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Numerical smoothing and hierarchical approximations for efficient

option pricing and density estimation

Christian Bayer∗ Chiheb Ben Hammouda† Raúl Tempone‡§

Abstract

When approximating the expectation of a functional of a certain stochastic process, the
efficiency and performance of deterministic quadrature methods such as sparse grids, and hier-
archical variance reduction methods such as multilevel Monte Carlo (MLMC), may be highly
deteriorated in different ways by the low regularity of the integrand with respect to the input
parameters. To overcome this issue, a smoothing procedure is needed to uncover the available
regularity and improve the performance of the aforementioned numerical methods. In this work,
we consider cases where we cannot perform an analytic smoothing. Thus, we introduce a novel
numerical smoothing technique based on root-finding combined with a one dimensional integra-
tion with respect to a single well-chosen variable. We prove that under appropriate conditions,
the resulting function of the remaining variables is a highly smooth function, potentially allowing
a higher efficiency of adaptive sparse grids quadrature (ASGQ), in particular when combined
with hierarchical transformations (Brownian bridge and Richardson extrapolation on the weak
error) to treat high dimensionality effectively. Our study is motivated by option pricing problems
and our main focus is on dynamics where a discretization of the asset price is needed. Through
our analysis and numerical experiments, we illustrate the advantage of combining numerical
smoothing with ASGQ compared to the Monte Carlo (MC) approach. Furthermore, we demon-
strate how numerical smoothing significantly reduces the kurtosis at the deep levels of MLMC,
and also improves the strong convergence rate, when using Euler scheme. Due to the complexity
theorem of MLMC, and given a pre-selected tolerance, TOL, this results in an improvement of
the complexity from O

(
TOL−2.5

)
in the standard case to O

(
TOL−2 log(TOL)2

)
. Finally, we

show how our numerical smoothing combined with MLMC enables us also to estimate density
functions, which standard MLMC (without smoothing) fails to achieve.
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1 Introduction

In many applications in quantitative finance, one is usually interested in computing efficiently

(1.1) E [g(X)] ,

where X is a certain stochastic process and g is an observable of the state process X.
Approximating (1.1) is usually challenging due to a combination of two complications:

1. The high dimensionality of the input space, a consequence of i) the time-discretization of
a stochastic differential equation (SDE) describing the dynamics of the asset price, ii) path
dependence of the option price on the whole trajectory of the underlying (i.e., X is a path of
an asset price, not the value at a specific time), or iii) a large number of underlying assets,
and so forth.

2. The low regularity of the payoff function, g, with respect to the input parameters.

There are mainly two classes of methods for approximating (1.1), and in this work, we introduce a
numerical smoothing technique as means to improve the performance of both approaches.

1. The first class of methods relies on deterministic quadrature methods (sparse grids (SG)
quadrature [8], adaptive sparse grids quadrature(ASGQ) [20], quasi Monte Carlo (QMC) [26],
etc, . . . ) to approximate the integral arising from (1.1). Both the high dimension of the input
space and the existence of discontinuities1 in the integrand heavily degrade the performance
of deterministic quadrature formulas. Despite the significant progress in SG methods [8] for
high-dimensional integration of smooth integrands, few works have been carried out to deal
with cases involving integrands with discontinuities.

Some works [17, 18, 19, 6, 27] have addressed similar kinds of problems, characterized by the
presence of discontinuities, but with more emphasis on QMC. We note that [17, 18, 19] focus
more on theoretical aspects of applying QMC in such a setting. On the other hand, here we
focus more on specific practical problems, where we include the adaptivity paradigm. Other
works [6, 27, 5] address the low regularity of the integrand by performing analytic smoothing
based on conditional expectation tools, before applying quadrature methods. For instance,
the authors in [27] imposed very strong assumptions to perform analytic smoothing. In our
work, we do not make such strong assumptions, which is why we use numerical smoothing.

In the first part of this work, we consider cases where analytic smoothing cannot be done, and
we introduce a novel numerical smoothing technique based on i) identifying the exact location
of the discontinuities using root-finding algorithms, ii) employing suitable transformations of
the integration domain, and iii) a pre-integration step with respect to the dimension con-
taining the discontinuity. We prove that under appropriate conditions the resulting function
of the remaining variables is a highly smooth function, thus potentially allowing a higher
efficiency of ASGQ, in particular when it is combined with hierarchical transformations to
effectively treat the high dimensionality. We apply the ASGQ method to solve the integra-
tion problem. Given that ASGQ benefits from anisotropy, the first representation consists

1By discontinuities, we refer to either discontinuities in the gradients (kinks) or discontinuities in the function
(jumps).
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of applying a hierarchical path generation method (PGM) based on Brownian bridge con-
struction, with the aim of reducing the effective dimension. The second technique consists
of applying Richardson extrapolation to reduce the bias (weak error), which in turn reduces
the number of time steps needed at the coarsest level to achieve a certain error tolerance
and consequently the total number of dimensions needed for the integration problem. Our
analysis, along with the numerical experiments, illustrates the advantage of our approach,
which substantially outperforms the Monte Carlo (MC) approach even for high-dimensional
cases and for dynamics where discretization is needed such as the Heston model.

2. The second class of methods relies on MC methods (standard MC, Multilevel Monte Carlo
(MLMC) [16],. . . ) to approximate the expectation in (1.1). Although the rate of convergence
of standard MC is insensitive to both the dimension of the input space and the regularity of
the observable g, it is very slow. On the other hand, MLMC, which is based on a hierarchical
representation of the expectation and has a better speed of convergence than standard MC, is
badly affected by the low regularity of g. These negative effects consist of i) a large variance
and a low strong convergence rate that affect the speed of convergence of the MLMC method
(see [15, 4] and our numerical experiments in Section 6) and ii) a high kurtosis at the deep
levels of MLMC, affecting the robustness of the estimator (see Section 3.2 and our numerical
experiments in Section 6). Furthermore, when g is a Dirac delta function, standard (without
smoothing) MLMC or MC fail to approximate the density functions due to the singularity
present in g, and the resulting infinite variance.

Avikainen in [4], and Giles, Higham, and Mao in [15] used MLMC for such a task without
smoothing and obtained a poor performance for the MLMC estimator. On the other hand,
a second approach was suggested in [11, 14], which used implicit smoothing based on the
use of conditional expectation tools. There are two potential issues with this approach: i) in
general cases, one may have dynamics where it is not easy to derive an analytic expression
for the conditional expectation, and ii) this approach used a higher order scheme, i.e., the
Milstein scheme, to improve the strong order of convergence, and consequently, the speed of
convergence of the MLMC estimator. Such a scheme becomes very computationally expensive
for higher dimensional dynamics. Different non-smooth payoff functions were considered
in [11, 14] (Asian, barrier, digital) but the only considered dynamics were the geometric
Brownian motion (GBM) model. Finally, in [16], the authors suggested a different approach
based on parametric smoothing. In fact, they carefully constructed a regularized version of
the integrand, based on a regularization parameter that depends on a regularity index of the
function of interest, and the tolerance requirement. This approach, despite offering better
performance than the standard (without smoothing) MLMC estimator and a clear setting
for theoretical analysis, has the practical disadvantage in the difficulty of generalizing it to i)
cases where there is no prior knowledge of the degree of smoothness of the function of interest,
and ii) more challenging dynamics than GBM dynamics that were tested and analyzed in [16].

In the second part of this work, we propose an alternative approach, based on numerical
smoothing technique (as explained previously) combined with the MLMC estimator. Com-
pared to the aforementioned works, our approach can be easily applied to cases where one
cannot perform analytic smoothing. Furthermore, compared to the case without smoothing,
we improve the robustness of the MLMC estimator by significantly reducing the kurtosis at the
deep levels, and also improve the variance and the strong convergence rate, and consequently
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the speed of convergence of the MLMC method from O
(
TOL−2.5

)
to O

(
TOL−2 log(TOL)2

)
,

with TOL being a prescribed tolerance. We emphasize that we obtain similar rates of strong
convergence and MLMC complexity as in [11, 14], without the need to use higher order
schemes such as the Milstein scheme. In addition, our approach, compared to that of [16], is
easier to apply for any dynamics and payoff function. Furthermore, our numerical smoothing
idea enables us to approximate density functions using MLMC, a task where standard MLMC
and MC (without smoothing) fail due to infinite variance. We emphasize that estimating den-
sities using the approach in [16] has a mean square error (MSE) behavior similar to kernel
density techniques, which increases exponentially with respect to the dimension of the state,
X (or a vector valued function that depends on the density of X) (see Remark 6.6). However,
thanks to the exact conditional expectation with respect to the Brownian bridge, the error of
our approach is only restricted to the error of the root-finding algorithm for identifying the
exact location of the discontinuity (see Remark 6.4); therefore, it is insensitive to the dimen-
sion of the state X. Furthermore, although we provide pointwise estimates, our approach can
be easily extended to approximate functions using similar ideas introduced in [16, 24] using
interpolation grids. Finally, compared to [11, 14, 16], we add numerical results for the Heston
model, were discretization is needed unlike the GBM dynamics, which is only considered here
as an instructive example to showcase our approach.

We begin by explaining the technique of numerical smoothing and selecting the optimal smoothing
direction in Section 2. In Section 3 we explain the different building blocks, constituting our hierar-
chical methods. We provide in Sections 4.1 and 4.2 an error and work discussion for both methods
that we combine with numerical smoothing, namely ASGQ and MLMC. We also provide in Section
4.3 a smoothness analysis of the resulting integrand after performing the numerical smoothing.
Finally, we show in Sections 5 and 6 the results obtained through the different numerical experi-
ments conducted for the ASGQ and MLMC methods. The reported results illustrate the significant
computational gains achieved by the ASGQ and MLMC methods, both combined with numerical
smoothing, over the MC and the standard (without smoothing) MLMC method, respectively.

2 Problem formulation and setting

We start with the continuous time representation of the problem we are addressing. Then, we
illustrate the spirit of our approach in the time-stepping setting.

In our context, we work mainly with three possible structures of payoff function g: i) g(x) =
max(φ(x), 0); ii) g(x) = 1(φ(x)≥0); iii) g(x) = δ (φ(x) = 0).2

We introduce the notation x−j to denote the vector of length d − 1 denoting all the variables
other than xj in x. Furthermore, we assume for some j ∈ {1, . . . , d}

∂φ

∂xj
(x) > 0, ∀x ∈ R

d (Monotonicity condition)3(2.1)

lim
xj→+∞

φ(x) = lim
xj→+∞

φ(xj ,x−j) = +∞, ∀x−j ∈ R
d−1 or

∂2φ

∂x2j
(x) ≥ 0, ∀x ∈ R

d (Growth condition).

(2.2)

2
1A is the indicator function of the set A, and δ(.) is the Dirac delta function.
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2.1 Continuous time formulation and optimal smoothing direction

In this section, we aim to characterize the optimal smoothing direction through the continuous
time formulation. We recall that the purpose of this work is to approximate E [g(XT )], where g is a

certain low regular payoff function, and X := (X(1), . . . ,X(d)) is described by the following SDE4

(2.3) dX
(i)
t = ai(Xt)dt+

d∑

j=1

bij(Xt)dW
(j)
t .

First, we start by hierarchically representing W. We can write

W (j)(t) =
t

T
W (j)(T ) +B(j)(t) =

t√
T
Zj +B(j)(t),

with Zj ∼ N (0, 1) iid and where {B(j)}dj=1 are the Brownian bridges.
Now, let us denote the optimal smoothing direction by v, which we characterize in the following.

Given the definition of v, we represent Z := (Z1, . . . , Zd) hierarchically as

Z = P0Z︸︷︷︸
One dimensional projection

+ P⊥Z︸︷︷︸
Projection on the complementary

,

where we write5 P0Z := (Z,v)v, and || v ||= 1. We can easily show that Zv := (Z,v) is normal
with E [Zv] = 0 and Var(Zv) = 1 (since v is a deterministic direction). Furthermore, for any
1 ≤ j ≤ d, we can write (with w := Z− Zvv)

(2.4) Zj = Zvvj + (P⊥Z)j = Zvvj + wj .

