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Abstract. Ngô Bao Châu has been awarded a Fields Medal for his proof of the funda-
mental lemma. I shall try to describe the role of the fundamental lemma in the theory of
automorphic forms. I hope that this will make it clear why the result will be a cornerstone
of the subject. I will also try to give some sense of Ngô’s proof. It is a profound and
beautiful argument, built on insights mathematicians have contributed for over thirty
years.
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The formal statement

Here is the statement of Ngô’s primary theorem. It is taken from the beginning of
the introduction of his paper [N2].

Théorème 1. Soient k un corps fini à q éléments, O un anneau de valuation
discrète complet de corps résiduel k et F son corps des fractions. Soit G un schéma
en groupes réductifs au-dessus de O dont le nombre de Coxeter multiplié par deux
est plus petit que la caractéristique de k. Soient (κ, ρκ) une donnée endoscopique
de G au-dessus de O et H le schéma en groupes endoscopiques associé.

On a l’égalité entre la κ-intégrale orbitale et l’intégrale orbitale stable

∆G(a)Oκ
a(1g,dt) = ∆H(aH)SOaH (1h,dt) (1)

associées aux classes de conjugaison stable semi-simples régulières a et aH de g(F )
et h(F ) qui se correspondent, aux fonctions caractéristiques 1g et 1h des compacts
g(O) et h(O) dans g(F ) et h(F ) et où on a noté

∆G(a) = q−val(DG(a))/2 et ∆H(aH) = q−val(DH(aH))/2

DG and DH étant les fonctions discriminant de G et de H.

In §1.11 of his paper, Ngô describes the various objects of his assertion in pre-
cise terms. At this point we simply note that the “orbital integrals” he refers to are
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integrals of locally constant functions of compact support. The assertion is there-
fore an identity of sums taken over two finite sets. Observe however that there is
one such identity for every pair (a, aH) of “regular orbits”. As a approaches a sin-
gular point, the size of the two finite sets increases without bound, and so therefore
does the complexity of the identity. Langlands called it the fundamental lemma
when he first encountered the problem in the 1970’s. It was clearly fundamental,
since he saw that it would be an inescapable precondition for any of the serious
applications of the trace formula he had in mind. He called it a lemma because
it seemed to be simply a family of combinatorial identities, which would soon be
proved. Subsequent developments, which culminated in Ngô’s proof, have revealed
it to be much more. The solution draws on some of the deepest ideas in modern
algebraic geometry.

Ngô’s theorem is an infinitesimal form of the fundamental lemma, since it
applies to the Lie algebras g and h of the groups G and H. However, Waldspurger
had previously used methods of descent to reduce the fundamental lemma for
groups to its Lie algebra variant [W3]. Ngô’s geometric methods actually apply
only to fields of positive characteristic, but again Waldspurger had earlier shown
that it suffices to treat this case [W1].1 Therefore Ngô’s theorem does imply the
fundamental lemma that has preoccupied mathematicians in automorphic forms
since it was first conjectured by Langlands in the 1970’s.

I would like to thank Steve Kudla for some helpful suggestions.

Automorphic forms and the Langlands programme

To see the importance of the fundamental lemma, we need to recall its place in
the theory of automorphic forms. Automorphic forms are eigenforms of a com-
muting family of natural operators attached to reductive algebraic groups. The
corresponding eigenvalues are of great arithmetic significance. In fact, the infor-
mation they contain is believed to represent a unifying force for large parts of
number theory and arithmetic geometry. The Langlands programme summarizes
much of this, in a collection of interlocking conjectures and theorems that govern
automorphic forms and their associated eigenvalues. It explains precisely how a
theory with roots in harmonic analysis on algebraic groups can characterize some
of the deepest objects of arithmetic. There has been substantial progress in the
Langlands programme since its origins in a letter from Langlands to Weil in 1967.
However, its deepest parts remain elusive.

The operators that act on automorphic forms are differential operators (Laplace-
Beltrami operators) and their combinatorial p-adic analogues (Hecke operators).
They are best studied implicitly in terms of group representations. One takes G to
be a connected reductive algebraic group over a number field F , and R to be the
representation of G(A) by right translation on the Hilbert space L2

(
G(F )\G(A)

)
.

