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Foreword 3

The Weierstrass Institute for Applied Analysis and Stochastics, Leibniz Institute in Forschungsver-

Prof. Dr. Wolfgang König,
Authorized Representative of
the Director

bund Berlin e.V. (WIAS, member of the Leibniz Association), presents its Annual Report 2015. It

gives a general overview of the scientific life, as well as an account of the scientific progress made

in 2015. Following a general introduction in part one, in its second part six selected scientific con-

tributions, written for a broader public, highlight some results of outstanding importance. Finally,

the third part presents the essential results of the research groups.

Special attention was again devoted to the proper functioning of the IMU Secretariat. Its eager staff,

headed by the WIAS Authorized Representative of the Director and IMU Treasurer Prof. Alexander

Mielke, continued their work, serving mathematics and mathematicians all over the world. Mean-

while, only five years after its official opening in February 2011, the IMU Secretariat at WIAS has

become a well-known and well-accepted meeting point of the worldwide mathematical community,

which has increased the international visibility of WIAS tremendously.

In March 2015, the long and successful era of Prof. Jürgen Sprekels as the director of WIAS fi-

nally terminated, without, however, a new director having been appointed. This unfortunate sit-

uation hampered the institute’s prospects to make far-reaching decisions for its future develop-

ment, which was even more unfortunate since also the future of Research Group 7 needed forward-

looking decisions, because its current head, Prof. Wolfgang Dreyer, will retire in March 2016. The of-

ficial tasks were taken over by two equally Authorized Representatives of the Director, Prof. Alexan-

der Mielke and myself. As can be seen from this report, the institute was flourishing in 2015 on the

accustomed high level, but nevertheless, long-range decisions had to wait until the new director

would have taken office. Fortunately, this has now, at the beginning of 2016, happened, and the

institute is sorting out all the promising possibilities for shaping its future.

But let me come back to the year 2015, in which many positive things happened in and to WIAS.

The evaluation of mid-2017 already threw its shadow, as the audit of the Scientific Board took

place in Fall 2015, which is a kind of “dress rehearsal” for the evaluation and an important test for

the scientific performance. The preparations for the audit have bound a lot of resources for months,

as some 500 pages had to be filled, containing programs, concepts, facts, and figures. However, it

was really worth it, since the event itself made all colleagues stand together and work hard one for

another, and created a kind of institute’s spirit. Even better, also the Scientific Advisory Board was

very positively impressed by the output of WIAS of the last years and found highly praising words

in its report. The prospects for the evaluation in 2017 are very good, but a lot of additional work

will have to be done on the way!

WIAS is named after the famous Berlin mathematician Karl Theodor Wilhelm Weierstrass (1815–

1897), whose importance for the foundations of the area of Analysis cannot be overestimated. In

2015, the institute celebrated Weierstrass’s 200th birthday. In order to honor him, Prof. Sprekels

and myself edited a Festschrift with the Springer-Verlag containing nine original essays written

by eminent mathematics historians. Moreover, precisely on the day of Weierstrass’s 200th birth-

day, WIAS organized a festive event in the Berlin-Brandenburg Academy of Sciences, at which a

number of esteemed speakers gave speeches, among them Germany’s Minister for Research and

Education, Prof. Johanna Wanka. In the scientific part of this event, the nine authors gave accounts

on their Festschrift contributions. About 130 invitees enjoyed the event, which put a milestone in

the public awareness of the institute.
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4 Foreword

Even though 2014 had been a year of records for WIAS regarding publications, preprints, promo-

tions, and third-party funds, the results of 2015 were not far behind, if not even exceeding, the

marks that were set in 2014, as one can read in detail in the facts-and-figures part of this report.

All important indicators of scientific productivity and quality have been on a comparable level; the

success story of WIAS continued.

From a great number of successes, let me pick out the award of the EU project MIMESIS – Mathe-

matics and Materials Science for Steel Production and Manufacturing, a European Industrial Doc-

torate (EID) project in the programme Innovative Training Networks (ITN) and part of the Marie

Skłodowska Curie Actions. This structured doctorate program will be entirely run by WIAS and will

be headed by the head of Research Group 4, Prof. Dietmar Hömberg. Another WIAS-associated re-

searcher who received high distinction in 2015 is Prof. Peter Friz, not only the head of a new DFG

Research Unit, but also the new holder of an ERC consolidator grant, both in the main field of one

of the 2014 Fields medalists, Martin Hairer (Warwick), a close colleague of Peter Friz. A substantial

part of his research activities will be carried out at WIAS.

The Young Scientists’ Group Modeling of Damage Processes under the leadership of Dr. Christiane

Kraus, which was founded in 2012 following a recommendation of the institute’s Scientific Advi-

sory Board, continued their work with great success. This group was founded as a measure of WIAS

to promote women in leadership positions. The first goal of this measure had already in 2013 been

achieved, when the other head, Dr. Dorothee Knees, received a W3-professorship in Kassel, but it

was in 2015 that also the second part of the goal was realized: Also Dr. Kraus received an offer

for a professorship, in Würzburg. This success shows on the one hand that WIAS is a hotbed for

young researchers, in particular female ones, and on the other hand that the appointment of young

promising people as heads of an own group with responsibility for the education of Ph.D. students

and young postdocs significantly increases their prospects. WIAS has observed this with great in-

terest and has started intense discussions about adopting the constitution of such groups in the

institute’s general policy as a structuring measure.

The institute is committed to the implementation of the legally binding German policies and stan-

dards to achieve the goal of gender equality. In 2015, the institute defended for the second time

the “audit berufundfamilie” (audit job and family) quality seal that it received in December 2013.

But beyond that, in 2015 more actions took place, the most important being the employees atti-

tude survey and the enactment of an employment agreement.

Besides these important events of the year 2015, WIAS continued its scientific work, further con-

solidating its leading position in the mathematical community as a center of excellence in the

treatment of complex applied problems. Several scientific breakthroughs were achieved, some of

which will be detailed later in this report, and WIAS further expanded its scope into new applied

problems from medicine, economy, science, and engineering. Besides the international workshops

organized by the institute, the large number of invited lectures held by WIAS members at interna-

tional meetings and research institutions, and the many renowned foreign visitors hosted by the

institute, last year’s positive development is best reflected by the acquisition of grants: altogether,

55 additional co-workers (+ 4 outside WIAS; Dec. 31, 2015) could be financed from grants.

Thirteen international workshops organized by WIAS evidenced the institute’s reputation and its

role as an attractive meeting place for international scientific exchange and collaboration. In addi-
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Foreword 5

tion, WIAS members (co-)organized numerous scientific meetings throughout the world.

In addition to these “global” activities, on the “local” scale WIAS intensified its well-established

cooperation with the other mathematical institutions in Berlin, with the main attention directed

toward the three Berlin universities. The highlight in this respect was also in 2015 the joint opera-

tion of the Research Center MATHEON “Mathematics for key technologies” located at the Technische

Universität Berlin and currently funded by the “Einstein Foundation Berlin” in the framework of the

“Einstein Center for Mathematics” (ECMath). WIAS is committed to the success of the center by pro-

viding considerable financial and personal resources; several members of WIAS play key roles in

the scientific administration of the MATHEON.

Another continuing success story for the mathematical community of Berlin is the “Berlin Mathe-

matical School” (BMS), which was extended until 2017 in the framework of the German “Exzellenz-

initiative 2012” (competition for excellence). The BMS is a graduate school for advanced math-

ematical studies that brings together the capacities of all mathematical institutions in Berlin to

attract excellent doctoral students from all over the world. Also within the BMS, several WIAS mem-

bers took long-term responsibilities for the education of the students and the organization of the

school.

Besides these major activities, and besides the cooperation with the universities through the man-

ifold teaching activities of its members, WIAS initiated and participated in successful applications

for Collaborative Research Centers, Priority Programs, and Research Training Groups of the German

Research Foundation (DFG).

Our primary aim remains unchanged: to combine fundamental research with application-oriented

research, and to contribute to the advancement of innovative technologies through new scientific

insights. The recent achievements give evidence that this concept, in combination with hard, con-

tinuing work on scientific details, eventually leads to success.

We hope that funding agencies, colleagues, and partners from industry, economy, and sciences

will find this report informative and will be encouraged to cooperate with us.

Berlin, in July 2016

W. König
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10 1 WIAS in 2015

1.1 Profile

The Weierstrass Institute for Applied Analysis and Stochastics (Weierstraß-Institut für Angewandte

Analysis und Stochastik, WIAS), Leibniz Institute in Forschungsverbund Berlin e.V. (Leibniz-Institut

im Forschungsverbund Berlin e. V., FVB) is one of eight scientifically independent member insti-

tutes of the Leibniz Association forming the legal entity FVB. The Director of WIAS is responsible for

the scientific work at WIAS, the Manager of the Common Administration of FVB is in charge of its

administrative business.

The mission of WIAS is to carry out project-oriented research in applied mathematics. WIAS con-

tributes to the solution of complex economic, scientific, and technological problems of transre-

gional interest. Its research is interdisciplinary and covers the entire process of problem solution,

from mathematical modeling to the theoretical study of the models using analytical and stochas-

tic methods, to the development and implementation of efficient and robust algorithms, and the

simulation of technological processes. In its field of competence, WIAS plays a leading role in

Germany and worldwide. WIAS promotes the international cooperation in applied mathematics by

organizing workshops and running guest and postdoc programs.

A successful mathematical approach to complex applied problems necessitates a long-term mul-

tiply interdisciplinary cooperation in project teams. Besides maintaining the contact to the cus-

tomers from the applications, which means, in particular, to master their respective technical ter-

minologies, the WIAS members have to combine their different mathematical expertises and pro-

gramming skills. This interdisciplinary teamwork takes full advantage of the possibilities provided

in a research institute. It also advances the internal scientific networking and helps to optimize

the common efforts of the institute’s scientific staff.

WIAS is dedicated to education on all levels, ranging from the teaching of numerous classes at the

Berlin universities to the supervision of theses and to the preparation of two trainees to become

“mathematical technical software developers”.

WIAS is embedded in a dense network of scientific partners. In particular, it maintains various con-

nections with Leibniz institutes and actively takes part in the forming and development of strategic

networks in its fields. WIAS made a number of cooperation contracts with universities and is one

of the “motors” of the Berlin mathematical research center MATHEON.

1.2 Structure and Scientific Organization

1.2.1 Structure

To fulfill its mission, WIAS was in 2015 organized into the departments for technical services, the

Secretariat of the International Mathematical Union (IMU, see page 52), the seven scientific re-

search groups, the Young Scientists’ Group, two Leibniz and two ERC groups1:

1In the following, the terms “research group” will often be abbreviated by “RG”, Young Scientists’ Group by “YSG”, and “Leib-
niz group” by “LG”.
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1.2 Structure and Scientific Organization 11

RG 1. Partial Differential Equations

RG 2. Laser Dynamics

RG 3. Numerical Mathematics and Scientific Computing

RG 4. Nonlinear Optimization and Inverse Problems

RG 5. Interacting Random Systems

RG 6. Stochastic Algorithms and Nonparametric Statistics

RG 7. Thermodynamic Modeling and Analysis of Phase Transitions

YSG. Modeling of Damage Processes

LG 3. Mathematical Models for Lithium-ion Batteries

LG 4. Probabilistic Methods for Mobile Ad-hoc Networks

ERC 1. EPSILON – Elliptic Partial Differential Equations and Symmetry of Interfaces and Layers

for Odd Nonlinearities

ERC 2. EntroPhase – Entropy Formulation of Evolutionary Phase Transitions

The organization chart on the following page gives an overview of the organizational structure of

WIAS as of December 31, 2015.

1.2.2 Main Application Areas

The research at WIAS focused in 2015 on the following main application areas, in which the insti-

tute has an outstanding competence in modeling, analysis, stochastic treatment, and simulation:

– Nano- and optoelectronics

– Optimization and control of technological processes

– Phase transitions and multi-functional materials

– Flow and transport processes in continua

– Conversion, storage, and distribution of energy

– Random phenomena in nature and economy

To these areas, WIAS has made important contributions in the past years that have strongly influ-

enced the directions of development of worldwide research. The institute has a special modeling

and simulation expertise in promising modern technologies, for instance,

– Optical technologies (in particular, diffractive and laser structures, semiconductor devices, and

optical fibers)

– Energy technology (in particular, direct methanol fuell cells, lithium batteries, hydrogen storage,

photovoltaics, OLED lighting)
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1.2.3 Contributions of the Research, Young Scientists’, Leibniz, and ERC Groups

The seven research groups, the Young Scientists’ group, the two Leibniz groups, and the two ERC

groups form the institute’s basis to fully bring to bear and develop the scope and depth of its

scientific expertise. The mathematical problems studied by the groups originate both from short-

term requests arising during the solution process of real-world problems, and from the continuing

necessity to acquire further mathematical competence as prerequisite to enter new fields of appli-

cations, calling for a well-directed long-term basic research in mathematics.

The following table gives an overview of the main application areas to which the groups contributed

in 2015 in the interdisciplinary solution process described above.

Main application areas
RG
1

RG
2

RG
3

RG
4

RG
5

RG
6

RG
7

YSG LG

3

LG

4

ERC

1
ERC

2

Nano- and
optoelectronics

X X X X

Optimization & control of
technological processes

X X X X X X X

Phase transitions & mul-
ti-functional materials

X X X X X X X X

Flow and transport
processes in continua

X X X X X X X X

Conversion, storage, and
distribution of energy

X X X X X

Random phenomena in
nature and economy

X X X X X X X X X X

In the following, special research topics are listed that were addressed in 2015 within the general

framework of the main application areas.

1. Nano- and optoelectronics

� Microelectronic devices (simulation of semiconductor devices; in RG 1 and RG 3)

� Mathematical modeling of semiconductor heterostructures (in RG 1)

� Diffractive optics (simulation and optimization of diffractive devices; in RG 4)

� Quantum mechanical modeling of nanostructures and their consistent coupling to macroscopic

models (in RG 1 and RG 2)

� Laser structures and their dynamics (multisection lasers, VCSELs, quantum dots; in RG 1 and

RG 2)

� Fiber optics (modeling of optical fields in nonlinear dispersive optical media; in RG 2)

� Photovoltaics and OLED lighting (in RG 1)
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14 1 WIAS in 2015

2. Optimization and control of technological processes

� Simulation and control in process engineering (in RG 3, RG 4, and RG 6)

� Problems of optimal shape and topology design (in RG 4 and RG 7)

� Optimal control of multifield problems in continuum mechanics and biology (in RG 3, RG 4, RG 7,

and ERC 2)

� Evaluation of the quality of mobile ad-hoc communication systems (in LG 4)

3. Phase transitions and multi-functional materials

� Modeling of nonlinear phenomena and phase transitions in multi-functional materials (in RG 1,

RG 7, and YSG)

� Stochastic modeling of phase transitions (in RG 5)

� Hysteresis effects (elastoplasticity, shape memory alloys, lithium batteries, hydrogen storage;

in RG 1 and RG 7)

� Thermomechanical modeling of phase transitions in steels (in RG 4, RG 7, and ERC 2)

� Modeling of damage and crack processes (phase field systems and sharp interface problems,

multiscale transitions; in YSG, RG 1, RG 7, and ERC 2)

� Modeling, analysis, and simulation of gas-solid and liquid-solid transitions, phase separation

with thermomechanical diffusion (Stefan problems, phase field models, LSW theory, Becker–

Döring models, in RG 7, YSG, and ERC 2; and many-body systems, in RG 5)

� Growth of semiconductor bulk single crystals, growth of quantum dots (in RG 7)

4. Flow and transport processes in continua

� Treatment of Navier–Stokes equations (in RG 1, RG 3, RG 7, LG 3, and YSG)

� Flow and mass exchange in porous media (in RG 3)

� Numerical methods for coupled electrochemical processes (fuel cells, batteries, hydrogen stor-

age, soot; in RG 1, RG 3, RG 5, RG 7, and LG 3)

� Modeling of nanostructures of thin films on crystalline surfaces (fluid films, thin film solar cells;

in RG 1 and RG 7)

� Stochastic particle systems as efficient solvers of kinetic equations (in RG 5)

� Transport in random media (in RG 5)

� Trajectories of message flow in mobile ad-hoc communication systems (in LG 4)
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5. Conversion, storage and distribution of energy

� Photovoltaics (in RG 1)

� Light-emitting diodes based on organic semiconductors (OLEDs; in RG 1 and RG 3)

� Modeling of experimental electrochemical cells for the investigation of catalytic reaction kinet-

ics (in RG 3)

� Lithium-ion batteries (in RG 3, RG 7, and LG 3)

� Modeling and analysis of coupled electrochemical processes (fuel cells, batteries, hydrogen

storage, soot; in RG 1, RG 3, RG 5, RG 7, and LG 3)

6. Random phenomena in nature and economy

� Stochastic particle systems and kinetic equations (modeling and simulation of coagulation

processes, chemical reaction-diffusion processes, and gas flows; in RG 1, RG 5, and RG 7)

� Modeling of stock prices, interest rates, and exchange rates (in RG 6)

� Evaluation of derivatives, portfolio management, and evaluation of risk (in RG 6)

� Nonparametric statistical methods (image processing, financial markets, econometrics; in

RG 6)

� Dynamical processes in nonhomogeneous media (in RG 6 and RG 7)

� Branching processes in random media (in RG 5)

� Connectivity problems in large telecommunication networks (in RG 5 and LG 4)

� Material models with stochastic coefficients (in RG 3, RG 4, RG 5, and RG 7)

1.3 Equal Opportunity Activities

The institute is committed to a policy of equal opportunity. It strives to increase the percentage of

women within the scientific staff and, especially, in leading positions.

In 2013, WIAS obtained the berufundfamilie audit certificate for a period of three years. A target

agreement was signed to optimize the institute’s family-friendly arrangements. With the certificate,

WIAS documents its commitment towards the harmonization of work and family both internally and

externally and implements central research policy objectives.

In 2015, the main task for WIAS’s equal opportunity officer and her substitute was to conduct an

employee attitude survey. The goal was to establish information concerning WIAS workers’ options

and needs on the topics of equal opportunities and family-friendly policies. The evaluation of the

survey was carefully done by November 2015 and resulted in an assessment of measures to meet

WIAS’s workers’ needs and wishes.
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Since 2015, the topic Equality, Work, and Family Life has a permanent slot in the monthly WIAS

director’s meeting, in which a member of the institute’s management reports on recent activities.

A major activity in 2015 was the development and enactment of a company agreement regarding

the compatibility of career and family. Significant changes were made in the fields of working time,

fixed-term contracts, and flexibilization by exemption. Furthermore, an informative internal WIAS

web page Work and Family has been established and is well maintained. Moreover, in 2015, WIAS

hosted and financed for its employees a professional workshop on the burnout issue. Lively inter-

est could be observed.

A number of measures were taken in 2015 for the support of females. Indeed, WIAS participated for

the first time in April 2015 in the event “Girls’ Day – Mädchen Zukunftstag”; female WIAS members

delivered a carefully chosen scientific program for girls aged 12–17 and received an enthusiastic

reply. A scientific international workshop on stochastic analysis with only female speakers was

organized at WIAS in Fall 2015.

1.4 Grants

The raising of grants under scientific competition is one of the main indicators of scientific ex-

cellence and thus plays an important role in the efforts of WIAS. In this task, WIAS has been very

successful in 2015, having raised a total of 3.5 million euros, from which 55 additional researchers

(+ 4 outside WIAS; Dec. 31, 2015) have been financed. In total in 2015, 26.95 percent of the total

budget of WIAS and 36.9 percent of its scientific staff originated from grants. For a detailed ac-

count of projects funded by third parties, the reader is referred to the appendix, Section A.2 Grants

below on pages 106ff.

1.5 Participation in Structured Graduation Programs

Graduate School Berlin Mathematical School (BMS)

One of the many great achievements of Berlin’s mathematicians in recent years was the renewal of

the success from 2006, when this graduate school was installed for the first time. In Summer 2012,

the second funding period (2013–2017) was awarded to the BMS, underlining its success and the

excellent work that it has been carrying out since its inception. The BMS is jointly run by the three

major Berlin universities within the framework of the German Initiative for Excellence. The BMS is

funded with more than one million euros per year to attract excellent young Ph.D. students to the

city. Many members of WIAS are contributing to the operations of the BMS.
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Research Training Group (RTG) 1845 Stochastic Analysis with Applications in Biology,
Finance and Physics of the DFG

A big success of Berlin/Potsdam’s probabilists was the approval of a new DFG graduate college,

which is located at Humboldt-Universität zu Berlin and took up its activities in October 2012. RG 5

contributes to this college, which is a certified unit of the Berlin Mathematical School.

International Research Training Group (IRTG) 1792 High Dimensional Non Stationary Time
Series Analysis of the DFG

In October 2013, this International Research Training Group took up its work for 4.5 years. The

faculty consists of internationally renowned scholars from Humboldt-Universität zu Berlin, WIAS

(RG 6), Freie Universität Berlin, the German Institute for Economic Research (DIW), and Xiamen

University in China.

Graduate Research School GeoSim

The graduate research school “GeoSim” is funded by the Helmholtz Association, GeoForschungs-

Zentrum Potsdam, Freie Universität Berlin, and Universität Potsdam. Its goal is to train a new gen-

eration of outstanding young scientists based on a strong collaboration, systematically linking

methodological expertise from the areas of Earth and Mathematical Sciences. Thanks to the con-

nections to Freie Universität Berlin, WIAS can participate in the scientific expertise of this graduate

school. One student was supervised by RG 3, working at the simulation of mantle convection. For

several other students from the Earth Science, the supervision of the mathematical aspects of their

work is performed.

1.6 Software

Scientific software is a tool to evaluate models and algorithms investigated at WIAS. Moreover,

software helps to transfer research results to other scientific fields, to industry, and to the gen-

eral public. The underlying problems often pose very specific and advanced requirements, which

cannot be satisfied by standard software that is widely available; hence, the development of al-

gorithms and scientific software belongs to the scientific tasks of WIAS. As a consequence, WIAS

is working on the implementation of rules of good scientific practice in the realm of software de-

velopment. Software-based publications in specific journals and as WIAS Technical Reports are

encouraged. The production, dissemination, and sale of software is not part of the core duties of

WIAS. Nevertheless, several codes developed at WIAS are distributed outside of WIAS and have

earned a good reputation. See page 182ff. for a list of the software packages that WIAS makes

available. Licensing models depend on the specifics of the corresponding projects. Codes are of-

fered under open source and proprietary licenses as well as combinations thereof.
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� Towards the Optimization of On-chip Germanium
Lasers

� Delay-differential Equations for Optoelectronic
Systems

� Adaptive Anisotropic Grids for Numerical Simulations

� Phase Field Approach to Structural Topology
Optimization

� New Approach for Optimal Control of
Hydroelectricity Storage Systems

� Mathematical Models for Lithium-ion Batteries

2 Scientific Highlights



20 2 Scientific Highlights

2.1 Towards the Optimization of On-chip Germanium Lasers

Thomas Koprucki, Dirk Peschka, and Marita Thomas

Silicon photonics, combining electronics with photonics, has become a rapidly developing new

field with a high potential for low-cost solutions to problems ranging from high-speed data transfer

for optical on-chip communication to biosensing. The missing piece for the silicon photonics plat-

form is an integrable active light source compatible to silicon technology. To fill this gap, various

concepts based on silicon (Si) and germanium (Ge) are under consideration; cf., e.g., [1]. However,

both Ge and Si are indirect semiconductors and therefore not capable of substantial light emission.

But by applying mechanical strain to Ge, it is possible to improve its radiative efficiency due to a

favorable shifting of the band structure under strain [1]. The pioneering work in this direction is the

successful demonstration of an electrically pumped laser based on slightly tensile-strained Ge/Si

heterostructures by Massachusetts Institute of Technology (MIT) researchers [2]. The extremely

high lasing threshold currents observed in these devices lead to strong heating effects limiting

their operation lifetime. This fact shows the strong demand for improvements, in particular, for a

rigorous optimization of Ge semiconductor lasers.

A first step in this direction was made by scientists at the Leibniz-Institut für innovative Mikroelek-

Fig. 1: Ge microstrips with
additional SiN stressor layer
built at IHP provide higher
biaxial strain compared to
purely thermally strained Ge

tronik IHP, by proposing a manufacturing technique for strained Ge microstrips, which is superior

to the purely thermally strained MIT device. Motivated by these promising results of our colleagues

at IHP [3], we work on the mathematical optimization of mechanical strain and optical properties

with the goal of finding a design for a Ge laser with a highly reduced threshold current. Finding

this design is the goal of the ⊕ECMath funded MATHEON project D-OT1, which combines the long-

standing expertise of WIAS regarding semiconductor modelling, analysis, and simulation with the

expertise of Humboldt-Universität zu Berlin (Prof. M. Hintermüller, Prof. T. Surowiec) in nonsmooth

partial differential equation optimization and algorithms. The quantity to be optimized is the stim-

ulated emission, which depends on the doping through the carrier densities and on the band struc-

ture of Ge, which can be directly tuned by applying a mechanical strain. Our theoretical findings

in simulations, e.g., with the software package WIAS-TeSCA, support the design of devices and

interpretation of experiments at IHP.

Germanium as an optically active gain material

Light generation in a semiconductor is based on the radiative recombination of electrons with

holes. In direct semiconductors, such as III-V materials, both electrons and holes occupy the 0 -

valleys in the energy landscape possessing a similar momentum, which allows for an efficient ra-

diative recombination. However, in unstrained Ge, the negatively charged electrons ( n ) mainly

occupy the lower-lying conduction band L -valley, see Figure 2, thus making their momentum in-

compatible to that of the positively charged holes ( p ) in the valence band 0 -valley. Additional

phonons are required to assist the optical transition, which makes radiative recombination much

less likely.
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Fig. 2: Schematic Ge band structure
showing the occupation of
electrons and holes in the
conduction and valence band. The
combined effect of tensile strain
and n -doping resulting in an
increase of stimulated emission by
reducing the direct band gap
E0c − Ev (strain) and by filling the
0 -band (doping)

By applying a tensile mechanical strain to Ge, the energy difference E0c − Ec between the 0 -

valley and the L -valley conduction band edges can be decreased. For biaxial strains beyond 1.7%

Ge even becomes a direct semiconductor, where E0c < Ec. Moreover, by adding a suitably high

n -type doping, i.e., by implanting some impurities creating an excess of negative charges, the

number of electrons available for optical emission can be highly increased. With this band-filling

effect, it is possible to inject additional electrons into the 0 -valley enhancing the radiative recom-

bination. If the radiative recombination rate is sufficiently high, light is amplified by stimulated

emission. This amplification is measured by the so-called optical gain, which depends on carrier

densities of electrons and holes, on the mechanical strain, and on the n -type doping.

The optical gain can be described by a quantum mechanical model where the modified band struc-

ture due to the mechanical strain e is used in the calculations [4]. The gain data obtained in this

way are fitted in [5] to a macroscopic expression that we use for WIAS-TeSCA simulations with

the afore-mentioned semiclassical optoelectronic laser model. The expression for the optical gain

g(ψ, n, p;ω, e) obtained in [5] depends on the values of electron and hole densities n, p , as well

as on the frequency of light ω , on the spatially inhomogeneous strain e , and on the doping den-

sity C .

The computed material gain spectra for the transverse electric (TE) polarization [5] and different

values of the biaxial tensile strain ranging linearly from 0.35% to 0.70% and different excess

carrier densities δn = n − C for the n-type doped Ge are shown in the left panel of Figure 3. The

right panel shows the corresponding fit to the analytic expression for g from [5] for the wavelength

λ=1620 nm. As expected, the material gain increases with increasing strain and increasing excess

density, which are our main quantities to use in the optimization.
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Fig. 3: Left: Material gain for
TE polarization computed for
different excess densities δn
and nine linearly increasing
biaxial strains
0.35%− 0.7% for Ge with
n -type doping
C = 5 · 1019 cm−3 . Right:
Fit to analytic expression for
fixed wavelength
λ = 1620 nm; see [5].
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Mathematical modeling and optimization strategy

We illustrate the approach for the optimization of a strained Ge microstrip, which is pursued in the

MATHEON project D-OT1. Here, the optical gain depends on the mechanical strain e and on the car-

rier densities n, p for electrons and holes, making it sensitive to both the doping density C and

the material distribution. When suitable physical optimization goals are identified, a mathemati-

cally rigorous optimization might generate producible improved laser designs.