Going back to the SDE (2.3), we have

dX
(i)
t = ai(Xt)dt+

d∑

j=1

bij(Xt)Zj
dt√
T

+

d∑

j=1

bij(X)dB
(j)
t .

Using (2.4) implies

(2.5) dX
(i)
t =


ai(Xt) +

d∑

j=1

bij(Xt)
Zvvj√
T


 dt+




d∑

j=1

bij(Xt)
wj√
T


 dt+

d∑

j=1

bij(Xt)dB
(j)
t .

If we define Hv (Zv,w) := g (X(T )), then observe that, given the representation of X given by
(2.5) and decomposition (2.4), we can write

E [g (X(T ))] = E [E [Hv (Zv,w) | w]]

Var [g (X(T ))] = E [Var [Hv (Zv,w) | w]] + Var [E [Hv (Zv,w) | w]] .(2.6)

3Without a loss of generality, we show the monotonicity condition for an increasing function. However, the
assumption still holds for a decreasing function, which can be the case when considering a spread option.

4We assume that the {W (j)}dj=1 are uncorrelated and the correlation terms are included in the diffusion terms bj .
5We use (., .) to denote the scalar product operator.
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Therefore, given (2.6), we characterize the optimal smoothing direction as the one that maximizes,
at the final time, the smoothing effect, which is essentially the variance of the component orthogonal
to the discontinuity. This implies that v solves the following equivalent optimization problems

(2.7) max
v∈Rd

||v||=1

E [Var [Hv (Zv,w) | w]] ⇐⇒ min
v∈Rd

||v||=1

Var [E [Hv (Zv,w) | w]] .

Solving the optimization problem (2.7) is a hard task, and the optimal smoothing direction v is
problem dependent. In this work, we aim to determine v heuristically given the structure of the
problem at hand. In the following Section, we provide more insights on how to choose v and also
how to perform the numerical smoothing in the time-stepping setting.

2.2 Motivation and idea of the numerical smoothing

To illustrate our approach, we consider in this section the example of an arithmetic basket call
option under the multi-dimensional GBM model. We note that our approach is easily extended to
any dynamics and payoff functions (see Sections 5 and 6 for the different examples that we test).
We specifically consider the process X to be the discretized d-dimensional GBM model given by

dX
(j)
t = σ(j)X

(j)
t dW

(j)
t , 1 ≤ j ≤ d,

where {W (1), . . . ,W (d)} are correlated Brownian motions with correlations ρij, and {σ(j)}dj=1 are
the volatilities of the different assets.

We also consider the payoff function g given by

(2.8) g(X(T )) = max




d∑

j=1

cjX
(j)(T )−K, 0


 ,

with {cj}dj=1 are weights of the basket, K is the exercise price, and T is the time to maturity.

We denote by (Z
(j)
1 , . . . , Z

(j)
N ) the N Gaussian independent random variables (rdvs) that will

be used to construct the approximate path of the j-th asset X
(j)

, with N being the number of time

steps used in the discretization. We denote ψ(j) : (Z
(j)
1 , . . . , Z

(j)
N ) → (B

(j)
1 , . . . , B

(j)
N ) the mapping of

the Brownian bridge construction and by Φ : (∆t,B) →
(
X

(1)
T , . . . ,X

(d)
T

)
, the mapping consisting

of the time-stepping scheme, where B :=
(
B

(1)
1 , . . . , B

(1)
N , . . . , B

(d)
1 , . . . , B

(d)
N

)
is the non-correlated

Brownian bridge6. Then, we can express the option price as

E [g(X(T ))] ≈ E
[
g
(
X

(1)

T , . . . , X
(d)

T

)]
:= E

[
g(X

∆t
(T ))

]

= E
[
g ◦ Φ

(
B

(1)
1 , . . . , B

(1)
N , . . . , B

(d)
1 , . . . , B

(d)
N

)]

= E
[
g ◦ Φ

(
ψ(1)(Z

(1)
1 , . . . , Z

(1)
N ), . . . , ψ(d)(Z

(d)
1 , . . . , Z

(d)
N )
)]

=

∫

Rd×N

G(z
(1)
1 , . . . , z

(1)
N , . . . , z

(d)
1 , . . . , z

(d)
N ))ρd×N(z)dz

(1)
1 . . . dz

(1)
N . . . z

(d)
1 . . . dz

(d)
N ,(2.9)

where G := g ◦ Φ ◦
(
ψ(1), . . . , ψ(d)

)
, and ρd×N is the multivariate Gaussian density given by

ρd×N(z) =
1

(2π)d×N/2
e−

1
2z

T z.

6Without loss of generality, the correlated Brownian bridge can be obtained through a simple matrix multiplication.

6



In the discrete case, we can show that the numerical approximation of X(j)(T ), using Forward
Euler, satisfies

(2.10) X
(j)

(T ) = X
(j)
0

N−1∏

n=0

[
1 +

σ(j)

√
T
Z

(j)
1 ∆t+ σ(j)∆B(j)

n

]
= X

(j)
0

N−1∏

n=0

f (j)
n (Z

(j)
1 ), 1 ≤ j ≤ d.

Remark 2.1. Note that (2.10) holds even for stochastic volatility models, with the particularity
of σ(j) being non constant that changes value at each time step.

2.2.1 Step 1: Root-finding for determining the discontinuity location

The first step of our approach is to smoothen the problem by solving the root-finding problem in
one dimension after using a sub-optimal linear mapping for the coarsest factors of the Brownian

increments Z1 := (Z
(1)
1 , . . . , Z

(d)
1 )

(2.11) Y = AZ1,

with A being a certain d× d matrix that represents the linear mapping. To make connection with
Section 2.1, the smoothing direction v is then given by the first row of the linear mapping A.

A general choice for A should be in the family of rotations, which is problem dependent choice.
For instance, if we consider the basket call option, then a sufficiently good choice of matrix A
would be a rotation matrix with first row leading to Y1 =

∑d
i=1 Z

(i)
1 up to re-scaling, and with

no constraints for the remaining rows. In practice, we construct A by fixing the first row to be7
1√
d
11×d and the remaining rows are obtained by the Gram-Schmidt procedure.

From (2.10), we have

X
(j)

(T ) = X
(j)
0

N−1∏

n=0

f (j)
n

(
(A−1Y)j

)
= X

(j)
0

N−1∏

n=0

F (j)
n (Y1,Y−1), 1 ≤ j ≤ d,

where, by defining Ainv := A−1, we have

F (j)
n (Y1,Y−1) =

[
1 +

σ(j)∆t√
T

Ainv
j1 Y1 +

σ(j)

√
T

(
d∑

i=2

Ainv
ji Yi

)
∆t+ σ(j)∆B(j)

n

]
.

Given that the irregularity is located at the strike price K (see (2.8))8, and in order to determine
y∗1, we need to solve, for fixed y−1,

K =

d∑

j=1

cjX
(j)
0

N−1∏

n=0

F (j)
n (y∗1(K),y−1),

which implies that the location of the discontinuity for the approximate problem is equivalent to
finding the roots of the polynomial P (y∗1(K)), given by

P (Y ∗
1 (K)) =




d∑

j=1

cjX
(j)
0

N−1∏

n=0

F (j)
n (y∗1)


−K.

We use Newton iteration method to find y∗1, approximation of the discontinuity location, y∗1.

7We denote by 11×d the row vector with dimension d, and where all its coordinates are equal to one.
8One may have different locations depending on the considered payoff function.
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Remark 2.2. Due to using the hierarchical Brownian bridge construction, we suggest that the
coarsest factors of the Brownian increments are the most important, compared to the remaining
factors. Furthermore, the choice of the linear mapping A creates a new hierarchy in terms of
smoothness.

Remark 2.3. Although we consider the case of the basket call option under the multivariate GBM
model to illustrate our numerical smoothing idea, we believe, thanks to our formulation of this step,
that this idea can be extended in a straightforward manner to any kind of payoff and dynamics.

2.2.2 Step 2: Pre-Integration (Conditional expectation)

At this stage, we want to perform the pre-integrating step with respect to the direction where
we performed the root-finding to determine the discontinuity location, namely y∗1. In fact, using
Fubini’s theorem, we have from (2.9)

E [g(X(T ))] ≈ E
[
g
(
X

(1)

T , . . . , X
(d)

T

)]
:= E

[
g(X

∆t
(T ))

]

=

∫

Rd×N

G
(
z
(1)
1 , . . . , z

(1)
N , . . . , z

(d)
1 , . . . , z

(d)
N

)
ρd×N (z)dz

(1)
1 . . . dz

(1)
N . . . z

(d)
1 . . . dz

(d)
N

=

∫

RdN−1

I
(
y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρd−1(y−1)dy−1ρd×(N−1)

(
z
(1)
−1, . . . , z

(d)
−1

)
dz

(1)
−1 . . . dz

(d)
−1

:= E
[
I
(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
(2.12)

≈ E
[
I
(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
,

where

I
(
y−1, z

(1)
−1, . . . , z

(d)
−1

)
=

∫

R

G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρy1(y1)dy1

=

∫ y∗
1

−∞

G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρy1(y1)dy1 +

∫ +∞

y∗
1

G
(
y1,y−1, z

(1)
−1, . . . , z

(d)
−1

)
ρy1(y1)dy1,(2.13)

and I its approximation using Newton iteration and Laguerre quadrature, and given by

(2.14) I(y−1, z
(1)
−1, . . . , z

(d)
−1) :=

Nq∑

k=0

ηkG
(
ζk (y

∗
1) ,y−1, z

(1)
−1, . . . , z

(d)
−1

)
,

where y∗1 is the approximated location of the discontinuity, and Nq is the number of Laguerre
quadrature points ζk ∈ R with ζ0 = y∗1 and corresponding weights ηk

9.
Since G has a discontinuity, computing h in (2.13) should be carried carefully to not deteri-

orate its regularity. We generally do not have a closed form for the function I. Therefore, the
pre-integration step should be performed numerically after solving the root-finding problem, as
explained in Section 2.2.1. In our work, the pre-integration step is performed by summing the
terms corresponding to the uni-variate integrals in each region where G is smooth. To this end,
we use the Gauss-Laguerre quadrature to obtain I, given by (2.14), which is an approximation of
I defined in (2.13).

9Of course, the points ζk have to be chosen in a systematic manner depending on y∗1.
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Both approaches that we use in this work, namely ASGQ and MLMC methods (see Section

3) aim to efficiently approximate the resulting expectation, E
[
I
(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
, defined

in (2.12) and (2.14), and obtained after the numerical smoothing step, as described in Section
2.2. This numerical treatment enables us to uncover the available regularity, and hence achieve a
highly smooth integrand, I, inside the expectation (see Section 4.3 for a smoothness analysis of
I). Therefore, applying a deterministic quadrature technique such as ASGQ, with careful handling
of the high-dimensional integration problem defined by (2.12), becomes an adequate option for
computing the option price, as we will investigate later. On the other hand, we also emphasize that
the numerical smoothing step plays a role of variance reduction that improves the performance of
the MLMC method, as we will illustrate numerically in Section 6.

Remark 2.4. The pre-integration step described previously can be generalized to the case when
there are multiple discontinuities, which can be either due to the payoff structure or because of
using the Richardson extrapolation. In this case, one needs a prior knowledge of those multiple
locations.

Remark 2.5. It is observed that for most considered payoffs, the discontinuities arise along a lower-
dimensional manifold, and the additional computational costs for the zero finding are negligible.

There might be, for a given (y−1, z
(1)
−1, . . . , z

(d)
−1): i) Case 1: no solution, i.e., the integrand is smooth

(best case); ii) Case 2: a unique solution; iii) Case 3: multiple solutions.
Generally, we assume that we are in the first or second case. This assumption is reasonable,

for instance, if we are in the setting described by conditions ((2.1) and (2.2)). Then for each fixed
y−1, the function G either has a simple root y∗1 or is positive for all y1 ∈ R.