We recall that G(A) is the group of points in G with values in the ring A = AF
1Another proof of this reduction was subsequently established by Cluckers, Hales and Loeser,

by completely different methods of motivic integration.
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of adèles of F , a locally compact group in which the diagonal image of G(F ) is
discrete. Automorphic forms, roughly speaking, are functions on G(F )\G(A) that
generate irreducible subrepresentations of R, which are in turn known as automor-
phic representations. Their role is similar to that of the much more elementary
functions

einx, n ∈ Z, x ∈ Z\R,

in the theory of Fourier series. We can think of x as a geometric variable, which
ranges over the underlying domain, and n as a spectral variable, whose automorphic
analogue contains hidden arithmetic information.

The centre of the Langlands programme is the principle of functoriality. It
postulates a reciprocity law for the spectral data in automorphic representations
of different groupsG andH, for any L-homomorphism ρ : LH → LG between their
L-groups. We recall that LG is a complex, nonconnected group, whose identity
component Ĝ can be regarded as a complex dual group of G. There is a special case
of this that is of independent interest. It occurs when H is an endoscopic group for
G, which roughly speaking, means that ρ maps Ĥ injectively onto the connected
centralizer of a semisimple element of Ĝ. The theory of endoscopy, due also to
Langlands, is a separate series of conjectures that includes more than just the
special case of functoriality. Its primary role is to describe the internal structure
of automorphic representations of G in terms of automorphic representations of its
smaller endoscopic groups H. The fundamental lemma arises when one tries to
use the trace formula to relate the automorphic representations of G with those of
its endoscopic groups.2

The trace formula and transfer

The trace formula for G is an identity that relates spectral data with geometric
data. The idea, due to Selberg, is to analyze the operator

R(f) =

∫
G(A)

f(y)R(y) dy

on L2
(
G(F )\G(A)

)
attached to a variable test function f on G(A). One observes

that R(f) is an integral operator, with kernel

K(x, y) =
∑

γ∈G(F )

f(x−1 γy), x, y ∈ G(A).

One then tries to obtain an explicit formula by expressing the trace of R(f) as the
integral ∫

G(F )\G(A)

∑
γ∈G(F )

f(x−1 γx) dx

2Endoscopic groups should actually be replaced by endoscopic data, objects with slightly more
structure, but I will ignore this point.
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of the kernel over the diagonal. The formal outcome is an identity∑
{γ}

∫
Gγ(F )\G(A)

f(x−1 γx) dx =
∑
π

tr
(
π(f)

)
, (2)

where {γ} ranges over the conjugacy classes in G(F ), Gγ(F ) is the centralizer of
γ in G(F ), and π ranges over automorphic representations.

The situation is actually more complicated. Unless G(F )\G(A) is compact, a
condition that fails in the most critical cases, R(f) is not of trace class, and neither
side converges. One is forced first to truncate the two sides in a consistent way,
and then to evaluate the resulting integrals explicitly. It becomes an elaborate
process, but one that eventually leads to a rigorous formula with many new terms
on each side [A1]. However, the original terms in (2) remain the same in case π
occurs in the discrete part of the spectral decomposition of R, and γ is anisotropic
in the strong sense that Gγ is a maximal torus in G with Gγ(F )\Gγ(A) compact.
If γ is anisotropic, and f is a product of functions fv on the completions G(Fv) of
G(F ) at valuations v on F , the corresponding integral in (2) can be written∫

Gγ(F )\G(A)

f(x−1 γx) dx

=vol
(
Gγ(F )\Gγ(A)

) ∫
Gγ(A)\G(A)

f(x−1 γx) dx

=vol
(
Gγ(F )\Gγ(A)

) ∏
v

∫
Gγ(Fv)\G(Fv)

fv(x
−1
v γxv) dxv.

The factor

Oγ(fv) = Oγ(fv,dtv) =

∫
Gγ(Fv)\G(Fv)

fv(x
−1
v γ xv) dxv

is the “orbital integral” of fv over the conjugacy class of γ in G(Fv). It depends on
a choice of Haar measure dtv on T (Fv) = Gγ(Fv), as well as the underlying Haar
measure dxv on G(Fv), and makes sense if γ is replaced by any element γv ∈ G(Fv)
that is strongly regular, in the sense that Gγv is any maximal torus.

