Obstacle Problems and Optimal Control

Exercise sheet 4

Dr. Amal Alphonse (amal.alphonse@wias-berlin.de)

1. Take $V=H_{0}^{1}(\Omega)$. We said that A is T-monotone if it satisfies

$$
\left\langle A u^{-}, u^{+}\right\rangle \leq 0 \quad \forall u \in V
$$

(recall that $u=u^{+}-u^{-}$). Show that this is equivalent to

$$
\left\langle A u^{+}, u^{-}\right\rangle \leq 0 \quad \forall u \in V .
$$

2. Let $T: V \rightarrow V^{*}$ be a bounded linear and coercive operator. Prove that

$$
u_{n} \rightharpoonup u \text { in } V \Longrightarrow\langle T u, u\rangle \leq \liminf _{n \rightarrow \infty}\left\langle T u_{n}, u_{n}\right\rangle
$$

3. Set $V:=H_{0}^{1}(\Omega)$ and let $u=S(f, \psi)$. If $\{u=\psi\}=\emptyset$, what does this say about u (at least on an intuitive level)?
4. Let $T: X \rightarrow X^{*}$ be hemicontinuous and monotone. Prove that it is type (M).
5. Set $V:=H_{0}^{1}(\Omega)$. Prove that the map $m_{\rho}: V \rightarrow V^{*}$ defined by $m_{\rho}(u)=u^{+}$is monotone, hemicontinuous and satisfies the conditions

$$
\begin{aligned}
& z_{\rho} \rightharpoonup z \text { in } V \text { and } m_{\rho}\left(z_{\rho}\right) \rightarrow 0 \text { in } V^{*} \Longrightarrow z \leq 0 \\
& v \mapsto-\Delta v+\frac{1}{\rho} m_{\rho}(v-\psi) \text { is coercive. }
\end{aligned}
$$

Note that we have the interpretation

$$
\left\langle m_{\rho}(u), v\right\rangle_{V^{*}, V}=\int_{\Omega} u^{+} v
$$

6. Recall the penalised PDE (3.16):

$$
A u_{\rho}+\frac{1}{\rho} m_{\rho}\left(u_{\rho}-\psi\right)=f
$$

Suppose $\psi \in H_{0}^{1}(\Omega)$. Make the substitution $\hat{u}_{\rho}:=u_{\rho}-\psi$ and study well posedness of the resulting PDE. What is the advantage of this approach in comparison to what was presented in the lecture?
7. Let H be a Hilbert space and let a non-empty set $K \subset H$ satisfy

$$
K=\left\{h \in H:(h, g)_{H} \geq 0 \text { for all } g \in K\right\}
$$

(a) Show that K is closed and convex and verify that $0 \in K$.
(b) A partial order on an arbitrary set X is a relation \leq which satisfies the following for all $x, y, z \in X$:

- $x \leq x$ (reflexivity)
- $x \leq y$ and $y \leq x$ implies $x=y$ (anti-symmetricity)
- $x \leq y$ and $y \leq z$ implies $x \leq z$ (transitivity).

Show that the relation \leq defined by

$$
h_{1} \leq h_{2} \text { if and only if } h_{2}-h_{1} \in K
$$

induces a partial ordering in the space H.
(c) We write

$$
H_{+}:=K
$$

and $h^{+}:=P_{H_{+}} h$ to denote the orthogonal projection of $h \in H$ onto H_{+}and define $h^{-}:=P_{H_{+}}(-h)$. We have the decomposition

$$
h=h^{+}-h^{-} .
$$

Prove that

$$
\left(h^{+}, h^{-}\right)=0 .
$$

(d) Define

$$
C:=\left\{f \in H^{*}:\langle f, u\rangle \geq 0 \text { for all } u \in K\right\} .
$$

Show that the relation \leq defined by

$$
f_{1} \leq f_{2} \text { if and only if } f_{2}-f_{1} \in C
$$

induces a partial ordering in the dual space H^{*}.
(e) In the case $H=L^{2}(\Omega)$, give an explicit example of K.