In many situations, case 2 (which is thought to include case 1) can be guaranteed by monotonic-
ity (see assumption (2.1)). For instance, in the case of one-dimensional SDEs with z1 representing
the terminal value of the underlying Brownian motion, this can often be seen from the SDE itself.
Specifically, if each increment “dX” is increasing in z1, no matter the value of X, then the solution
XT must be increasing in z1. This is easily seen to be true in examples such as the GBM model
and the Cox-Ingersoll-Ross (CIR) process .

Even in the multi-dimensional case, such monotonicity conditions can hold in specific situations.
For instance, in the case of a basket option under the multivariate GBM, we can choose a linear
combination of the terminal values of the driving Brownian motion, denoted by Y1 in (2.11), such
that the basket is a monotone function of y1 (the coefficients of the linear combination will depend
on the correlations and the weights of the basket). However, in that case, this may actually not
correspond to the optimal “rotation” in terms of optimizing the smoothing effect.

Remark 2.6. If the ASGQ used for computing the integral of I depends on derivatives (or difference
quotients) of I , then we may also need to make sure that derivatives of I are close enough to the
derivatives of I. This may require higher order solution methods for determining y∗1.

3 Hierarchical Integration Methods Combined with Numerical
Smoothing

We recall that our goal is to compute the expectation in (2.9). To perform this task, our approach
can be seen as a two-stage method. In the first stage, we uncover the available regularity in our

9



problem through a numerical smoothing procedure, based on a root-finding algorithm to determine
the location of the discontinuity with respect to the coarsest factors, followed by a pre-integration
step (see Sections 2.2). After performing the first stage of our methodology, we end up with an
integration problem (2.12) of a highly regular integrand (see our smoothness analysis in Section
4.3) that lives in (dN − 1)-dimensional space, which becomes very large due to either i) a large
number of time steps, N , used in the discretization scheme, or ii) a large number of assets, d. The
second stage of our approach consists of efficiently approximating the high-dimensional expectation
(integral) (2.12). To this end, we design mainly two methods , namely i) a hierarchical ASGQ,
using the same construction as in [20, 5], and ii) the MLMC method, as described in [12, 13].

We briefly describe the ASGQ and MLMC methods in our context in Sections 3.1 and 3.2,
respectively. To make effective use of ASGQ, we use a similar idea that was introduced in [5], and we
apply two hierarchical representations to overcome the issue of facing a high-dimensional integrand.
We first apply a hierarchical path generation method, based on Brownian bridge construction, with
the aim of reducing the effective dimension. Then, we apply Richardson extrapolation to reduce
the bias, resulting in considerably reducing the dimension of the integration. We refer to [5] for
more details on how to apply these two hierarchical representations.

3.1 Adaptive sparse grids quadrature (ASGQ)

Using the same notation and construction as in Section 4.1 in [5], the ASGQ estimator used for
approximating (2.12), and using a set of multi-indices I ⊂ N

dN−1 is given by

(3.1) QI
N =

∑

β∈I

∆Qβ
N , with ∆Qβ

N =

(
dN−1∏

i=1

∆i

)
Qβ

N ,

and

∆iQ
β
N :=

{
Qβ

N −Qβ′

N , with β′ = β − ei, if βi > 0,

Qβ
N , otherwise,

where Qβ is the Cartesian quadrature operator with m(βi) points along the ith dimension.
If we denote by Etotal, ASGQ the total error of approximating E [g(X(T ))] using the ASGQ

estimator, QN (defined by (3.1)), then we have a natural error decomposition

Etotal, ASGQ ≤
∣∣∣E [g(X(T ))]− E

[
I(y−1, z

(1)
−1, . . . , z

(d)
−1)
]∣∣∣+

∣∣∣E
[
I(y−1, z

(1)
−1, . . . , z

(d)
−1)
]
− E

[
I(y−1, z

(1)
−1, . . . , z

(d)
−1)
]∣∣∣

︸ ︷︷ ︸
Bias

+
∣∣∣E
[
I(y−1, z

(1)
−1, . . . , z

(d)
−1)
]
−QN

∣∣∣
︸ ︷︷ ︸

Quadrature error

≤ EB(N) + EQ(TOLASGQ, N, d),(3.2)

where EQ is the quadrature error, EB is the bias, TOLASGQ is a user-selected tolerance, and I
and I are given by (2.13) and (2.14). We refer to Section 4.1 for more analysis on the error of the
ASGQ method, and to Section 4.1 in [5] for more details on the construction of the ASGQ method.

3.2 Multilevel Monte Carlo (MLMC)

Let X be a stochastic process and f : Rd → R be a smooth scalar observable. Let us assume
that we want to approximate E [f(X(T ))], but instead of sampling directly from X(T ), we sample
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from X
∆t
(T ), which are rdvs generated by an approximate method with step size ∆t. Let us

assume also that the variates X
∆t
(T ) are generated with an algorithm with weak order, O (∆t),

i.e., E
[
f(X(T ))− f(X

∆t
(T ))

]
= O (∆t). Let µM be the standard Monte Carlo estimator of

E
[
f(X

∆t
(T ))

]
defined by (X

∆t
[m](T ) are independent and distributed as X

∆t
(T ))

µM :=
1

M

M∑

m=1

f(X
∆t

[m](T )).

Consider now the following decomposition of the global error

E [f(X(T ))]− µM =
(
E
[
f(X(T ))− f(X

∆t
(T ))

])
+
(
E
[
f(X

∆t
(T ))

]
− µM

)
.

To achieve the desired accuracy, TOL, it is sufficient to take ∆t = O (TOL) so that the first term
on the right is O (TOL) and, by the Central Limit Theorem, impose M = O

(
TOL−2

)
so that

the statistical error given by the second term on the right is O (TOL) [10]. As a consequence, the
expected total computational work is O

(
TOL−3

)
.

The MLMC estimator, introduced by Giles [12], allows us to reduce the total computational

work up to O
(
TOL−2−max(0, γ−β

α ) log (TOL)2×1{β=γ}

)
, where (α, β, γ) are weak, strong and work

rates respectively. We refer to [9, 13] for the theorem of the computational complexity of the MLMC
estimator for different scenarios.

We construct the MLMC estimator as follows: consider a hierarchy of nested meshes of the
time interval [0, T ], indexed by ℓ = 0, 1, . . . , L. We denote by ∆t0 the step size used at level ℓ = 0.
The size of the subsequent time steps for levels ℓ ≥ 1 are given by ∆tℓ = K−ℓ∆t0, where K>1 is
a given integer constant. In this work, we take K = 2. Hereafter, Xℓ denotes the approximate
process generated using a step size of ∆tℓ. We also denote by Mℓ the number of samples at level
ℓ. Consider now the following telescoping decomposition of E

[
f(XL(T ))

]

E
[
g(XL(T ))

]
= E

[
f(X0(T ))

]
︸ ︷︷ ︸

+
L∑

ℓ=1

E
[
f(Xℓ(T ))− f(Xℓ−1(T ))

]

︸ ︷︷ ︸
Var[f(X0(T ))] ≫ Var[f(Xℓ(T ))− g(Xℓ−1(T ))](ց as ℓր)

M0 ≫Mℓ(ց as ℓր)

Then, by defining





Q̂0 := 1
M0

M0∑
m0=1

f(X0,[m0](T ))

Q̂ℓ :=
1
Mℓ

Mℓ∑
mℓ=1

(
f(Xℓ,[mℓ](T ))− f(Xℓ−1,[mℓ](T ))

)
, 1 ≤ ℓ, L,

we arrive at the unbiased MLMC estimator, Q̂, of E
[
f(XL(T ))

]

(3.3) Q̂ :=
L∑

ℓ=0

Q̂ℓ.

We note that the key point here is that bothXℓ,[mℓ](T ) andXℓ−1,[mℓ](T ) are sampled using different
time discretizations but with the same generated randomness.

11



In our context, our aim is to approximate E
[
I(Y−1,Z

(1)
−1, . . . ,Z

(d)
−1)
]
, defined in (2.12). We

denote by Iℓ and Iℓ the level ℓ approximations of I and I expressed in (2.13) and (2.14) (Iℓ
computed with Nℓ time steps; Nq,ℓ the number of Laguerre quadrature points at level ℓ; and

TOLNewton,ℓ the tolerance of the Newton method at level ℓ). In this case, Q̂ℓ, defined in (3.3), is
given by

Q̂ℓ :=
1

Mℓ

Mℓ∑

mℓ=1

(
Iℓ,[mℓ] − Iℓ−1,[mℓ]

)

.
In the context of option pricing or density estimation of asset price dynamics, the standard

MLMC estimator (without smoothing) fails or does not have the optimal performance and robust-
ness due to the singularity present in the payoff or the delta functions, implying that the MLMC
estimator suffers from i) a high kurtosis at the deep levels, ii) high variance, and iii) low strong
convergence rate. We refer to Section 6 for a numerical illustration of these issues.

To explain the effect of the high kurtosis on the robustness and performance of the MLMC
estimator, let G denote a rdv, and let Gℓ denote the corresponding level ℓ numerical approximation.
We also define Yℓ = Gℓ −Gℓ−1. Then, the standard deviation of the sample variance for the rdv Yℓ
is given by

(3.4) σS2(Yℓ) =
Var[Yℓ]√

M

√
(κ− 1) +

2

M − 1
,

where the kurtosis κ =
E[(Yℓ−E[Yℓ])

4]
(Var[Yℓ])

2 .

Hence, O (κ) samples are required to obtain a reasonable estimate for the variance.
For the setting of the MLMC method, accurate estimates for Vℓ = Var[Yℓ] are required. There-

fore, when the kurtosis of Yℓ is high, it affects both the robustness (no reliable estimates of the
sample variance, Vℓ) and also the performance (too many samples are required to control σS2(Yℓ)

given by (3.4)) of the multilevel estimator.
In this work, we address the aforementioned issues and propose a novel approach that is based

on the MLMC method combined with the numerical smoothing idea, as explained in Sections 2.1
and 2.2. Our approach of numerical smoothing improves the robustness of the MLMC estimator,
by reducing significantly the kurtosis at the deep levels, and also improves the complexity of the
MLMC estimator by reducing the variance and increasing the strong rate of convergence.

4 Error discussion and smoothness analysis

4.1 Error and work discussion for ASGQ combined with numerical smoothing

In this section, we discuss and analyze the different errors that we have in our approach when using
the ASGQ method combined with the numerical smoothing idea. Let us denote by QN the ASGQ
(as defined in Section 3.1) that we use to approximate E [g(X(T ))], then following the notation of
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Section 2.2, we have the following error decomposition

E [g(X(T )]−QN = E [g(X(T ))]− E
[
g(X

∆t
(T ))

]

︸ ︷︷ ︸
Error I: bias or weak error

+ E
[
I
(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
− E

[
I
(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]

︸ ︷︷ ︸
Error II: numerical smoothing error

+ E
[
I
(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
−QN

︸ ︷︷ ︸
Error III: ASGQ error

,(4.1)

Since we use schemes based on forward Euler to simulate asset dynamics then we have

(4.2) Error I = O (∆t) .

Given the details in Section 3.1, we have, for NASGQ quadrature points used by the ASGQ method,

(4.3) Error III = O
(
N−p

ASGQ

)
,

with p := p (N, d) > 0 is related to the degree of regularity of I, defined in (2.12) and (2.13),
in the dN − 1 dimensional space10. We note that the claimed rate of convergence of Error III is
justified by our smoothness analysis in Section 4.3, with the assumption that I converges to I for
sufficiently large Nq (number of quadrature points used in the one dimensional quadrature in the
numerical smoothing procedure) and small tolerance TOLNewton. Furthermore, since we expect that
the regularity index p is monotone decreasing function of the dimension of the problem, which is
dN − 1, then handling the high dimensionality using hierarchical representations such as Brownian
bridge and Richardson extrapolation enable us to work in the region where the smoothness of I is
not deteriorated.