The goal is to compare automorphic spectral data on different groups G and H
by establishing relations among the geometric terms on the left hand sides of their
associated trace formulas. This presupposes the existence of a suitable transfer
correspondence f → fH of test functions from G(A) to H(A). The idea here is to
define the transfer locally at each completion v by asking that the orbital integrals
of fHv match those of fv. Test functions are of course smooth functions of compact
support, a condition that for the totally disconnected group G(Fv) at a p-adic place
v becomes the requirement that fv be locally constant and compactly supported.
The problem is to show for both real and p-adic places v that fHv , defined only in
terms of conjugacy classes in H(Fv), really is the family of orbital integrals of a
smooth function of compact support on H(Fv).

The transfer of functions is a complex matter, which I have had to oversimplify.
It is founded on a corresponding transfer mapping γH,v → γv of strongly regular
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conjugacy classes over v from any local endoscopic group H for G to G itself. But
this only makes sense for stable (strongly regular) conjugacy classes, which in the
case of G are defined as the intersections of G(Fv) with conjugacy classes in the
group G(F v) over an algebraic closure F v. A stable orbital integral of fv is the
sum of ordinary orbital integrals over the finite set of conjugacy classes in a stable
conjugacy class. Given fv, H and γH,v, Langlands and Shelstad set SOγH,v (fHv )
equal to a certain linear combination of orbital integrals of fv over the finite set
of conjugacy classes in the stable image γv of γH,v. The coefficients are subtle but
explicit functions, which they introduce and call transfer factors [LS]. They then
conjecture that as the notation suggests, {SOγH,v (fHv )} is the set of stable orbital
integrals of a smooth, compactly supported function fHv on H(Fv).

We can at last say what the fundamental lemma is. For a test function f =∏
v
fv on G(A) to be globally smooth and compactly supported, it must satisfy one

further condition. For almost all p-adic places v, fv must equal the characteristic
function 1Gv of an (open) hyperspecial maximal compact subgroup Kv of G(Fv).
The fundamental lemma is the natural variant at these places of the Langlands-
Shelstad transfer conjecture. It asserts that if fv equals 1Gv , we can actually take
fHv to be an associated characteristic function 1Hv on H(Fv). It is in these terms
that we understand the identity (1) in Ngô’s theorem. We of course have to replace
1Gv and 1Hv by their analogues 1gv and 1hv on the Lie algebras g(Fv) and h(Fv)
of G(Fv) and H(Fv), and the mapping γH,v → γv by a corresponding transfer
mapping aH,v → av of stable adjoint orbits. The superscript κ on the left hand
side of (1) is an index that determines an endoscopic group H = Hκ for G over Fv
by a well defined procedure. It also determines a corresponding linear combination
of orbital integrals (called a κ-orbital integral) on g(Fv), indexed by the G(Fv)-
orbits in the stable orbit av. The coefficients depend in a very simple way on κ,
and when normalized by the quotient ∆G( · ) ∆H( · )−1 of discriminant functions,
represent the specialization of the general Langlands-Shelstad transfer factors to
the Lie algebra g(Fv). The term on the left hand side of (1) is a κ-orbital integral of
1gv , and the term on the right hand side is a corresponding stable orbital integral
of 1hv .

The Hitchin fibration

We have observed that local information, in the form of the Langlands-Shelstad
transfer conjecture and the fundamental lemma, is a requirement for the compar-
ison of global trace formulas. However, it is sometimes also possible to go in the
opposite direction, and to deduce local information from global trace formulas. The
most important such result is due to Waldspurger. In 1995, he used a special case
of the trace formula to prove that the fundamental lemma implies the Langlands-
Shelstad transfer conjecture for p-adic places v [W1]. (The archimedean places v
had been treated by local means earlier by Shelstad. See [S].) The fundamental
lemma would thus yield the full global transfer mapping f → fH . It is indeed
fundamental!
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Ngô had a wonderful idea for applying global methods to the fundamental
lemma itself. He observed that the Hitchin fibration [H], which Hitchin had intro-
duced for the study of the moduli space of vector bundles on a Riemann surface,
was related to the geometric side of the trace formula. His idea applies to the field
F = k(X) of rational functions on a (smooth, projective) curve X over a finite
field of large characteristic. This is a global field, which combines the arithmetic
properties of a number field with the geometric properties of the field of meromor-
phic functions on a Riemann surface, and for which both the trace formula and
the Hitchin fibration have meaning. Ngô takes G to be a quasisplit group scheme
over X. His version of the Hitchin fibration also depends on a suitable divisor D
of large degree on X.

