Obstacle Problems and Optimal Control

Exercise sheet 6

Dr. Amal Alphonse (amal.alphonse@wias-berlin.de)

1. Let $J: X \to \mathbb{R}$ be Gateaux differentiable and convex, and let $K \subset X$ be a non-empty convex subset. If $x^* \in K$ satisfies

$$J'(x^*)(x^* - x) \le 0 \qquad \text{for all } x \in K$$

prove that

$$J(x^*) \leq J(x)$$
 for all $x \in K$.

2. Let U and H be Hilbert spaces. Let $S: U \to H$ be a bounded linear map and $y_d \in H$ be given. Fix $\nu \in \mathbb{R}_+$ and define

$$J(u) := \frac{1}{2} \|S(u) - y_d\|_H^2 + \frac{\nu}{2} \|u\|_U^2.$$

Prove that if $\nu > 0$ or S is injective, then J is strictly convex.

(By Theorem 6.3, this gives uniqueness to the optimal control problem (6.1).)

3. Let $V \stackrel{d}{\hookrightarrow} H \stackrel{c}{\hookrightarrow} V^*$ be a Gelfand triple and define $S \colon V^* \to V$ as the VI solution mapping: y = S(u) solves

$$y \in K : \langle Ay - u, y - v \rangle \le 0 \qquad \forall v \in K$$

under all the usual assumptions guaranteeing well posedness. Suppose that

- (a) $J: V \times H \to \mathbb{R}$ is bounded from below.
- (b) If $y_n \to y$ in $V \times V$ and $u_n \rightharpoonup u$ in H, then

$$J(y, u) \le \liminf_{n \to \infty} J(y_n, u_n).$$

(c) If $\{J(y_n, u_n)\}$ is bounded for a sequence $\{(y_n, u_n)\} \subset V \times U_{ad}$, then $\{u_n\}$ is bounded in H.

Consider the problem

$$\min_{u \in U_{ad}} J(y, u) \quad \text{where} \quad y = S(u) \tag{1}$$

where $U_{ad} \subset H$ is closed, convex and bounded.

Prove that there exists an optimal pair (y^*, u^*) of (1).

4. In this question we will clarify the final part of the proof of Proposition 6.7 where the constraint of belonging to $B_{\gamma}^{H}(u^{*})$ is removed.

Recall

$$\bar{J}(y,u) := J(y,u) + \frac{1}{2} \|u - u^*\|_H^2$$

and that $(\bar{y}_{\epsilon}, \bar{u}_{\epsilon})$ denotes the optimal point of

$$\min_{u \in U_{ad} \cap B_{\gamma}^{H}(u^{*})} \bar{J}(S_{\epsilon}(u), u).$$

- (a) Take an arbitrary $w \in B^H_{\gamma/2}(\bar{u}_{\epsilon})$. Show that $w \in B^H_{\gamma}(u^*)$ if ϵ is sufficiently small.
- (b) Deduce that if ϵ is sufficiently small then \bar{u}_{ϵ} is a local minimiser of

$$\min_{u \in U_{ad}} \bar{J}(S_{\epsilon}(u), u).$$

5. In the situation of the weak C-stationarity result of Proposition 6.9, let J be of tracking type and let

 $U_{ad} = \{ u \in H : u_a \le u \le u_b \text{ a.e. in } \Omega \}$

(such constraints are known as box constraints) for given functions $u_a, u_b \in L^2(\Omega)$. Show that $u^* \in V$ if u_a and u_b also belong to V.

Hint: use the VI (6.11d) relating u^* and p^* .

6. Set $V := H_0^1(\Omega)$. Show that if $g_n \rightharpoonup g$ in V^* and $s_n \rightarrow s$ in V with $s_n \ge 0$ and

$$\langle g_n, v \rangle = 0 \qquad \forall v \in V, \ 0 \le v \le s_n,$$

then

$$\langle g, v \rangle = 0 \qquad \forall v \in V, \ 0 \le v \le s.$$

We will use this in the next lecture.