Fig. 4: Optical TE modes for
λ = 1.7µm for an IHP
geometry is concentrated in
optically active Ge (dashed)

For a semiconductor occupying the domain � ⊂ Rd , charge transport is described by the van

Roosbroeck system (1a), where, for a given doping profile C, one seeks the state ξ = (ψ, φn, φp)

consisting of the electric potential ψ, and the quasi-fermi potentials φn, φp for electrons and

holes. With distribution function F , the carrier densities n, p are related to the potentials by

n = Nc F
(

q(ψ−φn)−Ec
kBT

)
, p = Nv F

(
q(φp−ψ)+Ev

kBT

)
, (2)

with statistics F , where the energy levels Ec(e), Ev(e) of the conduction band and valence band

depend on the mechanical strain e. Additionally, the recombinations R in (1a) contain a contri-

bution from stimulated emission of the form Rstim ' gS|2|2. The Helmholtz equation (1b) for the

optical mode 2 couples to the van Roosbroeck system through the dependence of the permittivity

εr
(
ξ ;ω, e

)
=

(
nr +

ic
2ω [g(ξ ;ω, e)− α(ξ)]

)2
(3)

on the state ξ and on the strain e . The complex eigenvalue β of the Helmholtz equation (1b)

enters the balance of photon numbers (1c), where Imβ is typically increasing with increasing gain,

so that a large gain results into a strong amplification of photon numbers, until, finally, the losses

increase and balance the gain. The main effect of the material distribution on the strain is through

the material-dependent thermal strains e0 and stresses σ0 . Additionally, the refractive index nr

depends on the material. By creating a contrast of nr within Ge with respect to the surrounding me-

dia, one creates confined optical modes with low losses outside the optically active Ge (Figure 4).

The main goal is to find such a doping and material distribution, so that the laser operates at a low

threshold current, i.e., a sufficient amplification of S ' “output power” at low electrical currents,

i.e., with low heat production. In the following case study we explain different empirical strategies

how this aim can be achieved, and how it can be translated into cost functionals.
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Empirical case study

Fig. 5: Cross section through
standard Ge heterostructure
similar to Fig. 1

In [5], this modeling approach was used in order to identify promising starting geometries and

feasible cost functionals for a doping and topology optimization. As an outcome, the case study

underlined that a mathematically rigorous optimization may indeed be useful since the devices in

fact show the possibility for a substantial lowering of the threshold currents. This observation is

of great practical interest, because the device developed at MIT had a very short lifetime due to its

high threshold currents.

As in [5], we consider two competing designs: First, the standard design shown in Figure 5 con-

sisting of a SiN stressor on top of the optically active Ge on an insulating SiO2 layer. The doped

silicon contacts are indicated by green layers in Figure 5. Second, the empirically improved aper-
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0.5
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1.5
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x [µm]

y
 [

µ
m

]

Fig. 6: Cross section through
aperture Ge heterostructure

ture design shown in Figure 6, where electric currents are injected into the optically active Ge

through a narrow opening near the center of the main mode (see insets in Figure 6). Both devices

consist of a layered heterostructure based on an insulating SiO2 substrate, with a Ge block sand-

wiched between the Si contacts (Si-n and Si-p) and a SiN layer on top, which, as experimentally and

numerically verified in [3], induces a tensile strain to the Ge layer, linearly decreasing in vertical

y -direction from top to bottom.
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]

0 0.2 0.4 0.6 0.8 1 1.2

1

1.2

1.4

1.6 Fig. 7: Hole current for left:
standard device and right:
aperture device above
threshold. Red lines indicate
the isolevels of 22 , whereas
the white arrows and the
colored background show
the direction and magnitude
of (the current)
jp = −µp p∇φp .

For the standard device, which is considered a feasible and producible design by IHP, one observes

significant leakage currents. They are very pronounced for the hole transport, cf. Figure 7 (left),

Fig. 8: Threshold currents
for aperture and standard
design and TE/TM modes for
different wavelengths

where the carriers flow directly from the p -contact to the n -contact along the edges of the de-

vice without passing through the center of Ge, where the fundamental mode, indicated by the red

isolines, is located. This observation is in contrast to the hole currents of the aperture device in Fig-

ure 7 (right), where the carriers are injected into the center of the fundamental mode, leading to a

lower threshold thanks to a higher gain due to higher carrier densities and due to a more effective

replenishment of carriers lost through stimulated recombination.

The quantitative improvement of the aperture design over the standard design is shown in Figure 8,

where one can see that the threshold current for the aperture device is lower than the threshold

current for the standard device by a factor of almost four for transverse magnetic (TM) modes. The

factor is even higher for TE modes; however, because of their lower gain, their threshold remains

above that of TM modes.

Towards rigorous device optimization

The major difference between the IHP device concept and the purely thermally strained devices

of MIT is the spatially nonuniform strain of the first, which is experimentally verified to increase
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linearly with y as shown in Figure 9, leading to a substantial spatial variation of the band gaps and
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Fig. 9: Strain in Ge along
y-direction is constant or
linearly increasing
0.35%– 0.7% as achievable
at IHP [5]

the gain shown in Figure 10. This property should be exploited in the topology optimization and

in the doping optimization. The band gaps and the gain thereby depend on the y -coordinate from

bottom to top, which, so far, were realized in the WIAS-TeSCA simulations by introducing nine

artificial material layers in the Ge block with piecewise constant strain. The layering is indicated by

regions of constant gray color in Figure 5 and by the section through the device center in Figure 9,

where two different realizations of strain distributions through Ge are shown.

Figure 10 shows that, in contrast to the uniform strain, the strong IHP strain results in a very non-

uniform gain, with the strongest enhancement in regions of highest strain. It is interesting to note

that the main term responsible for photon amplification in (1c) can be approximated by lowest-

order perturbation theory as

Imβ ≈
∫
�

(
g(ξ ;ω, e)− α(ξ)

)
22 dx (4)
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Fig. 10: Gain g (full lines)
and losses α (dashed lines)
for strains from Fig. 9 with
optical mode 22 in
blue-shaded area

and, therefore, is called modal gain. For spatially constant densities, uniform gain, and a normal-

ized confined mode, leading to Imβ ≈ (g − α) , with g and α constant throughout Ge. However,

for spatially nonuniform gain, the optimization goal implied by (4) is to engineer a device so that

the mode coincides with regions for large gain. For doping optimization, where the optical mode

2 is given, which implies optimizing the doping C so that (g − α) weighted with 22 is maximal.

In the context of topology optimization, we have to distribute the material such that the regions of

large tensile strains and the shape of the optical mode overlap in an optimal way.

We refer to this concept as overlap engineering and, together with threshold currents, consider it a

feasible cost functional for a rigorous doping and topology optimization of such an optoelectronic

device.
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2.2 Delay-differential Equations for Optoelectronic Systems

Matthias Wolfrum and Serhiy Yanchuk

A fundamental principle for the modeling of dynamical processes is that the state of a system al-

ready determines a tendency in which way this state is going to change in the next moment. In

simple cases, a system can be described by a finite number of quantities, which change contin-

uously in time. One obtains in this way so-called ordinary differential equations. Beginning with

Isaac Newton, such equations have been successfully used to model a huge variety of dynamical

processes, ranging from celestial mechanics to the metabolism of cells or to monetary processes

in economics.

A qualitatively new feature appears when the evolution of the system depends not only on its

present state, but also on the state of the system at previous moments of time. Such a delayed in-

teraction can be observed, for example, in coupled systems where the interaction between distant

units takes place with a finite speed of signal propagation. A prominent example is the dynamics

of neural systems, where a transmission delay between the individual neurons often plays an es-

sential role for the dynamics. Other examples of delay systems arise in biology, where the delay

can be induced by the life cycles of organisms, or in systems with an external control acting with a

certain latency.

Also in the field of optical systems, delay effects can frequently be observed, even though the

signal transmission in optics happens at the fastest possible speed, namely the speed of light.

While the internal time scales in a laser are in the range of picoseconds, already a light propagation

over millimeters induces a significant delay. And within larger optical cavities, the round-trip time

of the light can even be large compared to the internal time scales on which an optically active

material may react on the propagating signal.

Delay-differential equations with large delay

A general delay-differential equation (DDE) can be written in the form

dy(t)
dt
= f (y(t), y(t − τ)), (1)

where the vector y ∈ Rn contains the state variables of the system, τ > 0 is the delay time, and f

is some nonlinear function depending on the present state y(t) and on the delayed state y(t − τ) .

While for an ordinary differential equation, with f depending only on the present state y(t) , a

solution can be found for any initial condition y0 = y(0) ∈ Rn , a DDE can be solved uniquely

only with initial data y0(t) given for a whole interval of time t ∈ [−τ,0] , called the history in-

terval. Consequently, the phase space in which the trajectory evolves is an infinite-dimensional

space of functions, even though there is only a finite number n of state variables. In this way, po-

tentially high-dimensional and complex dynamics become possible. In particular, it turns out that

the effective dimension of the resulting dynamics can become large if the delay time τ increases.

Exactly this situation can be found in various models from optoelectronics, where highly complex

dynamics with the interplay of processes on different time scales can be observed.
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This was the starting point for the research at WIAS aiming to achieve a better understanding of the

Fig. 1: Examples of
pseudo-continuous and
strongly unstable spectrum
for the Lang–Kobayashi
model

resulting physical effects by applying and further developing a mathematical singular perturbation

theory and multiple time-scale methods to this problem. The basic idea is that one investigates the

limit τ →∞ and considers the case of very large τ as a small perturbation of this situation. The

mathematical challenge consists of the fact that this limit exists not in a unique way and the struc-

ture of the problem changes in the limit. This is why it is called a singular limit. Indeed, rescaling

the time variable T = t/τ , the system with large delay appears in the form

ε
dy(T )

dT
= f (y(T ), y(T − 1)), (2)

where ε = 1/τ is a small parameter. Here, the former limit of large delay is given by the limit

ε→ 0 , where the DDE transforms into a mapping in implicit form and the differential nature of the

original equation has disappeared. Instead, this mapping describes the slow variations from one

history interval to the next as a discrete process.

The two different scalings indicate that in DDEs with large delay one has to expect dynamics on

different time scales and one has to figure out the interplay between these time scales.

Scaling properties of the spectrum. A first fundamental theoretical result in this direction was

obtained in [1] describing the asymptotic properties of the spectrum of a DDE with large delay,

linearized at an equilibrium solution. It turns out that in most cases the spectrum can be decom-

posed into two parts with different scaling properties with respect to τ :

(i) pseudo-continuous spectrum consisting of eigenvalues λ that scale as Re(λ) ∼ 1/τ for

large τ . These eigenvalues appear in pseudo-continuous families, which are located along curves

that can be calculated analytically by a corresponding scale-free limit problem. They correspond

to the slow but high-dimensional dynamics described by the discrete mapping.

(ii) strongly unstable spectrum consisting of finitely many eigenvalues with positive real part that

scale as Re(λ) ∼ 1 . They correspond to instabilities that develop on a fast time scale, shorter than

a single history interval, and their location can be found as well from a limit problem. Examples

of such spectra are shown in Figure 1 for the Lang–Kobayashi model describing the dynamics of a

semiconductor laser with optical delayed feedback [5].

Furthermore, this approach was extended to a certain class of periodic solutions [3], where the

Floquet spectrum, determining the stability of the periodic solutions, can again be decomposed

into families of pseudo-continuous spectrum and strongly unstable spectrum with a corresponding

scaling behavior. Even for chaotic solutions, one can distinguish in a similar way between strong

and weak chaos, where the first one is characterized by a few positive Lyapunov exponents and

the latter one is of extensive nature, reflecting the high dimensionality of the underlying processes

[4]. The central example in all these cases is the classical Lang–Kobayashi model for a semicon-

ductor laser with delayed optical feedback. Based on the new theoretical results, a comprehensive

description of the stability properties of all stationary lasing states was obtained [5].

Moreover, fundamental differences in the synchronization behavior of weekly and strongly chaotic

lasing regimes were discovered.
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Spatio-temporal representation. Already almost twenty years ago, it was observed that there is

a relationship between DDEs and spatially extended systems. Indeed, based on equation (2), one

can parametrize the time within the history interval by an extra “spatial” variable. The stepwise

evolution on the slow time scale from one history interval to the next one appears then like the

temporal evolution of a spatial profile, which in a usual spatially extended dynamical system is

described by a partial differential equation (PDE). This result can be used, for example, to visualize

the various high-dimensional dynamical phenomena; see Figures 2, 3, 4.

Amplitude equations. The analogy to partial differential equations describing the evolution in a

spatially extended system goes even further. Starting from the curves of the pseudo-continuous

spectrum, one can classify the instabilities of DDEs in analogy to the instabilities of PDEs with a

corresponding shape of the spectrum in their dispersion relation. This observation is the basis to

establish a rigorous relation between the dynamics of a DDE with large delay and a PDE. In [2], we

present a new result proving that for scalar delay-differential equations close to the destabilization

threshold, one can explicitly find a Ginzburg–Landau equation of the form

∂u
∂θ
= α

∂2u
∂x2 + β

∂u
∂x
+ pu + γ u3

that recovers the dynamics of the DDE with large delay. The variable θ describes here the evolution

on the slow time scale, while the “spatial” variable x parametrizes the time within the history

interval; see Figure 2.

Fig. 2: Comparison between the
evolution of a scalar DDE in a properly
rescaled spatio-temporal
representation (a) and the solution of
the corresponding Ginzburg–Landau
amplitude equation (b)

Applications. In cooperation with the Institute for Complex Systems, Florence, we investigated

theoretically and experimentally the dynamics of vertical cavity lasers with long-delayed optoelec-

tronic feedback [6]. These laser systems show characteristic spatio-temporal coarsening dynamics

where regions of two different phases, corresponding to different polarization modes of the lasers,

are separated by moving fronts, which are generated and annihilated in pairs as shown in Figure 3.
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Fig. 3: Spatio-temporal representation
of experimental data of the laser
intensity. Insets: (a) front generation,
(b) annihilation, (c) a nucleation of the
white state into the black

In a model of a semiconductor laser with two delayed optical feedbacks, a corresponding spatio-

temporal representation has to include two spatial dimensions. Figure 2 shows the snapshots of

two different spatial patterns. Note that the stable defects, shown in panel (a), are stationary in

time, while the defect turbulence (b) displays additionally an irregular turbulent evolution in time.

Fig. 4: Semiconductor laser
with two delayed feedbacks,
two-dimensional
representation of two
different dynamical regimes;
(a) stationary defects, (b)
defect turbulence

Summary. Delay-differential equations are used at WIAS as a versatile tool for the modeling of op-

toelectronic devices. They are able to capture complex high-dimensional dynamical effects caused

by feedback and interaction at finite propagation speed and, at the same time, they allow for a

qualitative understanding of many physical effects by applying advanced methods from the math-

ematical theory of dynamical systems. Triggered by specific application problems, a comprehen-

sive mathematical theory for the singular limit of large delay times was developed, including multi-

scale approaches to the stability of equilibria, periodic solutions, and different types of chaotic mo-

tion. Moreover, for certain cases a mathematically rigorous justification of the Ginzburg–Landau

equation as an amplitude equation for the behavior close to the destabilization threshold was

obtained. This theory was successfully applied to study various optoelectronic systems, such as

lasers with feedback, localized structures of light, stabilization and destabilization of cavity soli-

tons, and mode-locked lasers.
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2.3 Adaptive Anisotropic Grids for Numerical Simulations

Lennard Kamenski

Background and motivation

Many physical processes are modeled by partial differential equations (PDEs), whose analytical so-

lutions are unavailable and must be simulated using numerical approximations. A common numer-

ical simulation starts with a subdivision of the physical domain into a finite number of elementary

geometrical building blocks (mesh elements), on which the solution of the PDE is approximated

using a simple set of basis functions. This process (mesh generation) is followed by the discretiza-

tion and results in a system of linear equations, which is then solved: This is the essence of the

finite element and finite volume methods.

The accuracy of a numerical simulation crucially depends on the mesh resolution, which is usually

controlled by the number and size of the mesh elements. However, higher resolution leads to larger

linear systems and, consequently, to a higher computational cost of the whole process, introducing

a trade-off between the accuracy of the numerical method and its computational cost.

One of the obvious reasons for anisotropic mesh adaption, i.e., adaption of not only the size but

also the shape and the orientation of mesh elements, is that the orientation of the mesh building

blocks is an additional degree of freedom during the adaption process, which allows more flexibil-

ity and a better compromise in case of different, possibly contradicting, objectives of adaption.

Another, very strong, reason for exploring specifically the anisotropic adaption comes from the

physical problems itself: In a simulation, particularly challenging are physical processes having

anisotropic structure, such as boundary layers (thin regions of rapid change along domain bound-

aries), characterized by a directional variation of the physical quantity; for example, the concen-

tration of a reactant dissolved in a mixture flowing over a catalyst, the concentration of charge

carriers near a transistor gate contact, or the velocity of a turbulent flow. Likewise, interior layers

occur in the interior of the domain; classic examples being shock waves and chemical reaction

fronts. Boundary and interior layers are characterized by a strong directional variation of the solu-

tion: It is very large in one direction, but small in the other. Adapting the mesh by only adjusting the

number and size of the mesh elements (which is the classic, isotropic, approach to mesh adaption)

would lead to unnecessarily large linear systems and, thus, excessive computational costs. Conse-

quently, near the boundary or interior layers, the optimal mesh should have a high resolution in

the direction of rapid changes (in order to improve the accuracy), but the resolution should stay

low in the directions of slow variation (in order to keep computational costs reasonable), meaning

that the optimal mesh for resolving such layers should be anisotropic.

In brief, for a successful numerical simulation, the structure of the problem should be reflected in

the mesh. To reach this goal, the major components of mesh generation have to be studied.

First, the question “What is the best mesh for a given problem?” needs to be answered by deriving

criteria for the optimal mesh in dependence on the objectives of the simulation and restrictions

imposed by the employed methods. The derived requirements on the mesh are then passed to
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the actual mesh generation stage; here, the important question is “How to construct a mesh with

given properties?” Finally, the obtained mesh should be examined to see if it fulfills the desired

properties and, if necessary, readjusted. This procedure results in a typical mesh generation cycle:

assessment of mesh requirements H⇒ mesh generation

H⇒ assessment of mesh quality H⇒ mesh generation / adaption . . . .

These stages are strongly connected to each other and require knowledge in numerical analysis,

discrete geometry, and scientific computing. Thus, the ultimate goal of our research is the con-

nection of these areas for a better understanding of anisotropic mesh adaption and its impact on

the numerical methods involved, which is the key to accurate and cost-effective numerical simula-

tions.

Numerical analysis in mesh generation

Different objectives impose different requirements on the mesh, and they can even contradict each

other. For example, as noted above, a mesh that is good for minimizing the approximation error

of the solution may be inappropriate from the computational efficiency point of view. Thus, an

optimal grid is often a compromise between multiple objectives and requirements. Moreover, grids

obtained from grid generators seldom fulfill the desired requirements exactly and it is important

to know how this inaccuracy affects other stages of the numerical simulation. To resolve these

questions, the development of meaningful, goal-oriented mesh quality measures is unavoidable.

Mesh quality measures. A good quality measure has to be goal- and problem-oriented and de-

pend on the parameters of the underlying problem. Mesh quality measures can be based on quan-

tities computed during the simulation (a posteriori information) or on information available prior

to the simulation, which is often the case for the mentioned above physical problems exhibiting

boundary layers.

Our objective is goal-oriented mesh quality measures, which are able to give a meaningful state-

ment on how good is the mesh for a given task and how the (in practice unavoidable) non-conform-

ity of the mesh with the posed specifications affects a given quantity of interest, e.g., solution

approximation error, stability condition for time integrators [1], or conditioning of the resulting

stiffness matrix [2]. Naturally, this research topic is strongly connected to both the error analysis

and the actual mesh generation by defining criteria for the mesh generation and the quality assess-

ment of the constructed mesh.

Research on mesh quality measures as well as recent advances in mesh improvement techniques,

such as robust algorithms for mesh smoothing [3], are closely connected to the further develop-

ment of the WIAS software package TetGen.

Obtaining directional information. For the proper element orientation and shape we need di-

rectional information, which may come from the physical properties of the problem (such as the

orientation of boundary layers or diffusion directions) as well as from the solution itself. Usually,
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the optimal mesh orientation is obtained from a reconstruction of the Hessian of the exact solution

from the numerical approximation (to minimize the interpolation error, the underlying mesh should

be aligned with the major curvature directions of the solution). The proof of convergence of such an

adaptive scheme relies crucially on the accuracy of the recovery. Unfortunately, a convergent Hes-

sian recovery cannot be obtained from the linear finite element approximation on general meshes

except for the special situation when the numerical solution exhibits superconvergence. However,

it has been also observed that adaptive meshes obtained by means of such a non-convergent Hes-

sian approximation still lead to the optimal error convergence of the finite element approximation.

This phenomenon indicates that a convergent Hessian recovery is not necessary for the purpose of

mesh adaption and explains why Hessian recovery is still widely used despite its non-convergence.

Our current results provide an error bound for the linear finite element solution of a general bound-

ary value problem under a mild assumption on the closeness of the recovered Hessian to the exact

one [4]. It also shows that the finite element error changes gradually with the closeness of the

recovered Hessian, providing a good theoretical explanation of why a non-convergent recovered

Hessian works in mesh adaption. However, in some cases theoretical bounds are still larger than

the ones observed numerically, which indicates that further investigation is needed to clarify the

issue.

Conditioning of linear systems arising from discretization of PDEs. Another direction of research

targets the impact of adaptive grids on the last stage of a numerical simulation: the solution of

linear systems arising from the discretization of PDEs. There is a concern that the discretization

based on anisotropic meshes can lead to extremely ill-conditioned linear systems, and that may

outperform the accuracy and efficiency improvements gained by anisotropic adaption. The diffi-

culty in resolving this question is that most of the available estimates consider only the special

case of isotropic or locally uniform meshes and, typically, are much too pessimistic to be useful for

general anisotropic grids. A new analysis was necessary to resolve this problem and, recently, we

were able to achieve a significant progress: Our recent result for the example of the elliptic second-

order problems shows that the conditioning of finite element equations with anisotropic adaptive

meshes is much better than generally assumed, especially in one and two dimensions [2]. This is

the first accurate result that has been proven for the general case, that is, without any assumptions

on the mesh regularity or topology, which allows it to be employed in the context of anisotropic

adaption and gives hope that one does not necessarily have to trade off between adaption and

conditioning.

In particular, the new theoretical bounds on extremal eigenvalues of the mass matrix and the

largest eigenvalue of the stiffness matrix are tight within a constant mesh-independent factor both

from below and above for any mesh with no assumptions on mesh regularity or topology.

New results for eigenvalues of the stiffness matrix allow further research in related areas. Currently,

the stability of explicit one-step methods and the conditioning of implicit one-step methods for

the finite element approximation of linear diffusion equations on anisotropic meshes is under

investigation; the derived theoretical bound on the largest permissible time step is surprisingly

simple but still tight for any mesh and any diffusion matrix within a mesh-independent constant

factor [1].
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Example 1: Two-dimensional groundwater flow through an aquifer

Consider the initial boundary value problem (IBVP)

D = 5.8×10−2I

D = 5.8×10−9I

D = 5.8×10−9I

ΓD:u(t) = 1− e−t/1000

ΓD:u(t) = 0

Γ
N
:∂

u
/
∂
n

=
0

Γ
N
:∂

u
/
∂
n

=
0

Fig. 1: Groundwater flow:
domain and the diffusion D


∂t u = ∇ · (D∇u) , x ∈ �, t ∈ (0, T ] ,

u(x, t) = 0, x ∈ 0D, t ∈ (0, T ] ,

D∇u(x, t) · n = 0, x ∈ 0N, t ∈ (0, T ] ,

u(x,0) = u0(x), x ∈ �

(1)

with a square domain � = (0,100)× (0,100) and two impermeable subdomains �1 = (0,80)×

(64,68) and �2 = (20,100)× (40,44) ; Figure 1 shows the diffusion matrix D and the boundary

conditions (the model problem is taken from [5]). Although D is isotropic itself, it jumps between

the subdomains, causing the anisotropic behavior of the solution. Figure 2 shows solution snap-

shots with the corresponding anisotropic adaptive meshes.

(a) At t = 5.0× 103, 2 799 mesh elements

(b) At t = 1.0× 105, 20 334 mesh elements

Fig. 2: Groundwater flow:
solution snapshots, mesh
examples and close-ups at
the upper right corner at the
entrance of the tunnel

Example 2: Anisotropic diffusion and the discrete maximum principle

u = 0

Γout
u = 2

Γin

Fig. 3: Problem (2): domain
and boundary conditions

We consider the BVP∇ · (D∇u) = f in�,

u = g on ∂�,
with D =

[
cos θ − sin θ

sin θ cos θ

][
1000 0

0 1

][
cos θ sin θ

− sin θ cos θ

]
, (2)

� = (0,1)2 \ [4/9,5/9]2 , θ = π sin x cos y , and boundary conditions as in Figure 3. The exact

solution of (2) satisfies the maximum principle ( 0 ≤ u ≤ 2 ) and has sharp jumps near the inner

boundary (Figure 4). Standard finite element methods are known to produce unphysical spurious
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oscillations for this kind of problems if applied straightforwardly. For this example, we adapt the

0

0.5

1

0

0.5

1
0

0.5

1

1.5

2

xy

u

Fig. 4: Problem (2): solution

element size to improve the accuracy of the solution and use the element orientation to satisfy the

so-called anisotropic non-obtuse angle condition, requiring the mesh to be aligned with the major

directions of the diffusion in order to satisfy the discrete maximum principle.

Figure 5(a) shows what happens if the mesh is only solution adaptive and the diffusion directions

are not taken into account: unphysical negative minima occur ( min uh ≈ −0.0032 ). In contrast, no

unphysical minima can be observed for the solution- and diffusion-adaptive mesh in Figure 5(b).

Although the solution in Figure 5(b) is not as smooth as in the purely solution-adaptive case of

Figure 5(a), it still provides a good adaption to the sharp solution jump near the interior boundary,

allowing a good compromise between the accuracy and the physical properties of the solution.

(A more detailed discussion on this example can be found in [6].)

Fig. 5: Anisotropic diffusion:
meshes and contour plots of
the numerical solution (a) Purely solution-adaptive mesh (b) Solution- and diffusion-adaptive mesh
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2.4 Phase Field Approach to Structural Topology

Optimization

M. Hassan Farshbaf Shaker

Introduction

Fig. 1: Cantilever beam,
geometry

Topology optimization deals with problems of finding optimal material distributions in a given de-

sign domain subject to certain criteria that are given by an objective functional. Known quantities

in these problems are, e.g., the applied loads, possible support conditions, the volume of the struc-

ture, and possible restrictions as, for example, prescribed solid regions or given holes. A priori, the

precise shape and the connectivity (the “topology”) of the structure is not known. Often also the

problem arises that several materials have to be distributed in the given design domain.

Various methods have been used to deal with shape and topology optimization problems. The

classical method uses boundary variations in order to compute shape derivatives that can be used

to decrease the objective functional by deforming the boundary of the shape in a descent direction.

The boundary variation technique has the drawback that it needs high computational costs and

does not allow for a change of topology.

Sometimes one can deal with the change of topology by using homogenization methods, see [1],

Fig. 2: Cantilever beam,
numerical simulation with
two phases

and variants of it, such as the SIMP method; see [2] and the references therein. These approaches

are restricted to special classes of objective functionals.

Another approach, which was very popular in the last ten years, is the level set method that was

originally introduced by Stanley Joel Osher and James Albert Sethian. The level set method allows

for a change of topology and was successfully used for topology optimization by many authors.

Nevertheless, for some problems the level set method has difficulties to create new holes. To over-

come this problem, the sensitivity with respect to the opening of a small hole is expressed by so-

called topological derivatives. Then, the topological derivative can be incorporated into the level

set method in order to create new holes.

Fig. 3: A cantilever beam
simulation with four phases

The principal objective in shape and topology optimization is to find regions that should be filled

by material in order to optimize an objective functional. In a parametric approach, this is done

by a parametrization of the boundary of the material region, and in the optimization process, the

boundary is varied. In a level set method, the boundary is described by a level set function, and in

the optimization process, the level set function changes in order to optimize the objective. Since

the boundary of the region filled by material is unknown, the shape optimization problem is a free

boundary problem. Another way to handle free boundary problems and interface problems is the

phase field method, which has been used for many different free boundary-type problems; see [5].

In structural optimization problems, the phase field approach has been used by some authors;

see [3, 4] and the references therein. It is capable of handling topology changes, and also the

nucleation of new holes is possible; see [3, 4]. The method is applied for domain-dependent loads,
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multi-material structural topology optimization, minimization of the least-square error to a target

displacement, topology optimization with local stress constraints, mean compliance optimization,

Fig. 4: 3D cantilever beam
simulation with two phases

compliant mechanism design problems, eigenfrequency maximization problems, and problems

involving nonlinear elasticity.

