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Some background

Life, Cell, and the Genome

Life primary [Metabolism (catalyzed)
principles: < Reproduction (inheritance)
Evolution

Genome as evolving “program”



Genetic material: Molecular organization

Double helix DNA (Watson & Crick, 1953):

(a) location - mainly in chromosomes (nucleus)

(b) structure - a long double helix molecule

(¢) coding elements - cytosine (C) & thymine (T)
adenine (A) & guanine (G)

pairs: A <T and G < C
1

Complementary pairing

Genes encoding for proteins and other molecules
are using this 4-letter alphabet across life



Organization Of Chromosome
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DNA replication: Forming DNA for new cells

DNA C G
T polymerase T«

A

T

T4 VA
MG ‘\'ﬁ
unzips .
GC

Semi-conservative replication: 2 double-stranded
DNA molecules for 2 new cells



Structural genomics includes: genetic mapping,
physical mapping and sequencing of entire genomes
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Genome mapping (genetic and physical mapping)

Genome mapping 1s a major part of genome projects and
precondition for most of the genomic applications

a. Positioning of DNA markers — genetic maps

b. Positioning DNA pieces — physical maps
c. Locating Mendelian genes relative to markers
d. Mapping quantitative trait loci (QTL maps)
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technological breakthroughs
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Mendel laws of genetics were discovered based on
pairs of contrasting inherited pea phenotypic traits

In the progeny of hybrids between carriers of these
traits Mendel found new combinations, in proportions
fitting independent segregation model (Mendel 3™ law).
Unlike such situations with unlinked genes that belong
to different chromosomes, transmission of linked genes
1s not independent.

Studies of linked genes 1n fruit fly lead Morgan
to discovery of genetic recombination.
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Inflated or pinched ripe pods Axial or terminal flowers Long or short stems



Recombination (crossing-over)
is the central event of sex

occurs at meiosis, during formation of sexual cells

Fl Pl P2 Rl R2

single-exchange double-exchange
meiotic configurations



Recombination: the basis of genetic mapping

Genetic mapping: a procedure of revealing the order of ge
nes in chromosomes. It uses a notion of genetic distance. B
ut in fact, mapping is based on recombination rates.
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_~ sperm (1-ry){AB +ab} r,{Ab + aB}
AB/ab meiosis
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Recombination rate and genetic map distance

Genetic Distance: x=d (a,b) - average number of
recombination events in the segment over many meiotic cells
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where p, —prob.of k£ (k=0, 1, ...) exchanges in the interval.

Thus x=2kp,,

k=0

but r=2
k:Op2k+1

recombination rate r 1s the proportion of recombinant| gametes

Problem: observed vs. occurred:. Only uneven exchanges
result in recombinants that can be registered.



Constructing dense and reliable
genetic maps (ordering the markers)

- The 3rd generation of human map includes ~ 2:104 loci
- A maize mapping project (Ilowa, 2005) > ~ 10%loci

- 12% (!) of markers on cattle maps proved erroneously
positioned

AB CDE FG H ..
ab cde fg h ..




Different approaches of multilocus ordering

Genetic distance Recombination rate
x..=0 r.=0
ij ij
X=X r.=r. Data
x{ _|_.,{j = X.. S r.+r. . >r. matrix of pairs
ik ki Tij ik kY babcdefgh
C
d
AB C D E F G H e
ab ¢ d e f g h g Fij
h

A Multilocus likelithood analysis: calculates probabilities of orders

B Stepwise mapping by adding a marker at each step (“empiric”)

C Treatment of the full matrix of pair-wise distances (our approach)




Constructing dense genetic maps
(reliable multilocus ordering)

* Objectives

¢ Building multilocus maps (with ~10° markers/chr)
¢ Verification of the orders (and removing “bad guys”)

* Method and technology

¢ Reduction to the Traveler Salesman Problem (TSP)
¢ Evolutionary strategy optimization algorithms




ES algorithm as a simulation analogue
of evolutionary adaptation models

Natural elements Simulation elements
Chromosome Variable value x;
Individual, a set of chromosomes Solution vector x = (x4,...,X,)
Mutation, a small change of the Operator M: xk — xk*1

chromosome
Population, set of individuals Set P of solution vectors {x*}
Fitness, quantitative characteristic Criterion value f(x*)
of organism’s “fitness”
Selection, choosing the fittest Operator S: f(x¥) = min
individual(s) for the next generation




ES algorithm for ordering multilocus maps

Order1: abcdefghklmn [
Order2: bacdefghklmn [

Orderi: fcmheagnklbd [

Let order O; be considered a ‘genotype’, and its ‘fitness’ b
e defined as: w; =1(0;) = 1/I; (or -I;)

‘Progeny’ is produced via mutations (changed orders).
A ‘child’ replaces its parent if 1ts fitness 1s higher.

