Obstacle Problems and Optimal Control Exercise sheet 3

Dr. Amal Alphonse (amal.alphonse@wias-berlin.de)

We use $V := H_0^1(\Omega)$ throughout.

- **1**. Define $M(u) := u^+$.
 - (a) Show that $M \colon L^2(\Omega) \to L^2(\Omega)$ is Lipschitz.
 - (b) If $u_n \rightharpoonup u$ in V, prove that $u_n^+ \rightharpoonup u^+$ in V, i.e., that M is weakly sequentially continuous in V.

Hint: it may be useful to note that

$$\partial_{x_i} u^+ = \begin{cases} \partial_{x_i} u & : \text{ in } \{u > 0\} \\ 0 & : \text{ in } \{u \le 0\}. \end{cases}$$

2. We said that A is T-monotone if it satisfies

$$\langle Au^-, u^+ \rangle \le 0 \qquad \forall u \in V$$

(recall that $u = u^+ - u^-$). Show that this is equivalent to

$$\langle Au^+, u^- \rangle \le 0 \qquad \forall u \in V.$$

3. Recall the solution map $S: V^* \times V \to V$ defined by

$$S(f,\psi) = u$$

where u solves

$$u \in V, \ u \le \psi : \langle Au - f, u - v \rangle \le 0 \quad \forall v \in V, \ v \le \psi$$

and take $A = -\Delta$ to be the Laplacian.

Let $u_0 \in V$ be given. Define the sequence of elements

$$u_n = S(f, u_{n-1}) \quad \text{for } n \ge 1.$$

- (a) What can you say about $\{u_n\}$?
- (b) We say that $x \in V$ is a subsolution of a map $T: V \to V$ if $x \leq T(x)$. Suppose now that u_0 is a subsolution of $S(f, \cdot)$. What does this imply about $\{u_n\}$?

We will use similar kinds of iterative sequences later on.

- 4. Let $V \subset H \subset V^*$ be a Gelfand triple where $V = H_0^1(\Omega)$ and $H = L^2(\Omega)$.
 - (a) Suppose $f, g \in V^*$ and

$$g \leq f \leq g$$
 in V^* .

Using the definition of the dual space inequality, prove that f = g.

(b) Suppose we have $u, v, f \in V^*$ such that

$$u \le f \le v \quad \text{in } V^*.$$

If $u, v \in H$, prove that $f \in H$ too.

5. Prove the following, which was used in the last lecture.

(a) If $u \in V$ solves

$$u \le \psi : \int_{\Omega} \nabla u \cdot \nabla (u - v) \le \int_{\Omega} f(u - v) \quad \forall v \in V, \ v \le \psi,$$

then for $\varphi\in C^\infty_c(\Omega)$ with $\varphi\geq 0,\, u$ also solves

$$u \le \psi : \int_{\Omega} \nabla u \cdot \nabla (\varphi(u-v)) \le \int_{\Omega} f\varphi(u-v) \quad \forall v \in V, \ v \le \psi.$$

Hint: consider the two cases $\varphi \not\equiv 0$ and $\varphi \equiv 0$.

(b) Taking further $\varphi \leq 1$, the function $\tilde{u} := \varphi u$ satisfies

$$\tilde{u} \leq \varphi \psi : \int_{\Omega} \nabla \tilde{u} \cdot \nabla (\tilde{u} - v) \leq \int_{\Omega} \tilde{f}(\tilde{u} - v) \quad \forall v \in V, \ v \leq \varphi \psi$$

with source term

$$\tilde{f} = \varphi f - u\Delta\varphi - 2\nabla u\nabla\varphi.$$