. For instance, the functional

J(u) :=

∫ 1

0

[
(u′(s)2 − 1)2 + u(s)2

]
ds

does not have a minimizer in H1
0 , but J can be made arbitrarily close to 0 by choos-

ing piecewise-linear functions u with slope |u′| = 1 oscillating around 0. We refer
to any text book on calculus of variations. In the situation above, local “convexity”
in the sense of a positive definite second derivative prevents this phenomenon. An
alternative method of proof for the existence of a minimizer is to show that J is
(lower semi-) continuous in the weak sense.
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5.1.2. The general case. In the general case (cf. Proposition 5.2), we define the
function H : H1

0 × R→ H1
0 by

H(f, x)(t) := ft −
ρ (x− ρG (f))

{〈
σ
(
Kḟ
)
,1[0,t]

〉
+
〈
σ′
(
Kḟ
)
ḟ , K1[0,t]

〉}
ρ2F (f)

+
(x− ρG (f))

2

ρ2F 2 (f)

〈
(σσ′)

(
Kḟ
)
,K1[0,t]

〉
= ft −

ρ (x− ρG(f))

ρ2F (f)
(R2(f)(t) +R3(f)(t)) +

(x− ρG(f))
2

ρ2F (f)2
R1(f)(t),(5.5)

where R2, R3 : H1
0 → H1

0 are defined by

R2(f)(t) :=
〈
σ(Kḟ) ,1[0,t]

〉
,(5.6)

R3(f)(t) :=
〈
σ′(Kḟ)ḟ , K1[0,t]

〉
,(5.7)

t ∈ [0, 1].
One easily checks that G, R2, R3 are smooth in the Fréchet sense.

Lemma 5.9. The functions G : H1
0 → R, R2 : H1

0 → H1
0 and R3 : H1

0 → H1
0 are

smooth in Fréchet sense.

Proof. The proof of smoothness is clear. We report the actual derivatives. For G
we get

DNG(f) · (g1, . . . , gN ) =

〈
σ(N)

(
Kḟ
)
ḟ ,

N∏
i=1

Kġi

〉
+

+

N∑
k=1

〈
σ(N−1)

(
Kḟ
)
, ġk

∏
i 6=k

Kġi

〉
.

For R2 and, respectively, R3, we obtain(
DNR2(f) · (g1, . . . , gN )

)
(t) =

∫ t

0

σ(N)
(

(Kḟ)(s)
) N∏
i=1

(Kġi)(s)ds,

and(
DNR3(f) · (g1, . . . , gN )

)
(t) =

〈
σ(N+1)

(
Kḟ
)
ḟK1[0,t] ,

N∏
i=1

Kġi

〉
+

+

N∑
k=1

〈
σ(N)

(
Kḟ
)
K1[0,t] , ġk

∏
i 6=k

Kġi

〉
. �

Theorem 5.10. Assume σ smooth and (for simplicity only) bounded with bounded
derivatives of all order. Then the energy I(x) is smooth in a neighborhood of x = 0.

Proof. The proof is similar to the proof of Theorem 5.7. In fact, the only difference
is in establishing invertibility of DH(0, 0) and the existence of a minimizer.

Note that (5.5) contains three terms. The derivative of the first term (f 7→ f) is
always equal to idH1

0
. For the second term, we note that

(x− ρG(f))|x=0, f=0 = 0.
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Hence, the only non-vanishing contribution to the derivative of the second term
evaluated in direction g ∈ H1

0 at x = 0, f = 0 and t ∈ [0, 1] is

ρ2DG(0) · g
ρ2F (0)

(R2(0) +R3(0)) =
ρ2σ0g(1)

ρ2σ2
0

(σ0t+ 0) =
ρ2

ρ2
g(1)t.

For the same reason, the derivative of the third term at (f, x) = (0, 0) vanishes
entirely. Hence,

(DH(0, 0) · g)(t) = g(t) +
ρ2

ρ2
g(1)t.

It is easy to see that g 7→ DH(0, 0) · g is invertible. Indeed, let us construct the
pre-image g = DH(0, 0)−1 · h of some h ∈ H1

0 . At t = 1 we have

ρ2 + ρ2

ρ2
g(1) = h(1),

implying g(1) = ρ2h(1). For 0 ≤ t < 1, we then get

g(t) +
ρ2

ρ2
g(1)t = g(t) +

ρ2

ρ2
ρ2h(1)t = g(t) + ρ2h(1)t = h(t),

or g(t) = h(t)− ρ2h(1)t.
For existence of the minimizer, note that

D2J0(0) · (g, g) =
ρ2

ρ2
g(1)2 + ‖g‖2H1

0
,

which is again positive definite. �

5.2. Energy expansion. Having established smoothness of the energy I as well as
of the minimizing configuration x 7→ fx locally around x = 0, we can proceed with
computing the Taylor expansion of fx around x = 0. We will once more rely on
the first order optimality condition given in Proposition 5.2. Plugging the Taylor
expansion of fx into Ix will then give us the local Taylor expansion of I(x).