Multi-material topology optimization and phase field approach

The goal in multi-material shape and topology optimization is to partition a given bounded Lip-

schitz design domain � ⊂ Rd into regions that are either void or occupied by N − 1 different

materials, such that a given cost functional is minimized subject to given constraints. Within the

phase field approach, we describe the different material distributions with the help of a phase

field vector ϕϕϕ := (ϕi )Ni=1 , where ϕN describes the fraction of void and ϕ1, . . . , ϕN−1 describe

the fractions of the N −1 different materials. The phase field approach allows for a certain mixing

between materials and between materials and void, but the mixing will be restricted to a small

interfacial region. In order to ensure that the phase field vector ϕϕϕ describes fractions, we require

Fig. 5: Gibbs simplex for
three phases indicated as
the green area

that ϕϕϕ lies pointwise in the Gibbs simplex GGG := {vvv ∈ [0,∞)N |
∑N

i=1 v
i
= 1} ; see Figure 5 for

the Gibbs simplex with only three phases. In this work, we prescribe the total spatial amount of

the material fractions through
∫
�− ϕϕϕ = mmm = (mi )Ni=1 , where it is assumed that

∑N
i=1 mi

= 1 with

mi
∈ (0,1) , i = 1, . . . , N , and where

∫
�− ϕϕϕ denotes the mean value on � . We remark that, in

principle, inequality constraints for
∫
�− ϕϕϕ can also be dealt with.

In the simplest situation, a working or design domain � , see Figure 6, with a boundary ∂� , which

is decomposed into a Dirichlet part 0D (where the design domain is fixed), a non-homogeneous

Neumann part 0g (where a surface load is acting), a homogeneous Neumann part 00 , and body

and surface forces f : � → Rd and ggg : 0g → Rd is given. Now, one tries to find a phase field

vector ϕϕϕ (which represents the material distribution) and the displacement uuu : � → Rd , such

that the mean compliance (i.e., deformation energy)

F(uuu,ϕϕϕ) :=
∫
�

(
1− ϕN

)
f · uuu +

∫
0g

ggg · uuu (1)

or the error compared to a required target displacement uuu� , i.e.,

J0(uuu,ϕϕϕ) :=
(∫

�

(
1− ϕN

)
c |uuu − uuu�|

2
) 1

2
(2)

is minimized, where c is a given weighting function, and | · | is the Euclidean norm. Moreover, in

Fig. 6: Sketch: topology
optimization problem

our phase field approach as an approximation of the perimeter functional the Ginzburg–Landau

functional,

Eε(ϕϕϕ) :=
∫
�

(
ε

2
|∇ϕϕϕ|2 +

1
ε
9(ϕϕϕ)

)
(3)

is added to the above functionals (1) or (2); see [3, 4]. The small parameter ε in (3) is related to

the thickness of the interfaces between the domains, which is a characteristic feature in phase

field modeling; see Figure 7 for a model with three phases at the triple junction. The potential

9 : RN
→ R ∪ {∞} is assumed to have global minima at the unit vectors ei , i = 1, . . . , N , which
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correspond to the different materials and to the void. In (3), we have chosen an obstacle potential

9(ϕϕϕ) = 90(ϕϕϕ)+ IGGG(ϕϕϕ) , where 90 is smooth and IG is the indicator function of the Gibbs simplex

GGG .

Fig. 7: Phase field model
with three phases, which are
separated by a diffuse
interface of thickness ε

In (1) and (2), the displacement uuu is the solution of the linearized elasticity system
−∇ · [C(ϕϕϕ)ℰ(uuu)] =

(
1− ϕN

)
f in�,

uuu = 0 on 0D,

[C(ϕϕϕ)ℰ(uuu)] n = ggg on 0g,

[C(ϕϕϕ)ℰ(uuu)] n = 0 on 00,

(4)

where n is the outer unit normal to ∂� . As described before, the Dirichlet part of the boundary

0D is fixed, i.e., the displacement vector is uuu = 0 there, which is given by the second equation in

(4). Moreover, in case of linear elasticity, the strain tensor is given by ℰ = ℰ(uuu) = 1
2 (∇uuu + (∇uuu)T ) .

The elasticity tensor C is assumed to depend smoothly on ϕϕϕ , C has to fulfill the usual symmetry

condition of linear elasticity and has to be positive definite on symmetric tensors. For the phase

field approach the void is approximated by a very soft material with an elasticity tensor CN (ε)

depending on the interface thickness, e.g., CN
= ε2C̃N with a fixed tensor C̃N . Discussions on

how to interpolate the elasticity tensors Ci , for i = 1, . . . , N , given in the pure materials onto the

interface can be found in [3].

Summarizing, the multi-material structural optimization problem can be formulated as:

Given (f,GGG,uuu�, c) , we want to solve

(𝒫ε) min
(uuu,ϕϕϕ)

J ε(uuu,ϕϕϕ) := αF(uuu,ϕϕϕ)+ β J0(uuu,ϕϕϕ)+ γ Eε(ϕϕϕ) such that (4) is fulfilled,

where α, β ≥ 0, γ, ε > 0 ,
∫
�− ϕϕϕ = mmm ∈ (0,1)N with

∑N
i=1 mi

= 1 .

From the application point of view, it might be desirable to fix material or void in some regions

of the design domain. This fixing can be done by defining a subset S0 ⊂ � of the design do-

main, which characterizes material, i.e., there is no void. Moreover, by choosing S0 such that

|S0 ∩ supp c| 6= 0 , we can ensure that it is not possible to choose only void on the support of

c , i.e., in (2), we ensure |supp (1− ϕN ) ∩ supp c| > 0 .

Mathematical analysis

Although many computational results on phase field approaches to topology optimization exist,

there has been relatively little work on analytical aspects. In [3], we show the existence of a min-

imizer to (𝒫ε) and rigorously derive first-order optimality conditions. Moreover, we consider the

sharp interface limit of the first-order conditions, i.e., we take the limit ε → 0 and, therefore, the

thickness of the interface converges to zero. We obtain limiting equations with the help of formally

matched asymptotic expansions and relate the limit, which involves classical terms from shape cal-

culus, transmission conditions, and triple junction conditions, to the shape calculus as presented

in [1].
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Simulation results
After formulating the multi-material structural optimization problem in (𝒫ε) , the next step is to

find its solutions or minimizers characterizing the optimal configurations. In general, it is impossi-

Fig. 8: Bridge configuration

ble to calculate an analytic solution to (𝒫ε) . Hence, the strategy will be to compute numerical ap-

proximations. For our numerical simulations, we use finite element approximation in combination

with iterative methods; see [3] for details. In the following, the superscript h will always indicate

the corresponding finite element solutions.

Cantilever beam problem

To begin with, a minimum compliance problem for a cantilever beam is considered, i.e., we have

β = 0 in (𝒫ε) ; see Figure 1. It aims to construct a structure with maximal global stiffness and

Fig. 9: Deformation of the
bridge

is a basic problem in topology optimization. Figure 2 shows a numerical simulation with two ma-

terials and Figure 3 with four materials of the optimal shape. We can also easily simulate three-

dimensional problems; see, e.g., Figure 4.

Bridge construction
Next, the classical problem of the bridge configuration—depicted in Figure 8—is considered (β =

0 ). In Figure 10, we display only results for initial data of checkerboard structure. We point out

that the connectivity of the regions occupied by material is found by the method without using

information on topological derivatives. One also observes several topological changes during time

(or iterations); see also [6]. Figure 9 shows the deformed optimal configuration.

Fig. 10: Bridge simulation
with N = 2 and
checkerboard initial data,
material in red and void in
blue

t = 0.0 t = 0.0002 t = 0.0003

t = 0.0005 t = 0.001 t = 0.006

Fig. 11: Push configuration

Push construction
For the construction problem under pushing forces we present numerical simulations for the config-

uration depicted in Figure 11, where one minimizes the target displacement only. We set therefore

α = 0 . In Figure 12, a simulation for the push configuration is given. The corresponding deformed

optimal configuration is displayed in Figure 13.
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t = 0.0 t = 0.002 t = 0.003

t = 0.004 t = 0.005 t = 1.25

Fig. 12: Push simulation
with N = 2 , material in red
and void in blue

Future Work
In continuation of our work, several directions of future research can be considered. Numerical

results show high stresses on domain boundaries. Therefore, it is of practical relevance to study

Fig. 13: Deformed optimal
configuration

topology optimization problems with stress constraints. We plan to investigate this subject in coop-

eration with a wind turbine development company. Another direction of research is to combine our

phase field topology optimization problem with uncertain loading, material data, and chance state

constraints. Even in the finite-dimensional case, the derivation of optimality conditions including

gradient formulas is completely open. This problem is investigated in the MATHEON research project

C–SE13 “Topology optimization of wind turbines under uncertainties” (ECMath). In the long run, in-

cluding an appropriate damage model as additional state equation will be a further task of great

practical importance.
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2.5 New Approach for Optimal Control of Hydroelectricity

Storage Systems

Roland Hildebrand and John G. M. Schoenmakers

The Energiewende has boosted the share of renewable energies in Germany’s total energy produc-

tion from a meager 3% in 1990 to over 25% last year. This change is accompanied by a massive

and ongoing restructurization of the energy sector. The geographic locations of energy production

and energy consumption have become more and more disconnected, and as a result, the inter-

dependencies of the players and the complexity of their behavior have increased dramatically.

Unlike energy production from fossil fuels, the input in the grid from renewable sources such as

wind and solar energy comes along with a high uncertainty and is difficult to predict, resulting in

an increased volatility of the energy prices and in the emergence of energy markets to facilitate

matching offer and demand. These new energy markets have some points in common with classi-

cal financial markets such as the stock exchange or the bond market. Modeling the dynamics of

processes in the energy sector and developing strategies for its actors then makes the application

of statistical methods inevitable.

Like the actors on the classical markets, both producers and large-scale consumers of energy face

risks and seek protection from these risks by structured contracts, so-called energy derivatives. In

the gas and energy markets, for example, so-called swing options have become very popular. An

example swing option gives the holder the right to buy or sell a certain amount of gas, electricity,

or storage capacity at a certain prescribed number of trading dates. A key issue in the energy mar-

kets is the fact that some forms of energy (in particular, oil, gas, and hydro-electric power) can be

stored physically. Corresponding storage facilities allow for anticipating and exploiting market fluc-

tuations of energy prices according to the principle “sell high and buy low”. Initially, storage facil-

ities were only accessible by major players in the respective industries, who had sufficient capital

to build and maintain them. Meanwhile, due to the emerging liberalization of the energy markets,

all participants have the possibility to trade storage services via storage exchange platforms. As

a consequence, on the one hand, optimal strategies involving buying, storing, and selling energy

over time are called for. On the other hand, this development results in a high demand of proper

statistical prediction algorithms based on an adequate statistical modeling of energy prices and

storage markets.

These distinctive properties of energy markets make the existent repertoire of statistical methods

and algorithms developed in the framework of classical financial mathematics insufficient and

call for the development of new tailored methods. For example, finding correct prices for energy

derivatives is typically difficult due to their complex-structured exercise features and their highly

path-dependent structure. When developing strategies for energy producers and/or traders, both

the particularities of the energy market and the constraints posed by the limited storage and pro-

duction resources of the actor have to be adequately modeled.

As a general consequence, the rising complexity of the markets poses challenging mathematical

issues that may be categorized into the following main streams:
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� New numerical methods and algorithms for solving multidimensional problems in optimal (mul-

tiple) stopping and optimal control

� Adequate modeling of various energy price processes including modern statistical forecast

techniques

Particularly in electricity markets, the evaluation of (swing) options requires efficient algorithms

for multiple stopping and more complicated control optimization problems.

Fig. 1: Arrangement of reservoirs and
balance equation

In our work, we consider a combined model of a hydro-electric storage and production facility

and of the day-by-day electricity bid market. This coupled model has been introduced in [2]. The

production facility consists of a number of interconnected water reservoirs. Electricity can be pro-

duced from these reservoirs by releasing water from a reservoir situated at higher elevation to one

at lower elevation. It can also be stored in the form of potential energy by pumping water from a

reservoir at lower elevation to one at higher elevation. The energy conversion efficiency of these

processes is lower than 100%, however, and running the water in a cycle leads to a certain loss.

The reservoirs are filled by rain and other natural processes, which are modeled as a stochastic

process. When exploiting the reservoirs, the operator has to meet certain constraints such as not

exceeding the capacity of any turbine and not emptying a reservoir completely. Currently, the reser-

voirs are assumed to be ordered linearly, a schematic depiction is given in Figure 1.

Fig. 2: Bid curve submitted to the
market operator
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This model of the storage and production facility is coupled to a model of the electricity market.

At the end of each day, the company operating the production facility submits a bid curve to the

market operator. This bid curve specifies how much electricity the company is ready to buy or sell,

in dependence on the price of the electricity. The curve will be monotonically increasing, since

the company is ready to sell more if the price is higher. It is modeled as a piecewise linear curve

determined by its values on a fixed grid in the price dimension. An example of such a bid curve is

given in Figure 2.

The operator then calculates the equilibrium price from all submissions and makes it available.

The next day, the company has to sell or buy the amount of electricity it specified the day before.

This electricity is then produced or stored by means of operating the water reservoirs. The price

set by the market operator is modeled as a stochastic process, which is dependent on the process

modeling the water inflow.

Each day the company is then faced with the problem to decide on the bid curve to be submitted

and on the modus operandi of the reservoirs. These quantities constitute the decision variables

that in the end determine the value of the problem, which is the total profit generated over the

considered time horizon.

Instead of solving this problem directly, we choose a dual martingale approach, where a dual prob-

lem is solved by a Monte Carlo simulation. This class of methods was initially developed in [5]

and [3]. John Schoenmakers then first adapted it to multiple stopping problems occurring in op-

tion pricing [1]. This representation was extended to much more general pay-off profiles in [4]. In

this extended setting, it is possible to treat more realistic energy derivatives. Such derivatives may

involve several volume and exercise refraction constraints, as well as processes driving several

underlying energy titles. In the current work, we apply our extended setting to the optimal control

of stochastic processes.

Optimal control of stochastic processes

We shall now describe the general class of stochastic optimal control problems to which the dual

martingale method is applicable. The problem is defined in a discrete-time setup over a finite time

horizon, i.e., the time t takes values 0, . . . , T . At each time instant t , we observe the realization

ωt of a stochastic process and have to choose a control action at ∈ At from some control space.

At the end of the time horizon, we obtain a reward U (a, ω) , which is the objective value of the

control problem.

Our goal is to design an optimal control strategy, i.e., an adapted function

α : ω 7→ α(ω) = (α0(ω), . . . , αT (ω))

that puts a control action in correspondence to every realization ω , such that the action to be taken

at time instant t depends only on the values ωs for s ≤ t , and that maximizes the expectation of

the reward map.

In other words, we have to find the value and the maximizer of the problem

V ∗0 = sup
α∈P

E0U (α),
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where P is the set of all admissible control strategies. At time instant t , certain control actions

a0, . . . , at−1 have already been taken, and we have to solve the problem

V ∗t (a0, . . . , at−1) = sup
α(t)∈Pt

Et U (a0, . . . , at−1, α
(t)),

where Pt is the set of admissible control strategies α(t) = (αt , . . . , αT ) from time t on. According

to the Bellman principle, we then have to solve the problem

V ∗t (a0, . . . , at−1) = sup
at∈At

Et V ∗t+1(a0, . . . , at−1, at ), t = 0, ..., T − 1.

Duality then states that the martingales defined by

ξ∗t (a) = ξ
∗
t (a0, . . . , at−1) = V ∗t (a0, . . . , at−1)− Et−1 V ∗t (a0, . . . , at−1)

satisfy

V ∗0 = sup
a∈A

U (a)−
T∑

t=1
ξ∗t (a)


almost surely, where a = (a0, . . . , aT ) lies in the set A = A0×· · ·× AT . Moreover, every general

adapted martingale ξt (a) = ξt (a0, . . . , at−1) yields an upper bound on the value of the problem,

i.e.,

V ∗0 ≤ E0 sup
a∈A

U (a)−
T∑

t=1
ξt (a)

 .

The dual martingale approach pursued in this work solves the above dual problem for an almost

surely optimal martingale ξ∗ by a Monte Carlo simulation. Namely, a number of realizations of the

stochastic process is simulated, and a martingale ξ is fitted in the form of a linear combination of

basis martingales whose values are constructed from the realizations. The obtained suboptimal

martingale yields an upper bound on the value of the problem and is subsequently used as a

penalty term in the solution of the original problem on the control strategy.
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2.6 Mathematical Models for Lithium-ion Batteries

Wolfgang Dreyer, Clemens Guhlke, Manuel Landstorfer, and Rüdiger Müller

A model-based understanding of the fundamental processes occurring in lithium-ion batteries is

a key feature to improve charging times, storage capabilities, safety, and lifetime. In addition, a

rigorous modeling should be adoptable to the several types of lithium-based batteries that are

promising for electromobility applications, namely LiFePO4 -based batteries, lithium-air or -sulfur

batteries, or redox-flow type cells. Common to all lithium-ion batteries is the setup of two elec-

Fig. 1: Illustration of
structure and functionality of
a lithium-ion battery with a
many-particle electrode and
a metallic lithium electrode

trodes, which are connected by a Li+ -conducting electrolyte. Since the electrodes are electronic

conductors, electrons flow through an outer circuit to the counter-electrode and drive an electric

consumer. During discharging, the lithium ions adsorb at the electrode surface and react with the

electrons to lithium. Then, the lithium is stored within the electrode, which is generally made of

10 9 –10 17 storage particles. Figure 1 illustrates the principal structure and functionality of a

lithium-ion battery.

One very promising electrode material for lithium-ion batteries is LiFePO4 , which is cheap, non-

toxic, and electrochemically stable. The charging/discharging characteristic of such a many-par-

ticle electrode, i.e., the voltage-capacity diagram, is shown in Figure 2. The graph shows broad

horizontal branches indicating a phase transition in the many-particle electrode. Moreover, we

observe hysteresis, i.e., charging and discharging evolve along different paths.

In the battery, all charges are balanced immediately, except for the thin regions at the electrode-

electrolyte interface, where charge layers are formed. These charge layers are characteristic for

almost all electrochemical systems.

Fig. 2: Voltage-capacity
diagram of a LiFePO4
electrode vs. metallic lithium

The functionality of a battery relies on a complex and subtle interplay of quite different electro-

chemical processes. A mathematical battery model must be able to represent and predict

� ion transport within the electrolyte,

� surface reactions on the particle surfaces,

� formation of the charge layers at the electrolyte-electrode interface,

� phase transition within the many-particle electrode.

During the last three years, WIAS’s Leibniz Group LG 3 Mathematical Models for Lithium-ion Batter-

ies made substantial contributions to the modeling of all these processes, thereby changing some

fundamental doctrines of electrochemistry as detailed in the following.

Electrolyte model

Our starting point for the modeling of electrolytes was a revision of the Nernst–Planck model [4].

It is well known that the standard Poisson–Nernst–Planck (PNP) model leads to unphysically high

mole densities nα of the ionic species Aα, α = 1, . . . , N , with molar mass mα and electric charge

zαe0 . Several attempts have been made in the literature to overcome this problem. The crucial in-

gredient of our new approach is the formulation of a free energy density, which explicitly accounts
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for entropical and mechanical interactions among the ionic species and the solvent A0 . Based on

Fig. 3: Comparison of
material pressure in
boundary layer standard
Nernst–Planck (dashed line)
vs. generalized
Nernst–Planck (solid line)

this free energy, the constitutive equations for the remaining constitutive quantities, such as the

chemical potentials µα , the pressure p , or the mass fluxes Jα , are derived. For an incompressible

electrolyte the chemical potentials are

µα = gα(T )+
kB T
mα

ln
(nα

n

)
+
vR
α

mα

(
p − pR

)
with n =

N∑
α=0

nα . (1)

The first term is a reference contribution depending on the temperature T . In the entropic part,

kB denotes the Boltzmann constant. The third term is missing in the electrochemical literature.

It accounts for the mechanical interaction of the different constituents. Here, pR is a reference

pressure, and vR
α represents the specific volume of the constituent Aα .

The pressure p is a local quantity that cannot be neglected or assumed to be constant. We em-

phasize that, however, this assumption is commonly made in the textbook literature for liquid

electrolytes. Due to the rigorous thermodynamic derivation, we have knowledge of the missing

Fig. 4: Comparison of the
standard and generalized
Nernst–Planck theory. The
standard theory (blue dotted
line) leads to an unphysically
high anion mole density at a
metal-electrolyte interface.
The generalized theory (blue
solid line) predicts a
bounded ion mole density.
The red line represents the
number density of pure
water.

equation in electrochemistry that accounts for the interaction between matter and the electric field:

the momentum balance. The stationary momentum balance reads

∇ p = −nF
∇φ with nF

=

N∑
α=0

zαe0nα (2)

and states that the electric force −nF
∇φ is balanced by a pressure gradient. In the charge layers,

where the electric potential varies strongly, a non-constant pressure p is generated; cf. Figure 3.

This interaction has also a strong impact on the chemical potentials due to the pressure contribu-
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book assumption is that the solvent A0 can be ignored. This is not possible due to mass conser-

vation, which implies that only N independent mass fluxes exist and the (N + 1) -st mass flux

is given by the constraint J0 = −
∑N
α=1 Jα . The generalized Nernst–Planck fluxes for the ionic

species Aα, α = 1, . . . , N are

Jα = −Mα

(
kB T ∇nα + nα zαe0∇φ −kB T nαmα

n0m0
∇n0+v
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α nα

(
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vR
0 mα

vR
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(
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m0
− 1

)
nα∇n

)
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In contrast to the standard Nernst–Planck model, there are three additional terms, highlighted

in blue. These terms represent the ion-solvent interaction and the pressure contribution. These

Fig. 5: Sketch of a solvated
cation and a solvent
constituent. Due to the
solvation effect, we have for
the specific volumes of the
ionic species vR

α � vR
0 .

three contributions lead to physically meaningful bounds on the ion concentration and correct the

deficiencies of the standard Nernst–Planck theory (cf. Figure 4).

The contribution of the pressure to the mass fluxes Jα increases with the partial molar volume

vR
α of the constituents Aα . Since most solvent molecules have a microscopic dipole, there is an

additional microscopic electrostatic interaction between solvent and ionic species. This interac-

tion leads to a clustering of κα solvent molecules around a central ion of constituent Aα , which

is known as solvation effect (cf. Figure 5). These bound solvent molecules do not participate in

the entropic interaction anymore; however, they increase the partial molar volume vR
α of the ionic
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species.

The pressure correction together with the solvation effect yield for the first time a physically mean-

ingful boundary layer charge Q BL = −
∫
�BL

nF dx for liquid electrolytes. Figure 6 illustrates the

influence of the pressure correction and the solvation effect on the boundary layer charge Q BL .

Electrode surface model

Modeling the interface between an electrode and some electrolyte is a central aspect for a proper

Fig. 6: At an applied voltage
of 0.25 V the standard PNP
predicts an electric charge of
570µC/cm2 , while an ideal,
incompressible mixture
without solvation yields
72µC/cm2 . Experiments,
however, show a charge in
the range of 0− 25µC/cm2 ,
which is in good agreement
with our model when a
solvation effect of κα = 15
is considered.

description of batteries and electrochemical systems in general. For this purpose we developed a

thermodynamic surface theory that accounts for all aspects occurring on an electrode surface [2, 5].

Similar to the volume phase, the central quantity is the surface free energy density. All constitutive

functions, e.g., the surface chemical potentials µs,α and the surface tension γ , are derived from

the surface free energy density.

Exemplarily, we studied a metal in contact with a liquid electrolyte. The surface is built by some

metal ions M and electrons e , on which electrolytic constituents and their reaction products

(Aα)α=0,1,...,Ns can be present. In contrast to the electrolyte, the metal ions form a lattice with

adsorption sites. Not every adsorption site is necessarily occupied, which makes it necessary to

introduce the surface vacancies V .

We derived a surface free energy that accounts for the entropical interactions of the adsorbates on

the lattice and for the elastic properties of the metallic surface. From this free energy we derived

the surface chemical potentials

µs,α = gs,α(Ts)+
kB Ts

mα
ln
(ns,α

n`

)
− ωα

kB Ts

mα
ln
(ns,V

n`

)
, with n` =

Ns∑
α=0

ns,α + ns,V , (4)

for the adsorbates (Aα)α=0,1,...,Ns as well as the surface chemical potentials

µs,M = gs,M (Ts)+ ωM
kB Ts

mM
ln
(ns,V

n`

)
−

a R
M

mM

(
γ − γ R) and µs,e = const. (5)

for the metal ions and the electrons. Here, ns,α denote the surface mole density and ωα the num-

Fig. 7: Sketch of the
constituents on the surface.
Adsorbed ions form a
solvation shell.

ber of adsorption sites of constituent As,α , a R
M is the partial molar area of the metal surface, and

gs,α(Ts) is some reference contribution.

If the adsorption processes are in thermodynamic equilibrium, we have at the surface S

µs,α = µα
∣∣
S , α = 0, 1, . . . , Ns ,M, e , (6)

which actually couples the metallic and electrolytic volume phases to the surface. In particular,

this coupling leads to an interaction between pressure and surface tension.

Similar to the volume, an adsorbed ion covers κs,α solvent molecules in its partial solvation shell,

which affects the number of adsorption sites ωα (cf. Figure 7). The solvation shell in turn strongly

affects the electric charge, which is stored at the surface QS = −e0
∑Ns
α=0 zs,αns,α , where zs,αe0

is the electric charge of the constituent Aα , α = 0, . . . , Ns .
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Double layer

At an electrode-electrolyte interface, ionic as well as electronic species are accumulated, forming
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the shifts AEm are equal to +18 and +32 mV for NaC104 and NaF (Table 1); 
they characterize an anionic specific adsorption, and a stronger specific adsorp- 
tion of F- than that  of ClOy, may be asserted. On mercury the inverse order 
is given [ 5], but  on gold [6], the same order as found here is observed. An 
a t tempt  to explain the different behaviour between mercury and solid surfaces 
is given in the discussion section. 

An interesting observation may be made on Fig. 2, if the C values of the 
two maxima sm~ounding the minimum axe compared.  At the negative maxi- 
mum the height is identical for F- and CLOY,, and no specific adsorption can be 
assumed. At the positive maximum C is higher with F-;  this can be explained 
by the assumption that  there is weak anionic specific adsorption in this poten- 
tial range and that  F- is more strongly adsorbed than CLOY,. The total capacity 
is given by [7] 
( C )  - 1  = (c i )  -1 + ( c d )  - 1  (1 + 0oi/()O) (1) 

where C, C i and C d are the capacities of the double layer, inner layer and dif- 
fuse layer, and a and o i are the electrode charge and that  of the specifically 
adsorbed ions. 

As specific adsorption becomes stronger, 30 i/ao decreases from zero, and the 
factor multiplying (C d)-~ decreases, so C increases and tends towards C i, at a 
given electrode charge. On the other hand, o d remains opposite to a, because 
]oi l< o, and C d decreases as the anion becomes more strongly adsorbed, 

therefore the total capacity is expected to decrease. Since C increases from 
C10?~ to F-,  the influence of (1 + 3oi/3o) would be greater than that  of C d. It 
is assumed here that  the inner-layer capacity C i is weakly dependent  on the 
nature of the anions as found for C1- and F- [8]. 
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(Fig 2.b from G. Valette,
J. Electroanal. Chem., 122
(1981), pp. 285–297,
reprinted with permission
from Elsevier)

layers of opposite charge. This structure is commonly known as electric double layer, which is a

major subject of electrochemistry. Its understanding is of fundamental importance to comprehend

the behavior of colloids, dispersion, larger biomolecules, corrosion, electrolysis, electrocatalysis,

as well as fuel cells and batteries. Our electrode-electrolyte interface model [2] made substantial

contributions to the understanding of the double layer.

In order to validate our theoretical model, we consider a planar interface between a metallic single

crystal and an electrolytic solution. Precise measurements of such systems are a standard tool

for the characterization of new electrodes and electrolytes, as well as of their interaction. One

characteristic property of a specific metal-electrolyte interface is the differential capacity C as

function of the cell voltage E . Figure 8 displays the measured capacity of a silver (110) electrode

in contact with aqueous NaClO4 solutions of various salt concentrations. In contrast to a plate

condenser, where the capacity is a constant, the capacity C of an electric double layer is a highly

nonlinear function of the voltage E . Thus, the capacity is a unique fingerprint of the interface.