Regarding Error II in (4.1), let us denote by y∗1 the exact location of the discontinuity and by
y∗1 the approximated location of the discontinuity obtained by Newton iteration (without loss of
generality, we assume that y∗1 < y∗1), then we have |y∗1 − y∗1| = TOLNewton and

Error II := E
[
I
(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
− E

[
I
(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]

≤ sup
y−1,z

(1)
−1,...,z

(d)
−1

∣∣∣I
(
y−1, z

(1)
−1, . . . , z

(d)
−1

)
− I

(
y−1, z

(1)
−1, . . . , z

(d)
−1

)∣∣∣

= O
(
N−s

q

)
+O

(
|y∗1 − y∗1|κ+1

)
= O

(
N−s

q

)
+O

(
TOLκ+1

Newton

)
,(4.4)

where κ ≥ 011, Nq is the number of points used by the Laguerre quadrature for the pre-integration
step, and s > 0 is related to the degree of regularity of the integrand, G, with respect to y1.

12

The first error contribution in (4.4) is coming from the one dimensional pre-integration step
using Laguerre quadrature, as explained in Section 2.2.2. Given that G is a highly smooth function
in the parts of the integration domain separated by the discontinuity location, then we have an

10In this case, the weighted mixed derivatives of I are bounded up to order p.
11The value of κ depends on the payoff, for instance, κ = 0 for a digital option and κ = 1 for a call/put payoffs.
12In this case, the derivatives of G with respect to y1 are bounded up to order s.
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exponential convergence of the quadrature, which justifies the term N−s
q . The second error contri-

bution in (4.4) is due to the gap created by integrating the function G over domains separated by
an approximate location of the discontinuity y∗1 instead of y∗1 , which is the exact location.

Given (4.1), (4.2), (4.4) and (4.3), then heuristically, we have as a total error estimate

(4.5) Etotal, ASGQ := E [g(X(T )]−QN = O (∆t) +O
(
N−p

ASGQ

)
+O

(
N−s

q

)
+O

(
TOLκ+1

Newton

)
.

For an optimal performance of our approach, we need to optimize over the parameters present in
(4.5) to achieve a certain error tolerance, TOL, with the least amount of work, by solving (4.6)





min
(NASGQ,Nq,TOLNewton)

WorkASGQ ∝ NASGQ ×Nq ×∆t−1

s.t. Etotal,ASGQ = TOL.
(4.6)

Although we do not solve (4.6) in our experiments in Section 5 (we choose the parameters heuris-
tically such that we achieve a sub-optimal performance of our method), we show in Appendix B
that, for a given error tolerance TOL, and under certain conditions for the regularity parame-
ters s and p (p, s ≫ 1), a lower bound on the computational work the ASGQ method is of order
WorkASGQ = O

(
TOL−1

)
. This is significantly better than the MC method which, in the best

scenario, achieves a computational work of order O
(
TOL−3

)
.

We emphasize that the optimal performance for ASGQ can be deteriorated i) if p and s are
not large enough, or ii) due to the adverse effect of the high dimension that may affect the rates
badly. Remember that when using sparse grids (not adaptive), then error III (given by (4.3) in our

case) will be O
(
N−p

SG (log (NSG))
(d−1)(p+1)

)
(where d is the dimension of the integration domain,

and for functions with bounded mixed derivatives up to order p). In our case, when p ≫ 1, we

claim that error III is of order O
(
N−p

ASGQ

)
, and the deterioration of the rate in practice may be

due to ignoring that log term, implying the curse of dimensionality effect. Furthermore, although
we work in the pre-asymptotic regime (small number of time steps, N), we should emphasize that
the regularity parameter p may be deteriorated when increasing the dimension of the integration
problem by increasing N .

Remark 4.1. Although we carried out our previous analysis without using Richardson extrapo-
lation, we should mention that using this hierarchical representation improves the complexity rate
of ASGQ (as we observed through our numerical experiments in Section 5).

4.2 Error and work discussion for MLMC combined with numerical smoothing

In this section, we discuss the different errors when using the MLMC method combined with the
numerical smoothing idea. Following the notation of Sections 2.2 and 3.2, we have then the following
error decomposition

E [g(X(T )]− Q̂ = E [g(X(T ))]− E
[
g(X

∆tL
(T ))

]

︸ ︷︷ ︸
Error I: bias or weak error

+ E
[
IL

(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
− E

[
IL

(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]

︸ ︷︷ ︸
Error II: numerical smoothing error

+ E
[
IL

(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
− Q̂

︸ ︷︷ ︸
Error III: MLMC statistical error

.(4.7)
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Since we use schemes based on forward Euler to simulate asset dynamics then we have

(4.8) Error I = O (∆tL) .

Error II in (4.7) is given by the same structure as in (4.4). Regarding the structure of Error III, we

have Q̂ as an unbiased estimator of E
[
IL

(
Y−1,Z

(1)
−1, . . . ,Z

(d)
−1

)]
and the only type of error is the

statistical error, equal to
√∑L

ℓ=L0
M−1

ℓ Vℓ, with Vℓ := Var
[
Iℓ − Iℓ−1

]
. We note that the optimal

number of samples of the MLMC estimator is M∗
ℓ ∝

√
Vℓ

Nq,ℓ∆t−1
ℓ

log(TOL−1
Newton,ℓ)

13, and from our

numerical experiments (see Section 6), we observe that Vℓ ∝ ∆tℓ

(
d1 + d2N

−r
q,ℓ + d3TOLNewton,ℓ

)
,

with d1,2,3 being constants and r ≥ 1. Therefore,

VℓNq,ℓ∆t
−1
ℓ log

(
TOL−1

Newton,ℓ

)
=
(
d1Nq,ℓ + d2N

−r+1
q,ℓ + d3TOLNewton,ℓNq,ℓ

)
log
(
TOL−1

Newton,ℓ

)

≈ d1Nq,ℓ log
(
TOL−1

Newton,ℓ

)
,

implying that

(4.9) Error III = O



√√√√

L∑

ℓ=L0

√
Nq,ℓ log

(
TOL−1

Newton,ℓ

)

 .

Given (4.7) , (4.8), (4.4) and (4.9), then we have as a total error estimate

Etotal, MLMC := E [g(X(T )]− Q̂

= O (∆tL) +O



√√√√

L∑

ℓ=L0

√
Nq,ℓ log

(
TOL−1

Newton,ℓ

)

+O

(
N−s

q,L

)
+O

(
TOLκ+1

Newton,L

)
.(4.10)

For an optimal performance of our approach, we need to optimize the parameters present in (4.10)
to achieve a certain error tolerance, TOL, with the least amount of work, by solving (4.11)





min
(L,L0,{Mℓ}L

ℓ=0,Nq,TOLNewton)
WorkMLMC ∝∑L

ℓ=0Mℓ

(
Nq,ℓ∆t

−1
ℓ

)

s.t. Etotal,MLMC = TOL.
(4.11)

In Section 6, we determine the optimal parameters solving (4.11) heuristically.

4.3 Smoothness analysis

For an optimal performance of the ASGQ method, explained in Section 3.1, we require the integrand
to be analytic or highly smooth. In fact, although we face the issue of the “curse of dimensionality”
when increasing either the number of time steps, N , or the number of assets, d, the high smoothness
of the integrand implies a spectral convergence for ASGQ. For this reason, we attempt in this Section
to provide a smoothness analysis of the integrand of interest.

13Note that Nq,ℓ∆t−1
ℓ log

(

TOL−1
Newton,ℓ

)

corresponds to the cost per sample per level in the MLMC estimator.
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4.3.1 Haar construction of Brownian motion revisited

For simplicity, we shall assume throughout that we work on a fixed time interval [0, T ] with T = 1.
With the Haar mother wavelet

ψ(t) :=





1, 0 ≤ t < 1
2 ,

−1, 1
2 ≤ t < 1,

0, else,

we construct the Haar basis of L2 ([0, 1]) by setting

ψ−1(t) := 1[0,1](t); ψn,k(t) := 2n/2ψ (2nt− k) , n ∈ N0, k = 0, . . . , 2n − 1.

We note that suppψn,k = [2−nk, 2−n(k+1)]. Moreover, we define a gridDn :=
{
tnℓ | ℓ = 0, . . . , 2n+1

}

by tnℓ := ℓ
2n+1 . Notice that the Haar functions up to level n are piece-wise constant with points of

discontinuity given by Dn.
Next we define the antiderivatives of the basis functions

Ψ−1(t) :=

∫ t

0

ψ−1(s)ds; Ψn,k(t) :=

∫ t

0

ψn,k(s)ds.

For an i.i.d. set of standard normal rdvs(coefficients) Z−1, Zn,k, n ∈ N0, k = 0, . . . , 2n − 1, we can
then define a standard Brownian motion

Wt := Z−1Ψ−1(t) +

∞∑

n=0

2n−1∑

k=0

Zn,kΨn,k(t),

and the truncated version

WN
t := Z−1Ψ−1(t) +

N∑

n=0

2n−1∑

k=0

Zn,kΨn,k(t).

Note that WN already coincides with W along the grid DN . We define the corresponding incre-
ments for any function or process F by

∆N
ℓ F := F (tNℓ+1)− F (tNℓ ).

4.3.2 Smoothness analysis

For simplicity we consider a one-dimensional SDE for X, given by

(4.12) dXt = b(Xt)dWt, X0 = x ∈ R.

We assume that b is bounded and has bounded derivatives of all orders. Recall that we want to
compute, for some function g : R → R which is not necessarily smooth, E [g (XT )]. We also define
the solution of the Euler scheme along the grid DN by XN

0 := X0 = x and (For convenience, we
also define XN

T := XN
2N

.)

(4.13) XN
ℓ+1 := XN

ℓ + b
(
XN

ℓ

)
∆N

ℓ W.
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Clearly, the rdvXN
ℓ is a deterministic function of the rdvs Z−1 and Z

N := (Zn,k)n=0,...,N, k=0,...2n−1.

Abusing this notation, let us, therefore, write

(4.14) XN
ℓ = XN

ℓ

(
Z−1, Z

N
)

for the appropriate (now deterministic) map XN
ℓ : R×R

2N+1−1 → R. We shall write y := z−1 and
zN for the (deterministic) arguments of the function XN

ℓ .
We offer a note of caution regarding convergence as N → ∞: while the sequence of random

processes XN
· converges to the solution of (4.12) (under the usual assumptions on b): this is not

true in any sense for the deterministic functions.

Define the deterministic function HN : R2N+1−1 → R, given by

(4.15) HN (zN ) := E
[
g
(
XN

T

(
Z−1, z

N
))]

.

Then, HN satisfies Theorem 4.2.

Theorem 4.2. Assume that XN
T , defined by (4.13) and (4.14), satisfies Assumptions A.1 and A.3.

Then, for any p ∈ N and indices n1, . . . , np and k1, . . . , kp (satisfying 0 ≤ kj < 2nj ), the function
HN defined in (4.15), satisfies (with constants independent from nj, kj)

∂pHN

∂zn1,k1 · · · ∂znp,kp

(zN ) = O
(
2−

∑p
j=1 nj/2

)
.

The result also holds (mutatis mutandis) if one or several znj ,kj are replaced by y = z−1 (with nj
set to 0). In particular, HN is a smooth function.

Remark 4.3. We actually expect that HN is analytic, but a formal proof seems subtle. In
particular, note that our proof below relies on successively applying the above trick for enabling

integration by parts: divide by
∂XN

T

∂y and then integrate by parts. This means that the number of
terms (denoted by � below) increases fast as p increases due to the product rule of differentiation.

Hence, the constant in front of the O
(
2−

∑p
j=1 nj/2

)
term will depend on p and increase in p. In that

sense, Theorem 4.2 needs to be understood as an assertion about the anisotropy in the variables
zn,k rather than a statement on the behavior of higher and higher derivatives of HN . In fact, we
can see that in our proof the number of summands increases as p! in p. Therefore, the statement
of the theorem does not already imply analyticity. Of course, this problem is an artifact of our
construction, and there is no reason to assume such a behavior in general.