5.2.1. Expansion of the minimizing configuration.

Theorem 5.11. We have

fxt = αtx+ βt
x2

2
+O

(
x3
)
,

αt =
ρ

σ0
t,

βt = 2
σ′0
σ3
0

[
ρ2
〈
K1 ,1[0,t]

〉
+
〈
K1[0,t] , 1

〉
− 3ρ2t 〈K1 , 1〉

]
.

Remark 5.12 (Non-Markovian transversality). In the RL-fBM case, K (t, s) =√
2H |t− s|γ with γ = H − 1/2 one computes〈

1,K1[0,t]
〉

=
1

(1 + γ) (2 + γ)

{
1− (1− t)2+γ

}
∈ C1 [0, 1] .

Interestingly, the transversality condition known from the Markovian setting (q1 =

0, which readily translates to ḟx1 = 0 there) remains valid here (for ρ = 0), at least
to order x2, in the sense that

ḟxt ≈ βt
x2

2
= (const) (1− t)1+γ |t=1 = 0
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Proof of Theorem 5.11. First order expansion:
Up to the order needed in order to get the first order term, we have

fxt = αtx+O(x2),

ḟt
x

= α̇tx+O(x2),

σ(Kḟx) = σ0 + σ′0Kα̇ x+O(x2),

σ′(Kḟx) = σ′0 + σ′′0Kα̇ x+O(x2),

F (fx) = 〈σ2(Kḟx), 1〉
= σ2

0 +O(x),

G(fx) = 〈σ(Kḟx), ḟx〉
= 〈σ0 , α̇〉x+O(x2).

Therefore,

〈σ(Kḟx),1[0,t]〉 = σ0t+O(x),

〈σ′(Kḟx)ḟx,K1[0,t]〉 = O(x),

〈σσ′(Kḟx),K1[0,t]〉 = O(1),

x− ρG(fx) = (1− ρσ0α1)x+O(x2),

(x− ρG(fx))2 = O(x2).

This yields for the first order term in (5.2)

αt =
ρ(1− ρσ0α1)

ρ2σ0
t.

Setting t = 1, we get

α1 =
ρ

ρ2σ0
− ρ2

ρ2
α1,

which is solved by α1 = ρ
σ0

. Inserting this term back into the equation for αt, we
get

(5.8) αt =
ρ

σ0
t.

Second order expansion:
Using (5.8) and the ansatz fxt = αtx+ 1

2βtx
2+O(x3), we re-compute the relevant

terms appearing in the (5.2). We have

σ(Kḟx(s)) = σ0 + σ′0
ρ

σ0
(K1)(s)x+O(x2)

and analogously for σ replaced by σ′, σσ′. This implies〈
σ(Kḟx) ,1[0,t]

〉
= σ0t+ σ′0

ρ

σ0

〈
K1 ,1[0,t]

〉
x+O(x2),〈

σ′(Kḟx)ḟx ,K1[0,t]

〉
= ρ

σ′

σ0

〈
K1[0,t] , 1

〉
x+O(x2),〈

σσ′(Kḟx) ,K1[0,t]

〉
= σ0σ

′
0

〈
K1[0,t] , 1

〉
+O(x).



20 C. BAYER, P. K. FRIZ, A. GULISASHVILI, B. HORVATH, B. STEMPER

Using the notation introduced earlier, we have

F (fx) = σ2
0 + 2σ′0ρ 〈K1 , 1〉x+O(x2),

G(fx) = ρx+

(
1

2
σ0β1 + ρ2

σ′0
σ2
0

〈K1 , 1〉
)
x2 +O(x3).

This directly implies

x− ρG(fx) = ρ2x− ρ
(

1

2
σ0β1 + ρ2

σ′0
σ2
0

〈K1 , 1〉
)
x2 +O(x3),

(x− ρG(fx))
2

= ρ4x2 − 2ρ2ρ

(
1

2
σ0β1 + ρ2

σ′0
σ2
0

〈K1 , 1〉
)
x3 +O(x4).