The total space of the Hitchin fibration M→A is an algebraic (Artin) stack3

M over k. To any scheme S over k, it attaches the groupoid M(S) of Higgs pairs
(E, φ), where E is a G-torsor over X × S, and φ ∈ H0

(
X × S, Ad(E)⊗OX(D)

)
is a section of the vector bundle Ad(E) obtained from the adjoint representation
of G on its Lie algebra g, twisted by the line bundle OX(D). Ngô observed that
in the case S = Spec(k), the definitions lead to a formal identity∑

ξ

(∑
{a}

∫
Gξa(F )\Gξ(A)

fD
(
Ad(x)−1 a

)
dx
)

= |{M(k)}|, (3)

whose right hand side equals the number of isomorphism classes in the groupoid
M(k) [N1, §1]. On the left hand side, ξ ranges over the set ker1(F,G) of locally
trivial elements in H1(F,G), a set that frequently equals {1}, and Gξ is an inner
twist of G by ξ, equipped with a trivialization over each local field Fv, with Lie
algebra gξ. Also, {a} ranges over the Gξ(F ) orbits in gξ(F ), and Gξa(F ) is the
stabilizer of a in Gξ(F ), while

fD =
⊗
v

fD,v,

where v ranges over the valuations of F (which is to say the closed points of X)
and fD,v is the characteristic function in gξ(Fv) of the open compact subgroup

$
−dv(D)
v gξ(Ov).

The expression in the brackets in (3) is the analogue for the Lie algebra gξ of
the left hand geometric side of (2). It is to be regarded in the same way as (2), as
part of a formal identity between two sums that both diverge. On the other hand,
as in (2), the sum over the subset of orbits {a} that are anisotropic actually does
converge.

The base A of the Hitchin fibration is an affine space over k. As a functor, it
assigns to any S the set

A(S) =

r⊕
i=1

H0
(
X × S, OX(eiD)

)
,

3I am little uncomfortable discussing objects in which I do not have much experience. I
apologize in advance for any inaccuracies.
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where e1, . . . , er are the degrees of the generators of the polynomial algebra of
G-invariant polynomials on g. Roughly speaking, the set A(k) attached to S =
Spec(k) parametrizes the stable G(A)-orbits in g(A) that have representatives in
g(F ), and intersect the support of the function fD. The Chevalley mapping from
g to its affine quotient g/G determines a morphism h from M to A over k. This
is the Hitchin fibration. Ngô uses it to isolate the orbital integrals that occur on
the left hand side of (3). In particular, he works with the open subscheme Aani of
A that represents orbits that are anisotropic over k. The restriction

hani : Mani −→ Aani, Mani = h−1(Aani) =M×A Aani, (4)

of the morphism h to Aani is then proper and smooth, a reflection of the fact that
the stabilizer in G of any anisotropic point a ∈ g(F ) is an anisotropic torus over
the maximal unramified extension of F . (See [N2, §4].)

Affine Springer fibres

The Hitchin fibration can be regarded as a “geometrization” of a part of the global
trace formula. It opens the door to some of the most powerful techniques of
algebraic geometry. Ngô uses it in conjunction with another geometrization, which
had been introduced earlier, and applies to the fibresMa of the Hitchin fibration.
This is the interpretation of the local orbital integral

Oγv (1gv ) =

∫
Gav (Fv)\G(Fv)

1gv
(
Ad(xv)

−1 av
)

dxv

in terms of affine Springer fibres.
The original Springer fibre of a nilpotent element N in a complex semisimple

Lie algebra is the variety of Borel subalgebras (or more generally, of parabolic
subalgebras in a given adjoint orbit under the associated group) that contain N .
It was used by Springer to classify irreducible representations of Weyl groups. The
affine Springer fibre of a topologically unipotent (regular, semisimple) element
av ∈ g(Fv), relative to the adjoint orbit of the lattice g(Ov), is the set

Mv(a, k) =
{
xv ∈ G(Fv)/G(Ov) : Ad(xv)

−1 av ∈ g(Ov)
}

of lattices in the orbit that contain av. Suppose for example that av is anisotropic
over Fv, in the strong sense that the centralizer Gav (Fv) is compact. If one takes
the compact (abelian) groups Gav (Fv) and g(Ov) to have Haar measure 1, one sees
immediately that Oav (1gv ) equals the order |Mv(a, k)| ofMv(a, k). (Topologically
unipotent means that the linear operator ad(av)

n on g(Fv) approaches 0 as n
approaches infinity. In general, the closer av is to 0, the larger is the setMv(a, k),
and the more complex the orbital integral Oav (1gv ).)