The capacity C is the derivative of the double layer charge Q with respect to the applied potential

E , i.e., C = d Q/d E . In the thermodynamic equilibrium, we obtain Q as a function of potential

drop φs − φ
E between the metal surface and the electrolyte. Based on balance equations for the

electrode charge, we showed that the total charge Q consists of the boundary layer charge Q BL

and the surface charge QS , i.e., Q = Q BL + QS . Further, we derived a relationship between

the measurable cell potential E and φs − φ
E , namely E = φs − φ

E
+ U R , where U R depends

on µs,e as well as on the reference electrode. Since µs,e is dependent on the surface orientation,

e.g., of silver (110) , our derivation explains naturally the dependence of the reference potential on

the specific metal surface. We showed that there exist fundamental relations between the charge

contributions Q BL and QS to the pressure ps = p|S at the surface and to the surface tension γ :
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Fig. 9: Computed capacity of
an Ag (110) |NaClO4 (aq)
interface

Q BL (E) = −sgn(E −UR)

√
2εr (ps(E)− pE ) and QS(E) = −

dγ
d E

. (7)

Many previous and recent approaches to understand the behavior of electrochemical interfaces

rely essentially on an a priori conception of the double layer structure. The translation into a math-

ematical model, however, never lead to a satisfactory agreement between measured and computed

capacity data. In Figure 9, we display computed capacity curves for an Ag (110) |NaClO 4 (aq) inter-

face. We find a remarkable agreement between the experimental data and our model, both in the

potential range of 1 V and the salt concentration c = [0.005 − 0.1] M. Our new model is the first

continuum model that is capable to describe the capacity curve over a broad voltage range and for

various salt concentrations.

After validating our model on measured capacity data, we can analyze the structure of the space

charge layers that are predicted by the model.
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Fig. 10: Computed charge
structure and potential at the
metal-electrolyte interface
with a sketch of our
reinterpretation of the double
layer structure

We find the formation of several layers in front of the metal surface, which can be reinterpreted in

terms of the classical conception of the double layer; see Figure 10. However, we find also some

crucial deviations from the doctrine of the classical literature, e.g., the Stern layer width is not

constant, but grows with the applied potential [1].

Many-particle electrode model

LiFePO4 (LFP) is a promising material for the lithium-ion battery market. An LFP electrode consists

Fig. 11: Typical particle size
distribution of a
many-particle electrode

of many LFP particles of nanometer size on a metallic substrate. The particle ensemble exists as

a size distribution in the range of 25 – 500 nm. During the discharging process of the battery,

lithium atoms are reversibly stored on interstitial lattice sites of the iron phosphate lattices. This

storage process is accompanied by a phase transition from a lithium-poor to a lithium-rich phase.

In 2010, a new model was proposed at WIAS that demonstrated that the phase transition occurs

within the many-particle system and not within the individual storage particles on the time scale

of charging/discharging [3]. The many-particle effect is the crucial process that controls the be-

havior of the LFP electrode. Recently, this new idea was experimentally confirmed by W.C. Chueh

et al. (Adv. Mater., 27 (2015) , pp. 6591–6597) on the characteristic time scale of battery charg-

ing/discharging.

The LFP particles are not all of equal size, but follow a particle size distribution function; see Fig-

ure 11. In order to investigate the effect of various distribution functions, e.g., arising from different

synthesis and production methods, the Leibniz Group developed a new model that describes the

charging process by a system of stochastic differential equations. For each of the NP LFP particles

(P i )i=1,...,NP there is a relation

dyi
=

1
τ i

(
µs,Li − µ

i
Li
)
dt +

√
2νi
√

τ i
dW i with τ i

= τ0
V i

Ai and νi
= ν0

1√
V i
, (8)

where yi
= ni

Li/nFeP O4 denotes the lithium mole fraction, V i the volume, and Ai the surface

area of particle P i . Since LFP is a phase-separating material, µLi represents the non-monotone
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chemical potential of intercalated lithium. Micro fluctuations on the particle surface are modeled

with a Wiener process W i , where ν0 controls the strength of the fluctuations. The rate of the

intercalation process is controlled by τ0 > 0 , where τ0 → 0 corresponds to fast intercalation,

while τ →+∞ corresponds to slow intercalation.

Due to the assumed fast surface diffusion, the surface chemical potential µs,Li is the same for

all particles. It is controlled by a relation between the lithium mole fractions yi and the electric

current I ,

I dt = −e0nFeP O4

NP∑
i=1

V i dyi . (9)

Fig. 12: Computed
voltage-capacity diagram
for an LFP many-particle
electrode with 7000
particles

Typically, the distance between the electrodes in a battery is smaller than 100µm. Due to the high

mobilities of the species in the electrode and electrolyte, the time-depending behavior of the bat-

tery is exclusively controlled by surface phenomena. Based on our general electrode-electrolyte

interface theory, we are able to derive a relation for the voltage between the many-particle elec-

trode and metallic lithium,

U = U0 −
1
e0
µs,Li + (Rad + Rre)I . (10)

Here, Rad and Rre are resistances, which take into account the lithium adsorption from the elec-

trolyte to the electrode surface and the electron transfer reaction Li+ + e− � Li at the surface.

The new model is capable to simulate the voltage-capacity diagram for an LFP electrode shown in

Figure 12 with the particle size distribution of Figure 11. The simulation shows all features of the

experimental data given in Figure 2, where only two parameters τ0 and ν0 have to be adjusted.
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3.1 The IMU Secretariat

Lena Koch and Sylwia Markwardt

Since January 2011, the Secretariat of the International Mathematical Union (IMU) has been perma-

nently based in Berlin, Germany, at the Weierstrass Institute. Under the supervision of the IMU Ex-

ecutive Committee, the Secretariat runs IMU’s day-to-day business and provides support for many

IMU operations, including administrative assistance for the International Commission on Mathe-

matical Instruction (ICMI) and the Commission for Developing Countries (CDC) as well as mainly

technical assistance for the Committee on Electronic Information and Communication (CEIC) and

the Committee for Women in Mathematics (CWM). The IMU Secretariat also hosts the IMU archive.

A Memorandum of Understanding and a Cooperation Agreement provide the legal basis of the rela-

tionship of IMU and WIAS. The General Assembly 2014 in Gyeongju, Republic of Korea, appreciated

the performance of the staff of the IMU Secretariat and thanked them for their dedicated work and

for all their multiple contributions to the IMU.

Fig. 1: The team of the IMU
Secretariat

Staff members (Figure 1):

Alexander Mielke, Head of the Secretariat and IMU Treasurer. A. Mielke is a professor at Humboldt-

Universität zu Berlin, Deputy Director of WIAS, and head of Research Group 1 at WIAS. In his

function as the head of the secretariat he assumes the personnel responsibility for the staff.

He was appointed as IMU Treasurer by the IMU Executive Committee and is responsible for

all financial aspects, including collecting dues, financial reports, and drafting the budget of

IMU.

Sylwia Markwardt, Manager of the Secretariat. S. Markwardt’s responsibilities involve heading

and supervising all administrative operations of the secretariat and actively participating

in the implementation of the decisions and duties of the IMU Executive Committee and the

IMU General Assembly, which is done in close cooperation with the IMU Secretary. She com-

municates with the IMU member countries, drafts written materials, writes minutes and re-

ports, and supervises the IMU Web site. Her tasks include the steering and control of the

secretariat’s business operations and IMU finances, and monitoring the deadlines.
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Lena Koch, ICMI/CDC Administrator. L. Koch is responsible for supporting administratively the ac-

tivities of the Commission for Developing Countries and the International Commission on

Mathematical Instruction. She is, in particular, in charge of promoting the work of both com-

missions, managing their Web presence including public relations and communication, han-

dling grant applications and support programs.

Anita Orlowsky, IMU Accountant. A. Orlowsky is, under the supervision of the IMU Treasurer, in

charge of executing the financial decisions of IMU which includes the budget management

of the IMU Secretariat, application for, and supervision of third-party funds, handling mem-

bership dues, all financial aspects of grants, and administering expense reimbursements.

Birgit Seeliger, IMU Archivist. B. Seeliger is responsible for the IMU archive and in charge of devel-

oping a strategy for preserving and making accessible paper documents, photos, pictures,

and IMU artifacts and supporting IMU’s decision process concerning the electronic archiving

of IMU’s steadily increasing amount of digital documents.

Gerhard Telschow, IT and Technical Support. G. Telschow is responsible for running the IT opera-

tions of the IMU Secretariat. This includes taking care of running the hardware and software

infrastructure, in particular, the IMU server and mailing lists and planning the extension of

IMU’s IT services for its members, commissions and committees.

Pragnya Challapalli, Student Assistant. P. Challapalli’s task is to assist various programs of the

Commission for Developing Countries (CDC) and the International Commission on Mathemat-

ical Instruction (ICMI). (She is not in the group photo of the Secretariat.)

Helge Holden (he is not in the group photo) is the IMU Secretary. H. Holden holds a professorship at

the Norwegian University of Science and Technology, Trondheim, and at the Center of Mathematics

for Applications, University of Oslo, Norway. He is in contact with the IMU Secretariat regularly via

electronic communication and visits the office about once a month.

The Secretary is responsible for conducting the ordinary business of the Union and for keeping its

records.

3.2 The IMU and its Role in Fostering Mathematics in the

Developing World

Major challenges such as disease, hunger, climate change, environmental remediation, and energy

development require strong mathematical, computational, statistical, and other quantitative skills.

It has become increasingly clear that the developing world is home to a significant but largely

untapped mathematical talent. This latent talent may have the potential to transform both local

and international mathematical communities. A mathematically educated population is a powerful

tool to spur economic development in all nations, but especially in countries that are economically

disadvantaged.
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Given such challenges and the opportunities for development, more support is needed for those

who wish to become educators and researchers in mathematics. For the IMU, raising international

mathematical literacy has been one of its major long-term goals. The IMU has maintained programs

of cooperation in support of mathematical institutions and individual mathematicians, including

sponsoring research travel and conference grants as well as volunteer lectures, joint research

projects and capacity building projects, to take a more active role in supporting mathematics in

developing countries.

During the last years, IMU has intensified its efforts to foster mathematics in the developing and

economically disadvantaged countries. To improve efficiency, the IMU decided to merge its two

bodies working in the field, the Commission on Development and Exchanges (CDE) and the De-

veloping Countries Strategy Group (DCSG), into one commission, the Commission for Developing

Countries (CDC) as of 2011. A considerable rate of the IMU budget is allocated for activities in

developing countries. Additional grants programs have been launched, existing programs have

considerably been extended. The CDC is in charge of managing all IMU initiatives in support of

mathematics research and advanced mathematical teaching in developing countries; primary ac-

tivities include conference support, project support, the Volunteer Lecturer Program, the Library

Assistant Scheme, individual research travel grants, and public outreach activities.

Fig. 1: Photos: L. Koch, W.
Dalitz, A. Pineda

Since 2011, the CDC has regularly been supporting graduate student projects in Africa, Latin Amer-

ica, and Asia. Supported projects include the Africa Mathematics Millennium Science Initiative

(AMMSI) and the Mentoring African Research in Mathematics (MARM) program. Also the first Cen-

tral American PhD program in mathematics, which was launched by the Superior Council of Cen-

tral American Universities (CSUCA) in collaboration with the International Centre for Theoretical

Physics (ICTP) and its member universities, is receiving support.

Mathematics teachers and teacher educator training has been supported through the Capacity and

Network Project (CANP) that fosters mathematics teacher training and capacity building in develop-

ing countries. The CANP program is organized under the responsibility of the International Commis-

sion on Mathematical Instruction (ICMI). Since 2011, two-week long CANP workshops addressing

teacher educators and secondary schoolteachers have been held in Mali, Costa Rica, Cambodia,
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and Tanzania. Support is also provided to a project in Cambodia that will help schoolteachers use

technology to enhance interactive learning among their students as well as to a teacher-training

project in the Philippines, which holds intensive 10-day training programs on curriculum content

and the teaching of calculus.

The CDC has partnered with the Simons Foundation (USA) and the Niels Henrik Abel Board (Nor-

way). The IMU-Simons Travel Fellowship Program and the Abel Visiting Scholar Program support

individual research visits of mathematicians professionally based in the developing world to a

center of excellence in any part of the world for collaborative research in mathematics. The IMU-

Simons Travel Fellowship Program covers travel and insurance cost and has no age limit. The Abel

Visiting Scholar Program supports annually three early stage postdoctoral mathematicians in their

professional careers. It is designed to offer the opportunity for a research sabbatical, a necessary

complement to teaching and other academic duties for mathematicians desiring to sustain a viable

research program.

The Volunteer Lecturer Program (VLP) as well as the Conference Support Program are two other

successful CDC programs. The VLP offers universities in the developing world lecturers for inten-

sive three- to four-week courses in mathematics at the advanced undergraduate or master’s level.

The Conference Support Program gives partial support to conferences organized in developing and

economically disadvantaged countries.

The MENAO (Mathematics in Emerging Nations: Achievements and Opportunities) symposium was

a milestone in IMU’s activities. Organized by CDC, the symposium took place one day before the

opening of the International Congress of Mathematicians 2014 in Seoul, Republic of Korea. Ap-

proximately 260 participants from around the world attended the symposium, including represen-

tatives of embassies, scientific institutions, private business, and foundations. Attendees heard

inspiring stories of individual mathematicians and specific developing nations, and they were pre-

sented three regional reports about challenges and opportunities in Africa, Latin America and the

Caribbean, and Southeast Asia. The reports described the status of international partnerships to

support mathematical development and the current state of mathematics in these regions and

pointed up new initiatives and projects in need of financial support. The MENAO event was a sub-

stantial initiative to raise awareness and build partnerships between mathematical communities,

governments, international agencies, private business, and foundations.

The CDC continues to drive for funding and support from both the public and the private sector to

allow the IMU to take a strong and active role in supporting mathematics in developing countries.

The IMU Web site provides more information about IMU’s activities for developing countries; see

http://www.mathunion.org/cdc.
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3.3 Events of Major Significance in 2015

Organizational structure of the Union

Committee for Women in Mathematics (CWM) established. At its meeting in March 2015, the

IMU Executive Committee decided to establish a committee on women in mathematics with the

official name Committee for Women in Mathematics (CWM). The CWM has a chair, a vice-chair, and

6–8 members-at-large. The committee’s work is governed by Terms of Reference. CWM aims at pro-

moting international contacts between national and regional organizations for women and math-

ematics and to undertake other related activities. The central goal until the next ICM will be to

help to establish networks of women mathematicians especially in Asia, Latin America, and Africa.

CWM’s Web site is at http://www.mathunion.org/cwm.

Grants

IMU won ICSU grant 2015. IMU’s application to the International Council for Science (ICSU) for a

€30,000 grant was successful. The grant project was entitled “Global Change Impact on Diseases

and Alien Species Expansion”. Supporting applicants were the International Union of Biological

Sciences (IUBS), the International Union of Immunological Societies (IUIS), the International Coun-

cil for Industrial and Applied Mathematics (ICIAM), the International Social Science Council (ISSC),

the ICSU Regional Office for Africa (ICSU ROA), the ecoHEALTH from Future Earth, and the Interna-

tional Society for Biometeorology (ISB); associate partners were the African Institute for Mathe-

matical Sciences (AIMS), the South African Mathematical Society (SAMS), the DST-NRF Centre of

Excellence for Invasion Biology (CIB), and the Mathematics of Planet Earth (MPE) initiative.

Fig. 1: Meetings snapshots

Meetings

CDC meeting. The newly elected Commission for Developing Countries held its meeting at the

IMU Secretariat in Berlin from March 12–13, 2015.

Joint IMU-EC and CDC meeting. The Executive Committee of the IMU and the Commission for

Developing Countries held a joint meeting at the IMU Secretariat in Berlin on March 13, 2015.

Main topics were the follow-up of the MENAO event and past, present, and future collaboration of
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IMU/CDC. The meeting was concluded by a gathering of the members of the IMU Executive Commit-

tee, the Commission for Developing Countries, and several guests.

IMU Executive Committee meeting. The newly elected Executive Committee of the IMU held its

annual meeting at the IMU Secretariat in Berlin from March 14–15, 2015.

CEIC meeting. The Committee on Electronic Information and Communication (CEIC) held its an-

nual meeting at the IMU Secretariat in Berlin from March 21–22, 2015. The CEIC is a standing

committee of the IMU Executive Committee (EC). CEIC’s mandate is to advise the EC on matters

concerning information and communication; see http://www.mathunion.org/ceic/.

Events

IMU Office Committee. The IMU Office Committee visited the IMU Secretariat from October 22–

23, 2015. This was the Committee’s first visit of the office in the period 2015–2018. The purpose

of the Office Committee, which is not part of the Secretariat, is to monitor the performance of the

IMU Secretariat on behalf of the IMU Executive Committee and the Adhering Organizations.

Heidelberg Laureate Forum. The third Heidelberg Laureate Forum (HLF) took place from August

23–28, 2015 in the city of Heidelberg, Germany. The HLF brings together winners of the Abel Prize,

the Fields Medal, the Nevanlinna Prize, and the Turing Award with outstanding young scientists

from all over the world for a one-week conference.

The IMU who is a partner of the HLF nominated two members of the HLF Scientific Committee.

Among the participating laureates at the HLF 2015 who had been awardees of the Fields Medal

(FM) or the Nevanlinna Prize (NP) were: Sir Michael Francis Atiyah (FM), Shigefumi Mori (FM), An-

drei Okounkov (FM), Robert Endre Tarjan (NP), Leslie G. Valiant (NP), Vladimir Voevodsky (FM), Efim

Zelmanov (FM).

Guests of the IMU Secretariat. The table on the next page gives an overview of guests who visited

Fig. 2: Korean guests visiting
the IMU Secretariat

the IMU Secretariat in 2015.

Members of the IMU Secretariat participated in several international events, for instance

� IMU ICME 2020 site visits, Sydney, Australia; Honolulu, USA; Shanghai, China (L. Koch)

� ICMI IPC meeting, Hamburg, Germany (L. Koch)

� ICMI Executive Committee meeting, Macau, China (L. Koch)

� Heidelberg Laureate Forum, Heidelberg, Germany (S. Markwardt)
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Date Guests Event

Jan 9 Victor Buchstaber, Russia; Annalisa Buffa, Italy;

Étienne Ghys, France; Timothy Gowers, UK; Ben

Green, UK; Peter Littelmann, Germany; Jaroslav Ne-

setril, Czech Republic; Walter Schachermayer, Aus-

tria; Kristian Seip, Norway; Sylvia Serfaty, France;

Saharon Shelah, Israel; Stanislav Smirnov, Switzer-

land; Juan S. Soler, Spain

7ECM Program

Committee

Jan 20 Martin Grötschel, Germany Individual

visit

Feb 2 Martin Grötschel, Germany Individual

visit

Feb 10 Martin Grötschel, Germany Individual

visit

March 12 – 15 Herbert Clemens, USA; Alicia Dickenstein, Ar-

gentina; Mama Foupouagnigni, Cameroon; Bene-

dict H. Gross, USA; Helge Holden, Norway; Vaughan

Jones, New Zealand/USA; Srinivasan Kesavan, In-

dia; János Kollár, USA; Shigefumi Mori, Japan;

Wandera Ogana, Kenya; Alf Onshuus, Colombia;

Hyungju Park, Korea; Angel Pineda, USA/Honduras;

Christiane Rousseau, Canada; Budi Nurani Ruch-

jana, Indonesia; Angel Ruiz, Costa Rica; Vasudevan

Srinivas, India; Polly Sy, Philippines; John Toland;

UK; Wendelin Werner, Switzerland

CDC meeting,

joint EC-CDC

meeting,

IMU EC

meeting

March 21 – 22 Thierry Bouche, France; Olga Caprotti, Sweden; Tim

Cole, USA; James Davenport, UK; Carol Hutchins,

USA; Patrick Ion, USA; Masakazu Suzuki, Japan;

Wendelin Werner, Switzerland

CEIC meeting

April 28 Marie-Francoise Roy, France CWM

June 21 – 25 Guillermo Curbera, Spain IMU Archive

July 9 Levis Eneya, Malawi Individual

visit

Sep 3 Dosang Joe, Republic of Korea; Sue Seungyeon Lee,

Republic of Korea; Youngho Woo, Republic of Korea

(Figure 2)

Individual

visit

Oct 22 – 23 Bernard Hodgson, Canada; Ragni Piene, Norway;

John Toland, UK; Wendelin Werner, Switzerland

IMU Office

Committee

Oct 29 Stefan Eichler, Germany; Andreas Greven, Ger-

many; Barbara Kaltenbacher, Austria; Barbara Niet-

hammer, Germany; Felix Otto, Germany; Markus

Reiß, Germany; Barbara Wohlmuth, Germany

WIAS Scien-

tific

Advisory

Board

Nov 12 – 13 Caroline Series, UK IMU working

group
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4.1 Research Group 1 “Partial Differential Equations”

The mathematical focus of this research group is the analytical understanding of partial differential

equations and their usage for the modeling in sciences and engineering. The theory is developed

in close connection with well-chosen problems in applications, mainly in the following areas:

� Modeling of semiconductors; in particular, organic semiconductors and optoelectronic devices

� Reaction-diffusion systems, also including temperature coupling

� Multifunctional materials and elastoplasticity

The methods involve topics from pure functional analysis, mathematical physics, pure and applied

analysis, calculus of variations, and numerical analysis:

� Qualitative methods for Hamiltonian systems, gradient flows, or suitable coupled systems

� Multiscale methods for deriving effective large-scale models from models on smaller scales,

including models derived from stochastic particle systems

� Existence, uniqueness, and regularity theory for initial and boundary value problems in non-

smooth domains and with nonsmooth coefficients, thereby also including nonlocal effects

� Coupling of different models; in particular, coupling of surface and volume effects

The qualitative study of partial differential equations provides a deeper understanding of the un-

Fig. 1: Electron density in
organic permeable base
transistor for different
applied base potentials

derlying processes and gives a considerable impact on the construction of efficient numerical al-

gorithms. In cooperation with other research groups, corresponding software tools are under de-

velopment that will enable parameter studies or the optimization of technological devices.

Semiconductors
In the field of the mathematical treatment of semiconductor device problems, the group is involved

in several third-party-founded projects. The physical Collaborative Research Center SFB 787 Semi-

conductor Nanophotonics: Materials, Models, Devices was under review in June 2015 and received

a very positive recommendation. In particular, the subproject B4 “Multi-dimensional modeling and

simulation of electrically pumped semiconductor-based emitters”, jointly with RG 2 Laser Dynam-

ics and the Zuse Institute Berlin, will continue for another four years starting from January 1, 2016.

Two MATHEON projects funded by ECMath (Einstein Center for Mathematics Berlin) are currently in

Fig. 2: Characteristics of an
organic permeable base
transistor for variations of
base-opening radius r

the middle of their three-year term. For the subproject D-OT1 “Mathematical modeling, analysis,

and optimization of strained germanium microbridges”, which is a joint project with the Humboldt-

Universität zu Berlin, see the Scientific Highlights article on page 20.

OLEDs. The MATHEON subproject D-SE2 “Electrothermal modeling of large-area organic light-

emitting diodes” is carried out in close cooperation with the Institut für Angewandte Photophysik

(TU Dresden). The aim is to study new device concepts based on organic semiconductors from a

mathematical viewpoint; see [3]. In particular, new mathematical models for these devices were

derived and investigated concerning their analytical properties. Moreover, the fundamental oper-

ation mechanisms as well as limiting factors for the performance of organic permeable base and
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vertical field-effect transistors were discovered by simulating the charge carrier transport; see Fig-

ures 1 and 2.

Fig. 3: Numerical solutions
of p(x) Laplace equation in
2D for a discontinuous
exponent p

New lighting concepts using large area-emitting organic LEDs are nowadays introduced as an alter-

native to conventional solid-state lighting. However, the higher brightness that is important in this

application is accompanied by substantial self-heating due to high currents and unpleasant inho-
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Fig. 4: Simulation of
current-voltage
characteristics for OLEDs for
varying conductivities

mogeneities in the luminance. In MATHEON subproject D-SE2, the interplay between current flow

and heat conduction is described on a phenomenological level by a partial differential equation

(PDE)-based thermistor model consisting of a current-flow equation and the heat equation with

Joule heating. Motivated by a discrete equivalent circuit model, the PDE system in [3] is based on

a p(x) Laplacian structure of the current-flow equation with an in general discontinuous exponent

p , which takes into account different current-voltage (power) laws in subregions of the device.

The model was discretized using a finite volume scheme (see [3]) and implemented in the WIAS

toolbox pdelib in close cooperation with RG 3 Numerical Mathematics and Scientific Computing.

The two main difficulties are the intrinsic instability due to regions of negative differential resis-

tance and voltage turnover points in the characteristics (see Figure 4) and the derivation of suit-

able discretization schemes for the p(x) Laplace operator. The former can be resolved by using

numerical path-following methods, and the latter is based on a hybrid finite element / finite vol-

ume approach. Figure 3 shows solutions of the p(x) Laplace equation −∇ · (|∇u|p(x)−2
∇u) = f

with constant right-hand side, homogeneous Dirichlet boundary conditions, and different piece-

wise constant exponents p(x) .

Methods in mathematical physics. One of the aims of RG 1 Partial Differential Equations and in

the ERC project “Analysis of Multiscale Systems Driven by Functionals” (AnaMultiScale) is to fur-

ther develop mathematical methods inspired by applications from nano- or optoelectronics. From

the physical point of view, many of these methods are motivated by quantum mechanics, while

from the mathematical point of view they are closely related to operator theory on Hilbert spaces.

Several aspects of this theory were addressed in a series of publications this year. A model of

a light-emitting diode was considered in [1]. Moreover, the point spectrum of a Hamiltonian de-

scribing photon-electron interaction with any coupling constant was studied, and mathematical

methods for the point spectrum of point interactions were developed. These results have applica-

tion to the Landauer–Büttiker formula, which is widely used in quantum transport.

A second topic in this area is the derivation of GENERIC and damped Hamiltonian systems from

microscopic Hamiltonian systems. For the quantum case, the focus lies on effective evolution
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equations for the reduced density operator that fulfill the basic principles of thermodynamics. For

special cases, nonlinear equations can be derived, which do not belong to the class of Lindblad

equations that are frequently used to model dissipative quantum systems.

Applications of regularity theory in optimization. The investigation of the van Roosbroeck sys-

Fig. 5: Simulation of
temperature distribution in
current-induced steel
hardening

tem in three space dimensions as well as of the three-dimensional thermistor problem has been a

challenge for many years; this investigation concerns questions of existence, uniqueness, and reg-

ularity, including realistic geometries, discontinuous dielectric permittivity functions, and mixed

boundary conditions. Based on equivalent reformulations of these two problems as quasilinear

parabolic equations, recent results on maximal parabolic regularity and on optimal elliptic regular-

ity [2] were used to solve these systems. The research on the thermistor problem is carried out in

collaboration with Christian Meyer (TU Dortmund) and Hannes Meinlschmidt (TU Darmstadt) and

includes optimal control via adjusted voltage as well as numerical simulations for steel hardening

in cooperation with RG 4 Nonlinear Optimization and Inverse Problems.

Delay and networks
Networks of coupled dynamical systems form an important class of spatially extended systems

that are used in many applications. In neural networks, neurons are considered as nodes, and

synaptic connections form the links between the nodes. One of the fundamental adaptation mech-

anisms of the nervous system is spike-time-dependent plasticity (STDP); depending on the spiking

behavior, plasticity regulates the coupling between individual cells and controls the network con-

nectivity. Jointly with the Institute of Neuroscience and Medicine (Research Center Jülich), ensem-

bles of synchronized spiking neurons with adaptive coupling were studied, which are perturbed by

random inputs; cf. [4]. For such networks, the phenomenon of self-organized resistance to noise

has been reported that is characterized by an increase of the overall coupling and preservation of

synchrony in the neural populations with STDP in response to the external noise growth.

Fig. 6: Left: Schematic
diagram of the model of two
coupled neurons with STDP.
Right: Bifurcation diagram
for coupling weights.
Blue-shaded region:
Bidirectional coupling is
stable. Red-shaded region:
Unidirectional coupling is
stable.
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The influence of noise on the microscopic level was studied by considering only two coupled neu-

rons; cf. [4]. Adopting a phase description for the neurons and using the Fokker–Planck formalism,

the problem was reduced to a two-dimensional system, which describes the averaged dynamics of

the coupling strengths. It could be shown that a multistability of several coupling configurations

is possible, some of which are not found in systems without noise, such as a strong bidirectional
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coupling; see Figure 6. This result backs the finding that increased noise can be the reason for an

antagonistic response of the system and the increase of the average coupling. This mechanism, as

well as a high potential for multistability, is also demonstrated numerically for a coupled pair of

Hodgkin–Huxley neurons.