We next compute some auxiliary terms appearing in (5.2).

N1 := ρ(x− ρG(fx))
(〈
σ(Kḟx) ,1[0,t]

〉
+
〈
σ′(Kḟx)ḟx ,K1[0,t]

〉)
= ρρ2σ0tx+

[
ρ2ρ2

σ′0
σ0

(〈
K1 ,1[0,t]

〉
+
〈
K1[0,t] , 1

〉)
− ρ4σ

′
0

σ0
t 〈K1 , 1〉 − 1

2
ρ2σ2

0tβ1

]
x2 +O(x3)

The corresponding denominator is ρ2F (fx). Using the formula

a1x+ a2x
2 +O(x3)

b0 + b1x+O(x2)
=
a1
b0
x+

a2b0 − a1b1
b20

x2 +O(x3),

we obtain

(5.9)
N1

ρ2F (fx)
=

ρ

σ0
tx+

[
ρ2
σ′0
σ3
0

(〈
K1 ,1[0,t]

〉
+
〈
K1[0,t] , 1

〉)
−
(
ρ4

ρ2
+ 2ρ2

)
σ′0
σ3
0

t 〈K1 , 1〉 − 1

2

ρ2

ρ2
β1t

]
x2 +O(x3)

For the second term in (5.2), let

N2 := (x− ρG(fx))
2
〈

(σσ′)(Kḟx) ,K1[0,t]

〉
= ρ4σ0σ

′
0

〈
K1[0,t] , 1

〉
x2 +O(x3).

The corresponding denominator is ρ2F (fx)2 = ρ2σ4
0 +O(x). Hence,

(5.10)
N2

ρ2F (fx)2
= ρ2

σ′0
σ3
0

〈
K1[0,t] , 1

〉
x2 +O(x3).

Combining (5.9) and (5.10), we get

fxt =
ρ

σ0
tx+

[
ρ2
σ′0
σ3
0

(〈
K1 ,1[0,t]

〉
+
〈
K1[0,t] , 1

〉)
− ρ4

ρ2
σ′0
σ3
0

t 〈K1 , 1〉

− 1

2

ρ2

ρ2
β1t− 2ρ2

σ′0
σ3
0

t 〈K1 , 1〉+ ρ2
σ′0
σ3
0

〈
K1[0,t] , 1

〉]
x2 +O(x3)
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We shall next compute β1. Taking the second order terms on both sides and letting
t = 1, we obtain

1

2
β1 = ρ2

σ′0
σ3
0

2 〈K1 , 1〉 − ρ4

ρ2
σ′0
σ3
0

〈K1 , 1〉

− 1

2

ρ2

ρ2
β1 − 2ρ2

σ′0
σ3
0

〈K1 , 1〉+ ρ2
σ′0
σ3
0

〈K1 , 1〉 .

Moving β1 to the other side with 1 + ρ2

ρ2
= 1

ρ2
and collecting terms on the right

hand side, we arrive at

1

2

1

ρ2
β1 =

σ′0
σ3
0

〈K1 , 1〉
(

2ρ2 − ρ4

ρ2
− 2ρ2 + ρ2

)
=

1− 2ρ2

ρ2
σ′0
σ3
0

〈K1 , 1〉

We conclude that

β1 = 2(1− 2ρ2)
σ′0
σ3
0

〈K1 , 1〉

Hence, we obtain

βt = 2
σ′0
σ3
0

[
ρ2
〈
K1 ,1[0,t]

〉
+
〈
K1[0,t] , 1

〉
− 3ρ2t 〈K1 , 1〉

]
. �

5.2.2. Energy expansion in the general case. Now we compute the Taylor expansion
of I(x) as defined in Proposition 5.1. We start with the second term. Plugging in

the optimal path fxt = αtx+ 1
2βtx

2 +O(x3) (and using
〈
β̇ , 1

〉
= β1 as β0 = 0) we

obtain
1

2

〈
ḟx , ḟx

〉
=

1

2

ρ2

σ2
0

x2 +
1

2

ρ

σ0
β1x

3 +O(x4).

Inserting β1 = 2(1 − 2ρ2)
σ′
0

σ3
0
〈K1 , 1〉 into the above formula for (x− ρG(fx))

2
,

we get

(x− ρG(fx))
2

= ρ4x2 − 2ρ4ρ
σ′0
σ2
0

〈K1 , 1〉x3 +O(x4).

Recall the denominator

2ρ2F (fx) = 2ρ2σ2
0 + 4ρ2σ′0ρ 〈K1 , 1〉x+O(x2).