To build the map we need only the (ML) estimates of
pair-wise recombination rates for all pairs of markers




Building multilocus maps: Sources of complexity

* 2 n! orders possible. As a solution we need to find not
ust any order with a small total map length. Rather, the
goal is to reveal the real order (1.e. unique solution)

* Sampling variation of r;, missing data, data errors
* Small sample size relative to the number of markers

* Genetic interference (1nter-dependence of cross-overs
along the chromosome)



Re-sampling for quality control

The best way to check / verify the map 1s to show
that the obtained solution does not depend on:
(a) sampling data variation, and (b) starting points

By taking sub-samples, one can build repeated maps
and test whether /where marker ordering remains the
same. l

Detecting trouble-making markers




Major unsolved problem: We believe that we
can reach the unique solution for a given data set.
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"¢« However, we have no regular procedure that leads
to the best subsets of markers allowing for:

- stable ordering
- combined with highest “map coverage”
- combined with minimal gaps along the map

Removing one marker out of n 2> n ways
two markers > % n(n-1) ways

—

Initial ordering: Stable neighborhoods: after
Unstable neighborhoods removing problematic markers



Assembling multilocus consensus maps

Objective: Building multilocus maps based on data
from different labs and different mapping population
S

Requirements:

» Shared markers must be 1n an 1dentical order
e The resulting consensus ordering must be verified
via re-sampling

Proposed strategy:

* Re-building maps under the constraint of identical
order for shared markers, instead of looking for
shared orders in pictures of previously build maps




Graph-theoretical approach for reconciling
two orders, received from different sources
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Our strategy: re-building the maps
Re-analysis of raw data by reduction to synchronous TSP

— Parallel discrete optimization for multiple data sets
with the foregoing constraint



Consensus mapping (with 100% shared markers)
simulated example, 6 families each with n=100

pood Mihd } Marker position)

> NSOD [20 15| 20| 3p| 4b| 5p| 62 70 84 95| 10/ 114 125 13} 144 150 164 175 18} 19
10 sOD | 10| 20| 3p| 4b| 5p| 60| 74 84 9N 10N 112 124 13N 145 155 16} 174 18) 19N 20
> NSOD | 10| 20| 3p| 4»| 55| 6d| 79N 8N 108 113 12 134 144 155 16} 17){ 184 194 20A
2) sOD | 15| 20| 3| 4b| 5p| 6> 74 8 9N 100 114 120 13} 144 150 16 174 18} 19 20}
> NSOD | 154 148 13 124 115 104 9 83 74 65| 5»| 4> 3>| 1h[ 2p| 16) 172 18} 194 20)
3) sOD | 15| 20| 3| 4b| 5p| 6> 74 8 9N 100 114 120 130 144 150 16} 174 18} 194 20}
> NSOD | 10| 20| 3p| 4b| 55| 65| 74 8N oN 14N 108 122 134 144 155 16} 17){ 184 194 20A
4> sSOD | 15| 20| 3»| 4b| 5p| 6> 74 8 9N 100 114 120 13} 144 150 16} 174 18} 19 20}
> NSOD | 10| 20| 3p| 4»| 55| 65| 74 85 9N 108 113 12 134 184 1 7] 16] 150 14 195 20)
5) sSOD | 15| 20| 3| 4b| 5p| 6> 74 8N 9N 100 114 120 130 144 150 16 174 18} 19 20}
> NSQD| 10| 2»| 3»| 4b| 5p| 6| 7 8) 9) 10N 11) 12) 13} 14} 154 16 17){H9HH8Y 20)
6 sOP | 10| 20| 3p| 4b| 50| 60| 7 83 94 10N 112 124 13N 145 155 16} 17 18) 19N 20)

NSO - non-synchronized optimization
SO - synchronized optimization

False order ===
True order —T—



Quality of multilocus ordering as a function
of the proportion of utilized data sets

(results of tests with six data sets)
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Dependence of the quality of consensus map

on the proportion of shared markers
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Coefficient of restoration

The need 1n re-structuring the

e synchronous mapping problem
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Unsolved problems:
- How to subdivide the entire set into subsets
- How to build the jackknifing procedure



Genetic dissection of quantitative traits

development
genotype , > + markers
i environment l
observations (data)
}
“explaining” the phenotype :
P 2 I L L OTL mapping
Applications |
}
QTL of economic or medical Physiology & Medicine
importance; fitness-related QTL; Molecular Biol. & Genetics
gene expression as molecular Appl. Math., Statistics,
phenotype (¢QTL analysis) Computer Science




Analysis of the genetic composition of
segregating recombinant genotypes

Individual recombinant chromosomes

Segments
from N Looking for
Parent A A BB EEBEREREREI| |oc affecting
guantitative
traits by using
Segments DNA markers
from EH
Parent B QTL mapping

Beat Keller, Institut fur Pflanzenbiologie, Universitat Zurich



QTL analysis — dealing with

distributicones

fmm={1-T)faq+ rfaq

fapam =T faq +{1-r) faq




QTL Interval Mapping

Expected distributions of the  m.m:  aq Moo

trait in the flanking marker
groups are mixtures of non- -

recombinants and
recomb,jqants

fmgmo= [(1-r1) (1-r)fq + ryrf /(1)
fuymy= [(1-ry)rofq + ry(1-ry) fir
fmymy= [ry(1-r,)fq + ry(1-r)) T 1ir
fm1m2 = [f'1l'2fQ + (1 -r1) (1 -rz) fq]/(1 _,-)