Kazhdan and Lusztig introduced affine Springer fibres in 1988, and established
some of their geometric properties [KL]. In particular, they proved that Mv(a, k)
is the set of k-points of an inductive limit Mv(a) of schemes over k. (It is this
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ind-scheme that is really called the affine Springer fibre.) Their results also imply
that if av is anisotropic over the maximal unramified extension of Fv,Mv(a) is in
fact a scheme.

The study of these objects was then taken up by Goresky, Kottwitz and MacPher-
son. Their strategy was to obtain information about the orbital integral |Mv(a, k)|
from some version of the Lefschetz fixed point formula. They realized that relations
among orbital integrals could sometimes be extracted from cohomology groups of
affine Springer fibres Mv(a) and Mv(aH), for the two different groups G and H.
Following this strategy, they were able to establish the identity (1) for certain pairs
(av, aH,v) attached to unramified maximal tori [GKM]. Goresky, Kottwitz and
MacPherson actually worked with certain equivariant cohomology groups. Lau-
mon and Ngô later added a deformation argument, which allowed them to prove
the fundamental lemma for unitary groups [LN]. However, the equivariant coho-
mology groups that led to these results are not available in general.

It was Ngô’s introduction of the global Hitchin fibration that broke the impasse.
He formulated the affine Springer fibre Mv(a) as a functor of schemes S over k,
in order that it be compatible with the relevant Hitchin fibre Ma [N2, §3.2]. He
also introduced a third object to mediate between the two kinds of fibre. It is a
Picard stack P → A, which acts on M, and represents the natural symmetries
of the Hitchin fibration. Ngô attached this object to the group scheme J over A
obtained from the G-centralizers of regular elements in g, and the Kostant section
from semisimple conjugacy classes to regular elements.

The stack P plays a critical role. Ngô used it to formulate the precise relation
between the Hitchin fibreMa at any a ∈ Aani(k) with the relevant affine Springer
fibres Mv(a) [N2, Proposition 4.15.1]. Perhaps more surprising is the fact that as
a group object in the category of stacks, P governs the stabilization of anisotropic
Hitchin fibres Ma. Ngô analyses the characters {κ} on the abelian groups of
connected components π0(Pa). He shows that they are essentially the geometric
analogues of objects that were used to stabilize the anisotropic part of the trace
formula.

Stabilization

Could one possibly establish the fundamental lemma from the trace formula? Any
such attempts have always foundered on the lack of a transfer of unit functions
1Gv to 1Hv by orbital integrals. In some sense, however, this is exactly what Ngô
does. It is not the trace formula for automorphic forms that he uses, but the
Grothendieck-Lefschetz trace formula of algebraic geometry. Moreover, it is the
“spectral” side of this trace formula that he transfers from g to h (the Lie algebras
of G and H), in the form of data from cohomology, rather than its “geometric”
side, in the form of data given by fixed points of Frobenius endomorphisms. This
is in keeping with the general strategy of Goresky, Kottwitz and MacPherson. The
difference here is that Ngô begins with perverse cohomology attached to the global
Hitchin fibration, rather than the ordinary equivariant cohomology of a local affine
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Springer fibre.
Stabilization refers to the operation of writing the trace formula for G, or rather

each of its terms I(f), as a linear combination

I(f) =
∑
H

ι(G,H)SH(fH) (5)

of stable distributions on the endoscopic groups H of G over F . (A stable distribu-
tion is a linear form whose values depend only on the stable orbital integrals of the
given test function. The resulting identity of stable distributions for any given H,
obtained by induction on dim(H) from (5) and the trace formula for G, is known
as the stable trace formula.) The process is most transparent for the anisotropic
terms4

Iani(f) =
∑
{γ}

vol
(
Gγ(F )\Gγ(A)

)
·
∏
v

(
Oγ(fv)

)
, (6)

in which {γ} ranges over the set of anisotropic conjugacy classes in G(F ). It was
carried out in this case by Langlands [L] and Kottwitz [K2], assuming the existence
of the global transfer mapping f → fH (which Waldspurger later reduced to the
fundamental lemma). This is reviewed by Ngô in the first chapter (§1.13) of his
paper [N2].