Using the expansion of a fraction

a2x
2 + a3x

3 +O(x4)

b0 + b1x+O(x2)
=
a2
b0
x2 +

a3b0 − a2b1
b20

x3 +O(x4),

we obtain from

(x− ρG(fx))
2

2ρ2F (fx)
=

ρ4

2ρ2σ2
0

x2+

+

(
−2ρ4ρ

σ′
0

σ2
0
〈K1 , 1〉

)
2ρ2σ2

0 − ρ4
(
4ρ2σ′0ρ 〈K1 , 1〉

)
4ρ4σ4

0

x3 +O(x4)

=
ρ2

2σ2
0

x2 − 2ρ2ρ
σ′0
σ4
0

〈K1 , 1〉x3 +O(x4).

We note that

1

2

ρ

σ0
β1 − 2ρ2ρ

σ′0
σ4
0

〈K1 , 1〉 =
(
(1− 2ρ2)− 2(1− ρ2)

)
ρ
σ′0
σ4
0

〈K1 , 1〉 = −ρσ
′
0

σ4
0

〈K1 , 1〉 .
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Adding both terms, we arrive at the

Proposition 5.13. The energy expansion to third order gives

I(x) =
1

2σ2
0

x2 − ρσ
′
0

σ4
0

〈K1 , 1〉x3 +O(x4).

5.2.3. Energy expansion for the Riemann-Liouville kernel. Let us specialize the
energy expansion given in Proposition 5.13 for the Riemann-Liouville fBm. Choose
γ = H − 1

2 and recall that the kernel K takes the form K(t, s) = (t− s)γ . We get

(K1)(t) =

∫ t

0

K(t, s)ds =

∫ t

0

(t− s)γds =
t1+γ

1 + γ
.

The key term 〈K1 , 1〉 appearing in the energy expansion now gives

〈K1 , 1〉 =

∫ 1

0

(K1)(t)dt =

∫ 1

0

t1+γ

1 + γ
dt =

1

(1 + γ)(2 + γ)
=

1

(H + 1/2)(H + 3/2)
.

Plugging formula (5.2.3) into the energy expansion, we obtain the energy expansion
for the Riemann-Liouville fractional Browian motion

I(x) =
1

2σ2
0

x2 − ρ

(H + 1/2)(H + 3/2)

σ′0
σ4
0

x3 +O(x4).

For completeness, let us also fully describe the time-dependence of the second
order term βt in the expansion of the optimal trajectory fxt . Unlike the first order
time, here we do not have a linear movement any more. Indeed〈

K1 ,1[0,t]

〉
=

∫ t

0

(K1)(s)ds =

∫ t

0

s1+γ

1 + γ
ds =

t2+γ

(1 + γ)(2 + γ)
,(5.11) 〈

K1[0,t] , 1
〉

=
1

(1 + γ)(2 + γ)

(
1− (1− t)2+γ

)
.(5.12)

6. Proof of the pricing formula

Fix x ≥ 0 and x̂ = ε
ε̂x where ε = t1/2 and ε̂ = tH = ε2H . We have

c(x̂, t) = E (exp (Xt)− exp x̂)
+

= E (exp (Xε
1)− exp x̂)

+

= E
(

exp
(ε
ε̂
X̂ε

1

)
− exp

(ε
ε̂
x
))+

where we recall

X̂ε
1 ≡

ε̂

ε
Xε

1 =

∫ 1

0

σ(ε̂B̂)ε̂d (ρW + ρB) , X̂ε
0 = 0.

Consider a Cameron-Martin perturbation of X̂ε
1 . That is, for a Cameron-Martin

path h = (h, f) ∈ H1
0 × H1

0 consider a measure change corresponding to a trans-
formation ε̂ (W,B)  ε̂ (W,B) + (h, f) (transforming the Brownian motions to
Brownian motions with drift), we obtain the Girsanov density

Gε = exp

(
−1

ε̂

∫
ḣdW − 1

ε̂

∫
ḟdB − 1

2ε̂2

∫ (
ḣ2 + ḟ2

)
dt

)
.(6.1)
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For further details we refer to [BO11, Theorem 2.4]. Under the new measure, X̂ε
1

can become Ẑε1 , where

Ẑε1 =

∫ 1

0

σ(ε̂B̂ + f̂) [ε̂d (ρW + ρB) + d (ρh+ ρf)] .

