Obstacle Problems and Optimal Control

Exercise sheet 1

Dr. Amal Alphonse (amal.alphonse@wias-berlin.de)

1. On $\Omega=(1, \infty)$, consider the function

$$
u(x)=\frac{1}{x}
$$

For which $p \geq 1$ does $u \in L^{p}(\Omega)$?
2. Let $x^{*} \in \Omega$ be given. If $k>0$, prove that there is no $g \in L^{2}(\Omega)$ such that

$$
\int_{\Omega} g \varphi=k \varphi\left(x^{*}\right) \quad \forall \varphi \in C_{c}^{\infty}(\Omega)
$$

3. Consider on the domain $\Omega=(0,2)$ the two functions

$$
u(x)= \begin{cases}x & : x \in(0,1) \\ 1 & : x \in[1,2)\end{cases}
$$

and

$$
v(x)= \begin{cases}x & : x \in(0,1) \\ 10 & : x \in[1,2)\end{cases}
$$

(a) What is the best L^{p} space that u belongs to? That is, what is the largest p such that $u \in L^{p}(\Omega) ?$
(b) Same question for v.
(c) Are u and v weakly differentiable? Prove your claims.
4. On $\Omega=(0,1)$, consider the function $u(x)=\sqrt{x}$.
(a) Show that $u \in L^{2}(\Omega)$.
(b) In class, we defined the $\alpha^{\text {th }}$-weak derivative of a function w in $L^{2}(\Omega)$ as the element $\partial^{\alpha} w \in L^{2}(\Omega)$ satisfying

$$
\int_{\Omega} w(x) \partial^{\alpha} \varphi(x)=(-1)^{|\alpha|} \int_{\Omega} \partial^{\alpha} w(x) \varphi(x) \quad \forall \varphi \in C_{c}^{\infty}(\Omega)
$$

In fact, we do not need to insist on $L^{2}(\Omega)$ for w and $\partial^{\alpha} w$; instead we can just replace all instances of $L^{2}(\Omega)$ with $L^{1}(\Omega)$ in the definition because the integrals still make sense. In this way, we can think about weak derivatives of $L^{1}(\Omega)$ functions.
With this in mind, what (if any) Sobolev space does u belong to?
5. For some given number c and a function $u: \mathbb{R} \rightarrow \mathbb{R}$ which is defined at the point c, define the Dirac delta functional

$$
\delta_{c}(u):=u(c)
$$

With $\Omega=(0,1)$, prove that $\delta_{c} \in H^{-1}(\Omega)$.
Hint: in 1 D , we have that $H^{1}(\Omega) \hookrightarrow C^{0}(\bar{\Omega})$ is a continuous embedding.
6. Show that the norms given by the expressions

$$
\|u\|_{H^{1}(\Omega)}^{2}=\int_{\Omega}|u|^{2}+|\nabla u|^{2}
$$

and

$$
\|u\|_{H_{0}^{1}(\Omega)}^{2}=\int_{\Omega}|\nabla u|^{2}
$$

are equivalent on $H_{0}^{1}(\Omega)$.
Can you think of an example demonstrating why they cannot be equivalent on $H^{1}(\Omega)$?
7. Define $a: H^{1}(\Omega) \times H^{1}(\Omega) \rightarrow \mathbb{R}$ by $a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v$.

Explain if this is a bounded and/or coercive bilinear form and if so, derive the boundedness and/or coercivity constants.
8. Define the space

$$
X:=\left\{u \in H^{1}(\Omega): \int_{\Omega} u=0\right\} .
$$

Prove that there exists a constant C such that

$$
\|u\|_{L^{2}(\Omega)} \leq C\|\nabla u\|_{L^{2}(\Omega)} \quad \forall u \in X
$$

Hence we have the Poincaré inequality for functions in X too.
Hint: argue by contradiction and use that
(a) $H^{1}(\Omega) \stackrel{c}{\hookrightarrow} L^{2}(\Omega)$ is a compact embedding
(b) if $\nabla u=0$ a.e., u is constant.
9. Prove the following statement (as claimed in the lecture): let $a: H \times H \rightarrow \mathbb{R}$ be a bounded bilinear form, then there exists a unique bounded linear operator $A: H \rightarrow H$ such that

$$
a(u, v)=(A u, v) \quad \forall u, v \in H
$$

10. Let $f \in L^{2}(\Omega)$. Consider the Dirichlet problem

$$
\begin{aligned}
&-\Delta u=f \text { in } \Omega \\
& u=0 \\
& \text { on } \partial \Omega
\end{aligned}
$$

Using Green's first identity

$$
\int_{\Omega}(\Delta \eta) \varphi=-\int_{\Omega} \nabla \eta \cdot \nabla \varphi+\int_{\partial \Omega} \varphi \nabla \eta \cdot \nu
$$

derive the weak form and argue well posedness by applying Lax-Milgram (state what the bilinear form and the linear functional are, etc.).