Sketch of a proof of Theorem 4.2. We apply integration by parts p times as in the proof of Propo-
sition A.7, which shows that we can again replace the mollified payoff function gδ by the true,
non-smooth one g. Moreover, from the procedure, we obtain a formula of the form

∂pHN

∂zn1,k1 · · · ∂znp,kp

(zN ) =

∫

R

g
(
XN

T (y, zN)
)
�

1√
2π
e−

y2

2 dy,

where � represents a long sum of products of various terms. However, notice the following struc-
ture: ignoring derivatives w.r.t. y, each summand contains all derivatives w.r.t. zn1,k1 , . . . , znp,kp

exactly once. (Generally speaking, each summand will be a product of derivatives ofXN
T w.r.t. some

znj ,kjs, possibly with other terms such as polynomials in y and derivatives w.r.t. y included.) As all
other terms are assumed to be of order O(1) by Assumptions A.1 and A.3, this implies the claimed
result by Lemma A.8.
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5 Numerical experiments: Numerical smoothing with ASGQ

In this section, we conduct our experiments for three different examples of payoffs: i) a single digital
option, ii) a single call option, and iii) a 4d-basket call option. The three examples are tested under
two different dynamics for the asset price: i) the discretized GBM model (a didactic example), and
ii) the discretized Heston model, which is a relevant application of our approach.

Remark 5.1. Although, the discretization of the GBM dynamics is not needed for some of the
examples that we consider. We emphasize that we aim to show the efficiency of our proposed
approach for dynamics where discretization is required, such as the Heston model that we test in
this work. On the other hand, examples under the GBM are only considered here as instructive
examples to showcase our approach.

For each example, we estimate the weak error (Bias) of MC, then we conduct a comparison
between MC and ASGQ in terms of errors and computational time. While fixing a sufficiently
small error tolerance in the price estimates, we compare the computational time needed for both
methods to meet the desired error tolerance. For all our numerical experiments, the reported errors
are relative errors, normalized by the reference solutions. Furthermore, we conduct our numerical
experiments for two different scenarios: i) without Richardson extrapolation, and ii) with level 1
of the Richardson extrapolation. We note that in all cases the actual work (runtime) is obtained
using an Intel(R) Xeon(R) CPU E5-268 architecture.

We show the summary of our numerical findings in Table 5.1, which highlights the computational
gains achieved by ASGQ combined with numerical smoothing compared to the MC method to
meet a certain error tolerance, which we set approximately below 1%. We note that the results
are reported using the best configuration with Richardson extrapolation for each method. More
detailed results for each case are provided in Sections 5.1.1, 5.1.2, 5.1.3, 5.2.1, and 5.2.2.

Example Total relative error CPU time (ASGQ/MC) in %

Single digital option (GBM) 0.7% 0.7%

Single call option (GBM) 0.5% 0.8%

4d-Basket call option (GBM) 0.8% 7.4%

Single digital option (Heston) 0.6% 6.2%

Single call option (Heston) 0.5% 17.2%

Table 5.1: Summary of relative errors and computational gains, achieved by ASGQ combined with
numerical smoothing, compared to the MC method, to meet a certain error tolerance. We note that
the ratios are computed for the best configuration with Richardson extrapolation for each method.

5.1 Options under the discretized GBM model

In this section, we are interested in the one dimensional lognormal example where, given a standard
one-dimensional Brownian motion {Wt, 0 ≤ t ≤ T}, the dynamics of the stock are represented by

dXt = σXtdWt.
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5.1.1 Single digital option under the discretized GBM model

The first example that we test is the single digital option under the discretized GBM model, with
parameters : T = 1, σ = 0.4 and S0 = K = 100. The exact reference value of this case is 0.42074.

Figure 5.1 shows a comparison of the numerical complexity for each method under the two
different scenarios. This Figure shows that, to achieve a relative error below 1%, level 1 of the
Richardson extrapolation is the optimal configuration for both the MC and the ASGQ methods.
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Figure 5.1: Digital option under GBM: Comparing the numerical complexity of the different meth-
ods with the different configurations in terms of the level of Richardson extrapolation. CI refers to
95% confidence intervals. a) MC methods. b) ASGQ methods combined with numerical smoothing.

We compare these optimal configurations for each method in Figure 5.2, and we show that
ASGQ combined with numerical smoothing outperforms MC in terms of numerical complexity. In
particular, to achieve a total relative error around 0.7%, ASGQ combined with numerical smoothing
and level 1 of Richardson extrapolation requires approximately 0.7% of the work of MC combined
with level 1 of Richardson extrapolation.
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Figure 5.2: Digital option under GBM: Computational work comparison for the different methods
with the best configurations, as concluded from Figure 5.1. To achieve a relative error below 1%,
the ASGQ method combined with numerical smoothing and level 1 of Richardson extrapolation
significantly outperforms the MC method combined with level 1 of the Richardson extrapolation.
CI refers to 95% confidence intervals.

5.1.2 Single call option under the discretized GBM model

The second example that we test is the single call option under the discretized GBM model, with
parameters: T = 1, σ = 0.4 and S0 = K = 100. The exact reference value of this case is 15.8519.

Figure 5.3 shows a comparison of the numerical complexity for each method under the two sce-
narios. This Figure shows that, to achieve a relative error of 1%, level 1 of Richardson extrapolation
is the optimal configuration for both methods.
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Figure 5.3: Call option under GBM: Comparing the numerical complexity of the different methods
with the different configurations in terms of the level of Richardson extrapolation. CI refers to 95%
confidence intervals. a) MC methods. b) ASGQ methods combined with numerical smoothing.

We compare these optimal configurations for each method in Figure 5.4, and we show that
ASGQ combined with numerical smoothing outperforms MC in terms of numerical complexity. In
particular, to achieve a total relative error around 0.5%, ASGQ combined with numerical smoothing
and level 1 of Richardson extrapolation requires approximately 0.8% of the work of MC combined
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with level 1 of Richardson extrapolation.
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Figure 5.4: Call option under GBM: Computational work comparison for the different methods
with the best configurations, as concluded from Figure 5.3. To achieve a relative error below 1%,
the ASGQ combined with numerical smoothing and level 1 of Richardson extrapolation significantly
outperforms the MC method combined with level 1 of Richardson extrapolation. CI refers to 95%
confidence intervals.

5.1.3 Basket call option under discretized GBM model

The third example that we consider under the GBM model is the multi-dimensional basket call
option. We consider now the four dimensional basket call option with parameters: σ1,2,3,4 = 0.4,

ρ = 0.3, T = 1 r = 0, S1,2,3,4
0 = K = 100, and c1,2,3,4 = 1/4. The reference value for those

parameters is 11.04. Our experiments show that Richardson extrapolation did not improve the
performance of both considered methods, and figure 5.5 shows that ASGQ combined with numerical
smoothing requires approximately 7% of the work of MC to achieve a total relative error of around
0.8%.
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Figure 5.5: 4-dimensional basket call option under GBM: Computational work comparison for the
different methods. To achieve a relative error below 1%, ASGQ combined with numerical smoothing
significantly outperforms the MC method. CI refers to 95% confidence intervals.
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5.2 Options under the discretized Heston model

In this section, we consider testing options under the discretized Heston model [21, 7, 23, 2] whose
dynamics are given by

dSt = µStdt+
√
vtStdW

S
t = µStdt+ ρ

√
vtStdW

v
t +

√
1− ρ2

√
vtStdWt

dvt = κ(θ − vt)dt+ ξ
√
vtdW

v
t ,(5.1)

where St is the price of the asset; vt is the instantaneous variance, given as a CIR process;
(
W S

t ,W
v
t

)

are correlated Wiener processes with correlation ρ; µ is the rate of return of the asset; θ is the mean
variance; κ is the rate at which vt reverts to θ; and ξ is the volatility of the volatility.

Given that the SDE for the asset path is now dependent upon the solution of the volatility
SDE in (5.1), we must simulate the volatility process first and then use it to simulate the asset
path. Therefore, a numerical approximation (discretization) is needed to obtain both paths. To
this end, many simulation schemes have been proposed in the literature. In Appendix C, we give
an overview of the most popular methods in this context. These methods mainly differ in the way
they simulate the volatility process to ensure its positiveness.

Note that we are using ASGQ, which is very sensitive to the smoothness of the integrand.
We found numerically (see section C.4) that using a non-smooth transformation to ensure the
positiveness of the volatility process deteriorates the performance of the ASGQ. We suggest an
alternative way in this work, to guarantee the positiveness of the volatility process, to simulate it
as the sum of Ornstein-Uhlenbeck (OU) or Bessel processes as suggested in Appendix C.3.

In the literature [2, 25, 1], more focus was on designing schemes that i) ensures the positiveness
of the volatility process and ii) has a good weak error behavior. In our setting, an optimal scheme
is defined through two properties: i) the behavior of mixed differences rates, which is an important
feature for an optimal performance of ASGQ (see Appendix C.4.2 for more details), and ii) the
behavior of the weak error in order to apply the Richardson extrapolation when it is needed. We
refer to Appendices C.4.1 and C.4.2 for more details on the comparison of the different schemes,
which suggest that the Heston OU-based scheme, defined in Section C.3, gives the best results
according to our criteria. Therefore, in our numerical experiments, we use this scheme with the
ASGQ method. For the MC method, we use the full truncation scheme, as explained in Section
C.1.

Remark 5.2. Although we compare different simulation schemes for the Heston model, to ensure
a sub-optimal performance of the ASGQ combined with numerical smoothing, we emphasize that
we do not claim that the chosen scheme is the optimal scheme for all parameters constellations,
and a more thorough study on this topic is left as a future work. In this work, we instead aim at
highlighting the advantage of our numerical smoothing idea.

Remark 5.3. Although we only illustrate the numerical results for one set of parameters for the
Heston model, we note that we obtained almost similar results for many other cases.

5.2.1 Digital option under the discretized Heston model

We consider the digital option under the discretized Heston model with parameters: S0 = K = 100,
v0 = 0.04, µ = 0, ρ = −0.9, κ = 1, ξ = 0.1, θ = 0.0025. The reference solution is 0.5145.

Figure 5.6 shows a comparison of the numerical complexity for each method under the two
different scenarios. From this figure, we can conclude that, to achieve a relative error of 1%, level
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1 of Richardson extrapolation is the optimal configuration for the ASGQ method, and without
Richardson extrapolation is the optimal configuration for the MC method.
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Figure 5.6: Digital option under Heston: Comparing the numerical complexity of the different
methods with the different configurations in terms of the level of Richardson extrapolation. CI
refers to 95% confidence intervals. a) MC methods. b) ASGQ methods combined with numerical
smoothing.

We compare these optimal configurations for each method in Figure 5.7, which shows that, to
achieve a total relative error around 0.6%, ASGQ combined with numerical smoothing and level
1 of Richardson extrapolation requires approximately 6% of the work of MC without Richardson
extrapolation.
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Figure 5.7: Digital option under Heston: Computational work comparison for the different methods
with the best configurations, as concluded from Figure 5.6. To achieve a relative error below 1%,
the ASGQ combined with numerical smoothing and level 1 of Richardson extrapolation significantly
outperforms the MC method without the Richardson extrapolation. CI refers to 95% confidence
intervals.
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5.2.2 European call option under the discretized Heston model

We consider the call option under the discretized Heston model with parameters: S0 = K = 100,
v0 = 0.04, µ = 0, ρ = −0.9, κ = 1, ξ = 0.1, θ = 0.0025. The reference solution is 6.332542.