The model of QTL effect

For additive QTL effect:

x=m+dgqﬂ§

where g,= -1 for qq, and +1 for QQ; EE=0, o&= o,
and d=(U'QQ' uqq)lz, uqq= m'd, MQQ= m+d

ML-estimation in QTL interval

I 4 N;
LERNES - TITT £ m. d. o X;)— max

=1 j=1
M4/m1 Qg M2/m2 M

- %rz_

_-estimates: r, m*, d-,

Log-likelihood ratio
test (for H4 vs Hp)

*



What do one expect from analytical tools ?

1o extract maximum mapping information
from the experimental data

The main questions in QTL analysis:

* QTL detection power (detect the effect when 1t exists)
* Minimum “false positives” (high significance)
* Accuracy of parameter estimates

For single-trait analysis:
ELOD=-"%N log (1- H?),

H2=d2/(d2+02) 1S “heritabililj/“




What could be the benefit from a transition
to multiple-trait analysis ?

For single-trait analysis:
ELOD, = - N log(1- H%)

The same holds 1n two-trait
analysis, upon H?.— H?,,

o 02y (1- szy)

(02 +d 2, [4) (02 +d 2, 14) - A, R, +d d,/(40,0,))?

H_ =1-

Xy

It appears that H 2

, = H .= ELOD, = ELOD,



The main sources of statistical
superiority of two-trait analysis

r,,=0 o L 8=0 . 5, #0 o s r,,#0 o
/a/- )
d P ST
= deSA .~ &
x x

any d, & d, anyd &r,, r.odd <0



LOD

59.74

54.3 1
48.9

43.44
38.0-
32.6-

27.11
21.74

16.31
10.94

5.4
0.0

Eftect of the number of traits on the
efficiency of QTL mapping

ﬂ Based on
/“ interval-specific
/ qf\ multivariate

analysis

Interval



Multiple-trait analysis does not necessarily
improve the quality of QTL analysis

- dd < 0
(1) (2)
- dd > 0

With the same overlapping of marginal distributions, the bivariate
distributions of QTL groups a and A overlap less in (1) than in (2)

Required: Extension of the above criterion for arbitrary
numbers of traits. To allow selecting of sub-sets with
improved resolution... (for n~10? or even 104)
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How genes are expressed in the cell ?

Gene sequences encoding for proteins are non-overlapping
texts that begin from start signal and end by stop signal.

DNA transcription. mRNA _translation A protein

A gene can be franscribed many times. The resulting mRNA
can be translated many times > many copies of the enzyme.
Each synthesized enzyme molecule can catalyze the target
reaction thousands times > strong “signal amplification”

Nontemplate strand Template strand
of gene 1 RNA of gene 2

>
DNA

polymerase of gene 1 of gene 2 polymerase



Expression of each gene can be scored as a quantitative §
trait in a mapping population (n~102%-103) and tested for |

¥ association with DNA markers across the genome
(k~102-10%) > eQTL mapping

The challenge of the problem size: With N~104 genes,
the number of data points reaches ~108-1012

Multiple-trait QTL analysis of the N~104 expression traits ?
An urgent need in “dimensionality reduction” methods

i pathological states, aging, evolution, etc.?




Expression scores as a vector of quantitativ
e traits: Dealing with high dimensionality

in multiple—trait QTL mapping)
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Clustering of the chosen 400
genes: (a) 100+100 up- and
down-regulated, (b) 100+100

plus- and minus-correlated
to obesity genes -

(b)




Expression scores as a vector of quantitativ
e traits: Dealing with high dimensionality)

PCA = Clustering
— /N

MLT - SIM
ST -SIM < > MLT - MIM
ST -MIM

The first PCs may (a & b) or may
not (¢) correspond to the direction
of multivariate QTL effects




Multiple-trait vs. single-trait eQTL mapping

dealing with clusters (on an example of mouse obesity

Mapping for 2 sub-clusters: (a) up- or

down-regulated, (b) positively or
negatively correlated with obesity.
For these groups, the estimated

QTL location L and SD(L) were, for
chr. 19 and 6, respectively:

(a) (b)
SIM-ST  36.9+6.8 51.7+2.8 cM
MIM-ST  35.0«£3.3 52.4x1.9 cM
SIM-MLT 39.6x8.4 52.4+5.9 cM
MIM-MLT 36.7+2.6 53.9+0.7 cM

Using data from Ghazalpour et al., 2005

................................
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................................
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Summary (what we have been talking about)

m Genome mapping - reduction to TSP

m Consensus mapping - synchronous TSP

m OTL mapping

m Multiple-trait QTL analysis - looking for best sub-sets
m Microarray analysis - expression QTL (eQTL)

m Multi-trait eQTL mapping - dimensionality reduction
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