The idea for the stabilization of (6) can be described very roughly as follows.
One first groups the conjugacy classes {γ} into stable conjugacy classes {γ}st in
G(F ), for representatives γ attached to anisotropic tori T = Gγ . The problem is
to quantify the obstruction for the contribution of {γ}st to be a stable distribution
on G(A). For any v, the set of G(Fv)-conjugacy classes in the stable conjugacy
class of γ in G(Fv) is bijective with the set

ker
(
H1(Fv, G) −→ H1(Fv, T )

)
of elements in the finite abelian group H1(Fv, T ) whose image in the Galois coho-
mology set H1(Fv, G) is trivial. Let me assume for simplicity in this description
that G is simply connected. The set H1(Fv, G) is then trivial for any p-adic place
v, and becomes a concern only when v is archimedean. The obstruction for {γ}st
is thus closely related to the abelian group

coker
(
H1(F, T ) −→

⊕
v

H1(Fv, T )
)
.

The next step is to apply Fourier inversion to this last group. According to Tate-
Nakayama duality theory, its dual group of characters κ is isomorphic to T̂Γ,
the group of elements in the complex dual torus T̂ that are invariant under the
natural action of the global Galois group Γ = Gal(F\F ). On the other hand,

each κ ∈ T̂Γ maps to a semisimple element in the complex dual group Ĝ, which

4This expression only makes sense if the split component AG of G is trivial. In general, one
must include AG in the volume factors.
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can be used to define an endoscopic group H = Hκ for G. One accounts for the
local archimedean sets H1(Fv, G) simply by defining the local contribution of a
complementary element in H1(Fv, T ) to be 0. In this way, one obtains a global
contribution to (6) for any κ. It is a global κ-orbital integral, whose local factor
at almost any v appears on the left hand side of the identity in the fundamental
lemma.

One completes the stabilization of (6) by grouping the indices (T, κ) into equiv-
alence classes that map to a given H. The corresponding contributions to the right
hand side of (6) become the summands of H in (5). Notice that the summands

with κ = 1 correspond to the endoscopic group H with Ĥ = Ĝ (a quasisplit inner
form G∗ of G). Like all of the other summands, they are defined directly. This is
in contrast to the more exotic parts I(f) of the trace formula [?, §29], where the
contribution of H = G∗ (known as the stable part Ist(f) of I(f) in case G = G∗

is already quasisplit) can only be constructed from (5) indirectly by induction on
dim(H).

The heart of Ngô’s proof is an analogue of the stabilization of (6) for the
geometrically anisotropic part (4) of the Hitchin fibration.5 This does not depend
on the transfer of functions, and is therefore unconditional. Ngô formulates it as
an identity of the {κ}-component ( · )κ of an object attached to G with the stable
component ( · )st of a similar object for the corresponding endoscopic group. I will
only be able to describe his steps in the most general of terms.

Since Mani is a smooth Deligne-Mumford stack, the purity theorems of [D]
and [BBD] can be applied to the proper morphism hani in (4). They yield an
isomorphism

hani
∗ Q` ∼=

⊕
n

pHn (hani
∗ Q`) [−n], (7)

whose left hand side is a priori only an object in the derived category Db
c(A) of

the bounded complexes of sheaves on A with constructible cohomology, but whose
right hand summands are pure objects in the more manageable abelian subcategory
of perverse sheaves on A. Ngô then considers the action of the stack Pani over Aani

on either side. Appealing to a homotopy argument, he observes that this action
factors through the quotient π0(Pani) of connected components, a sheaf of finite
abelian groups on Aani. As we noted earlier, an analysis of this sheaf then leads him
to the dual characters {κ} that were part of the stabilization of (6), and relative
to which one can take equivariant components pHn(fani

∗ Q`)κ of the summands in
(7). On the other hand, if H corresponds to κ, we have the morphism ν from AH
to A that comes from the embedding Ĥ ⊂ Ĝ of two dual groups of equal rank. It
provides a pullback mapping of sheaves from A to AH . Ngô’s stabilization of (4)
then takes the form of an isomorphism

ν∗
(⊕

n

pHn(hani
∗ Q)κ [2r] (r)

)
∼=
⊕
n

pHn (hani
H,∗Q`)st, (8)

5Recall that the left hand side of (3) differs from that of (2) in having a supplementary sum
over ξ ∈ ker1(F,G). This is part of the structure of the Hitchin fibration. But it also actually
leads to a slight simplification of the stabilization of (6) by Langlands and Kottwitz. (See [N2,
§1.13].)
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for a degree shift [2r] and Tate twist (r) attached to a certain positive integer
r = rGH(D). (See [N2, Theorem 6.4.2].)