Figure 5.8 shows a comparison of the numerical complexity for each method under the two
different scenarios. From this Figure, we conclude that level 1 of Richardson extrapolation is the
optimal configuration for both the MC and the ASGQ methods.
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Figure 5.8: Call option under Heston: Comparing the numerical complexity of the different methods
with the different configurations in terms of the level of Richardson extrapolation. CI refers to 95%
confidence intervals. a) MC methods. b) ASGQ methods combined with numerical smoothing.

We compare these optimal configurations for each method in Figure 5.9, which shows that ASGQ
outperforms MC in terms of numerical complexity. In particular, to achieve a total relative error
around 0.5%, ASGQ combined with numerical smoothing and level 1 of Richardson extrapolation
requires approximately 17% of the work of MC combined with level 1 of Richardson extrapolation.
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Figure 5.9: Call option under Heston: Computational work comparison for the different methods
with the best configurations, as concluded from Figure 5.8. To achieve a relative error below 1%,
the ASGQ combined with numerical smoothing and level 1 of Richardson extrapolation significantly
outperforms the MC method combined with level 1 of Richardson extrapolation. CI refers to 95%
confidence intervals.
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6 Numerical experiments: Numerical smoothing with MLMC

In this section, we illustrate the advantage of combining the idea of numerical smoothing with
MLMC in the context of quantitative finance. We consider two examples: i) the first one is for
computing the price of a digital option under the GBM and Heston models (see Section 6.1), and ii)
the second example is for approximating the density function of asset prices, for GBM and Heston
models (see Section 6.2). The idea and results of Section 6.1 can be generalized to i) options having
low regularity in the payoff function, or ii) computing distribution functions. On the other hand,
examples in Section 6.2 can be generalized to: i) computing density functions, which involves the
use of Dirac delta functions and whose expectation is hard to approximate using MLMC due to
the infinite variance, and ii) computing Greeks for an option with a non-smooth payoff function.

In this section, we mainly compare the different examples: i) standard MLMC estimator (with-
out smoothing), and ii) MLMC estimator combined with numerical smoothing (as explained in
Section 2.2). We note that the parameters of the numerical smoothing, (TOLNewton, Nq), are cho-
sen heuristically to solve the optimization problem (4.11).

6.1 MLMC for digital options

In this section, we illustrate the advantage of combining our numerical smoothing idea with the
MLMC method to compute option prices for non-smooth payoff function. For illustration, we
consider the price of the digital option, i.e., we want to approximate (K is the strike)

E [g(X)] = E [1X>K ] .(6.1)

When comparing the different methods, we use the Euler-Maruyama scheme for the GBM example,
and for the Heston example we use i) the full truncation scheme (we refer to it by the FT scheme)
(explained in Section C.1), and ii) the Heston OU-based scheme (we refer to it by the OU scheme)
(explained in Section C.3).

6.1.1 Results for the digital option under the GBM model

As an illustration, we choose the digital option under the GBM model with parameters: S0 = K =
100, T = 1, r = 0, and σ = 0.2. We summarize the obtained results for approximating the price
of the option in Table 6.1 and more details are illustrated by Figures 6.1, 6.2, and 6.3. From these
figures and Table 6.1, we can see two main results:

1. A significant reduction of the kurtosis at the finest levels, κL, of the MLMC algorithm when
using numerical smoothing. In fact, the kurtosis is reduced by a factor of 236 (compare the
bottom right plots in Figures 6.2 and 6.3). We stress that this is an important improvement
for the robustness of the MLMC estimator, as explained in Section 3.2 and in [13].

2. Numerical smoothing significantly reduces the variance of the coupled levels in MLMC and
improves the strong convergence rate, β, from β = 1/2 to β = 1 (compare top left plots in
Figures 6.2 and 6.3), resulting in a reduction in the order of MLMC numerical complexity

from O
(
TOL−2.5

)
to O

(
TOL−2 (log(TOL))2

)
(see Figure 6.1). From Figure 6.1, we see also

that MLMC combined with smoothing significantly outperforms standard MLMC in terms
of computational work.
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Method κL α β γ Numerical complexity

MLMC without smoothing 709 1 1/2 1 O
(
TOL−2.5

)

MLMC with numerical smoothing 3 1 1 1 O
(
TOL−2 (log(TOL))2

)

Table 6.1: Digital option under GBM: Summary of the MLMC numerical results. κL is the kurtosis
at the finest level of MLMC, and (α, β, γ) are weak, strong and work rates, respectively. TOL is the
user-selected MLMC tolerance. These results correspond to Figures 6.1, 6.2, and 6.3, respectively.
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Figure 6.1: Digital option under GBM: Comparison of the numerical complexity (expected work,
E [W ], vs tolerance, TOL, in a log-log scale) of the different methods i) standard MLMC, ii) MLMC
with numerical smoothing. MLMC combined with numerical smoothing outperforms MLMC with-
out smoothing, and also achieves a better numerical complexity rate that is O

(
TOL−2 log(TOL)2

)
.

0 2 4 6 8 9
-4

-2

0

2

4

6

0 2 4 6 8 9

-10

-5

0

5

0 2 4 6 8 9
0

5

10

0 2 4 6 8 9

102

103

ku
rt

os
is

Figure 6.2: Digital option under GBM: Convergence plots for MLMC without smoothing, combined
with Euler-Maruyama discretization.
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Figure 6.3: Digital option under GBM: Convergence plots for MLMC with numerical smoothing
(TOLNewton = 10−3, Nq = 8) , combined with Euler-Maruyama discretization.

Remark 6.1. We note that observing a decaying variance of Pℓ in the top left plot in Figure 6.3
is expected since we use a Brownian bridge for path construction, and the integrand only depends
on the terminal value of the Brownian bridge, which has a variance scale of order ∆t. This implies
that, for the particular case of digital option under the GBM dynamics, we expect the numerical
complexity of the MC method with smoothing to be of order O

(
TOL−2

)
. Furthermore, we stress

that this observation only holds for the the GBM dynamics, which we use it here as a didactic
example, and our main interest is to test our approach for dynamics where discretization of the
asset price is needed, such as the Heston dynamics, presented in the following Section.

Remark 6.2. We also emphasize that our approach can be extended in a straightforward manner
to any kind of dynamics, since it is based on the numerical smoothing idea. In the following Section,
we show the advantage of our approach for the Heston model where discretization of the asset price
is needed.

6.1.2 Digital option under the Heston model

As an illustration, we choose the digital option under the Heston model with parameters: T = 1,
S0 = K = 100, v0 = 0.04, µ = 0, ρ = −0.9, κ = 1, ξ = 0.1, θ = 0.0025. We summarize the obtained
results for approximating the price in Table 6.2 and more details are illustrated by Figures 6.4, 6.5,
6.6, and 6.7. From these figures and Table 6.2, we can make the following observations:

1. The significant reduction of the kurtosis at the finest levels, κL, of MLMC when using numer-
ical smoothing (using both OU-based scheme or FT scheme). In fact, the kurtosis is reduced
by a factor greater than 27 (compare the bottom right plots in Figures 6.5, 6.6, and 6.7). We
stress that this is an important improvement for the robustness of the MLMC estimator, as
explained in Section 3.2 and in [13].

2. Numerical smoothing (with OU-based or FT schemes) reduces significantly the variance of
coupled levels in MLMC, and improves the strong rate from β = 1/2 to β = 1 (compare top
left plots in Figures 6.5, 6.6, and 6.7), resulting in reducing the computational work, and the

order of MLMC numerical complexity from O
(
TOL−2.5

)
to O

(
TOL−2 (log(TOL))2

)
(see

Figure 6.4).
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Method κL α β γ Numerical complexity

MLMC without smoothing + FT scheme 245 1 1/2 1 O
(
TOL−2.5

)

MLMC with numerical smoothing + OU-based scheme 7 1 1 1 O
(
TOL−2 log(TOL)2

)

MLMC with numerical smoothing+ FT scheme 9 1 1 1 O
(
TOL−2 log(TOL)2

)

Table 6.2: Digital option under Heston: Summary of the MLMC numerical results. κL is the
kurtosis at the finest level of MLMC, (α, β, γ) are weak, strong and work rates, respectively. TOL
is the user-selected MLMC tolerance. These results correspond to Figures 6.4, 6.5, 6.6, and 6.7.
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Figure 6.4: Digital option under Heston: Comparison of the numerical complexity (expected work,
E [W ], vs tolerance, TOL, in a log-log scale) of the different methods i) standard MLMC (based on
the FT scheme), ii) MLMC with smoothing (based on OU scheme), and iii) MLMC with smoothing
(based on the FT scheme). MLMC combined with numerical smoothing (OU or FT schemes)
outperforms standard MLMC, and also achieves a better numerical complexity rate.
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Figure 6.5: Digital option under Heston: Convergence plots for MLMC without smoothing, com-
bined with the FT scheme (explained in Section C.1).

Remark 6.3. Although we just illustrated the benefit of our approach when combined with MLMC
for computing the digital option price under the GBM (Section 6.1.1) and Heston dynamics (Section
6.1.2), we emphasize that it can be easily extended to any kind of model dynamics and to any low
regular observable, g. For instance, this idea can be applied to approximate distribution functions
involving the heavy-side function as the observable g.
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Figure 6.6: Digital option under Heston: Convergence plots for MLMC with numerical smoothing
(TOLNewton = 10−3, Nq = 32), combined with the OU scheme (explained in Section C.3).
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Figure 6.7: Digital option under Heston: Convergence plots for MLMC with numerical smoothing
(TOLNewton = 10−3, Nq = 32), combined with the FT scheme (explained in Section C.1).

6.2 MLMC for approximating densities and Greeks

In this section, we explore the idea of combining the numerical smoothing with the MLMC method
to compute density functions and Greeks for non-smooth payoff functions. In this context of density
estimation, the numerical smoothing procedure combines root finding algorithm, to determine the
location of the discontinuity, with a conditional expectation, computed exactly, with respect to the
Brownian bridge. We recall that MLMC without any smoothing will fail due to the infinite variance
caused by the singularity of the delta function. The aim in this case is to approximate the density,
ρX(u), for a given stochastic process X, at point u, which is given by

ρX(u) = E [δ(X − u)] ,

where δ is the Dirac delta function.
We can easily show, by conditioning with respect to the Brownian bridge, that

ρX(u) = E [δ(X − u)] =
1√
2π

E

[
exp

(
− (y∗(u))

2
/2
) dy∗
dx

(u)

]

≈ 1√
2π

E

[
exp

(
− (y∗(u))

2
/2
) dy∗
dx

(u)

]
,(6.2)
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where y∗(u) is the exact discontinuity location, and y is the approximated discontinuity location,
obtained by solving numerically: X(T ; y∗(u), z−1) = u, where z is N−1 (2N−1) Gaussian random
vector used for Brownian bridge construction for the GBM dynamics (Heston dynamics), with N
being the number of time steps.

Remark 6.4. Formula (6.2) can be easily generalized to the multidimensional case, with the dif-
ference that one needs to perform a root finding procedure in the d-dimensional space characterized
by the coarsest factor in each dimension. In fact, it easy to show, for u ∈ R

d,14

ρX(u) = E [δ(X− u)] = E [ρd (y
∗(u)) det (J (u))]

≈ E
[
ρd (y

∗(u)) det
(
J (u)

)]
,(6.3)

where J is the Jacobian matrix, with Jij =
∂y∗i
∂xj

, ρd(.) is the multivariate Gaussian density, y∗(u)

is the exact discontinuity location, and y∗ is the approximated discontinuity location, obtained
by solving numerically: X(T ;y∗(u), z−1) = u, where z is the Gaussian random vector used for
Brownian bridges construction.

We should emphasize that the only error in our approach corresponds to the root finding
procedure, and, contrary to approach based on kernel density and parametric regularization (see
Remark 6.6), does not depend exponentially on the dimension of the problem.

6.2.1 Approximating density under the GBM model

As an illustration, we choose to compute the density ρX at u = 1 such that X is a GBM with
parameters: S0, T = 1, r = 0, and σ = 0.2. In this case, as a reference solution, we know that
X(T ) is lognormally distributed with parameters r − σ2/2 and σ.