In this area, two Ph.D. theses have been successfully defended: Jan Philipp Pade “Synchrony and

bifurcations in coupled dynamical systems and effects of time delay” and Leonhard Lücken “Pat-

terns of activity in coupled systems with applications to neuronal dynamics”.

Material modeling

This area deals with the mathematical modeling and the analysis of solids and fluids and includes

chemical reactions, diffusion and phase separation processes, phase transformations, plasticity,

damage, and delamination, as well as processes in biological tissues. The research is carried out

jointly with the ERC Group 2 Entropy Formulation of Evolutionary Phase Transitions, the Young Sci-

entists’ Group Modeling of Damage Processes, and RG 7 Thermodynamic Modeling and Analysis

of Phase Transitions.

Homogenization of Cahn–Hilliard-type equations. Within the subproject “Pattern formation in

systems with multiple scales” of the Collaborative Research Center SFB 910 Control of Self-Organiz-

ing Nonlinear Systems, Sina Reichelt successfully defended her Ph.D. thesis “Two-scale homoge-

nization of systems of nonlinear parabolic equations” in November 2015. Besides other homoge-

nization results, this thesis treats Cahn–Hilliard-type equations with coefficient functions, which

oscillate on the microscopic level, to derive effective macroscopic systems via two different meth-

ods from evolutionary 0 -convergence. These two abstract approaches were developed in the ERC

project “AnaMultiScale”, namely (i) the more general, but less precise, energy dissipation princi-

ple and (ii) the more restrictive method involving evolutionary variational inequalities. The com-

parison of the two methods is highlighted by illuminating the different assumptions needed and

the different results obtained.

Diffuse interface models for complex fluids. A very effective approach describing the interaction

of two fluids is based on the use of diffuse-interface models in which the sharp interface sepa-

rating the two fluids is replaced by a region where a partial mixing is admitted, leading, from the

analytical viewpoint, to the introduction of a suitable order parameter, the dynamics of which is

described by a nonlinear evolution equation (e.g., of Cahn–Hilliard type). These models, which

are based on Ginzburg–Landau theory of phase transitions, simplify the mathematical treatment

of the interaction with respect to the sharp-interface models and lead to major advantages for nu-

merical analysis. Moreover, these models are successfully employed in many applications, e.g.,

from phase separation of fluids to liquid crystals and to tumor dynamics. In collaboration with

ERC Group 2 Entropy Formulation of Evolutionary Phase Transitions, the following subjects were

studied:

(i) Nonlocal models for flow and phase separation of binary mixtures of incompressible fluids. In
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particular, the case where the two fluids have different densities was addressed, and existence

of dissipative global-in-time weak solutions was established for the case of singular double-well

potentials and nondegenerate mobilities; cf. [5]. Moreover, for the “matched-densities case”, the

analysis from the point of view of regularity and optimal control was performed in the physically

relevant situation of singular potentials and degenerate mobilities.

(ii) Models for tumor growth. An optimal control analysis was developed for the model due to

Hawkins-Daarud, van der Zee, and Oden, where the control is taken in the nutrient source on the

boundary of the domain where tumor and healthy cells coexist.

Free-boundary problems for thin film flows. Another topic studied is the gradient structure of

Fig. 7: Solution of (1) with
α = 2 close to a pinch-off
( u ≡ 0 in the blue region)

free-boundary problems, in particular of degenerate fourth-order parabolic problems of the form

∂t u = ∇ ·
(

uα∇
( δE
δu

))
, where E(u) =

∫
Rd

1
2‖∇u‖2 + χ{u>0} dx . (1)

The resulting PDEs are relevant in thin film flows over a substrate, where u has the interpretation

of a film thickness. This equation is a free-boundary problem because it is natural to consider the

set ω = {x ∈ Rd : u > 0} as parts of the unknowns in (1). A novel algorithm for problems of this

type was developed in [6], and an exemplary solution is shown in Figure 7. The main problem here

is to properly resolve the singularity in ∇
(
δE/δu

)
as u → 0 at the boundary of ω .

Further highlights of 2015

Since April 2015, the former WIAS Director Professor Jürgen Sprekels has been an External Member

of WIAS and affiliated with this research group.

In November 2015, the book Rate-Independent Systems: Theory and Application was published

by Springer Verlag, New York. It is the result of a long-term collaboration of Alexander Mielke and

Tomáš Roubíček, which was started in late 2007 and which profited from regular one-month visits

of the second author to WIAS. On its 660 pages, this monograph provides a comprehensive and

systematic treatment of rate-independent systems for the first time. The focus is mostly on fully

rate-independent systems, first on an abstract level and then on the level of various applications in

continuum mechanics of solids. Selected applications are accompanied by numerical simulations

illustrating both, the models and the efficiency of computational algorithms.

Three minisymposia at ICIAM 2015 organized by members of RG 1. The International Congress

of Industrial and Applied Mathematics took place in Beijing on August 10–14, 2015. Three re-

searchers contributed to the ICIAM 2015 in Beijing with the organization of minisymposia in three

different research fields.

The motivation for the ICIAM 2015 minisymposium “Recent Progress in Modeling and Simulation

of Multiphase Thin-film-type Problems” organized by Dirk Peschka and Li Wang (UCLA) was to dis-

cuss new developments in applications and in the mathematics of thin-film-type problems of mul-

tiphase systems. The four talks were devoted to problems with surfactant transport, suspension
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flows, or flows over liquid substrate, focusing on the thermodynamically consistent statement of

such problems via gradient flows and the correct modeling of the underlying microscopic physics.

The minisymposium “Analysis of Nonsmooth PDE Systems with Applications to Material Failure”

was organized by Dorothee Knees (Kassel) and Marita Thomas and consisted of eight talks. It

brought together scientists from the fields of modeling, analysis, and numerics to discuss ana-

lytical methods and numerical strategies, both for (quasi-)static and rate-dependent, non-smooth

failure models.

The minisymposium “Numerical and Analytical Aspects in Semiconductor Theory” organized by

Nella Rotundo and Wil Schilders (TU Eindhoven) aimed at providing insights on recent mathemati-

cal advances on semiconductor theory. The four talks covered analytical results as well as numeri-

cal methods and approaches to optimization for edge-emitting heterostructures.

Gesellschaft für Angewandte Mathematik und Mechanik. In the period 2013–2015 Marita Tho-

mas was a member of the GAMM Juniors, and in 2015, she was their elected speaker. The GAMM

Juniors are representatives of young scientists in Applied Mathematics and Mechanics, who fos-

ter their scientific fields within the academic research and the society. Their activities include the

contribution to the Committee “Future of GAMM” to support young researchers’ activities, the or-

ganization of interdisciplinary workshops and summer schools (SAMM) for young scientists, and

the establishment of networking among young researchers in the GAMM. In this context, Marita

Thomas and Jan Giesselmann (Stuttgart) organized the summer school “SAMM 2015 – Materials

with Discontinuities”, see page 115. Since October 2015, Marita Thomas has also been an officer

in the board of the GAMM activity group “Analysis of Partial Differential Equations”.
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4.2 Research Group 2 “Laser Dynamics”

The research of this group is devoted to the study of mathematical problems that appear in non-

linear optics and optoelectronics. The research activities include mathematical modeling, theoret-

ical investigation of fundamental physical effects, implementation of numerical methods, efficient

modeling and simulation of complex devices, and the development of related mathematical theory,

mainly in the field of dynamical systems.

The research group contributes to the application-oriented research topics dynamics of semicon-

ductor lasers and pulses in nonlinear optical media. External funding was received in 2015 within

the Research Center MATHEON (subproject D-OT2 “Turbulence and extreme events in nonlinear op-

tics”), the DFG individual grant “Ab-initio description of optical nonlinearities in femtosecond fila-

ments”, the Marie Curie Initial Training Network PROPHET, the BMBF-supported project MANUMIEL

between the Technical University of Moldova, the Ferdinand Braun Institute for High Frequency

Technology (FBH), Berlin, and WIAS, as well as the DFG Collaborative Research Center SFB 910

Control of Self-organizing Nonlinear Systems: Theoretical Methods and Concepts of Application,

subproject A3 “Activity patterns in delay-coupled systems”. A particular highlight was the excel-

lent evaluation of the DFG Collaborative Research Center SFB 787 Semiconductor Nanophotonics:

Materials, Models, Devices. Based on the positive decision of the DFG, the group will be able to

continue its research within the subprojects B4 “Multi-dimensional modeling and simulation of

electrically pumped semiconductor-based emitters” (jointly with the research group RG 1 Partial

Differential Equations and Zuse Institute Berlin (ZIB)), and B5 “Effective models, simulation and

analysis of the dynamics in quantum-dot devices”.

Dynamics of semiconductor lasers

On the basis of a hierarchy of models that range from nonlinearly coupled systems of wave and dif-

fusion equations, delay-differential equations (DDEs), and ordinary differential equations (ODEs),

Fig. 1: Schematic of a laser
with one active cavity
coupled to an external
passive cavity,
R.M. ARKHIPOV, A. AMANN,
A.G. VLADIMIROV, Pulse
repetition-frequency
multiplication in a passively
mode-locked semiconductor
laser coupled to an external
passive cavity, Appl. Phys. B,
118 (2015), pp. 539–548.

dynamical phenomena of a variety of semiconductor-based emitters were investigated. A selection

is presented below.

Mode-locked semiconductor lasers (MLL) are attractive for many applications, because they are

compact sources for trains of short optical pulses with a high repetition rate. A semi-analytical

method of calculating the timing fluctuations in MLL was developed and applied to study the ef-

fect of delayed coherent optical feedback on pulse timing jitter in these lasers [1]. The proposed

method greatly reduces computation times and therefore allows for the investigation of the depen-

dence of timing fluctuations over greater parameter domains. It was shown that resonant feedback

can reduce the timing jitter and that a frequency-pulling region forms about the main resonances

where a timing jitter reduction is observed. The width of these frequency-pulling regions increases

linearly with feedback delay times. An analytic expression for the timing jitter was derived that

predicts a monotonic jitter decrease for resonant feedback of increasing delay lengths.

Furthermore, using a DDE model, the dynamics of a semiconductor laser with one active cavity cou-

pled to an external passive cavity was investigated; see Figure 1. Numerical simulations indicated
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that, when the coupling between the two cavities is strong enough and the round-trip time of the

active cavity is an integer multiple of the round-trip time of the passive cavity, the pulse repetition

frequency of the laser can be increased as a result of synchronization with the inverse round-trip

time of the external passive cavity. The electric field amplitude sensitively depends on the relative

phase between the electric fields in both cavities, giving rise to this resonance behavior.

High-power semiconductor lasers with spatio- and temporal modulated electrical injection, see z
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Fig. 2: Schematic of a
broad-area amplifier with
spatially modulated contact,
from M. RADZIUNAS,
R. HERRERO, M. BOTEY,
K. STALIUNAS, Far-field
narrowing in spatially
modulated broad-area
edge-emitting semicon-
ductor amplifiers, J. Opt.
Soc. Am. B, 32:5 (2015),
pp. 993–1000.

Figure 2, were studied jointly with Kestutis Staliunas (UPC Barcelona), with special attention to the

improvement of the lateral beam shaping. For this, a (2+1)-dimensional traveling wave (TW) model

and its reduction to a (1+1)-dimensional linear Schrödinger equation with a periodic potential

and a coupled-mode system describing the evolution of the most important Bloch-mode compo-

nents of the optical field were studied. In particular, in [2], the stabilization of vertical external

cavity surface-emitting semiconductor lasers (VECSEL) by spatio-temporal modulation of the injec-

tion was investigated, by performing a Floquet stability analysis of the (1+1)-dimensional system

of coupled paraxial equations for optical field and carrier density, including periodic modulation.

Thereby, conditions were identified that allow to suppress the modulation instability, which is a

common origin of the irregular behavior in high-power semiconductor lasers.

External-cavity diode lasers (ECDLs) are compact sources with potential narrow linewidth emis-

sion, the control and stabilization of which received considerable attention. The coexistence of

multiple stable steady states in such lasers was investigated in [3] (joint work with Vasile Tron-

ciu (TU Moldova), Hans Wenzel (FBH Berlin), and Andreas Wicht (Humboldt-Universität zu Berlin)

in the frame of the MANUMIEL project), where the concept of longitudinal modes of the (1+1)-

dimensional TW system was extensively exploited. An algorithm was presented allowing to cal-

culate instantaneous longitudinal optical modes in nearly arbitrary coupled laser configurations.

Single-photon sources based on semiconductor quantum dots enable many interesting appli-

Fig. 3: Schematic cross
section of a single-photon
emitter, from M. KANTNER,
U. BANDELOW, TH. KOPRUCKI,
J.-H. SCHULZE, A. STRITT-
MATTER, H.-J. WÜNSCHE,
Efficient current injection
into single quantum dots
through oxide-confined
pn-diodes, WIAS Preprint
no. 2169, 2015.

cations in the fields of quantum cryptography, quantum computing, and quantum metrology. In

colaboration with RG 1, mathematical models to describe the complex physical processes from

charge transport to radiative carrier recombination are in the center of interest for this novel type of

optoelectronic devices. The group’s approach involves the coupling of the van Roosbroeck system

to dissipative open quantum systems and elements of quantum-mechanical many-body theory.

Within the SFB 787, the group collaborates with research groups from TU Berlin (Dieter Bimberg,

Stephan Reitzenstein, Andreas Knorr). In this framework, significant contributions towards the per-

formance enhancement of particular devices based on the group’s simulation results were already

made; see Figure 3.

Pulses in nonlinear optical media

An important event in 2015 was the workshop “Waves, Solitons and Turbulence in Optical Sys-

tems” (WASTOS 2015), organized with the support of the Einstein Center for Mathematics Berlin,

Research Center MATHEON, which aimed at bringing together applied mathematicians, theoretical
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and experimental physicists to discuss recent advances concerning experimental findings and the-

oretical investigation of such dynamical phenomena as optical wave turbulence, optical solitons

and rogue waves, supercontinuum generation, spatio-temporal dynamics in active and passive

optical cavities, and effects related to the control of optical systems by delayed feedback.

Fig. 4: Participants of the
workshop WASTOS 2015

Rogue waves, which have long been considered a seafarer’s yarn, now appear to be a generic

dynamical behavior observed in nonlinear hydrodynamical, optical, or quantum-mechanical sys-

tems. A wave qualifies as rogue if it appears out of nowhere and vanishes without a trace, and if

it exceeds the system’s significant wave height at least twice. While the first criterium seems to

indicate that rogue waves are completely stochastic and unpredictable, the group found evidence

for deterministic chaotic behavior in the dynamics of rogue waves, both in the ocean and in optical

multifilaments. This could allow to estimate the limits of predictability of these potentially harmful

events.

Fig. 5: Recorded time series of different rogue
wave supporting systems: optical multifilaments
(a), oceanic Draupner event (b), nonlinear optical
fiber (c), cf. S. BIRKHOLZ, C. BRÉE, A. DEMIRCAN,
G. STEINMEYER, Predictability of rogue events,
Phys. Rev. Lett., 114 (2015),
pp. 213901/1–213901/5.

Solitons are attractive long-living objects that naturally appear in nonlinear systems. On the ba-

sis of a Hamiltonian framework for short optical pulses [4], an adiabatic theory for solitons interact-

ing with dispersive waves was formulated. The theory uses a wide spectrum of methods borrowed

from quantum mechanics, optics, and nonlinear dynamics, and made it possible to control solitons

in a predictable way using the so-called optical event horizons.
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The formation of planar solitons (strong confinement) in microcavity polaritonic waveguides was

also studied. In particular, the conditions for the existence of solitons in the presence of modu-

lational instability and multistability originating from co-existence of different transverse modes

were investigated. Finally, soliton propagation in tilted waveguides could be demonstrated, where

a critical tilt angle for the soliton propagation was found.

Dynamical systems

The research in the mathematical field of dynamical systems is devoted to mathematical theory

and methods that are related to the applied research on nonlinear optics and optoelectronics . In

2015, the main focus was on delay-differential equations and systems of coupled oscillators.

In collaboration with RG 1, a rigorous derivation of the Ginzburg–Landau equation as an amplitude

equation for delay-differential equations with large delay was obtained. This result represents

another cornerstone in the mathematical theory of delay-differential equations with large delay,

which is an essential tool for various problems in optoelectronics; see the Scientific Highlights

article on page 25. .

In the field of coupled oscillators, the research was continued on self-organized patterns of coher-

ence and incoherence in systems of coupled oscillators, so-called chimera states. It was shown

that, in addition to the well-elaborated approach of studying chimera states in the framework of

the continuum limit N → ∞ , there is also a way to study their emergence for small N by meth-

ods of classical dynamical systems theory. Slightly modifying the nonlocal coupling scheme with

a global feedback on the phase-lag parameter drastically enhances the stability of chimera states

without otherwise significantly changing them, and thus they can be traced down to a very small

system size [5].

Fig. 6: Regular and irregular excitation patterns
in a system of nonlocally coupled oscillators

Pursuing this approach, it can be shown that chimera states, which have been described in large
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systems as a single, statistically stationary regime, in small systems transform into a huge variety

of regular or irregular self-localized patterns; see Figure 6. The variety of different patterns is orga-

nized in a complex bifurcation scenario including transitions between regular dynamics and chaos

by period-doubling cascades, torus breakup, and intermittency.

Moreover, the transition to synchrony in a one-dimensional array of oscillators with nonlocal cou-

pling was studied. It was shown that the phase-lag parameter in the interaction function can in-

duce a Benjamin–Feir-type instability of the partially coherent plane waves. Then, a collective

macroscopic chaos appears as an intermediate stage between complete incoherence and stable

partially coherent plane waves. The emerging chaos exhibits a transition from phase turbulence to

amplitude turbulence.

Also mathematical problems related to ecological systems were studied. In particular, the exis-

tence of multiple stable equilibrium states, which are possible in real-life ecological systems (e.g.,

the so-called predator pit phenomenon), was investigated. In order to verify the hypothesis that

such a multitude of equilibrium states can be caused by the adaptation of animal behavior to

changes of environmental conditions, a simple predator-prey model was considered where the

prey changes its behavior in response to the pressure of predation. This model exhibits two sta-

ble coexisting equilibrium states with basins of attraction separated by a separatrix of a saddle

point [6].
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4.3 Research Group 3 “Numerical Mathematics and Scientific

Computing”

RG 3 studies the development of numerical methods and their numerical analysis. Software for

the numerical solution of partial differential equations and differential-algebraic systems is imple-

mented. Many of the research topics have been inspired by problems from applications. Below, a

selection of research topics of the group will be described briefly. Further topics include the numer-

ical analysis of convection-dominated problems, the simulation of gas turbines (in collaboration

with Research Group RG 6 Stochastic Algorithms and Nonparametric Statistics), of problems from

hemodynamics, of population balance systems, uncertainty quantification (in collaboration with

Research Group RG 4 Nonlinear Optimization and Inverse Problems), reduced-order modeling, and

the development of algorithms for anisotropic mesh generation.

Mixed-element mesh generation for complex geometrical models

The objective of this research topic is to develop a mixed-element (tetrahedrons, prisms, pyramids)

mesh generation method for complex geometrical models, such as those encountered in geologi-

cal modeling. Depending on the method used to build a three-dimensional geological model, and

on the exact purpose of this model, its mesh must be adapted so that it satisfies criteria on element

types, maximum number of elements, and mesh quality. Meshing methods developed for other ap-

plications than geomodeling forbid any modification of the input model. These modifications are

desirable in geomodeling to better locally control the type of element built and their quality, and

globally control the number of elements. Geological models indeed contain small features such as

very thin layers, tangential angle contacts that can very efficiently be meshed with quadrilaterals

and prisms instead with over-refined triangles or tetrahedrons.

The group’s approach is based on the surface remeshing method proposed in [6], which was

granted the Computers & Geosciences Best Paper Award of 2014. The method relies on two key

ideas: (1) the use of a well-shaped Voronoi diagram to subdivide the model and (2) combinato-

rial considerations to build mesh elements from the connected components of the intersections of

the Voronoi diagram with the geological model entities. This approach allows modifications of the

input model, a crucial point for meshing geological models whose level of detail is very different

from the level of detail desired for the mesh.

One point of focus is the formalization of the rules to build the mesh elements, allowing to deter-

mine the area in which prisms, pyramids, and tetrahedrons can be built with this method and the

area where using another mesh generator, such as Tetgen would be more appropriate. Future

work will be devoted to validating the generated meshes with real application cases and evaluat-

ing their quality for geomechanical finite element computations. Since the implementation of that

method is a key step on which the applicability of the method to real data sets depends, an im-

portant part of the work consists in implementing the C++ RINGMesh open-source programming

library to load, checking the validity, and saving three-dimensional geological structural models

built by geomodeling software [5]. This research project is a collaboration with the RING team in
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Nancy (https://www.ring-team.org/) and it is funded in the framework of a cooperation with TOTAL

E&P, France.

Fig. 1: Synthetic geological
model remeshing at several
resolutions, i.e., with
varying Voronoi seed
number, from [6]

 0.001

 0.01

 0.1

 1

 10

 100

 100  1000  10000  100000  1e+06

h
1

 e
rr

o
r

ndof

Crouzeix-Raviart, h1 error norm

CR
CR+

1/sqrt(n)

Fig. 2: Comparison of
accuracy between the 1973
Crouzeix–Raviart ( CR )
mixed finite element method
versus the new
pressure-robust
Crouzeix–Raviart element
( CR+ ) [3] for an
incompressible Stokes
problem with ν = 10−3 .
Comparison of H1 error.
The new pressure-robust
Crouzeix–Raviart element is
about ten refinement levels
more accurate, which is a
computational speedup by
roughly a factor of 106 .

Towards pressure-robust solvers for the incompressible Navier–Stokes equations

The simulation of flow problems is daily routine in meteorology, engineering, and science. Mathe-

matically, a major breakthrough was the construction of mixed finite element methods for the in-

compressible Navier–Stokes equations in the early 1970s, which enabled the construction of prov-

ably convergent discretizations for incompressible flow problems. Flow solvers based on mixed

finite element methods compute approximations of the flow field and the pressure in a fluid.

Despite this indisputable success, mixed finite element methods for the incompressible Navier–

Stokes equations do not behave in a really robust manner [3]. For typical flow problems at medium

or high Reynolds numbers, i.e., when the inertial forces in the fluid are large with respect to friction

forces, the error between the correct and the simulated flow field can be arbitrarily large—even if

the velocity field could be very well approximated in the given finite element space.

Recent research at the Weierstrass Institute [3, 4] allows now to fix an important issue of many clas-

sical mixed discretizations, which have been proposed in the last forty years. Classical discretiza-

tions compute inaccurate velocity fields whenever the pressure gradient is large compared with the

friction forces. In effect, these discretizations are not pressure-robust at medium or high Reynolds

numbers. They provide accurate approximations of the velocity field only if simultaneously the

pressure is very well approximated. In contrast, pressure-robust mixed finite element methods

computed accurate velocity fields independently of the resolution of the pressure! In terms of the fi-

nite element error analysis, the velocity error of pressure-robust mixed methods is independent of

the pressure. Interestingly, for more than thirty years the construction of pressure-robust discretiza-

tions based on mixed finite element methods for the incompressible Navier–Stokes equations was

considered to be practically impossible.
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Fig. 3: Comparison of
accuracy between the 1973
Crouzeix–Raviart ( CR )
mixed finite element method
versus the new
pressure-robust
Crouzeix–Raviart element
( CR+ ) [3] for an
incompressible Stokes
problem with ν = 10−3 .
Comparison of velocity
isolines.

The key observation made at the Weierstrass Institute is that discretizations that are not pressure-

robust do not strictly comply with a fundamental principle of vector analysis: divergence-free

forces in the Navier–Stokes equations balance only with divergence-free forces, and irrotational

forces balance only with irrotational forces [3]. Choosing the velocity test functions in a more

sophisticated manner than usual allows to transform all known mixed finite element methods

with discontinuous pressure spaces for the incompressible Stokes and Navier–Stokes equations

to pressure-robust discretizations [4], provided the underlying grids are built of triangles in two

or tetrahedra in three space dimensions. Moreover, current research indicates that this novel ap-

proach seems to allow the construction of pressure-robust counterparts for all inf-sup stable mixed

finite element methods. The traditional belief that pressure-robust mixed methods are nearly im-

possible to construct is proved to be wrong. Since the robustness properties of flow solvers based

on mixed finite element methods are greatly improved with this new approach, an important im-

pact on computational fluid dynamics seems to be in reach in the near future. Potential applica-

tions comprise, e.g., coupled flow processes and meteorology.

Numerical methods for transport and reaction in semiconductors and electrochemical
systems

Detailed macroscopic models of electrochemical systems and semiconductor devices include the

drift of charged particles (ions, electrons, holes) in the electric field, the diffusion due to gradi-

ents of the chemical potential together with terms describing heterogeneous or homogeneus reac-

tions. The densities of the charged particles influence the electric field via the Poisson equation for

the electrostatic potential. Classical models and their numerical realization mostly assume Boltz-

mann statistics for the dependency of particle densities on the chemical potential, leading to un-

physically high densities in electrolytes, organic semiconductors, and other systems. In the field

of semiconductors, different variants of Fermi and Gauss–Fermi statistics and their approxima-

tions are known to give correct answers. For electrolytes, the WIAS Research Group RG 7 Thermody-

namic Modeling and Analysis of Phase Transitions and Leibniz Group LG 3 Mathematical Models for

Lithium-ion Batteries recently developed a model that includes finite particle volumes, solvation

shells, and the contribution of the solvent.

Classically, the Scharfetter–Gummel upwind finite volume method has been used successfully as

a space discretization that in the case of thermodynamic equilibrium allows to obtain stationary
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solutions for the time-dependent drift-diffusion system that are identical to those of the reduced

nonlinear Poisson system describing the equilibrium case. The necessary generalizations of this

scheme for the described more general dependencies between chemical potential and densities

are under investigation. In this context, based on an averaging of activity coefficients, a method

was proposed that allows to obtain simulation results for the newly developed models of LG3 [1],

at the same time contributing to the WIAS subproject of the interdisciplinary research network “Per-

spectives for Rechargeable Magnesium-air Batteries” funded by the German Ministry of Education

and Research as part of its research initiative on energy storage systems. This approach, along

with other methods is being investigated in an assessment of different possibilities for the gener-

alization of the Scharfetter–Gummel scheme for general carrier statistics [2] (see also Figure 4), as

part of a joint effort of the research groups RG 1 Partial Differential Equations, RG 2 Laser Dynamics,

and RG 3 to develop the next generation of semiconductor simulation codes of WIAS.

Fig. 4: Electron (left) and
hole (right) density in an
oxide-confined pn-diode in
low-injection regime
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4.4 Research Group 4 “Nonlinear Optimization and Inverse

Problems”

The research group investigates optimization and inverse problems occurring in current engineer-

ing and economic applications. A specific focus of research in optimization and optimal control is

the investigation of special structures resulting from the presence of uncertain and non-smooth

data. Research in inverse problems is centered around the reconstruction of geometries and sur-

faces with complex or stochastic components from the scattering of acoustic, electromagnetic, or

elastic waves.

Together with the research groups RG 3 Numerical Mathematics and Scientific Computing and RG 6

Stochastic Algorithms and Nonparametric Statistics, the group investigates direct and inverse prob-

lems for partial differential equations (PDEs) with uncertain coefficients. A special highlight of

these activities was the organization of the workshop “Direct and Inverse Problems for PDEs with

Random Coefficients”, November 9 – 13, 2015, together with RG 3. Sixty-eight participants from

ten countries discussed various topics related to the analysis and numerical treatment of PDEs

with stochastic data: efficient numerical methods for the direct problem, control problems with un-

certainties, sparse and low-rank tensor representations, and inverse problems with random data.

Last but not least, the group succeeded in acquiring a grant in the European Industrial Doctorate

(EID) programme in the Marie Skłodowska-Curie actions of the EU. With its research funding of 2.1

million euros, the project “MIMESIS – Mathematics and Materials Science for Steel Production and

Manufacturing” is an interdisciplinary and intersectoral Ph.D. program between applied mathemat-

ics and materials science for eight Ph.D. students. Further partners in the project are the University

of Oulu, the Berlin Mathematical School, and three industrial companies from Norway and Finland.

In the following, selected scientific achievements of the research group in 2015 are detailed.

Inverse problems

Scattering phenomena arise in many fields of application, e.g., in acoustics, for electromagnetic

fields in nano- and micro-optical elements, and in seismology. They can be employed, e.g., for the

design of diffractive devices, for the testing of materials, measurements, and for the exploration

of natural sources. Though the uniqueness of inverse scattering solutions is tacitly used in many

applications, a proof or disproof is quite complicated and is possible, in general, only under sim-

plifying assumptions. In [3], it has been proved, e.g., that acoustically penetrable obstacles with

corners or edges scatter every incident wave nontrivially. Moreover, the shape of a convex penetra-

ble scatterer of polyhedral or polygonal type can be uniquely determined by the far-field pattern

over all observation directions incited by a single incident plane or point source wave.