Definition 6.1. For fixed x ≥ 0, write (h, f) ∈ Kx if Φ1

(
h, f, f̂

)
= x. Call such

(h, f) admissible for arrival at log-strike x. Call (hx, fx) the cheapest admissible
control, which attains

I (x) = inf
h,f∈H1

0

{
1

2

∫ 1

0

ḣ2dt+
1

2

∫ 1

0

ḟ2dt : Φ1

(
h, f, f̂

)
= x

}
,

where we recall that f̂ = Kḟ and

Φ1(h, f, f̂) =

∫ 1

0

σ(f̂)d (ρh+ ρf) .

A look at (6) reveals that for any Cameron-Martin path (h, f), the perturbed

random variable Ẑε1 admits a stochastic Taylor expansion with respect to ε̂.

Lemma 6.2. Fix (h, f) ∈ Kx and define Ẑε1 accordingly. Then

(6.2) Ẑε1 = x+ ε̂g1 + ε̂2R2,

where g1 is a Gaussian random variable, given explicitly by

(6.3) g1 =

∫ 1

0

{σ(f̂t)d (ρWt + ρBt) + σ′(f̂t)B̂td (ρht + ρft)},

and

(6.4) R2 =

∫ 1

0

σ′
(
f̂t

)
B̂td (ρWt + ρBt) +

+
1

2ε̂2

∫ ε̂

0

∫ 1

0

σ′′
(
ζB̂t + f̂t

)
B̂2
t [ε̂d (ρWt + ρBt) + d (ρht + ρft)] (ε̂− ζ) dζ.

Proof. By a stochastic Taylor expansion for the controlled process Ẑεt with control
(h, f) ∈ Kx as in Definition 6.1 and thanks to σ ∈ C2, we have at t = 1

Ẑε1 =

∫ 1

0

σ(ε̂B̂ + f̂) [ε̂d (ρW + ρB) + d (ρh+ ρf)]

=

∫ 1

0

σ(f̂)d (ρh+ ρf) + ε̂

∫ 1

0

{σ(f̂)d (ρW + ρB) + σ′(f̂)B̂d (ρh+ ρf)}+O
(
ε̂2
)
.

Collecting terms in powers of ε̂ and with g1(ω) as in (6.3), we have

Ẑε1 =

∫ 1

0

σ(f̂)d (ρh+ ρf) + ε̂g1(ω) +O(ε2),

furthermore, since (h, f) ∈ Kx, by the definition of Φ1, it holds that∫ 1

0

σ(f̂)d (ρh+ ρf) = x.

This proves the statement (6.2) and the statement that g1 is Gaussian is immediate
from the form (6.3). �



24 C. BAYER, P. K. FRIZ, A. GULISASHVILI, B. HORVATH, B. STEMPER

Lemma 6.3. We have∫
ḣxdW +

∫
ḟxdB = I ′ (x) g1 (ω) .

Proof. Appendix �

We are now ready to prove the pricing formula from Section 3.

Proof of Theorem 3.2. With a Girsanov factor (all integrals on [0, 1]), evaluated at
the minimizer,

Gε = e−
1
ε̂

∫
ḣdW− 1

ε̂

∫
ḟdB− 1

2ε̂2

∫
(ḣ2+ḟ2)dt

Gε|∗ = e−
I(x)

ε̂2 e−
I′(x)g1(ω)

ε̂

we have, setting Ûε := Ẑε1 − x = ε̂g1 + ε̂2R2

c(x̂, t) = E

[(
exp

(ε
ε̂
Ẑε1

)
− exp

(ε
ε̂
x
))+

Gε|∗
]

= e
ε
ε̂xE

[(
exp

(ε
ε̂
Ûε
)
− 1
)+

Gε|∗
]

= e−
I(x)

ε̂2 e
ε
ε̂xE

[(
exp

(ε
ε̂
Ûε
)
− 1
)+

e−
I′(x)g1(ω)

ε̂

]
= e−

I(x)

ε̂2 e
ε
ε̂xE

[(
exp

(ε
ε̂
Ûε
)
− 1
)
e−

I′(x)
ε̂2

ÛεeI
′(x)R21Ûε≥0

]
.