In Table 6.3, we summarize the obtained results for estimating the density, ρX at u = 1, using
MLMC combined with numerical smoothing, where X follows the GBM dynamics. In Figure 6.9,
we show the detailed convergence results for the MLMC estimator combined with the numerical
smoothing. From this Figure , we can verify that we obtain a strong convergence rate of order one
(see top left plot in Figure 6.9), which results in a numerical complexity of the MLMC estimator

to be of order O
(
TOL−2 (log(TOL))2

)
, as confirmed by figure 6.8.

Method κL α β γ Numerical complexity

GBM + numerical smoothing 5 1 1 1 O
(
TOL−2 (log(TOL))2

)

Table 6.3: Density of GBM: Summary of the MLMC numerical results observed for computing the
density ρX at u = 1, where X follows the GBM dynamics. κL is the kurtosis at the finest levels of
MLMC with ∆tL = T.2−8, and (α, β, γ) are weak, strong and work rates, respectively. TOL is the
user-selected MLMC tolerance. These results correspond to Figures 6.8 and 6.9.

We emphasize that our approach can be extended in a straightforward manner to any kind of
dynamics, since it is based on numerical smoothing based on solving a root-finding problem. In the
following Section, we show the advantage of our approach for the Heston model where discretization
of the asset price is indeed needed.

14For a matrix A, we denote by det (A) its determinant.
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Figure 6.8: Density of GBM: Numerical complexity of MLMC with numerical smoothing for com-
puting the density ρX at u = 1, where X follows the GBM dynamics.
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Figure 6.9: Density of GBM: Convergence plots for MLMC with numerical smoothing
(TOLNewton = 10−2), for computing the density ρX at u = 1, where X follows the GBM dynamics.
Remark 6.1 holds in this particular example as well.

6.2.2 Approximating density under the Heston model

As an illustration, we choose to compute the density ρX at u = 1 such that X is a Heston asset
with parameters: S0 = 1, v0 = 0.04, µ = 0, ρ = −0.9, κ = 1, ξ = 0.1, θ = 0.0025. In this case,
as a reference solution, we obtain the density by applying the Fractional Fourier Transform to the
characteristic function, which is known for this model. In Table 6.4, we summarize the obtained
results, using MLMC combined with numerical smoothing. In Figure 6.11, we show the detailed
convergence results for the MLMC estimator combined with the numerical smoothing, and using
the OU scheme (explained in Section C.3) . From this Figure, we can verify that we obtain a
strong convergence rate of order one (see top left plot in Figure 6.11), which results in a numerical

complexity of the MLMC estimator of order O
(
TOL−2 (log(TOL))2

)
, as confirmed by figure 6.10).

Remark 6.5. Although we have only illustrated the benefit of our approach when combined with
MLMC for computing the density of the asset price under the GBM (Section 6.2.1) and Heston
dynamics (Section 6.2.2), we emphasize that our approach can be easily extended to any kind of
model dynamics. Furthermore, our approach can be easily extended to computing financial Greeks.
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Method κL α β γ Numerical complexity

Heston + OU scheme + numerical smoothing 8 1 1 1 O
(
TOL−2 (log(TOL))2

)

Table 6.4: Density of Heston: Summary of the MLMC numerical results observed for computing
the density ρX at u = 1, where X follows the Heston dynamics. κL is the kurtosis at the finest
levels of MLMC with ∆tL = T.2−8, (α, β, γ) are weak, strong and work rates, respectively. TOL is
the user-selected MLMC tolerance. These results correspond to Figures 6.10 and 6.11.

10-3 10-2 10-1
TOL

1

10

102

103

104

E
[W

]

MLMC+Smoothing

TOL-2  log(TOL)2

Figure 6.10: Density of Heston: Numerical complexity (expected work, E [W ], vs tolerance, TOL)
of MLMC with numerical smoothing and combined with the OU scheme (explained in Section C.3)
for computing for computing the density ρX at u = 1, where X follows the Heston dynamics.
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Figure 6.11: Density of Heston: Convergence plots for MLMC with numerical smoothing
(TOLNewton = 10−2) combined with the OU scheme (explained in Section C.3), for computing
the density ρX at u = 1, where X follows the Heston dynamics.

Remark 6.6. We note that as an alternative to our approach, one may use kernel density estimation
techniques or a similar approach to that in [16]. However, this class of approaches has a pointwise
error that increases exponentially with respect to the dimension of the state vector X (or a vector
valued function that depends on the density of X). For instance, given a discretization error that
should be similar to our approach, and for a d-dimensional problem, a kernel density estimator with
a bandwidth matrix, H = diag(h, . . . , h), the MSE is of order c1M

−1h−d + c2h
4, where M is the

number of samples, and c1 and c2 are constants. On the other hand, thanks to the exact conditional
expectation with respect to the Brownian bridge, the error of our approach is only restricted to the
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error of the root-finding algorithm for finding the location of the discontinuity (see Remark 6.4).
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A Details for the proof of Theorem 4.2 in Section 4.3

We consider a mollified version gδ of g and the corresponding function HN
δ (defined by replacing

g with gδ in (4.15)). Tacitly assuming that we can interchange integration and differentiation, we
have

∂HN
δ (zN)

∂zn,k
= E

[
g′δ
(
XN

T

(
Z−1, z

N
)) ∂XN

T (Z−1, z
N)

∂zn,k

]
.

Multiplying and dividing by
∂XN

T
(Z−1,zN )
∂y and replacing the expectation by an integral w.r.t. the

standard normal density, we obtain

(A.1)
∂HN

δ (zN )

∂zn,k
=

∫

R

∂gδ
(
XN

T (y, zN)
)

∂y

(
∂XN

T

∂y
(y, zN)

)−1
∂XN

T

∂zn,k
(y, zN)

1√
2π
e−

y2

2 dy.

If we are able to do integration by parts, then we can discard the mollification and obtain smooth-
ness of HN since we get

∂HN (zN)

∂zn,k
= −

∫

R

g
(
XN

T (y, zN)
) ∂

∂y

[(
∂XN

T

∂y
(y, zN)

)−1
∂XN

T

∂zn,k
(y, zN )

1√
2π
e−

y2

2

]
dy.

We realize that there is a potential problem looming in the inverse of the derivative w.r.t. y.15

Before we continue, let us introduce the following notation: for sequences of rdvs FN , GN we say
that FN = O(GN ) if there is a rdv C with finite moments of all orders such that for all N we have
|FN | ≤ C |GN | a.s.
Assumption A.1. There are positive rdvs Cp with finite moments of all orders such that

∀N ∈ N, ∀ℓ1, . . . , ℓp ∈ {0, . . . , 2N − 1} :

∣∣∣∣∣
∂pXN

T

∂XN
ℓ1
· · · ∂XN

ℓp

∣∣∣∣∣ ≤ Cp a.s.

In terms of the above notation, which means that
∂pXN

T

∂XN
ℓ1
···∂XN

ℓp

= O(1).

Remark A.2. It is probably difficult to argue that a deterministic constant C may exist.

Assumption A.1 is natural, but now we need to make a much more serious assumption, which
is probably difficult to verify in practice.

Assumption A.3. For any p ∈ N we have that

(
∂XN

T

∂y

(
Z−1, Z

N
))−p

= O(1).

Lemma A.4. We have
∂XN

T

∂zn,k
(Z−1, Z

N) = 2−n/2+1O(1)

in the sense that the O(1) term does not depend on n or k.

15Let us assume that XN
T (y, zN) = cos(y) + zn,k. Then (A.1) is generally not integrable.
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Proof. First let us note that Assumption A.1 implies that
∂XN

T

∂∆N
ℓ
W

= O(1). Indeed, we have

∂XN
T

∂∆N
ℓ W

=
∂XN

T

∂XN
ℓ+1

∂XN
ℓ+1

∂∆N
ℓ W

= O(1)b(XN
ℓ ) = O(1).

Next we need to understand which increments ∆N
ℓ do depend on Zn,k. This is the case iff suppψn,k

has a non-empty intersection with ]tNℓ , t
N
ℓ+1[. Explicitly, this means that

ℓ2−(N−n+1) − 1 < k < (ℓ+ 1)2−(N−n+1).

If we fix N , k, n, this means that the derivative of ∆N
ℓ W w.r.t. Zn,k does not vanish iff

2N−n+1k ≤ ℓ < 2N−n+1(k + 1).

Noting that

(A.2)

∣∣∣∣
∂∆N

ℓ W

∂Zn,k

∣∣∣∣ =
∣∣∆N

ℓ Ψn,k

∣∣ ≤ 2−(N−n/2),

we thus have

(A.3)
∂XN

T

∂zn,k
(Z−1, Z

N ) =

2N−n+1(k+1)−1∑

ℓ=2N−n+1k

∂XN
T

∂∆N
ℓ W

∂∆N
ℓ W

∂Zn,k
= 2N−n+12−(N−n/2)O(1) = 2−n/2+1O(1).

Lemma A.5. In the same sense as in Lemma A.4 we have

∂2XN
T

∂y∂zn,k
(Z−1, Z

N ) = 2−n/2+1O(1).

Proof. ∆N
ℓ W is a linear function in Z−1 and ZN , implying that all mixed derivatives

∂2∆N
ℓ
W

∂Zn,k∂Z−1

vanish. From equation (A.3) we hence see that

∂2XN
T

∂zn,k∂y
(Z−1, Z

N ) =

2N−n+1(k+1)−1∑

ℓ=2N−n+1k

∂2XN
T

∂∆N
ℓ W∂Z−1

∂∆N
ℓ W

∂Zn,k
.

Further,

∂2XN
T

∂∆N
ℓ W∂Z−1

=
2N+1−1∑

j=0

∂2XN
T

∂∆N
ℓ W∂∆N

j W

∂∆N
j W

∂Z−1
.

Note that

(A.4)
∂2XN

T

∂∆N
ℓ W∂∆N

j W
=

∂2XN
T

∂XN
ℓ+1∂X

N
j+1

b(XN
ℓ )b(XN

j ) + 1j<ℓ
∂XN

T

∂XN
ℓ

b′(XN
ℓ )

∂XN
ℓ

∂XN
j+1

b(XN
j ) = O(1)

by Assumption A.1. We also have
∂∆N

j W

∂Z−1
= O(2−N ), implying the statement of the lemma.

Remark A.6. Lemma A.4 and A.5 also hold (mutatis mutandis) for zn,k = y (with n = 0).

Proposition A.7. We have ∂HN (zN )
∂zn,k

= O(2−n/2) in the sense that the constant in front of 2−n/2

does not depend on n or k.
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Proof. We have

∂HN(zN )

∂zn,k
= −

∫

R

g
(
XN

T (y, zN)
) ∂

∂y

[(
∂XN

T

∂y
(y, zN)

)−1
∂XN

T

∂zn,k
(y, zN)

1√
2π
e−

y2

2

]
dy

= −
∫

R

g
(
XN

T (y, zN)
)
[
−
(
∂XN

T

∂y
(y, zN)

)−2
∂2XN

T

∂y2
(y, zN)

∂XN
T

∂zn,k
(y, zN)+

+

(
∂XN

T

∂y
(y, zN)

)−1
∂2XN

T

∂zn,k∂y
(y, zN)− y

(
∂XN

T

∂y
(y, zN )

)−1
∂XN

T

∂zn,k
(y, zN)

]
1√
2π
e−

y2

2 dy.

Notice that when FN (Z−1, Z
N ) = O(c) for some deterministic constant c, then this property is

retained when integrating out one of the rdvs, i.e., we still have
∫

R

FN (y, ZN)
1√
2π
e−

y2

2 dy = O(c).

Hence, Lemma A.4 and Lemma A.5 together with Assumption A.3 (for p = 2) imply that

∂HN(zN )

∂zn,k
= O(2−n/2)

with constants independent of n and k.