To simulate diffractive gratings and other nano- and micro-optical elements, scalar methods like,

e.g., ray-tracing are increasingly replaced by electromagnetic approaches. Such a field-tracing re-

quires the electromagnetic simulation of the scattering of general time-harmonic electromagnetic

fields (cf. Figure 1) by micro-optical devices. The approach for diffractive gratings is based on the

approximation of the incidence field by plane waves, the numerical solution of the corresponding
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diffraction problems, and the superposition of the obtained plane wave solutions. But the meth-

ods for plane wave approximations described in the engineering literature are not efficient. Here,

mainly uniformly distributed incidence angles are used as approximating nodes, leading to ineffi-

cient algorithms and rather inaccurate solutions.

Fig. 1: Diffraction pattern of
a chromium mask
illuminated by a plane wave
(left), a Gaussian beam
(middle), and a beam
through a circular hole
(right)

A new adaptive algorithm was developed and implemented, which allows the computation of

diffracted fields up to a prescribed accuracy. It is based on the application of Floquet–Fourier tech-

niques to transform the Maxwell equations for the grating problem with general three-dimensional

incidence fields to systems of Helmholtz equations with quasi-periodic incidence, which depend

on two parameters. Those problems can be solved efficiently by a modification of the existing inte-

gral solver for conical diffraction. Then, the approximation of the diffracted fields can be obtained

from the solution of general conical diffraction problems for suitably chosen parameters. An opti-

mal choice of these parameters is unknown, it depends on the illumination, the non-smooth be-

havior of the diffracted fields, and the underlying grating structure. Therefore, an adaptive strategy

was developed that applies and extends ideas from cubature methods for two-dimensional inte-

grals.

For the simulation and reconstruction of complex periodic and doubly periodic surface structures,

a fast and storage-saving numerical method is needed. In particular, the treatment of aperiodic

rough surfaces or of geometries including stochastic details can be realized by periodic compu-

tations over large periods. Another application of such a method is to provide the computational

basis for the in-situ measurement to control semiconductor processing in modern factories. To this

end, a scattering matrix algorithm (SMA) was implemented, which, purging through the geometry

sliced in the direction orthogonal to the surface, avoids the solution and storage of huge global

matrices. The purging is organized by a stable recursion, and the integration of the differential

equation inside the slices w.r.t. the purge direction is realized by a predictor-corrector scheme. Al-

together, the approach is efficient for deep surface structures. In order to prepare the solution of

inverse problems, a new variant of the SMA was considered, based on the computation of shape

derivatives. The most time-consuming parts, eigenvector decomposition and inversion of fully pop-

ulated matrix blocks, are the same as for the SMA without shape derivative.

Optimization and optimal control

The research group continued its intensive work in the domains of stochastic and non-differenti-

able optimization. The focus of the subproject “Nonlinear probabilistic constraints in gas trans-

portation problems” within the DFG Transregio (TRR) 154 Mathematical Modeling, Simulation and
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Optimization Using the Example of Gas Networks was laid on the efficient computation of the prob-

ability of demand satisfaction in stationary gas networks [5]; see also Figure 2.

Connected with this work, the supervision of a Ph.D. project – financed for one year by a young re-

Fig. 2: German H-gas and
L-gas network system of the
German network operator
OGE (Open Grid Europe)

searchers grant of TRR 154 – was initiated. At the same time, a research project within the Gaspard

Monge Program for Optimization and Operations Research funded by the Jacques Hadamard Math-

ematical Foundation (Paris) could be acquired for one year (with possible extension to three years).

Here, the research topic is the derivation of (sub-) gradient formulae for possibly non-smooth

probability functions with potential applications to hydro-power management. Apart from inten-

sifying the existing collaboration with Electricité de France, this project is accompanied by the co-

supervision of a Ph.D. project with the Center of Mathematical Modeling (CMM) at the University of

Santiago de Chile. On the algorithmic side, the implementation of SQP-based solution approaches

for probabilistic programming was extended to bilinear probabilistic constraints and estimates for

the optimal value were provided.

In the area of non-differentiable optimization, substantial progress was made in the characteriza-

tion of the calmness property for solution maps to linear programs. This progress is reflected by

two recent publications (e.g., [2]), which are the output of an ongoing collaboration with partners

from the Universities of Elche and Alicante (Spain).

In collaboration with the Young Scientists’ Group Modeling of Damage Processes, a phase field

model for damage processes in two-dimensional viscoelastic media with non-homogeneous Neu-

mann data describing external boundary forces was investigated [4]. The main difficulty is caused

by the irreversibility of the phase field variable, which results in a constrained PDE system. The

global-in-time existence is established by a taylored time discretization procedure. Moreover, an

optimal control problem is considered where a cost functional penalizes maximal deviations from

prescribed damage profiles. The goal is to minimize the cost functional with respect to exterior

forces acting on the boundary, which play the role of the control variable in the considered model.

The analysis and development of efficient numerical methods for high-dimensional stochastic (or

in general parametric) problems was continued. A central achievement was the combination of low-

rank hierarchical tensor representations with complete a posteriori adaptivity based on a residual

error estimator. By these modern model reduction techniques, previous results obtained with an

adaptive Galerkin scheme for stochastic PDEs could be improved and very large discretizations

in the order of 1070 became tractable. This approach paved the way for the consideration of

Fig. 3: Global regression of
pointwise stochastic
equations as approximation
of stochastic PDE solution

even more involved (so-called) lognormal problems, which are of particular interest for real-world

applications.

A new numerical scheme for the solution of stochastic PDEs based on global regression with re-

spect to the solution of many stochastic differential equations (SDEs) was developed (cf. Figure 3

and [1]). This collaboration project with RG 3 and RG 6 underlines the possible benefits of com-

bining expertise from stochastic and numerical analysis. The method allows for complete paral-

lelization and the adaptive choice of all discretization parameters, in particular (and opposite to

all standard methods such as Monte Carlo), the number of samples pointwise.

The work on the MATHEON subproject C-SE13 “Topology optimization of wind turbines under un-

certainties” was continued. The aim is the topology optimization of the main frame of a wind tur-
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bine accounting for stochastic uncertainties in the material data and the loads. In 2015, numerical

methods for the deterministic shape optimization problem were implemented, and first results

were obtained. A related sharp-interface model was studied in [6]. Furthermore, stochastic collo-

cation methods to solve the state equation, taking the discretization of the probability space into

account, were implemented and tested for first examples. The next step is to tackle the stochastic

optimal control problem.

Within the framework of the joint project with RG 3 “Efficient mathematical methods for model

calibration and uncertainty quantification in environmental simulations”, funded by Investitions-

bank Berlin, a stochastic geometric inverse problem was studied to determine the permeability of

the subsurface from hydraulic head measurements within the framework of a steady Darcy model

of groundwater flow. The parametrization leads to a parameter identification problem for a finite

number of unknown parameters determining the geometry, together with either a finite number of

permeability values (in the constant case) or a finite number of fields (in the continuous function

case). To solve this parameter identification problem, a Bayesian framework was applied. The re-

sults of the parameter identification procedure with the Markov chain Monte Carlo (MCMC) method

are presented in Figure 4.

Fig. 4: Posterior probability
density function of
geometric parameter c and
physical parameters
κ1, κ2, κ3 calculated by
MCMC method
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4.5 Research Group 5 “Interacting Random Systems”

In 2015, the group comprised the largest number of members in its history, as a great number

of research programs were running on various topics like interacting particle systems, concentra-

tion properties of spectra of random operators, biological evolution models, and, in particular, in

the Leibniz Group LG 4 Probabilistic Methods for Mobile Ad-hoc Networks, which started in July

2014, whose main scientific partner is the IHP – Innovations for High Performance Microelectron-

ics (Frankfurt/Oder). The research spectrum of the group is complemented by some particular top-

ics that were recently brought in by new colleagues, like a large deviations approach to physically

interesting models for the polaron, and connections between large-deviation analysis of large in-

teracting stochastic particle systems and gradient flows with respect to interesting functionals. In

the latter subject, the group organized in December an international workshop with embedded

minicourses by well-known experts. This subject belongs to the prominent ones at WIAS, since

it combines the interests of a number of partners from other groups, notably from the Research

Group RG 1 Partial Differential Equations.

A particular highlight in the activities of the head of the group was the organization of a festive

event on the occasion of the 200th birthday of the eminent mathematician Karl Weierstrass, whose

name the institute bears, and the edition (jointly with Prof. Jürgen Sprekels) of a collection of nine

essays on historical aspects of him, written by international historians. The event took place in

an appropriate setting in the premises of the Berlin-Brandenburg Academy of the Sciences and

Humanities, and WIAS was honored by the visit and speech of Germany’s Minister of Education

and Research, Prof. Johanna Wanka.

Further notable organizational activities of the group concern a workshop for young females in

probability: only females were invited to give talks. Moreover, on several occasions, members of

the group gave a number of talks for the public, and the head of the group continued his engage-

ment as head of the Inspirata, the Leipzig Institute for Education in Mathematics and the Sciences,

and he continued to supervise an enormous number of bachelor theses at the Technische Univer-

sität Berlin on various subjects in the research spectrum of the RG 5.

A closer description of some of the group’s achievements in 2015 follows.

Large Deviations for wireless networks

The goal of the LG Probabilistic Methods for Mobile Ad-hoc Networks is to develop and investigate

probabilistic models for mobile ad-hoc networks as random interacting systems. These models

seek to capture the most important characteristics of real-world wireless networks with randomly

positioned users, and provide useful estimates on quantities like connectivity based on the signal-

to-interference-and-noise ratio.

In two papers [4], [5], the group obtained results for networks of users given by planar point pro-

cesses. In [4], a device-to-device setting is considered in the limit of a large number of transmitters

and receivers. As a main result, it is shown that the probability that an unexpectedly large propor-

tion of transmitters is unable to connect decreases at an exponential rate. This approach is used to
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develop an importance sampling algorithm that substantially reduces the variance for the numeri-

cal estimation of the rare-event probabilities. In [5], a model of relay-augmented wireless networks

is considered where mobile users try to connect to a central base station. The problem of an atypi-

cally high number of users Xλ experiencing bad quality of service over a certain amount of time is

analyzed in a high-density scenario where λ > 0 , the intensity of users in a finite spatial domain,

tends to infinity. The probability that the proportion of users with bad quality of service is larger

than b decays at an exponential rate I (b)

P(#Xλ > λb) ≈ e−λI (b).

The formula that was derived for I (b) contains information about the most likely spatial distribu-

tion of the users in this unwanted event. Techniques of large deviations allow for a characterization

of I (b) as a solution of a constrained entropy minimization problem. By using simulations, it is

shown that solutions of this problem are potentially non-unique due to symmetry breaking; see

Figure 1.

Fig. 1: Configuration in the
special case of users without
movement in a typical
realization and in a typical
realization conditioned on a
frustration event. Points in
green, blue, and red
represent directly connected,
relay-connected, and
unconnected users,
respectively. The rotational
symmetry is broken.

From large deviations to Wasserstein gradient flows in multiple dimensions

This work connects two—at first sight seemingly unrelated—topics: large deviations and gradient

flows. The first topic concerns the stochastic concentration of independent Brownian particles in a

force field 9 . By the law of large numbers, the random concentration of particles converges to the

solution of the corresponding Fokker–Planck equation ρ̇t = 1ρt + div(ρt∇9) . The exponentially

small probability that the concentration of a large number n of particles X1, . . . , Xn at time τ

does not follow this expected behavior is an example of a large deviation principle:

Prob
(1

n
∑n

i=1 δX i (τ ) ≈ ρ
)
' exp

(
− nIτ (ρ | ρ0)

)
for large n. (1)

It turns out that an asymptotic development of this functional Iτ for small time lags τ > 0 yields
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a connection to the second topic:

Iτ (ρ | ρ0) ≈
1

4τ
W 2(ρ0, ρ)+

1
2
ℱ(ρ)− 1

2
ℱ(ρ0) for small τ. (2)

The right-hand side is a well-known discrete-time variational scheme for the so-called gradient

flow of the free energy ℱ(ρ) :=
∫
ρ log ρ +

∫
9ρ in the Wasserstein metric W . A gradient flow is

a mathematically rigorous formulation of the thermodynamic principle that “systems are driven by

their free energy”. The Wasserstein metric is closely related to the Schrödinger problem: “What is

the least costly way to transport a given cloud of particles into another cloud?”

The result (2) shows that the gradient flow is strongly connected to an underlying stochastic parti-

cle system, just like the free energy itself is, via the Boltzmann formula. The proof in [3] strengthens

an earlier result of this type in [1] to multiple dimensions.

The key idea behind the proof is to take the Wasserstein geodesic between ρ0 and ρ , perturb it

by running the Fokker–Planck flow Pε for a short time, and carefully choosing ε(τ ) as a function

of the time step τ ; see Figure 2.

ρ0

ρ

W -geodesic

Pερ0

Pερ

Fig. 2: Construction of the curve between ρ0 and ρ

The polaron problem in quantum mechanics

A well-known problem in statistical mechanics is the classical polaron problem. The physical ques-

tion arises from the discussion of the slow movement of a charged particle, e.g., an electron, in a

crystal whose lattice sites are polarized by this motion, influencing the behavior of the electron. In

particular, as the electron moves in the crystal, it drags along a cloud of polarized masses, which

determines its effective behavior. The mathematical layout of this problem was founded already in

the early 1970s by Feynman, who introduced a path integral formulation and pointed out that the

aforementioned effective behavior can be studied via the asymptotic behavior of a certain Gibbs

measure for a three-dimensional Brownian motion (Bt )t∈[0,T ] interacting with itself. This measure

weights the path’s probability exponentially with the energy term

Hλ(t) = λ
∫ T

0

∫ T

0
dtds

e−λ|t−s|

|Bt − Bs |
,

with some positive coupling parameter λ . This term induces a self-attraction on short time scales,

i.e., large weight is given to Brownian paths that tend to return to a place where they have just

been.

Although certain results are known for the free energy of this system by the classical Donsker–
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Varadhan large deviation theory (which, roughly speaking, deals with probabilities of events that

are untypical), a description of this system on the level of path measures is not easy. As a first cru-

cial step, one has to understand a certain approximation of this problem: its mean-field version,

which is also described by a self-attractive Gibbs measure, but where the aforementioned short

time scale restriction is absent. The energy term used here is H(T ) = 1
T
∫ T

0
∫ T

0 dtds 1/|Bt − Bs | .

The mean-field version is believed to approximate the original model for small values of the cou-

pling parameter λ .

A detailed analysis of the mean-field version was carried out recently in a series of works by the

group. Indeed, a robust theory of compact large deviations was developed in [7], its extension to

the uniform strong metric for the singular Coulomb interaction was carried out in [6], and, as a

culmination, in [2], the full description of the path measures was accomplished.
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4.6 Research Group 6 “Stochastic Algorithms and

Nonparametric Statistics”

The group focuses on the research topics Statistical data analysis and Stochastic modeling, op-

timization, and algorithms. Applications are mainly in economics, financial engineering, medical

imaging, life sciences, and mathematical physics. Special interest is in the modeling of complex

systems using methods from nonparametric statistics, statistical learning, risk assessment, and

valuation in financial markets using efficient stochastic algorithms and various tools from classi-

cal, stochastic, and rough path analysis.

The group has a leading position with important mathematical contributions and the development

of statistical software.

Members of the research group participate in the DFG Collaborative Research Center SFB 649 Eco-

nomic Risk, DFG Research Unit FOR 1735 Structural Inference in Statistics: Adaptation and Effi-

ciency, and DFG International Research Training Group IRTG 1792 High Dimensional Non Stationary

Time Series.

Members of the group were also involved in several industrial contracts and collaborations, such

as a project with Alstom (Switzerland) Ltd. on “Gas turbine process simulation”, the HSH Nordbank,

and Deloitte.

Scientific highlights achieved by the group in 2015 are provided below.

Statistical data analysis

The focus within the project area Statistical data analysis is on methods that automatically adapt

to unknown structures using some weak qualitative assumptions. This includes, e. g., methods

for regularization and estimation in inverse problems, dimension reduction, multiple testing, sig-

nal and change-point detection, feature identification, and adaptive smoothing in various applica-

tions.

Highlights 2015:

� Outstanding publications:

VLADIMIR SPOKOINY, MAYYA ZHILOVA, Bootstrap confidence sets under model misspecification,

Ann. Statist., 43:6 (2015), pp. 2653–2675.

ANDREAS ANDRESEN, VLADIMIR SPOKOINY, Convergence of an alternating maximization procedure,

J. Mach. Learn. Res., 17:63 (2016), pp. 1–53.

MAXIM PANOV, VLADIMIR SPOKOINY, Critical dimension in semiparametric Bernstein–von Mises

theorem, Bayesian Anal., 10:3 (2015), pp. 665–710.

KARSTEN TABELOW, HENNING U. VOSS, JÖRG POLZEHL, Local estimation of the noise level in MRI

using structural adaptation, Med. Image Anal., 20 (2015), pp. 76–86.
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� Ph.D. defenses of Mayya Zhilova and Andreas Andresen with mark “summa cum laude”, and

Niklas Willrich with mark “magna cum laude” at Humboldt-Universität zu Berlin.

The research of the group covers both theoretical and applied statistical problems. The conver-

gence of general alternating algorithms was studied in Andresen and Spokoiny, a rigorous analy-

sis of posterior distribution in semiparametric setup for finite samples was provided in Panov and

Spokoiny, and the use of a multiplier bootstrap procedure for uncertainty quantification under non-

classical assumptions and the so-called modeling bias effect were investigated in Spokoiny and

Zhilova.

Model selection for regression models with unknown heterogeneous noise with the use of boot-

strap tuning is offered and studied in [1].

The research group has established strong connections to the neuroscience/neuroimaging com-

munity. Current joint research interests include the characterization of the signal distribution and

noise quantification (see Tabelow et al.) and the effects of low signal-to-noise-ratios in statistical

modeling of magnetic resonance imaging (MRI) experiments [2]. The problem is crucial in high-

resolution MRI experiments that aim for in-vivo diagnostics and diffusion-weighted MRI experi-

ments employing high b-values. In-vivo-dignostics by multi-parameter-mapping is a recent method

that uses multiple quantitative multi-parameter mapping, which is designed to provide standard-

ized information about tissue microstructure. It relates measurements with different MR contrasts

and at multiple echo times within a model derived from MR physics. The model parameters are

supposed to be comparable across time points and imaging sites enabling the search for diag-

nostic markers for neuronal diseases in group studies. Novel ideas in the modeling of such data

are pursued with the group’s partners from the Wellcome Trust Institute for Neuroimaging London

and Universitäts-Klinikum Hamburg-Eppendorf. An approach to automated lesion detection and

classification in multiple sclerosis (MS) based on multimodal MR imaging is under development

in its collaboration with neuroscientists from the Universitätsklinikum Münster. A collaboration

with neurobiologists from the Leibniz Institute for Neurobiology concerns the dynamics of learn-

ing. Modeling data from learning experiments needs to combine behavioral data with functional

MRI (humans) and local field potential measurements (rodents) in group studies. Statistical prob-

lems include the warping of individual subject-specific time scales and the identification of func-

tional connectivity networks characterized by sparse precision matrices and inference procedures

to test for changes in the structure of estimated networks. The group participates in efforts of the

statistics community to provide solutions in analyzing neuroscience experiments. This research in-

cludes active participation in the 2015–16 Program on Challenges in Computational Neuroscience

(CCNS) at the Statistical and Applied Mathematical Sciences Institute SAMSI, North Carolina, the

development of prototypical neuro-statistical software (R-packages dti and fMRI), and the inte-

gration of statistical approaches into neuroscience software (ACID toolbox for SPM, Brainvoyager).

Within the BMBF-funded project EPILYZE, a new method was developed to control the false discov-

ery rate in hierarchically structured systems of hypotheses. The method was successfully applied

to the problem of signal detection in functional magnetic resonance imaging.

The work within the Alstom (Switzerland) Ltd. project on “Gas turbine process simulation” (joint

project with RG 3 Numerical Mathematics and Scientific Computing) recently required to under-

stand and implement Bayesian procedures for parameter calibration for models in WIAS’s BOP
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solver; see also page 182.

Aside from deterministic optimization routines, this approach makes it possible to quantify model

uncertainties. Therefore, both a nonlinear Bayes approach for the complete solver, using Metro-

polis–Hastings Markov chains, as well as a linear Bayes approach, applied to a local linear model,

are implemented. In combination, this approach allows for an efficient parameter fit and resulting

performance predictions. It was presented at the ASME Turbo Expo, Montreal, and is published

in the conference proceedings as M. ARIAS CHAO, P. MATHÉ, V. SCHLOSSHAUER, D.S. LILEY, Calibra-

tion and uncertainty quantification of gas turbines performance models, 2015. This contribution

received the best paper award in the section on probabilistic models.

Stochastic modeling, optimization, and algorithms

The project focuses on the solution of challenging mathematical problems in the field of optimiza-

tion, stochastic optimal control, and stochastic and rough differential equations. These problems

are particularly motivated by applications in the finance and energy industries. The development

and rigorous mathematical analysis of innovative methods and algorithms based on fundamental

stochastic principles are of primary interest. In particular, there is an increasing demand for ef-

fective solutions to optimal control problems for real-world high-dimensional problems appearing

in energy and storage markets, for instance. Also, there is a strong expertise in financial (interest

rate and equity) modeling, volatility modeling, effective calibration, and the modeling of financial

derivatives, such as complex structured interest rate, energy, and volatility derivatives.

Further, the group has expertise in the highly active field of rough path analysis and regularity

structures, which led, in particular, in the preceding year to the joint text book by Peter Friz and

the Fields medallist Martin Hairer, and in the present year to the approval of the DFG Research Unit

FOR 2402 Rough Paths, Stochastic Partial Differential Equations and Related Topics.

Highlights 2015:

� Acquisition of industry collaboration project with Deloitte & Touche on “Multi-curve LIBOR mod-

eling, calibration, and pricing of related products”

� Granting of the DFG Research Unit FOR 2402 for 2016–2019, principal investigators: Christian

Bayer and John Schoenmakers

� Successful Ph.D. defense by Marcel Ladkau

After the financial crisis around 2007, it became necessary to incorporate credit risk into LIBOR

rates and, as a result, multi-curve LIBOR models were called for. In this context, an affine multi-

curve LIBOR model was developed and finalized in [3]. This model has the advantage that, unlike

in some other recent approaches, forward LIBORs and spreads with respect to overnight index

swap rates can be modeled simultaneously over arbitrary periods in a mathematically consistent

way. While the latter model may be considered quite nice from a mathematical point of view, its cal-

ibration requires the identification of parameters that are not directly linked to certain economic

quantities, such as volatility and correlation. As a consequence, the development of the most ef-

fective calibration method for this model is still in progress. Meanwhile, WIAS has acquired an

industry collaboration with Deloitte & Touche on this topic. For this collaboration, the WIAS group
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effectuates a more pragmatic solution that comes down to a multi-curve version of the stochastic

volatility LIBOR model developed earlier by Ladkau, Schoenmakers, and Zhang (2013).

An important contribution to the modeling of stock indices was the development of the so-called

rough Bergomi (rBergomi) model [5]. This model is a stochastic volatility model where the stochas-

tic volatility component is essentially given by the exponential of a fractional Brownian motion. An

important difference to earlier models is that the rBergomi model allows for a Hurst index H < 1/2

and, in fact, calibration leads to choices of H ≈ 0.1 . Amazingly, this very simple, parsimonious

model—based on only three free parameters—yields excellent fits of model prices to observed mar-

ket prices of options on the stock or index, as extensively tested for the S&P 500 index (SPX), much

better than fits obtainable from conventional stochastic volatility models. Thus, this new model is

very promising both from an applied perspective, allowing option pricing fully consistent with mar-

ket prices, and from a more academic point of view, as there are still many open problems in the

context of the rBergomi model, such as constructing hedging strategies in the rBergomi model to

the development of efficient numerical algorithms.

A perennial problem in the simulation of stochastic volatility LIBOR models and stochastic volatil-

ity asset models such as the Heston model is the effective simulation of the square-root process

involved, also called the Cox–Ingersoll–Ross (CIR) diffusion process,

dV = k(λ− V )dt + σ
√

V dW ,

with W being a standard Brownian motion. Simulation of the CIR process is particularly diffi-

cult when the Feller condition σ2
≤ 2kλ is violated. After a successful treatment of the case

4kλ > σ2 > 2kλ based on the Doss–Sussmann approach in the preceding year by Milstein and

Schoenmakers (2015), a novel method was developed in the present report period (WIAS Preprint

no. 2113, to appear in Adv. Appl. Probab., 2016). The new method applies regardless whether the

Feller condition is violated or not and provides trajectories that are exact at random times and uni-

formly close to the exact ones at all times in between. Moreover, the method is developed such

that it is even applicable to rather general (one-dimensional) diffusions and is based on spectral

series expansions connected with Sturm–Liouville problems.

In the field of optimization in energy markets, a combined model of a hydroelectric storage and

production facility and of the day-by-day electricity bid market is considered. The water inflow to

the facility and the electricity price are modeled by dependent stochastic processes. The opera-

tor is faced with the problem of deciding daily on the control of the facility and on the amount of

electricity for the next day’s bid to the market. The cost function, which is maximized, is the gross

profit from selling the electricity. Instead of solving this problem directly, a dual martingale ap-

proach was chosen where a dual problem is solved by a Monte Carlo simulation; see also Bender,

Schoenmakers, Zhang (2015, list of WIAS references in the appendix on pages 122ff).

For more details see the Scientific Highlights article on page 40.

In the area of modeling and interference of economic processes, a new procedure for the iden-

tification of the time change in a time-changed Brownian motion was developed in Belomestny

and Schoenmakers (2015). Further, a new estimator for variance-mean mixture models was con-

structed on the basis of a generalization of the Post–Widder formula to the complex domain in
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WIAS Preprint no. 2186, 2015. These results were obtained in interaction with the topic Statistical

data analysis.

Jointly with the research groups RG 3 Numerical Mathematics and Scientific Computing and RG 4

Nonlinear Optimization and Inverse Problems, stochastic differential equation-based regression

methods for partial differential equations with random coefficients were developed and resulted

in WIAS Preprint no. 2192, 2015. These methods provide a valuable alternative to the more usual,

but computationally intensive, finite element approaches.
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4.7 Research Group 7 “Thermodynamic Modeling and

Analysis of Phase Transitions”

The research group is working on the thermodynamically consistent modeling, analysis, and sim-

ulation of processes in materials. Often, desirable and undesirable phase transitions occur, and

their prediction is mandatory in modern key technologies.

Currently, the group is involved in three core areas:

� Mathematical models of electrochemical processes in the context of lithium-ion batteries

� Mathematical models of nano-structured materials within photovoltaic applications and for

complex liquids

� Hysteresis of electromagnetic-mechanical components and of biological systems

From a mathematical point of view, the resulting models are represented by systems of nonlin-

ear partial differential equations. Moreover, systems of stochastic ordinary differential equations

are studied in the context of battery research. A further research area is the treatment of diffuse

interfaces and boundary layers by the methods of asymptotic analysis.

Mathematical models of electrochemical processes in the context of lithium-ion batteries

LG 3 Mathematical Models for Lithium-ion Batteries. The foundations of the battery research

were established within the Leibniz group Mathematical Models for Lithium-ion Batteries. It was

externally funded between July 2012 and June 2015. The funding resulted from a successful pro-

posal by Wolfgang Dreyer within the competition procedure of the Leibniz Association in the Pact

for Research and Innovation.

The group is working on modeling, analysis, scientific computing, and simulations of various com-

ponents of lithium-ion batteries, particularly

� Electrolytes

� Electrolyte-electrode interfaces

� Many-particle electrodes

The research on these core items is still going on within RG 7 Thermodynamic Modeling and Anal-

ysis of Phase Transitions. An overview of some outstanding results is given in the Scientific High-

lights article “Mathematical Models for Lithium-ion Batteries” on page 44 of this report. There

is a collaboration with the research group RG 3 Numerical Mathematics and Scientific Computing

concerning the numerical analysis of the new electrolyte models and the implementation into the

WIAS numerical code pdelib. Moreover, there is a collaboration with RG 6 Stochastic Algorithms

and Nonparametric Statistics on an interdisciplinary MATHEON subproject on “Stochastic analysis

of many-particle electrodes”. Particularly the new electrolyte models have motivated further devel-

opments that were started in the second part of 2015 and are described in the following.
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Numerical analysis of coupled bulk-surface equations. Many areas of modern applications con-

cern coupled phenomena happening at the interface and within the adjacent bulk phases. The

corresponding surface equation systems are quite intricate because they couple bulk fluxes across

the interface to intrinsic interfacial fluxes, which were extensively treated by Clemens Guhlke in his

Ph.D. thesis “Theorie der elektrochemischen Grenzfläche”. The existing analysis mainly restricts

itself to uncoupled equations, i.e., either normal fluxes or only tangential fluxes are taken into ac-

count. A step towards the full coupling of both phenomena was carried out by Rüdiger Müller jointly

with Martin Eigel from RG 4 Nonlinear Optimization and Inverse Problems. In [2], they consider a

system of two coupled elliptic equations defined on a bulk domain and its boundary surface do-

main.