= e−
I(x)

ε̂2 e
ε
ε̂xJ (ε, x) . �

7. Proof of the moderate deviation expansions

Higher-order moderate deviations expansions in Theorem (3.4) follow from the
pricing formula, provided we can show that the remainder term J (ε, x) is bounded
from above and below by a power in ε. By a large deviation estimate, it is enough
to do so for

Jδ (ε, x) = Eδ

[(
exp

(ε
ε̂
Ûε
)
− 1
)
e−

I′(x)
ε̂2

ÛεeI
′(x)R2

]
with Eδ [ · ] = E[(·)1Ûε≥01Ẑε1∈B(h0,δ)]

where h0 = (hx, fx) ∈ Kx is an optimal control, and B(h0, δ) ⊂ Cλ([0, 1],R2)
denotes a δ ball for a 0 < λ < H around the optimal control h0 in the λ-Hölder
topology

||f ||λ := ||f ||∞ + sup
0≤s≤t≤1

|f(t)− f(s)|
(t− s)λ

, for f ∈ Cλ([0, 1],R2).

By a large deviations estimate

|J(ε, x)− Jδ(ε, x)| ≤ e−d/ε
2

for some d > 0. We refer to [BA88, Lemma 1.32]. Note that J(ε) as defined
in [BA88] contains the factor exp(−a/ε2) with a = I(x). See also [BO15, Section 4,
Step 1] for a straight-forward adaptation of this to a fractional setting. Note that
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R2 depends on both x and ε̂. Nonetheless we know from [BO11, Section A.1] (see
also [BA88]) that there is c2 > 0, uniformly for x, ε̂ small enough

Pδ [|R2| > r] . exp (−c2r)

so that for x, ε̂ small enough (so that I ′ (x) arbitrarily small) Mx,ε = e|I
′(x)R2| has

finite expectation.
Upper bound. Since I ′ (x) ≥ 0 for x small enough,

Jδ (ε, x) ≤ Eδ

[(
exp

(ε
ε̂
Ûε
)
− 1
)
eI

′(x)R2

]
≤

(
exp

(ε
ε̂
δ
)
− 1
)
Eδ

[
eI

′(x)R2

]
≤ C

ε

ε̂
δ

uniformly for x and ε in a neighbourhood of 0+.
Lower bound. For p > 1 with Hölder conjugate p′, remember 1/p+ 1/p′ = 1, we

have

Eδ

[(
exp

(ε
ε̂
Ûε
)
− 1
) 1
p

e
− I

′(x)
ε̂2p

Ûε
]

≤ Eδ

[(
exp

(ε
ε̂
Ûε
)
− 1
) 1
p

e
− I

′(x)
ε̂2p

Ûε
e−

1
p I

′(x)R2e
1
p I

′(x)R2

]
. Eδ

[(
exp

(ε
ε̂
Ûε
)
− 1
)
e−

I′(x)
ε̂2

ÛεeI
′(x)R2

]
︸ ︷︷ ︸

Jδ(ε,x)

1
p

Eδ

[
e−

p′
p I

′(x)R2

] 1
p′
.

For fixed δ, p ∈ (1,∞), uniformly in x small enough

Mx
δ,p := Eδ

[
−e

p′
p I

′(x)R2

] 1
p′
<∞.

On the other hand, by elementary analysis, for suitable non-zero γ = γ (ε) , δ (ε)
polynomial in ε, (

exp
(ε
ε̂
u
)
− 1
) 1
p

e
− I

′(x)
ε̂2p

u ≥ γu
1
p for u ∈ [0, δ],

so that

Eδ

[(
exp

(ε
ε̂
Ûε
)
− 1
) 1
p

e
− I

′(x)
ε̂2p

Ûε
]
≥ γEδ∧δ

[∣∣∣Ûε∣∣∣ 1p ] =: Nx
ε,δ,p.

With Ûε ∼ ε̂g1 (ω), one sees that Nx
ε,δ,p scales as power of ε. All in all,

Nx
ε,δ,p . Jδ (ε, x)

1
p Mx

δ,p

which implies the lower bound. Summarizing, we obtain

Proposition 7.1. There are exponents p1, p2 > 0 and constants C1, C2 > 0 such
that the following inequality holds uniformly for x in a neighborhood of 0:

C1ε
p1 ≤ J(ε, x) ≤ C2ε

p2 .

We next turn to the implied volatility expansion.
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Proof of Theorem 3.5. We will use an asymptotic formula for the dimensionless
implied variance

V 2
t = tσimpl(kt, t)

2, t > 0,

obtained in [GL14]. It follows from the first formula in Remark 7.3 in [GL14] that

(7.1) V 2
t −

k2t
2Lt

= O

(
k2t
L2
t

(kt + | log kt|+ logLt)

)
, t→ 0,

where Lt = − log c(kt, t), t > 0.
We will need the following formula that was established in the proof of Theorem

3.4:

(7.2) Lt =
I(ktβ)

t2H
+O(log

1

t
)

as t → 0, for all x ≥ 0 and β ∈ [0, H). Let us first assume 2H
n+1 ≤ β < 2H

n . Using

the energy expansion, we obtain from (7.2) that

Lt =

n∑
i=2

I(i)(0)

i!
kitiβ−2H +O

(
log

1

t

)
=
I ′′(0)

2
k2t2β−2H

×

[
1 +

n∑
i=3

2I(i)(0)

i!I ′′(0)
ki−2t(i−2)β +O

(
t2H−2β log

1

t

)]
(7.3)

as t→ 0. The second term in the brackets on the right-hand side of (7.3) disappears
if n = 2.