For the general case we need

Lemma A.8. For any p ∈ N and indices n1, . . . , np and k1, . . . , kp (satisfying 0 ≤ kj < 2nj ) we
have (with constants independent from nj, kj)

∂pXN
T

∂zn1,k1 · · ·∂znp,kp

(Z1, Z
N) = O

(
2−

∑p
j=1 nj/2

)
.

The result also holds (mutatis mutandis) if one or several znj ,kj are replaced by y = z−1 (with nj
set to 0).

Proof. We start noting that each ∆N
ℓ W is a linear function of (Z−1, Z

N ) implying that all higher

derivatives of ∆N
ℓ W w.r.t. (Z−1, Z

N ) vanish. Hence,

∂pXN
T

∂Zn1,k1 · · · ∂Znp,kp

=

2N−n1+1(k1+1)−1∑

ℓ1=2N−n1+1k1

· · ·
2N−np+1(kp+1)−1∑

ℓp=2N−np+1kp

∂pXN
T

∂∆N
ℓ1
· · · ∂∆N

ℓp
W

∂∆N
ℓ1
W

∂Zn1,k1

· · ·
∂∆N

ℓp
W

∂Znp,kp

.

By a similar argument as in (A.4) we see that

∂pXN
T

∂∆N
ℓ1
· · · ∂∆N

ℓp
W

= O(1).

By (A.2) we see that each summand in the above sum is of order
∏p

j=1 2
−(N−nj/2). The number

of summands in total is
∏p

j=1 2
N−nj+1. Therefore, we obtain the desired result.
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B More details on the error and work discussion of ASGQ method

In this Section, we show that under certain conditions of the regularity parameters p and s, we can
achieve, under the best scenario (p, s ≫ 1), WorkASGQ = O

(
TOL−1

)
. In fact, using the method

of Lagrange multipliers, we can show that

NASGQ ∝ ∆t
p+s−ps

p(ps+p+s) , and Nq ∝ ∆t
p+s−ps

s(ps+p+s) ,

and using the constraint in (4.6), we can easily show that given an error tolerance, TOL, we have

∆t = O
(
TOL

ps+p+s
ps−p−s

)
. Therefore, the optimal work WorkASGQ solution of (4.6) satisfies

WorkASGQ ∝ NASGQ ×Nq ×∆t−1 ∝ ∆t−1∆t
p+s−ps

s(ps+p+s)∆t
p+s−ps

p(ps+p+s)

∝ TOL
−1− 2(p+s)

ps−p−s
− 1

p
− 1

s

= O
(
TOL−1

)
, since p, s≫ 1.

C Schemes to simulate the Heston dynamics

C.1 Fixed Euler scheme

The Forward Euler scheme can be used to simulate the Heston model. To avoid problems with
negative values of the volatility process vt in (5.1), many fixes have been introduced in the literature
(see [25]). In Table C.1, we introduce f1, f2, and f3, which, with different choices, implies different
schemes. Applying forward Euler scheme to discretize (5.1) results in

Ŝt+∆t = Ŝt + µŜt∆t+

√
V̂t∆tŜtZs

V̂t+∆t = f1(V̂t) + κ(θ − f2(V̂t))∆t+ ξ

√
f3(V̂t)∆tZV

V̂t+∆t = f3(V̂t+∆t),

where Zs and ZV are two correlated standard normal rdvs with correlation ρ.

Scheme f1 f2 f3
full truncation scheme V̂t V̂ +

t V̂ +
t

Partial truncation scheme V̂t V̂t V̂ +
t

The reflection scheme
∣∣∣V̂t
∣∣∣
∣∣∣V̂t
∣∣∣
∣∣∣V̂t
∣∣∣

Table C.1: Different variants for Forward Euler scheme for Heston model. V̂ +
t = max(0, V̂t).

[25] suggest that the full truncation scheme is the optimal option in terms of weak error con-
vergence. Therefore, we use this variant of the Forward Euler scheme.

C.2 Moment matching schemes

We consider two moment matching schemes that were suggested by Andersen and Brotherton-
Ratcliffe [3] (we call it the ABR scheme) and by Anderson in [2] (we choose the QE method that
was reported to have the optimal results).
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C.2.1 The ABR method

The ABR method [3] assumes that the variance vt is locally lognormal, and the parameters are
determined such that the first two moments of the discretization coincide with the theoretical
moments, that is

V̂ (t+∆t) =
(
e−κ∆tV̂ (t) +

(
1− e−κ∆t

)
θ
)
e−

1
2Γ(t)

2∆t+Γ(t)∆Wv(t)

Γ(t)2 = ∆t−1 log


1 +

1
2ξ

2κ−1V̂ (t)(1 − e−2κ∆t)
(
e−κ∆tV̂ (t) + (1− e−κ∆t)θ

)2


 .(C.1)

As reported in [25], the scheme, being very easy to implement, is more effective than many of the
Euler variants presented in Section C.1; however, it was reported that it has a non-robust weak
error behavior with respect to the parameters of the model.

C.2.2 The QE method

Using the idea of moment matching, Anderson in [2] suggested a similar discretization to (C.1) but
takes into account the shape of the Heston density function. As reported by [2], the QE scheme has a
negligible bias and a better weak error behavior, at the cost of a more complex implementation than
the ABR scheme in Section C.2.1. Furthermore, the QE algorithm uses two different distributions
to model the volatility depending on the initial value of the volatility. We refer to [2] for more
details about the QE scheme. We note that we obtained similar numerical behavior for both ABR
and QE schemes; therefore, we chose to illustrate the results obtained by the ABR scheme.

C.3 The Heston OU-based scheme

It is well known that any OU process is normally distributed. Thus, the sum of n squared OU
processes is chi-squared distributed with n degrees of freedom, where n ∈ N. Let us define X to be
a n-dimensional vector valued OU process with

(C.2) dXi
t = αXi

tdt+ βdW i
t ,

where W is a n-dimensional vector of independent Brownian motions.
We also define the process Yt as

Yt =
n∑

i=1

(
X i

t

)2
.

Then, using the fact that

d
(
X i

t

)2
= 2X i

tdX
i
t + 2d〈X i〉t =

(
2α
(
X i

t

)2
+ β2

)
dt+ 2βX i

tdW
i
t ,

we can write, using the independence of the Brownian motions,

(C.3) dYt = d

(
n∑

i=1

(
X i

t

)2
)

=

n∑

i=1

d
(
X i

t

)2
=
(
2αYt + nβ2

)
dt+ 2β

n∑

i=1

X i
tdW

i
t .

Furthermore, the process, Zt =
∫ t
0

∑n
i=1X

i
udW

i
u, is a martingale with quadratic variation

〈Z〉t =
∫ t

0

n∑

i=1

(
X i

u

)2
du =

∫ t

0

Yudu.
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Consequently, by Lévy’s characterization theorem, the process, W̃t =
∫ t
0

1√
Yu

∑n
i=1X

i
udW

i
u, is a

Brownian motion.
Finally, we have

dYt =
(
2αYt + nβ2

)
dt+ 2β

√
YtdW̃t

= κ (θ − Yt) dt+ ξ
√
YtdWt,(C.4)

where κ = −2α, θ = −nβ2/2α and ξ = 2β.
Equations (C.2), (C.3), and (C.4) show that in order to simulate the CIR process Yt given by

(C.4), we can simulate the OU process X, with dynamics given by (C.2) such that its parameters
(α, β) are expressed in terms of those of the process Yt, that is

α = −κ
2
, β =

ξ

2
, n =

−2θα

β2
=

4θκ

ξ2
.

Therefore, we can simulate the volatility of the Heston model using a sum of OU processes.

Remark C.1. The previous derivation can can be generalized to cases where n∗ is not an integer by
considering a time-change of a squared Bessel process (see Chapter 6 in [22] for details). A second
way can be used for generalizing the scheme for any non integer, n∗, by writing n∗ = n+p, p ∈ (0, 1),
and then we can compute, for any observable g, E [g(Xn∗)] as

E [g(Xn∗)] ≈ (1− p)E [g(Xn)] + pE [g(Xn+1)] .

C.4 On the choice of the simulation scheme of the Heston model

In this section, we determine the optimal scheme for simulating the Heston model defined in (5.1).
In our setting, an optimal scheme is characterized by two properties: i) the behavior of mixed rates
convergence (see Section C.4.1), which is an important requirement for an optimal performance
of ASGQ, and ii) the behavior of the weak error (see Section C.4.2) in order to apply Richardson
extrapolation when it is needed.

Although we tested many parameters sets, with consistent numerical observations, for illus-
tration purposes, we only show results for one set of parameters given in table C.2. This set
corresponds to n = 1, with n being the number of OU processed used in the Heston OU-based
scheme, defined in Section C.3. Furthermore, this set does not satisfy the Feller condition, that is
4κθ > ξ2.

Parameters Reference solution

S0 = K = 100, v0 = 0.04, µ = 0, ρ = −0.9, κ = 1, ξ = 0.1, θ = ξ2

4κ = 0.0025, (n = 1). 6.332542

Table C.2: Reference solution using Premia with cf call heston method [21]. By n we refer to the
number of OU processes for simulating the volatility process in our approach, as shown in Section
C.3

C.4.1 Comparison in terms of mixed differences rates

As emphasized in [20], one important requirement to achieve the optimal performance of the ASGQ
is to check the error convergence of first and mixed difference operators, as expressed by the error
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contribution (C.5), which is a measure of how much the quadrature error would decrease once ∆Qβ
N

has been added to the ASGQ estimator QI
N (defined in (3.1))

∆Eβ =
∣∣∣QI∪{β}

N −QI
N

∣∣∣ .(C.5)

An optimal behavior for ASGQ is ensured if: i) ∆Eβ decreases exponentially fast with respect
to βi, and ii) ∆Eβ has a product structure so that a faster error decay is observed for second
differences, compared to corresponding first difference operators.

In this section, we compare the three approaches of simulating Heston dynamics, namely: i)
the full truncation scheme (see Section C.1), ii) the ABR scheme (see Section C.2.1), and iii) the
Heston OU-based scheme (see Section C.3). The comparison is done in terms of mixed differences
convergence. In our numerical experiments, we only observe differences of mixed differences rates
related to volatility coordinates, since we use schemes that only differ in the way they simulate
the volatility process. Figure C.1 shows a comparison of first differences rates related to volatility
coordinates for the different schemes. From this figure, we have: i) the full truncation scheme is
the worst scheme, ii) the Heston OU-based scheme and both schemes based on moment matching
(ABR and QE schemes defined in Section C.2) show a very good performance in terms of mixed
rates convergence, i.e., the error contribution, ∆Eβ (defined in (C.5)) decreases exponentially fast
with respect to βi.
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Figure C.1: The rate of error convergence of first order differences |∆Eβ|, defined in (C.5), (β =
1 + kβ) for the example of single call option under the Heston model, with parameters given by
Set 1 in Table C.2, using N = 4 time steps. In this case, we only show the first four dimensions
that are used for the volatility noise (mainly dWv in (5.1)). (a) full truncation scheme as in Section
C.1, (b) ABR scheme as in Section C.2.1, (c) Heston OU-based scheme as in Section C.3.

C.4.2 Comparison in terms of the weak error behavior

In this section, we compare i) the ABR scheme discussed in Section C.2.1, and ii) the Heston
OU-based scheme discussed in Section C.3, in terms of the behavior of the weak convergence.
We select schemes that have a weak error rate of of order one in the pre-asymptotic regime, to
apply efficiently Richardson extrapolation, and thus, we can apply Richardson extrapolation in our
proposed methods. Figure C.2 shows a comparison of the weak error rates for the different schemes.
From this figure, we can check that the Heston OU-based scheme has a better weak convergence
rate that is closer to 1 compared to the ABR scheme with a weak error rate of order 0.7.
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Figure C.2: The convergence of the relative weak error EB(N) defined in 3.2, for the European
call option under the discretized Heston model, for parameters in Table C.2. The upper and lower
bounds are 95% confidence intervals. (a) Heston OU-based scheme, (b) ABR scheme.
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