Fig. 1: Solution of the
coupled system for a
non-smooth domain � with
a reentrant corner. The
domain consists of a ball
where one octant has been
removed. Left: Bulk solution,
Right: Surface solution.

The discretization with conforming finite elements employs a polyhedral approximation of the sur-

face. For the a posteriori error control of the equation system, a residual error estimator is derived,

which takes into account the approximation errors due to the finite element method discretization

in space as well as the polyhedral approximation of the surface. An adaptive refinement algorithm

controls the overall error. Numerical experiments illustrate the reliability of the a posteriori error es-

timator and the ability of the proposed adaptive algorithm to efficiently solve the coupled problem

on non-smooth domains with reentrant corners as shown in Figure 1.

New interpretation of the Lippmann equation. In the existing literature, the Lippmann equation

is considered as a universal relationship between interfacial tension, double-layer charge, and

cell potential. Based on the framework of continuum thermo-electrodynamics, some crucial new

insights to this relation are provided in [4]. The new electrode-electrolyte model is applied to a

curved liquid metal electrode. If the electrode radius is large compared to the Debye length, asymp-

totic analysis methods yield the Lippmann equation with precise definitions of the involved quan-

tities. It turns out that the interfacial tension of the Lippmann equation is composed of the surface

tension of the general model and contributions arising from the adjacent space charge layers. This

finding is confirmed by a comparison of the group’s model to experimental data of several mercury-

electrolyte interfaces.
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Analysis of partial differential equations in the context of electrochemistry. The coupling of the

reaction-diffusion equations to the Navier–Stokes equation via both the pressure and the electric

field is essential for proper electrochemical modeling. Particularly, the appearance of the pres-

sure in the diffusion fluxes represents the distinctiveness of the new reaction-diffusion Navier–

Stokes system, developed in LG 3. Moreover, the effective mobility matrix is represented as M =

PT Memp P , where P is a constant projector, and Memp is the empirical mobility matrix. The re-

search to establish first rigorous mathematical results for the new coupled model is headed by

Pierre-Étienne Druet. A proof of existence results suffers from multiple elliptic degeneration of the

diffusion fluxes. The eigenvalues of Memp are not bounded away from 0 and 1. Moreover, the ma-

trix P has the eigenvalue zero. These difficulties may be removed by elliptic regularization. In

order to achieve compactness, the ellipticity of the diffusion matrix on the N − 1 -dimensional im-

age (subspace) of the projector P is used, combined with an extension of the Lions method for the

Navier–Stokes operator. The latter guaranties that the total mass density ρ is in a compact subset

of L1 . Thanks to a priori bounds that result from the thermodynamical consistency of the system,

it is finally possible to pass to the limit with the approximation scheme. In particular, it is possible

to show that the numerous nonlinearities converge to their expected limit. The current open topics

are, firstly, the existence of a weak solution in the context of vanishing constituents and, secondly,

an existence proof for the incompressible limit of the system.

Stochastic methods for the analysis of lithium-ion batteries. The subproject C-SE8 “Stochas-

tic methods for the analysis of lithium-ion batteries” is a part of the application area Mathemat-

ics for Sustainable Energies of the Research Center MATHEON funded by the Einstein Center for

Mathematics Berlin (ECMath). The project is headed by Wolfgang Dreyer and Peter Karl Friz from

RG 6 Stochastic Algorithms and Nonparametric Statistics. The challenging topic needs mathemati-

cal techniques from both analysis and stochastics. The project aims to improve the properties of

many-particle storage systems that are used as intercalation electrodes in lithium-ion batteries.

The first many-particle model was introduced a few years ago by Wolfgang Dreyer and Clemens

Guhlke jointly with Michael Herrmann from Westfälische Wilhelms-Unversität Münster. This model

relies on the assumption that the storage particles are of equal size and describes the evolution

of the many-particle electrode during a charging/discharging process by a single Fokker–Planck

equation. However, there is a size distribution with particle radii between 25 and 500 nanometers.

The particle size distribution has a large impact on the dynamics of the many-particle electrode,

which opens the possibility for optimization. The size distribution can easily be modeled within

a system of stochastic differential equations for each of the storage particles; see the Scientific

Highlights article on page 44.

Figure 2 on the next page shows the loading-unloading process for N = 100 storage particles,

k = 1,2, ..., N , of different size with radii r1 < r2 < ... < r100 . There are two small parameters τ

and ν depending on the particle size.
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Fig. 2: Evolution of lithium
concentrations yk during a
loading-unloading process.
Red: small particles, blue:
large particles. Small
particles undergo the phase
transition first.

Mathematical models of nanostructured materials within photovoltaic applications and
for complex liquids

Gradient flow perspective of thin-film bilayer flows. Barbara Wagner participates in the DFG

Priority Program SPP 1506 “Transport Processes at Fluidic Interfaces” with the funded project “Dy-

namics of viscous multi-layer systems with free boundaries”.

Barbara Wagner and Sebastian Jachalski jointly with Andreas Münch (University of Oxford) worked

on the mathematical modeling, analysis, and numerical simulation of thin liquid bilayer films. In

2015, the dewetting of viscoelastic liquids of corotational Jeffreys’ type from Newtonian liquid

substrates as well as from solid substrates was studied. For the first time, the asymptotically con-

sistent reduction of the free-boundary problem for the two-layer system to a system of coupled

thin-film equations that incorporate the full nonlinear viscoelastic rheology could be derived. For

this system the relevant asymptotic regimes that relate the viscosity ratio to a corresponding ap-

parent slip could be identified; see [5].

In the context of thin-film analysis the doctoral student of Barbara Wagner, Tobias Ahnert, de-

fended his Ph.D. thesis “Mathematical modeling of concentrated suspensions: Multiscale analysis

and numerical solutions” at Technische Universität Berlin with summa cum laude.

In this thesis, the stability of two-dimensional Poiseuille flow and plane Couette flow for concen-

trated suspensions is investigated. If the particle volume fraction of the suspension increases,

both flow geometries exhibit the existence of a convectively driven instability with increasing

growth rates of the unstable modes. In addition, it is shown that there exists a bound for the par-

ticle phase viscosity below which the two-phase flow model may become ill-posed as the particle

phase approaches its maximum packing fraction; see [6].

Liquid-phase crystallization (LPC). Modeling of laser-controlled LPC from atomistic to the contin-

uum phase-field description was carried out by Barbara Wagner in collaboration with the group of
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Prof. Karsten Albe (Technische Universität Darmstadt) and with the Competence Centre Thin-Film-

and Nanotechnology for Photovoltaics Berlin (PVcomB) “Microstructure Control for Thin Film Solar

Cells”.

Using the interatomic potential by Stillinger–Weber, an expression for the bulk free energy was de-

rived and, moreover, an expression for the interfacial width of the liquid-crystal interface and the

crystallization velocity and, hence, the corresponding anisotropic mobility for the different orienta-

tions in silicon as a function of temperature. To properly capture the behavior of the temperature-

dependent viscosity near the glass transition, a Vogel–Fulcher-type model was used for the first

time. These results were proven to be essential to obtain an accurate temperature dependence of

the anisotropic mobility in the corresponding phase-field model for liquid-phase crystallization.

The three-dimensional setting of these results with atomistically based well potentials and param-

eters was then implemented into the general numerical model in collaboration with the group of

Prof. Ralf Kornhuber (Freie Universität Berlin) for large-scale numerical studies.

Mathematical modeling, analysis and novel numerical concepts for anisotropic nanostructured

materials. The subproject C-SE4 “Mathematical modeling, analysis and novel numerical

concepts for anisotropic nanostructured materials” is a part of the application area Mathematics

for Sustainable Energies of the Research Center MATHEON funded by the Einstein Center for Math-

ematics Berlin (ECMath). The project is headed by Barbara Wagner, jointly with Christiane Kraus

0 0.1 0.2 0.3 0.4

C/C
max

-0.6

-0.4

-0.2

0

σ

Phase Separation

Fig. 3: Lithiation process:
Stress versus concentration
with marked phase
transition point

(Young Scientists’ Group Modeling of Damage Processes), and Gitta Kutyniok (Technische Univer-

sität Berlin). One of the subproblems focused on the mechanical behavior of silicon, which could

be used as alternative electrode material for lithium-ion batteries. Silicon can host ten times more

lithium than the current graphite anode. Nevertheless, silicon electrodes are plagued by a number

of problems. Most of them are related with the fact that, when fully lithiated, silicon electrodes in-

crease their volume by 300–400%. This increase causes enormous stresses within the electrode

that eventually cause its mechanical failure and its pulverization. Nevertheless, strategies such

as the patterning of electrodes with nanowires have proved to be very promising. During this year,

a simple Larché–Cahn model was used to interprete the experiments, whereupon stress-assisted

phase separation was observed.

Hysteresis of electromagnetic-mechanical components and of biological systems

Hysteresis and uncertainty quantification. Actuators, sensors, or energy-harvesting devices of-

r

p

Fig. 4: Probability density
function p for random
variable R defining the
yield limit r

ten contain electromagnetic-mechanical components showing piezoelectricity or magnetostriction,

where these phenomena are accompanied by hysteretic phenomena. Usually, the corresponding

models are influenced by uncertainties in the measurements. Moreover, the observable macro-

scopic state may be generated by many unobservable microscopic states. Olaf Klein studies these

uncertainties by applying the methods of uncertainty quantification. For illustration, the play op-

erator 𝒫r [w, ·] is used to show the influence of uncertainty in the yield limit r ≥ 0 on the output

function. To this end, the yield limit r is interpreted as a value of a random variable R . The cor-

responding probability density function p is shown in Figure 4. Combining this random variable

with an appropriate input function u then yields that X := 𝒫R [0, u](T ) is a random variable such

Annual Research Report 2015

http://www.wias-berlin.de/~wagnerb?lang=1
http://www.wias-berlin.de/~kraus?lang=1
http://www.wias-berlin.de/~klein?lang=1


4.7 RG 7 Thermodyn. Modeling & Analysis of Phase Transitions 93

that the corresponding probability measure is the sum of a measure with a density function d and

of a Dirac measure; see Figure 5.

x

d

Fig. 5: Density function d
and Dirac measure (red)
leading to the probability
measure generated by X

Representation result for rate-independent systems. Olaf Klein extended the representation re-

sult for hysteresis operators acting on piecewise monotaffine inputs to an representation result

for rate-independent systems as defined by Alexander Mielke in “Evolution of rate-independent

systems in evolutionary equations”, vol. II of Handb. Differ. Equ., Elsevier/North-Holland, Amster-

dam, 2005, pp. 461–559. To this end, a special type of monotaffine functions was introduced: the

strictly monotaffine functions, generated as the composition of a strictly monotone with an affine

function such that the monotone functions are applied first; see [1].
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4.8 Young Scientists’ Group “Modeling of Damage Processes”

Within the competitive procedure of the Leibniz Association in the Pact for Research and Innova-

tion, Dorothee Knees and Christiane Kraus successfully applied for a grant that provided the basis

for the Young Scientists’ Group in 2009. Collaborations exist with the Research Groups RG 1 Partial

Differential Equations, RG 4 Nonlinear Optimization and Inverse Problems, RG 7 Thermodynamic

Modeling and Analysis of Phase Transitions, and ERC 2 Entropy Formulation of Evolutionary Phase

Fig. 1: Snapshots from a
numerical simulation of
phase separation and
damage with horizontal
loading

Transitions.

Modeling, analysis, numerics, and optimization of damage processes

Materials enabling the functionality of technical devices change their microstructure over time. For

instance, phase separation and damage processes take place. The group works on the modeling,

analysis, numerics, and optimization of phase separation and damage processes including heat

conduction in alloys with the intention to predict and optimize the strength and lifetime of materi-

als for practical relevance. In addition, the group develops multi-scale damage models that reflect

the evolution of microdefects in effective models on the macroscopic level in a mathematically

justified way.

In general, the resulting models consist of strongly coupled, nonlinear, and nonsmooth time-de-

pendent systems of partial differential equations (PDEs). The analytical investigation of these sys-

tems requires tools from the calculus of variations for nonlinear and nonsmooth evolution systems

and from geometric measure theory.

An important research topic in the group is the analysis of damage processes in elastic, heat-

conducting, and multi-phase materials. These physical phenomena were subject to intensive re-

search in the last few years, but have been investigated in the mathematical literature mostly sep-

arately. The mathematical modeling of the corresponding PDEs and differential inclusion systems

is important for applications in engineering and features a high degree of non-smoothness. For in-

stance, the damage evolution law involves two subdifferentials in order to account for unidirection-

ality and boundedness of the associated phase field variable [1]. In addition, the heat conduction

equation contains highly nonlinear dissipative terms rendering the system thermodynamically con-

sistent. In collaboration with internal and external partners, the Young Scientists’ Group achieved

the outstanding result that weak solutions exist for the fully coupled system [3]. Several recent

mathematical techniques, which were developed in the Young Scientists’ Group, came into play.

These techniques include partial convex-concave splittings in time-discretization schemes, con-

vergence methods for variational inequalities, several enhanced a priori estimates, and nested

approximation schemes. The carefully chosen time-discretization method also point out a way to

conduct numerical simulations.

Based on previous works in the group, a unified model was investigated that describes damage in

electrodes of lithium-ion batteries focusing on two particular physical and chemical effects: Firstly,

the phase separation into a lithium-rich and a lithium-poor phase with the corresponding strains

and stresses; secondly, the propagation of damage of the involved material. The latter is motivated
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since the development of small cracks is often observed in experiments during the charging or

discharging process of lithium-ion batteries.
Fig. 2: From left to right:
First two figures:
Formation of a FePO 4 layer
during delithiation of a
LiFePO4 crystal.
Third figure:
Cracks in a single partially
delithiated LiFePO 4 crystal.

To model these effects, the group proposed a system of Cahn–Larché type coupled with a differ-

ential inclusion for the damage evolution. The novelty of the model is the chemical active bound-

ary condition describing lithium intercalation effects at the electroyte-electrode interface. These

effects are modeled by a nonlinear Newton boundary condition for the chemical potential. Such

boundary conditions were proposed recently for chemical active boundaries but not yet studied

theoretically. From the analytical point of view, this additional boundary condition is already diffi-

cult to handle for the Cahn–Larché system itself since the system is not mass conserving anymore,

and thus it cannot be written as a linear H−1 -gradient flow. Nevertheless, the Young Scientists’

Group was able to prove existence of weak solutions for the whole system by establishing a non-

linear gradient flow, which respects the nonlinear boundary condition. To this end, several tools

were used from the field of convex analysis.

Another topic in the Young Scientists’ Group is the study of optimal control problems for dam-

age processes in linear elastic media. In a recent contribution [2], it provided the analytical basis

for this endeavor. More precisely, in collaboration with RG 4, a global-in-time well-posedness re-

sult and enhanced a priori estimates were established for certain classes of rate-dependent dam-

age/elasticity systems. In view of possible applications, time-dependent Neumann boundary con-

ditions were included to model external forces. Novel a priori estimation and discretization tech-

niques were introduced to achieve solvability in a strong sense. For the optimization problems,

cost functionals were considered where given damage phase field patterns are approximated by

the damage evolution of the system and by controlling the boundary forces. By using a penaliza-

tion approach for the state system and weak convergence properties of the solution operators, ex-

istence of optimal controls was proven. This approach in combination with the enhanced a priori

estimates also indicate possibilities to establish first-order optimality systems.

Complementary to the analytical work done in the group, numerical methods were developed to

examine solutions for a class of models that, in particular, are suitable to describe the interplay of

phase separation and damage in alloys including heat conduction. The numerical schemes, deal-

ing with the resulting non-convex problem, are not trivial and involve the approximation of inclu-

sion equations to account for the irreversibility of damage evolution. At each discrete time step,

an implicit constraint system of nonlinear equations had to be solved. A combined alternate mini-

mization and trust-region scheme appeared to have sufficient robustness to accomplish this task.

An additional challenge is the presence of multiple spatial and temporal scales during crack propa-

gation. In order to resolve fine structures at the crack tip, without dealing with a very large number

of computational nodes, spatially adaptive mesh generation for the finite element discretization

was implemented. In addition, a time step control was introduced in the rate-dependent case. In
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the rate-independent case, the software allows for backtracking to ensure compliance with the

energy inequality. To gain physical realistic solutions, an obstacle potential for the concentration

phase field was considered to ensure that this order parameter is in the interval [-1,1]. In addition,

many routines were added to the existing code. Among them are routines for an additional type

of boundary conditions (Robin boundary conditions, to avoid cracking at the domain bounds), the

use of anisotropic elastic moduli, and mesh creation.

Fig. 3: Snapshots from a numerical
simulation of phase separation and
damage with thermal effects for different
time steps; cooling on the left-hand side
and constant temperature field on the
right-hand side of the boundary.
From top left to bottom right:
a) Temperature field shortly after the
cooling process,
b) Concentration phase field,
c) Temperature field with crack,
d) Elastic energy density with crack.

Projects

Third-party funding was secured within the Research Center MATHEON with the subproject C-SE 4

“Mathematical modeling, analysis and novel numerical concepts for anisotropic nanostructured

materials”. In addition, the research group participates in the DFG Collaborative Research Center

SFB 1114 Scaling Cascades in Complex Systems for the subproject “Effective models for interfaces

with many scales”.
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4.9 ERC Group 1 “Elliptic PDEs and Symmetry of Interfaces

and Layers for Odd Nonlinearities”

In the framework of the competition for European Research Council (ERC) grants, Enrico Valdinoci

Fig. 1: Enrico Valdinoci

received a Starting Grant in January 2012 for a period of five years. The postdocs Stefania Patrizi

(until July 2015) and Eleonora Cinti (from January 2015) were/are members of his group, and more

partners visited the institute to establish scientific collaborations.

The investigations of the group are dedicated to the analysis of interfaces of layers that arise, e.g.,

in phase transitions and surface tension phenomena. The focus is on the geometry, structure, and

regularity of the interfaces. Mathematically, elliptic variational problems are addressed, in partic-

ular, problems involving fractional Laplace operators.

In 2015, Enrico Valdinoci held several research courses and many invited seminars and talks. In

the context of the ERC project, he organized and sponsored several events, such as the workshop

“PDE2015 – Theory and Applications of Partial Differential Equations”, held in Berlin in December.

Jointly with Eleonora Cinti, Stefania Patrizi, and many other international collaborators, several

Fig. 2: Stefania Patrizi

research projects were carried out, leading to a large number of papers on topics like crystal dislo-

cations, partial differential equations in anisotropic media, nonlocal diffusion equations, partial

differential equations in spaces of infinite dimensions, and density estimates for some nonlocal

phase transition equations.

Fig. 3: Eleonora Cinti during a talk

In particular, in [1], the problem of minimization of competing nonlocal perimeter functionals is

taken into account, in the light of nonlocal isoperimetric inequalities.

In [2], a nonlocal version of the Schrödinger equation is examined, proving the first concentration

results with Dirichlet data in bounded domains.

In [4], a free boundary problem is considered. The problem arises from the superposition of the

nonlocal perimeter functional and a Dirichlet energy and several regularity results are obtained.
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The papers [6] and [5] study a model for atomic crystal dislocations. At a mesoscopic scale, the

problem is driven by a nonlocal integro-differential equation of parabolic type. The equation pos-

sesses a dynamical system that moves the dislocation according to a singular potential, which can

be either attractive or repulsive, depending to the orientation of the dislocation. In this sense, also

the possibility of collisions between dislocations with opposite orientations are taken into account,

by combining maximum principle methods with dynamical systems techniques.

Furthermore, Enrico Valdinoci acted as an editor for the special issue in [3] and as an advisor for

the Ph.D. students Nicola Abatangelo, Claudia Bucur, Matteo Cozzi, and Luca Lombardini.
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4.10 ERC Group 2 “Entropy Formulation of Evolutionary

Phase Transitions”

The group is meant to collect the results obtained in the ERC-Starting Grant EntroPhase “Entropy

Fig. 1: Binary fluids

Formulation of Evolutionary Phase Transitions” funded by the European Union in April 2011 and

lasting six years. The group members are currently Elisabetta Rocca (principal investigator) and Ric-

cardo Scala (postdoc), while Sergio Frigeri finished his postdoc in the group at the end of Septem-

ber 2015.

The group mainly focused in 2015 on the objective to find relevant mathematical results in order

to get further insight into new models for phase transitions and special materials and the corre-

sponding evolutionary partial differential equation (PDE) systems, in particular:

� Developing a weak notion of solution capturing the most important phenomena characteristics

Fig. 2: Damage

� Studying most refined properties of such solutions, like weak-strong uniqueness, the long-time

behavior of solutions, the parameter reduction in finite time (sliding modes), and the associ-

ated control problems

The importance of the topic lies in the fact that the above phenomena arise in a variety of applied

problems like:

� Control problems related to

– nonlocal phase separations in incompressible fluids (jointly with RG 1 Partial Differential

Equations; see [6])

– Penrose–Fife- and Caginalp-type models of phase transitions (see [1])

Fig. 3: Nematic liquid
crystals

� Entropic formulations for models of

– phase transitions and damage in viscoelastic materials (jointly with the Young Scientists’

Group Modeling of Damage Processes and RG 1; see [4, 5])

� Long-time behavior of liquid crystal flows and two-phase flows (jointly with RG 1; see [2])

� Diffuse interface models for tumor growth (jointly with RG 1; see [3])

The key idea

The key idea consists in building up new notions of solution, the so-called entropic solutions,

Fig. 4: Tumor growth

reinterpreting the concept of weak solution satisfying a suitable energy conservation and entropy

inequality—recently introduced by Eduard Feireisl (Prague) for a problem of heat conduction in

fluids. These ideas turn out to be particularly useful in the analysis of highly nonlinear PDE systems

arising from different applications and were already successfully applied in [2], in [5], and in [4],

where liquid crystal dynamics and phase transitions in thermoviscoelastic materials were studied,

respectively.
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Further activities

The knowledge transfer was developed via the organization of international workshops and the

participation of group members in international conferences and workshop, but also by collaborat-

ing with international experts visiting WIAS in 2015, like Maria Schonbek (California) on March 30

– April 4; Arghir Zarnescu (Sussex) on March 16–21; Eduard Feireisl (Prague) on March 30 – April

3; Mimi Dai (Chicago) on March 29 – April 7; Pavel Krejčí (Prague) on May 25–28; Michel Frémond

(Rome) on June 2–5, and Hao Wu (Shanghai) on September 30 – October 14.

Main international meetings and sessions organized in 2015

Fig. 5: Course of the Centro
Internazionale Matematico
Estivo (CIME)

� Special Session “Applied Analysis” of the International Association of Applied Mathematics

and Mechanics (GAMM) 86th Annual Scientific Conference, Lecce, Italy, March 23–27, 2015,

jointly organized with Maurizio Grasselli (Milan) and Dorothee Knees (Kassel).

� INdAM-ERC Workshop “Special Materials in Complex Systems”, Istituto Nazionale di Alta Mate-

matica “Francesco Severi” (INdAM), Rome, Italy, May 18–22, 2015, jointly organized with Elena

Bonetti (Pavia), Cecilia Cavaterra (Milan), and Ricarda Rossi (Brescia).

� CIME Course on “Mathematical Thermodynamics of Complex Fluids”, Cetraro (CS), Italy, June

29 – July 3, 2015. Main speakers: John Ball (Oxford), Constantine M. Dafermos (Providence),

Eduard Feireisl (Prague), Felix Otto (Leipzig), jointly organized with Eduard Feireisl.

� Workshop “PDE2015 – Theory and Applications of Partial Differential Equations”, WIAS, No-

vember 30 – December 4, 2015, jointly organized with Hans-Christoph Kaiser, Dorothee Knees

(Kassel), Alexander Mielke, Joachim Rehberg, Marita Thomas, and Enrico Valdinoci (all WIAS).
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� Membership in Editorial Boards
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� Membership in Organizing Committees of non-WIAS
Meetings
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� Preprints, Reports

� Talks, Posters, and Contributions to Exhibitions

� Visits to other Institutions

� Academic Teaching

� Weierstrass Postdoctoral Fellowship Program

� Visiting Scientists

� Guest Talks

� Software

A Facts and Figures
(In the sequel, WIAS staff members are underlined.)
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A.1 Calls, Awards and Distinctions, Habilitations, Ph.D. Theses

A.1.1 Calls

1. CH. KRAUS, W2 professorship, June 26, Hochschule für angewandte Wissenschaften Würzburg-Schweinfurt,
Abteilung Würzburg, Fakultät für angewandte Naturwissenschaften.

2. E. ROCCA, W2 professorship, October 22, Università di Pavia, Dipartimento di Matematica.

A.1.2 Awards and Distinctions

1. F. FLEGEL, “Physik-Studienpreis 2015” of Physikalische Gesellschaft zu Berlin, sponsored by Siemens AG,
for her master’s thesis, July 9.

2. D. HÖMBERG, Member of 7th Technical Committee (TC7) of the International Federation for Information Pro-
cessing (IFIP) on System Modeling and Optimization.

3. , Vice Chair of Cost Action TD1409 (Mi-NET).

4. , Vice President of the European Consortium for Mathematics in Industry (ECMI).

5. A. MIELKE, Head of the Secretariat of the International Mathematical Union (IMU).

6. , Member of MATHEON’s Executive Board.

7. , Member of the IMU Berlin Einstein Foundation Program Committee.

8. , Treasurer of IMU.

9. , Member of the “Galileo Galilei Prize for Science” Committee, 2015.

10. J. PELLERIN, C&G Best Paper Award 2014, July 23.

11. M. THOMAS, Speaker of the GAMM Junior Group, Gesellschaft für Angewandte Mathematik und Mechanik,
2015.

A.1.3 Ph.D. Theses

1. A. ANDRESEN, Finite sample analysis of profile M-estimators, Humboldt-Universität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät, supervisor: Prof. Dr. V. Spokoiny, August 19.

2. R.M. ARKHIPOV, Modeling of mode-locking regimes in lasers, Humboldt-Universität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät, supervisor: Priv.-Doz. Dr. U. Bandelow, March 3.

3. M. LADKAU, Stochastic volatility Libor modeling and efficient algorithms for optimal stopping
problems, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, supervisor:
Priv.-Doz. Dr. J.G.M. Schoenmakers, July 23.

4. J.P. PADE, Synchrony and bifurcations in coupled dynamical systems and effects of time de-
lay, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, supervisor:
Priv.-Doz. Dr. S. Yanchuk, July 22.

5. A. SHEKHAR, Rough paths probability and related topics, Technische Universität Berlin, Fakultät 2 – Mathe-
matik und Naturwissenschaften, supervisor: Prof. Dr. P. Friz, December 9.

6. N. WILLRICH, Resampling-based tuning of ordered model selection, Humboldt-Universität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät, supervisor: Prof. Dr. V. Spokoiny, November 20.
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7. A. GONZÁLEZ CASANOVA SOBERÓN, The effect of latency in population genetics, Technische Universität Berlin,
Fakultät 2 – Mathematik und Naturwissenschaften, supervisors: Prof. Dr. J. Blath, Dr. N. Kurt, October 9.

8. L. LÜCKEN, Patterns of activity in coupled systems with applications to neuronal dynamics,
Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, supervisor:
Priv.-Doz. Dr. S. Yanchuk, December 14.

9. S. REICHELT, Two-scale homogenization of systems of nonlinear parabolic equations, Humboldt-Universität
zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, supervisor: Prof. Dr. A. Mielke, November 27.

10. M. ZHILOVA, Bootstrap confidence sets under model misspecification, Humboldt-Universität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät, supervisor: Prof. Dr. V. Spokoiny, November 2.

A.1.4 Undergraduate-degree Supervision

1. N. ABDI, Turbulence modelling of the Navier–Stokes equations using the NS- α approach (master’s thesis),
Freie Universität Berlin, Fachbereich Mathematik und Informatik, supervisor: Prof. Dr. V. John, April 29.

2. L. ALBERTSEN, Localisation in the heavy-tailed random conductance model (bachelor’s thesis), Technische
Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König, De-
cember 29.

