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1. Define the indicator function of a set C as

IC(x) =

{
0 : x ∈ C

∞ : x ̸∈ C.

Let A ⊂ X be a non-empty, closed and convex subset of a Banach space and define the
function f : X → {0,∞} by f(x) = IA(x). If x ∈ A, show that f is directionally differentiable
at x and characterise its derivative.

2. Let K ⊂ V be closed and convex in a Hilbert space V and take u ∈ K.

(a) Prove that if µ ∈ V ∗ and u ∈ K satisfy

⟨µ, v − u⟩ ≤ 0 ∀v ∈ K

then µ ∈ TK(u)◦.

(b) Given λ ∈ V ∗, prove that

{w ∈ K − u : ⟨λ,w⟩ = 0}◦ = (RK(u) ∩ λ⊥)◦.

3. Let now K be a closed convex cone and define

lin(u) = {tu : t ∈ R}

to be the linear space generated by u.

Show that RK(u) = K + lin(u).

4. Prove that cap({a}) > 0 if a ∈ Ω ⊂ R.

5. Assuming sufficient regularity of the data and solution, justify heuristically why the critical
cone associated to the obstacle problem

KK(u, λ) = {z ∈ H1
0 (Ω) : z ≤ 0 q.e. on {u = ψ} and ⟨Au− f, z⟩ = 0}

becomes
KK(u, λ) = {z ∈ H1

0 (Ω) : z = 0 q.e. on {u = ψ}}

if we have strict complementarity of the obstacle problem in the sense that the biactive set
is empty.

6. Let u : Ω → R and un : Ω → R (for n ≥ 1) be quasi-continuous functions on a bounded
Lipschitz domain Ω ⊂ Rd. We say that un converges in capacity to u if

cap({|un − u| ≥ ϵ}) → 0 as n→ ∞

holds for every ϵ > 0.

(a) If un → u in H1
0 (Ω), prove that un converges to u in capacity.

Hint: we have the identity

cap(O) = inf
{
∥∇v∥2L2(Ω) : v ∈ H1

0 (Ω) and v ≥ 1 q.e. on O
}
.

(b) If Ω ⊂ R (i.e. d = 1) and un ⇀ u in H1
0 (Ω), prove that un converges to u in capacity.

That is, in 1D, weak convergence is sufficient for convergence in capacity.
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Convergence in capacity is useful because it allows us to pass to the limit in statements such
as

fn ∈ {v ∈ H1
0 (Ω) : v ≥ 0 q.e. on Ω and v = 0 q.e. on {wn = 0}}◦.

If fn ⇀ f in H−1(Ω) and wn → w in capacity with wn, w ∈ H1(Ω), then the above implies

f ∈ {v ∈ H1
0 (Ω) : v ≥ 0 q.e. on Ω and v = 0 q.e. on {w = 0}}◦.

7. Recall again the penalised equation with mϵ chosen as the C1 smoothing presented in the
lectures:

Auϵ +
1

ϵ
mϵ(uϵ − ψ) = f.

Let us set V := H1
0 (Ω) and take ψ ∈ V . If we define Sϵ : V

∗ → V as the solution mapping
f 7→ uϵ, the derivative αϵ := S′

ϵ(f)(d) satisfies

Aαϵ +
1

ϵ
m′

ϵ(uϵ − ψ)αϵ = d.

By testing with αϵ, we can show that for a subsequence (that we relabel), αϵ ⇀ α in V to
some element α.

(a) We have already shown that Sϵ(f) → S(f) in V where S is the solution mapping of
the associated VI.

It is natural to wonder if S′
ϵ(f)(d) converges (weakly or strongly) to S′(f)(d), at least

for a subsequence. Explain why this cannot be true in general.

(b) Show that

⟨Aαϵ − d, v⟩ = 0 ∀v ∈ V : v = 0 a.e. on {(uϵ − ψ)− = 0}.

(c) Deduce that
⟨Aα− d, v⟩ = 0 ∀v ∈ V : v = 0 q.e. on {u = ψ}.

This partially characterises the limit of the derivatives (and can be used to fully char-
acterise the limit as a solution map associated to a PDE with measure data).

Hint: use the comment at the end of the previous question.
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