Remark 7.2. Suppose n ≥ 2 and 2H
n+1 ≤ β < 2H

n . Then formula (7.3) is optimal.

Next, suppose n ≥ 2 and 0 < β < 2H
n+1 . In this case, there exists m ≥ n + 1 such

that 2H
m+1 ≤ β < 2H

m , and hence (7.3) holds with m instead of n. However, we can
replace m by n, by making the error term worse. It is not hard to see that the
following formula holds for all n ≥ 2 and 0 < β < 2H

n+1 :

Lt =

n∑
i=2

I(i)(0)

i!
kitiβ−2H +O

(
t(n+1)β−2H

)
=
I ′′(0)

2
k2t2β−2H

×

[
1 +

n∑
i=3

2I(i)(0)

i!I ′′(0)
ki−2t(i−2)β +O

(
t(n−1)β

)]
(7.4)

as t→ 0

Let us continue the proof of Theorem 3.5. Since kt ≈ t
1
2−H+β and Lt ≈ t2β−2H

as t→ 0, (7.1) implies that

(7.5) V 2
t =

k2t1−2H+2β

2Lt
+O

(
t1+2H−2β log

1

t

)
, t→ 0.

Next, using the Taylor formula for the function u 7→ 1
1+u , and setting

u =

n∑
i=3

2I(i)(0)

i!I ′′(0)
ki−2t(i−2)β +O(t2H−2β log

1

t
),
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we obtain from (7.3) that

(2Lt)
−1 =

t2H−2β

k2I ′′(0)

n−2∑
j=0

(−1)juj +O(un−1)


as t→ 0. It follows from 2H

n+1 ≤ β <
2H
n that (n− 1)β ≥ 2H − 2β, and hence

(2Lt)
−1 =

t2H−2β

k2I ′′(0)

n−2∑
j=0

(−1)juj

+O(t4H−4β log
1

t
)

=
t2H−2β

k2I ′′(0)

n−2∑
j=0

(−1)j

(
n∑
i=3

2I(i)(0)

i!I ′′(0)
ki−2t(i−2)β

)j+O(t4H−4β log
1

t
)

as t→ 0. Now, (7.5) gives

V 2
t =

t

I ′′(0)

n−2∑
j=0

(−1)j

(
n∑
i=3

2I(i)(0)

i!I ′′(0)
ki−2t(i−2)β

)j
+O

(
t1+2H−2β log

1

t

)
as t → 0. Finally, by cancelling a factor of t in the previous formula, we obtain
formula (3.1) for 2H

n+1 ≤ β < 2H
n . The proof in the case where β ≤ 2H

n+1 is similar.
Here we take into account Remark 7.2. This completes the proof of Theorem
3.5. �

We will now provide a proof for the general asymptotic formula for the implied
volatility that uses the fourth derivative I(4)(0).

Proof of Corollary 3.12. It follows from Theorem 3.5 with n = 4, (3.3), and (3.5)
that as t→ 0,

σimpl(kt, t)
2 =

1

I ′′(0)
− 2

I ′′(0)2

(
I ′′′(0)

6
ktβ +

I(4)(0)

24
k2t2β

)
+

4

I ′′(0)3

(
I ′′′(0)2

36
k2t2β +

I ′′′(0)I(4)(0)

72
k3t3β +

I(4)(0)2

576
k4t4β

)
+O(φ4,H,β(t))

=
1

I ′′(0)
− I ′′′(0)

3I ′′(0)2
ktβ +

(
I ′′′(0)2

9I ′′(0)3
− I(4)(0)

12I ′′(0)2

)
k2t2β

+O(φ4,H,β(t))

= σ2
0 + 2ρσ′0〈K1, 1〉ktβ +

(
4ρ2(σ′0)2

σ2
0

〈K1, 1〉2 − I(4)(0)σ4
0

12

)
k2t2β

+O(φ4,H,β(t))

= σ2
0

[
1 + 2ρ

σ′0
σ2
0

〈K1, 1〉ktβ +

(
4ρ2(σ′0)2

σ4
0

〈K1, 1〉2 − I(4)(0)σ2
0

12

)
k2t2β

]
+O(φ4,H,β(t)).