Ngô’s “geometric stabilization” identity (8) , whose statement I have oversim-
plified slightly,6 is a key theorem. In particular, it leads directly to the fundamental
lemma. For it implies a similar identity for the stalks of the sheaves at a point
aH ∈ AH (with image a ∈ A under ν). After some further analysis, the appli-
cation of a theorem of proper base change reduces what is left to an endoscopic
identity for the cohomology of affine Springer fibres. This is exactly what Goresky,
Kottwitz and MacPherson had been working towards. Once it is available, an ap-
plication of the Grothendieck-Lefschetz trace formula gives a relation among points
on affine Springer fibres, which leads to the fundamental lemma. (See [LN, §3.10]
for example.)

However, it is more accurate to say that the (global) stabilization identity (8)
is parallel to the (local) fundamental lemma. Ngô actually had to prove the two
theorems together. In a series of steps, which alternate between local and global
arguments, and go back and forth between the two theorems, he treats special
cases that become increasingly more general, until the proof of both theorems is at
last complete. Everything of course depends on the original divisor D on X, which
in Ngô’s argument is allowed to vary in such a way that its degree approaches
infinity. The main technical result that goes into the proof of (8) is a theorem on
the support of the sheaves on the left hand side. As I understand it, this is highly
dependent on the fact that these objects are actually perverse sheaves.

Further remarks

I should also mention two important generalizations of the fundamental lemma.
One is the “twisted fundamental lemma” conjectured by Kottwitz and Shelstad,
which will be needed for any endoscopic comparison that includes the twisted trace
formula. Waldspurger [W3] had reduced this conjecture to the primary theorem of
Ngô, together with a variant [N2, Théorème 2] of (1) that Ngô proves by the same
methods. Another is the “weighted fundamental lemma”, which applies to the
more general geometric terms in the trace formula that are obtained by truncation.
It is needed for any endoscopic comparisons that do not impose unsatisfactory
local constraints on the automorphic representations. Once again, Waldspurger
had reduced the conjectural identity to its analogue for a Lie algebra over a local
field of positive characteristic. Chaudouard and Laumon have recently proved
the weighted fundamental lemma for Lie algebras by extending the methods of
Ngô to other terms in the trace formula [CL]. This has been a serious enterprise,
which requires a geometrization of analytic truncation methods in order to deal
with the failure of the full Hitchin fibration M → A to be proper. In any case,
all forms of the fundamental lemma have now been proved, including the most

6The isomorphism is between the semisimplifications of the graded perverse sheaves. Moreover,
ν, hani and haniH should be replaced by their preimages ν̃, h̃ani and h̃aniH relative to certain finite
morphisms.
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general “twisted, weighted fundamental lemma”.

I have emphasized the role of transfer in the comparison of trace formulas.
This is likely to lead to a classification of automorphic representations for many
groups G, beginning with orthogonal and symplectic groups [A2], according to
Langlands’ conjectural theory of endoscopy. The fundamental lemma also has
other important applications. For example, its proof fills a longstanding gap in
the theory of Shimura varieties. Kottwitz observed some years ago that the key
geometric terms in the Grothendieck-Lefschetz formula for a Shimura variety are
actually twisted orbital integrals [K1]. The twisted fundamental lemma now allows
a comparison of these terms with corresponding terms in the stable trace formula.
(See [K3].) This in turn leads to reciprocity laws between the arithmetic data
in the cohomology of many such varieties with the spectral data in automorphic
forms.

This completes my report. It will be clear that Ngô’s proof is deep and difficult.
What may be less clear is the enormous scope of his methods. The many diverse
geometric objects he introduces are all completely natural. That they so closely
reflect objects from the trace formula and local harmonic analysis, and fit together
so beautifully in Ngô’s proof, is truly remarkable.
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