Obstacle Problems and Optimal Control

Exercise sheet 4

Dr. Amal Alphonse (amal.alphonse@wias-berlin.de)

1. Let u be a solution of the obstacle problem such that the strong complementarity system

$$\begin{split} \lambda &:= f - Au, \\ \lambda &\geq 0, \\ \lambda(u - \psi) &= 0, \\ u &\leq \psi, \end{split}$$

holds. Show that the complementarity condition above is equivalent to

$$\lambda = (\lambda + \gamma(u - \psi))^+$$
 for any constant $\gamma > 0$.

2. Let $T: V \to V^*$ be a bounded linear and coercive operator. Prove that

$$u_n \rightharpoonup u \text{ in } V \implies \langle Tu, u \rangle \leq \liminf_{n \to \infty} \langle Tu_n, u_n \rangle.$$

- **3**. Let $T: X \to X^*$ be hemicontinuous and monotone. Prove that it is type (M).
- 4. In the setting of §3.7.2 with $V := H_0^1(\Omega)$, prove that the map $m_{\epsilon} \colon V \to V^*$ defined by

$$m_{\epsilon}(u) = u^+$$

is hemicontinuous and satisfies the conditions

$$z_{\epsilon} \rightarrow z \text{ in } V \text{ and } m_{\epsilon}(z_{\epsilon}) \rightarrow 0 \text{ in } V^* \implies z \leq 0,$$

 $v \mapsto -\Delta v + \frac{1}{\epsilon} m_{\epsilon}(v - \psi) \text{ is coercive.}$

Note that we have the interpretation

$$\langle m_{\epsilon}(u), v \rangle_{V^*, V} = \int_{\Omega} u^+ v.$$

5. Recall the penalised PDE (3.16):

$$Au_{\epsilon} + \frac{1}{\epsilon}m_{\epsilon}(u_{\epsilon} - \psi) = f.$$

Suppose $\psi \in H_0^1(\Omega)$. Make the substitution $\hat{u}_{\epsilon} := u_{\epsilon} - \psi$ and study well posedness of the resulting PDE. What is the advantage of this approach in comparison to what was presented in the lecture?

6. Let *H* be a Hilbert space and let a non-empty set $K \subset H$ satisfy

$$K = \{h \in H : (h, g)_H \ge 0 \text{ for all } g \in K\}.$$

- (a) Show that K is closed and convex and verify that $0 \in K$.
- (b) A *partial order* on an arbitrary set X is a relation \leq which satisfies the following for all $x, y, z \in X$:
 - $x \le x$ (reflexivity)
 - $x \leq y$ and $y \leq x$ implies x = y (anti-symmetricity)
 - $x \leq y$ and $y \leq z$ implies $x \leq z$ (transitivity).

Show that the relation \leq defined by

$$h_1 \leq h_2$$
 if and only if $h_2 - h_1 \in K$

induces a partial ordering in the space H.

(c) We write

$$H_+ := K$$

and $h^+ := P_{H_+}h$ to denote the orthogonal projection of $h \in H$ onto H_+ and define $h^- := P_{H_+}(-h)$. We have the decomposition

$$h = h^+ - h^-.$$

Prove that

$$(h^+, h^-) = 0.$$

(d) Define

$$C := \{ f \in H^* : \langle f, u \rangle \ge 0 \text{ for all } u \in K \}.$$

Show that the relation \leq defined by

$$f_1 \leq f_2$$
 if and only if $f_2 - f_1 \in C$

induces a partial ordering in the dual space H^* .

- (e) In the case $H = L^2(\Omega)$, give an explicit example of K.
- 7. Let $F: X \to Y$ be a map between Banach spaces.
 - (a) If ${\cal F}$ is directionally differentiable and Lipschitz, prove that it is Hadamard differentiable.
 - (b) If F is Hadamard differentiable, prove that $F'(x) \colon X \to Y$ is continuous.
 - (c) If F is Hadamard differentiable, prove that the limit

$$\lim_{t \to 0^+} \frac{F(x+th) - F(x)}{t} = F'(x)(h)$$

is uniform in h whenever $h \in C$ belongs to a compact set C.