Now, it is not hard to see that Corollary 3.12 can be derived from the previous
formula and the expansion

√
1 + h = 1 + 1

2h−
1
4h

2 +O(h3) as h→ 0. �
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Appendix A. Auxiliary lemmas

Lemma A.1. Assume σ (.) ≥ σ > 0 and |ρ| < 1. Then Kx is a Hilbert manifold
near any h := (h, f) ∈ Kx ⊂ H := H1

0 ×H1
0 .

Proof. Similar to Bismut [Bis84, p. 25] we need to show that Dϕ1 (h) is surjective
where ϕ1 (h) : H1 → R with

ϕ1 (h) = ϕ1 (h, f) =

∫ 1

0

σ(f̂)d (ρh+ ρf) .

From

ϕ1 (h + δh′) =

∫ 1

0

σ(f̂ + δf̂ ′)d (ρh+ ρf + δ(ρh′ + ρf ′))

= ϕ1 (h) + δ

∫ 1

0

σ(f̂)d(ρh′ + ρf ′)

+δ

∫ 1

0

σ′(f̂)f̂ ′d (ρh+ ρf) + o (δ) .

the functional derivative Dϕ1 (h) can be computed explicitly. In fact, even the
computation

(Dϕ1 (h) , (h′, 0)) = ρ

∫ 1

0

σ(f̂)dh′

is sufficient to guarantee surjectivity of Dϕ1 (h). �

Lemma A.2. (i) Any optimal control h0 = (hx, fx) ∈ Kx is a critical point of

h = (h, f) 7→ −I
(
ϕh
1

)
+

1

2
‖h‖2H ;

(ii) it holds that ∫ 1

0

ḣxdW +

∫ 1

0

ḟxdB = I ′ (x) g1.

Proof. (Step 1) Write h = (h, f) and

ϕ1 (h) = ϕ1 (h, f) =

∫ 1

0

σ(f̂)d (ρh+ ρf) .

Let h0 = (hx, fx) ∈ Kx an optimal control. Then

KerDϕ1

(
h0
)

= Th0Kx =
{
h ∈ H1 : Dϕ1 (h) = 0

}
.

(This requires Kx to be a Hilbert manifold near h0, as was seen in the last lemma.)
(Step 2) For fixed h ∈ H, define

u (t) := −I
(
ϕh0+th
1

)
+

1

2

∥∥h0 + th
∥∥2
H
≥ 0

with equality at t = 0 (since x = ϕh0

1 and I (x) = 1
2

∥∥h0∥∥2
H

) and non-negativity

for all t because h0 + th is an admissible control for reaching x̃ = ϕh0+th
1 (so that

I (x̃) = inf {...} ≤ 1
2

∥∥h0 + th
∥∥2
H

.)

(Step 3) We note that u̇ (0) = 0 is a consequence of u ∈ C1 near 0, u (0) = 0 and
u ≥ 0. In other words, h0 is a critical point for

H1 3 h 7→ −I
(
ϕh
1

)
+

1

2
‖h‖2H .
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(Step 4) The functional derivative of this map at h0 must hence be zero. In partic-
ular, for all h ∈ H,

0 ≡ −I ′
(
ϕh0

1

) 〈
Dϕ1

(
h0
)
, h
〉

+
〈
h0, h

〉
= −I ′ (x)

〈
Dϕ1

(
h0
)
, h
〉

+
〈
h0, h

〉
.

(Step 5) With h0 = (hx, fx) and h = (h, f)〈
Dϕ1

(
h0
)
, h
〉

=
d

dε

∣∣∣∣
ε=0

∫ 1

0

σ(f̂x + εf̂)d (ρhx + ρfx + ε (ρh+ ρf))

=

∫ 1

0

σ(f̂x)d (ρh+ ρf) +

∫ 1

0

σ′(f̂x)f̂d (ρhx + ρfx)

By continuous extension, replace h = (h, f) by (W,B) above and note that〈
Dϕ1

(
h0
)
, (W,B)

〉
= g1

since indeed g1 =
∫ 1

0
{σ(f̂t)d (ρWt + ρBt) + σ′(f̂t)B̂td (ρht + ρft).∫ 1

0

ḣxdW +

∫ 1

0

ḟxdB = I ′ (x) g1. �
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