3. W. BENDER, Anwendungen von DIRECT auf ausgewählte Probleme in der Nichtlinearen Optimierung (bache-
lor’s thesis), Technische Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor:
Prof. Dr. D. Hömberg, October 25.

4. A. BOJE, Convergence of stochastic coagulating particle systems (master’s thesis), Technische Uni-
versität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisors: Prof.Dr. W. König,
Dr. R.I.A. Patterson, August 18.

5. J. BRASSEUR, Nonlocal equations and slicing properties of fractional spaces (master’s thesis), Université
Lyon 1, Institut Camille Jordan, supervisors: Prof. Dr. E. Valdinoci, Prof. Dr. P. Mironescu, September 10.

6. G.J. BULLING, Isogeometrische Analysis für die inkompressiblen Navier-Stokes-Gleichungen (master’s the-
sis), Freie Universität Berlin, Fachbereich Mathematik und Informatik, supervisor: Prof. Dr. V. John, Septem-
ber 22.

7. A. BURKARTH, Bose-Einstein-Kondensation bei positiver Temperatur (bachelor’s thesis), Technische Univer-
sität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König, February 3.

8. F. CAFORIO, Assessment of Kalman filtering for parameter estimation in zero- and one-dimensional blood
flow models (master’s thesis), Università degli Studi di Trento, Dipartimento di Matematica, supervisor:
Dr. A. Caiazzo, July 22.

9. F. CEVIK, Asymptotische Verteilungen von Ordnungsstatistiken (bachelor’s thesis), Technische Universität
Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König, February 5.

10. S. DAMES, Struktur-adaptive Glättung in fMRI-Gruppenstudien (master’s thesis), Humboldt-Universität zu
Berlin, Wirtschaftswissenschaftliche Fakultät, supervisor: Dr. J. Polzehl, March 17.

11. A. DOLL, A non-intrusive Galerkin method for PDEs with random data based on adaptive sparce grids (mas-
ter’s thesis), Freie Universität Berlin, Fachbereich Mathematik und Informatik, supervisor: Prof. Dr. V. John,
November 2.

12. R. DUAN, Große Abweichungen für Irrfahrten mit zufälligen Leitfähigkeiten (bachelor’s thesis), Techni-
sche Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König,
May 2.
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13. M. EBELING-RUMP, Modellierung und Simulation von Wirbelstromproblemen mit Hysteresis (bachelor’s
thesis), Technische Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor:
Prof. Dr. D. Hömberg, November 17.

14. F. GROSCH, Perkolation in SINR-Graphen (bachelor’s thesis), Technische Universität Berlin, Fakultät II —
Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König, September 22.

15. C. HINSEN, Quantile für unabhängige Gauß’sche Prozesse (bachelor’s thesis), Technische Universität
Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König, January 5.

16. S. KNELL, A review of regularity and sparse approximation and quadrature results for stochastics PDEs (mas-
ter’s thesis), Freie Universität Berlin, Fachbereich Mathematik und Informatik, supervisor: Prof. Dr. V. John,
October 29.

17. F. KRELLNER, Gesamtmasse der Lösung des parabolischen Anderson-Modells mit Pareto-verteilten Po-
tentialen (bachelor’s thesis), Technische Universität Berlin, Fakultät II — Mathematik und Naturwis-
senschaften, supervisor: Prof. Dr. W. König, September 24.

18. P.R. KUNZE, Optimales Routing auf einem Poisson-Delaunay-Graphen (bachelor’s thesis), Technische Uni-
versität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König, Septem-
ber 22.

19. L. LOMBARDINI, Fractional perimeter and nonlocal minimal surfaces (master’s thesis), Università di Milano,
Dipartimento di Matematica, supervisor: Prof. Dr. E. Valdinoci, July 16.

20. F. PETERS, Divergierende Ordnungsstatistiken der Eigenwerte zufälliger heavy-tailed Matrizen (bachelor’s
thesis), Technische Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor:
Prof. Dr. W. König, March 30.

21. N. RAASCH, Fluktuationen im Random Energy Model (bachelor’s thesis), Technische Universität Berlin,
Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König, August 17.

22. S. REHBERG, Stochastische Optimierungsprobleme mit Inhomogenitäten (bachelor’s thesis), Technische
Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König, Au-
gust 18.

23. S. REUKAUF, Schadensprozesse mit heavy-tailed Risiken bei Rückversicherungsverträgen (master’s the-
sis), Technische Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor:
Prof. Dr. W. König, February 17.

24. P. SALOW, Optimales Stoppen und das Parkplatzproblem (bachelor’s thesis), Technische Universität Berlin,
Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König, December 26.

25. M. SANDER, Galton-Watson-Bäume mit verschwindendem Martingallimes (bachelor’s thesis), Technische
Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König,
April 8.

26. F. SATTLER, Verfahren zur numerischen Lösung nichtglatter Optimierungsprobleme (bachelor’s the-
sis), Technische Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor:
Prof. Dr. D. Hömberg, September 1.

27. N. SCHÖNKNECHT, On solvers for saddle point problems arising in finite element discretizations of incom-
pressible flow problems (master’s thesis), Freie Universität Berlin, Fachbereich Mathematik und Informatik,
supervisor: Prof. Dr. V. John, October 1.

28. D. SURC, An electro-thermomechanical ansatz to identify phase transitions from dilatometer curves (mas-
ter’s thesis), Technische Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor:
Prof. Dr. D. Hömberg, November 3.
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29. TH.P. THAN, Grenzverteilungen des Durchmessers einer Menge von unabhängigen Vektoren (bachelor’s
thesis), Technische Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor:
Prof. Dr. W. König, April 6.

30. A. TSIMBALYUK, Efficient estimation of linear functionals under one-sided erros (master’s thesis), Techni-
sche Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König,
August 28.

31. K. UHLIG, Ordnungsstatistiken für unabhängige Gaußprozesse (master’s thesis), Technische Universität
Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König, June 3.

32. A. WAPENHANS, Konzentrationseigenschaft des parabolischen Anderson-Modells (bachelor’s thesis),
Technische Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor:
Prof. Dr. W. König, January 29.

33. Y. ZHANG, Simulation der Wärmeübertragung in instationären laminaren Rohrströmungen (master’s the-
sis), Freie Universität Berlin, Fachbereich Mathematik und Informatik, supervisor: Prof. Dr. V. John, Au-
gust 11.
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A.2 Grants1

European Union, Brussels

� Seventh Framework Programme

ERC Advanced Researcher Grant “AnaMultiScale – Analysis of Multiscale Systems Driven by Functionals”
(Prof. A. Mielke in RG 1)

The project ERC-2010-AdG no. 267802 is part of RG 1, has been funded by the European Research Council
since April 2011, and lasts for six years. The research topics include the modeling and analysis of cou-
pled physical systems such as elastic solids with internal variables, reaction-diffusion systems, and op-
toelectronics. The methods include variational techniques, gradient structures, Gamma convergence, and
nonlinear PDE tools.

ERC Starting Independent Researcher Grant “Rough Path Theory, Differential Equations and Stochastic
Analysis” (Prof. P. Friz in RG 6)

The project ERC-2010-StG no. 258237 takes part in RG 6, has been funded by the European Research Coun-
cil since September 2010, and lasts for six years. The research is concerned with the analysis of finite- and
infinite-dimensional stochastic systems with the aid of the recent rough path analysis. Concrete applica-
tions range from non-Markovian Hörmander theory to the analysis of (until recently) ill-posed stochastic
partial differential equations, where, in particular, Lions’ viscosity approach was pursued, adapted to this
context. Applications to statistics and nonlinear filtering further illustrate the usefulness of this theory.

ERC Starting Grant “EPSILON – Elliptic Partial Differential Equations and Symmetry of Interfaces and
Layers for Odd Nonlinearities” (Prof. E. Valdinoci in ERC 1)

The ERC-2011-StG no. 277749 has been funded by the European Research Council since January 2012 and
lasts for five years. The research topics include partial differential equations (PDEs), nonlocal diffusion,
fractional minimal surfaces, and phase transitions. The methods rely on variational techniques, geometric
measure theory, asymptotic analysis, and nonlinear PDE tools.

ERC Starting Grant “EntroPhase – Entropy Formulation of Evolutionary Phase Transitions” (Prof. E. Rocca
in ERC 2)

The ERC-2010-StG no. 256872 has been funded by the European Research Council since April 2011 and
lasts for six years. The project’s aim is to obtain relevant mathematical results in order to get further in-
sight into new models for phase transitions and the corresponding evolution PDE systems. The new ap-
proach presented here turns out to be particularly helpful within the investigation of issues like existence,
uniqueness, control, and long-time behavior of the solutions to such evolutionary PDEs.

EU Marie Curie Actions Initial Training Network PROPHET (Postgraduate Research on Photonics as an
Enabling Technology), Project 1.4 “Modelling of mode-locked QD lasers” (in RG 2). The Initial Training
Network PROPHET aims to train young researchers in the field of photonics. This network started in the be-
ginning of 2011 and has been funded for four years by the EU 7th Framework Programme. The Weierstrass
Institute (RG 2) is participating in the 1st work package of the network “Photonics Enabling Communica-
tions Applications”, which is mainly focused on the investigation of quantum dot mode-locked lasers.

EU Marie Skłodowska-Curie Innovative Training Networks – European Industrial Doctorate ITN-EID “MIME-
SIS – Mathematics and Materials Science for Steel Production and Manufacturing” (in RG 3 and RG 4)

In October, the Weierstrass Institute saw the launch of the EID project MIMESIS. Driven by the five partners—
EFD Induction in Norway; SSAB, Outokumpu, and the University of Oulu in Finland; and WIAS—eight doc-
toral thesis projects will be jointly carried out, providing a unique interdisciplinary and inter-sectorial train-
ing opportunity. The research is focused on three major topics: induction heating, phase transformations

1The research groups (RG) involved in the respective projects are indicated in brackets.
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in steel alloys, and gas stirring in steelmaking ladles. MIMESIS has a budget of 2.1 million euros and is
coordinated by the head of RG 4, Prof. D. Hömberg.

Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research), Bonn

� KMU-innovativ (Program for innovative small and medium-sized enterprises)

“Verbundprojekt EPILYZE: DNA Methylierungs-Signaturen als innovative Biomarker für die quantitative und
qualitative Analyse von Immunzellen” (Joint project EPILYZE: DNA methylation signatures as innovative
biomarkers for the quantitative and qualitative analysis of immune cells; in RG 6)

� Fördermaßnahme “Wissens- und Technologietransfer — Entwicklung, Umsetzung und Professionalisie-
rung von Verwertungskonzepten aus Mathematik, Natur- und Ingenieurwissenschaftlichen Leibniz-Ein-
richtungen der Sektion D und aus Helmholtz-Zentren im Nicht-Life-Science-Bereich” (Funding program:
Transfer of knowledge and technology — Development, implementation, and professionalization of trans-
fer concepts from institutes of the Leibniz Association’s Section D with a focus on mathematical, natural
scientific, or engineering research as well as from Helmholtz Centers not working in the life sciences)

“Professionalisierung und Verstetigung des Verwertungskonzeptes am Weierstraß-Institut für Angewandte
Analysis und Stochastik – WIAS” (Professionalization and implementation of dissemination strategies at
WIAS)

� Forschungsinitiative “Energiespeicher” der Bundesregierung (Research Initiative Energy Storage Systems
of the German Federal Government)

The Research Initiative Energy Storage Systems intends to accelerate the development of energy storage
technologies in Germany. The Federal government funds the development of new energy storage technolo-
gies and concepts, as well as the improvement of existing techniques. This will create an important pre-
condition for a successful extension of renewable energies. The initiative is supported by the Ministry of
Education and Research (BMBF), the Ministry for the Environment, Nature Conservation and Nuclear Safety
(BMU), and the Ministry of Economics and Technology (BMWi). In this framework, WIAS (RG 3) runs from
2013 to 2017 the subproject „Makroskopische Modellierung von Transport- und Reaktionsprozessen in
Magnesium-Luft-Batterien“ (Macroscopic modeling of transport and reaction processes in magnesium-air
batteries) in the interdisciplinary research network “Perspektiven für wiederaufladbare Magnesium-Luft-
Batterien” (Perspectives for rechargeable magnesium-air batteries). Project partners are German experi-
mental and theoretical groups in the field of electrochemistry.

� Strategie der Bundesregierung zur Internationalisierung von Wissenschaft und Forschung (Strategy of the
German Federal Government for the internationalization of science and research)

“Verbundprojekt MANUMIEL: Mathematische Modellierung und numerische Simulation von Dioden-Lasern
mit mikro-integrierten externen Resonatoren” (Joint project MANUMIEL: Mathematical modelling and nu-
merical simulation of micro-integrated external cavity diode lasers; in RG 2, cooperation with Moldavia)

Bundesministerium für Wirtschaft und Technologie (Federal Ministry of Economics and Technol-
ogy), Berlin

� Zentrales Innovationsprogramm Mittelstand (ZIM): Kooperationen (Central Innovation Program for Small
and Medium-sized Entreprises: Cooperations)

Cooperative Project “Entwicklung von In-situ-Messtechnik für die Prozesskontrolle und Strukturbestimmung
bei Plasma-Ätzprozessen” (In-situ metrology development for semiconductor processing in etch processes),
subproject “Entwicklung eines hybriden Scattering-Matrix-Algorithmus für die indirekte Vermessung von
Oberflächenstrukturen bei Plasma-Ätzprozessen” (Development of hybrid scattering-matrix algorithms for
the metrology of surface structures in etch processes; in RG 4)
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Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Bonn

� Collaborative Research Center/Transregio (TRR) 154, Friedrich-Alexander-Universität Erlangen-Nürnberg
“Mathematische Modellierung, Simulation und Optimierung am Beispiel von Gasnetzwerken” (Mathemat-
ical Modeling, Simulation and Optimization Using the Example of Gas Networks)

This transregio research center, which has been funded by the DFG since October 2014, focuses on an effi-
cient handling of gas transportation. The Weierstrass Institute participates in the Subproject “Nichtlineare
Wahrscheinlichkeitsrestriktionen in Gastransportproblemen” (Nonlinear chance constraints in problems of
gas transportation; in RG 4).

� Collaborative Research Center (SFB) 649, Humboldt-Universität zu Berlin
“Ökonomisches Risiko” (Economic Risk)

This research center, which has been funded by the DFG since 2005, focuses on studying economic risk.
It was again positively evaluated and prolonged for a third period until the end of 2016. The Weierstrass
Institute participates in the Subproject B5 “Structural methods in risk modeling” (RG 6).

� Collaborative Research Center (SFB) 787, Technische Universität Berlin
“Halbleiter-Nanophotonik: Materialien, Modelle, Bauelemente” (Semiconductor Nanophotonics: Materi-
als, Models, Devices)

This collaborative research center began its work on January 1, 2008, and finished its second funding pe-
riod at the end of 2015. The proposal for the third funding period (2016–2019) was successfully defended
in July 2015. WIAS participates in the subprojects B4: “Multi-dimensionale Modellierung und Simulation
von VCSELn” (Multidimensional modeling and simulation of VCSEL devices; in RG 1, RG 2, and RG 3) and
B5: “Effektive Modelle, Simulation und Analysis der Dynamik in Quantenpunkt-Bauelementen” (Effective
models, simulation and analysis of the dynamics in quantum dot devices; in RG 2 and RG 7).

� Collaborative Research Center (SFB) 910, Technische Universität Berlin
“Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzep-
te” (Control of Self-organizing Nonlinear Systems: Theoretical Methods and Concepts of Application)

This center, which started in January 2011, involves groups at several institutes in Berlin, most of them
working in physics. The Subproject A5 “Musterbildung in mehrskaligen Systemen” (Pattern formation in
systems with multiple scales; in RG 1) focuses on the interaction between nonlinear effects relevant in
pattern formation and the microstructures including the periodic settings as well as localized structures.
The review process in 2014 for the second four-year period 2015–2018 was successful. Since then, also
the Subproject A3: “Aktivitätsmuster in Systemen mit zeitverzögerten Kopplungen” (Activity patterns in
delay-coupled systems; in RG 1 and RG 2) has been treated by WIAS staff members.

� Collaborative Research Center (SFB) 1114, Freie Universität Berlin
“Skalenkaskaden in komplexen Systemen” (Scaling Cascades in Complex Systems)

The center began its work on October 1, 2014 (funding period until June 30, 2018). WIAS members partici-
pate in the subprojects: B01: “Störungszonennetzwerke und Skaleneigenschaften von Deformationsakku-
mulation” (Fault networks and scaling properties of deformation accumulation; in RG 1), C05: “Effektive
Modelle für mikroskopisch strukturierte Trennflächen” (Effective models for interfaces with many scales;
in RG 1), and C08: “Stochastische räumliche koagulierende Partikelprozesse” (Stochastic spatial coagula-
tion particle processes; in RG 5).

� Priority Program SPP 1506: “Fluide Grenzflächen” (Transport Processes at Fluidic Interfaces), Technische
Universität Darmstadt and Rheinisch-Westfälische Technische Universität Aachen

This interdisciplinary priority program aims at a mathematically rigorous understanding of the behavior of
complex multiphase flow problems with a focus on the local processes at interfaces. WIAS participated for
the first funding period (Oct. 2010 – Sept. 2013, principal investigators: Prof. B. Wagner and Dr. D. Peschka)
and participates now for the second funding period (Oct. 2013 – Sept. 2016, principal investigator: Prof. B.
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Wagner) in the Subproject “Mathematical modeling, analysis, numerical simulation of thin liquid bilayers
and validation experiments” (in RG 7)

� Priority Program SPP 1590: “Probabilistic Structures in Evolution”, Universität Bielefeld

This interdisciplinary nationwide priority program aims at the development of new mathematical methods
for the study and understanding of an innovative evolution biology. WIAS participates for the first funding
period (2012–2015, principal investigator: Prof. W. König) in the Subproject “Branching random walks in
random enviroment with a special focus on the intermittent behavior of the particle flow” (in RG 5). In 2015,
a second funding for another three years was granted.

� Priority Program SPP 1679: “Dyn-Sim-FP – Dynamische Simulation vernetzter Feststoffprozesse” (Dy-
namic Simulation of Interconnected Solids Processes), Technische Universität Hamburg-Harburg

WIAS participates in this priority program (first funding period Oct. 2013 – Sept. 2015) with the Subpro-
ject “Numerische Lösungsverfahren für gekoppelte Populationsbilanzsysteme zur dynamischen Simula-
tion multivariater Feststoffprozesse am Beispiel der formselektiven Kristallisation” (Numerical methods
for coupled population balance systems for the dynamic simulation of multivariate particulate processes
using the example of shape-selective crystallization; in RG 3). The project aims at assessing and improving
numerical methods for population balance systems. In 2015, a second funding period was granted (Oct.
2015 – Sept. 2017). So far, direct discretizations and operator-splitting methods for uni-variate systems
were studied. The assessment of the methods is based on data from experiments that are conducted by
one of the project’s partners. Numerical methods for solving the population balance equation, which is an
integro-partial differential equation, are developed together with two other collaborators.

� Priority Program SPP 1748: “Zuverlässige Simulationstechniken in der Festkörpermechanik – Entwick-
lung nichtkonventioneller Diskretisierungsverfahren, mechanische und mathematische Analyse” (Reli-
able Simulation Techniques in Solid Mechanics – Development of Non-standard Discretisation Methods,
Mechanical and Mathematical Analysis), Universität Duisburg-Essen

RG 1 participates in this priority program with the Subproject “Finite-Elemente-Approximation von Funktio-
nen beschränkter Variation mit Anwendungen in der Modellierung von Schädigung, Rissen und Plastizität”
(Finite element approximation of functions of bounded variation and application to models of damage, frac-
ture, and plasticity), which is a collaboration with Universität Freiburg (duration: Oct. 2014 – Sept. 2017).
The project puts emphasis on unregularized numerical approaches for the treatment of BV functions that
lead to sharp approximations of discontinuities on coarse grids and rigorous convergence proofs.

� Research Unit FOR 797 “Analysis and Computation of Microstructure in Finite Plasticity”, Ruhr-Universität
Bochum

WIAS participated in this research unit in the Subproject P5 “Regularisierung und Relaxierung zeitkon-
tinuierlicher Probleme in der Plastizität” (Regularizations and relaxations of time-continuous problems in
plasticity”; in RG 1; second funding period: until June 2015).

� Research Unit FOR 1735 “Structural Inference in Statistics: Adaptation and Efficiency”, Humboldt-Univer-
sität zu Berlin

Complex data is often modeled using some structural assumptions. Structure adaptive methods attempt to
recover this structure from the data and to usem it for estimation. RG 6 at WIAS is studying the convergence
and efficiency of such algorithms (second funding period until March 2018) in the subprojects “Multiple
testing under unspecified dependency structure” and “Semiparametric approach to structural adaptive
estimation” (since April 2015 “Semiparametric structural analysis in regression estimation”).

� Normalverfahren (Individual Grants)

“Ab initio Beschreibung optischer Nichtlinearitäten in Femtosekunden-Filamenten” (Ab-initio description
of optical nonlinearities in femtosecond filaments; in RG 2)

“Inferenzstatistische Methoden für Verhaltensgenetik und Neuroökonomie” (Statistical inference methods
for behavioral genetics and neuroeconomics; in RG 6)
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“Raue stochastische Volatilität und verwandte Themen” (Rough stochastic volatility and related topics; in
(RG 6)

“Zufälliger Massenfluss durch zufälliges Potential” (Random mass flow through random potential; in RG 5)

� Eigene Stelle (Temporary Positions for Principal Investigators)

“Inverse Fluid-Solid-Kopplungsprobleme” (Inverse fluid-solid interaction problems; G. Hu)

Leibniz-Gemeinschaft (Leibniz Association), Berlin

� Leibniz-Wettbewerb (Leibniz Competition)

“Mathematische Modelle für Lithium-Ionen-Batterien” (Mathematical models for Lithium-ion batteries; July
2012 – June 2015, in LG 3)

“Probabilistische Methoden für Kommunikationsnetzwerke mit mobilen Relais” (Probabilistic methods for
communication networks with mobile relays; July 2014 – June 2017, in LG 4)

Einstein Stiftung Berlin (Einstein Foundation Berlin)

� Einstein-Zentrum für Mathematik Berlin (Einstein Center for Mathematics Berlin)

Research Center MATHEON

The highlight of the collaboration with the mathematical institutions in Berlin was again the joint opera-
tion of the Research Center MATHEON “Mathematics for key technologies”. Since June 2014, the funding of
MATHEON is about 2 million euros per year through the Einstein Center for Mathematics (ECMath), which is
funded by the Einstein Foundation Berlin.

In 2015, WIAS again dedicated considerable financial and personal resources to the Center: Its deputy di-
rector, Prof. A. Mielke (RG 1) was member of MATHEON’s Executive Board; Prof. B. Wagner (RG 7), Deputy
Chairperson of its Council; Prof. D. Hömberg (RG 4), Scientist in Charge of the Application Area C “Energy
and Materials”, Priv.-Doz. Dr. U. Bandelow (RG 2), Scientist in Charge of the Application Area D “Electronic
and Photonic Devices”; and WIAS members participated in the successful running of the following subpro-
jects:

D-OT1: “Mathematical modeling, analysis, and optimization of strained germanium microbridges” (in RG 1)

D-OT2: “Turbulence and extreme events in nonlinear optics” (in RG 2)

D-SE2: “Electrothermal modeling of large-area OLEDs” (in RG 1)

C-SE4: “Mathematical modeling, analysis and novel numerical concepts for anisotropic nanostructured
materials” (in RG 7 and YSG)

C-SE7: “Optimizing strategies in energy and storage markets” (in RG 6)

C-SE8: “Stochastic methods for the analysis of lithium-ion batteries” (in RG 6 and RG 7)

C-SE13: “Topology optimization of wind turbines under uncertainties” (in RG 4)

Deutscher Akademischer Austauschdienst (DAAD, German Academic Exchange Service), Bonn

� A Leibniz-DAAD Research Fellowship holder (in RG 3); see page 174

� A DAAD-Michail Lomonosov Programme Fellowship holder (in RG 2); see page 174

� German-Norwegian Collaborative Research Support Scheme (PPP): “Modelle und Numerik für nanofluidi-
sche elektrochemische Systeme” (Models and numerics for nanofluidic electrochemical systems; in RG 3)
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Investitionsbank Berlin

� Programm zur Förderung von Forschung, Innovationen und Technologien (Pro FIT) (Support program for
research, innovation and technology)

“Erforschung effizienter mathematischer Methoden zur Modellkalibrierung und Unbestimmtheitsabschät-
zung in Umweltsituationen (MUSI)” (Efficient mathematical methods for model calibration and uncertainty
estimation in environmental simulations; in RG 3 and RG 4). The project is a cooperation between WIAS
and the DHI-WASY GmbH Berlin. It is funded by the Investitionsbank Berlin in the framework of its “Pro FIT”
funding program. The main purpose of the project is knowledge transfer on modern methods for partial
differential equations with stochastic coefficients from research to industry. It focuses on the assessment
of efficient methods for partial differential equations with stochastic coefficients and the selection of pre-
ferred methods to be implemented in the software of the project partner DHI-WASY. In addition, the inves-
tigation of stochastic methods for inverse problems will be started.

International projects

� Grant of the Russian Government to establish a Research Group “Predictive Modeling” at the University of
Physics and Technology in Moscow for the head of RG 6, V. Spokoiny.

� Fondation Mathématique Jacques Hadamard (FMJH): Optimisation dans l’incertain pour les problèmes de
Unit Commitment (Optimization under uncertainty for unit commitment problems; in RG 4)

Mission-oriented research (examples)

� Alstom (Switzerland) Ltd., Baden: “Prozesssimulation bei industriellen Gasturbinen” (Process simulation
for industrial gas turbines; in RG 3 and RG 6)

� Deloitte & Touche GmbH Wirtschaftsprüfungsgesellschaftung: Development, implementation, and calibra-
tion of multiple-curve interest rate models and evaluation of corresponding interest rate products (in RG 6)

� Mathshop Limited, Salisbury, Wiltshire, UK: Consulting contract (in RG 5)

� Max Planck Institute for Physics, Munich, and Max Planck Institute for Extraterrestrial Physics, Garching:
Simulation of semiconductor devices for radiation detectors (in RG 3)

� PAR Medizintechnik GmbH: Consulting on the modeling of pulse waves (in RG 6)

� TOTAL E&P RECHERCHE DEVELOPPEMENT, Courbevoie, France: “Improved algorithms and software for hy-
brid volumetric meshing based on Voronoi diagrams for geological models” (in RG 3). The aim of this two-
year R&D cooperation is the development of improved algorithms and software for hybrid volumetric mesh-
ing based on Voronoi diagrams for geological models.
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A.3 Membership in Editorial Boards
1. TH. DICKHAUS, Editorial Board, Statistics, Taylor & Francis, Berlin.

2. , Editorial Board, Annals of the Institute of Statistical Mathematics, Springer-Verlag, Heidelberg.

3. P. FRIZ, Editorial Board, Monatshefte der Mathematik, Springer-Verlag, Berlin.

4. , Editorial Board, Stochastic Processes and Applications, Elsevier, Oxford, UK.

5. , Editorial Board, Annals of Applied Probability, Institute of Mathematical Statistics (IMS), Beach-
wood, Ohio, USA.

6. R. HENRION, Editorial Board, International Journal of Management Science and Engineering Management
(MSEM), World Academic Press, Liverpool, UK.

7. , Editorial Board, Journal of Optimization Theory and Applications, Springer-Verlag, Dordrecht,
Netherlands.

8. , Editorial Board, Set-Valued and Variational Analysis, Springer-Verlag, Dordrecht, Netherlands.

9. , Editorial Board, SIAM Journal on Optimization, Society for Industrial and Applied Mathematics,
Philadelphia, Pennsylvania, USA.

10. , Editorial Board, Optimization — A Journal of Mathematical Programming and Operations Research,
Taylor & Francis, Abingdon, UK.

11. D. HÖMBERG, Editorial Board, Applicationes Mathematicae, Institute of Mathematics of the Polish Academy
of Sciences (IMPAN), Warsaw.

12. , Editorial Board, Eurasian Journal of Mathematical and Computer Applications, L.N. Gumilyov
Eurasian National University, Astana, Kazakhstan.

13. W. KÖNIG, Advisory Board, Mathematische Nachrichten, WILEY-VCH Verlag, Weinheim.

14. P. MATHÉ, Editorial Board, Monte Carlo Methods and Applications, Walter de Gruyter, Berlin, New York, USA.

15. , Editorial Board, Journal of Complexity, Elsevier, Amsterdam, Netherlands.

16. A. MIELKE, (Editor-in-Chief), GAMM Lecture Notes in Applied Mathematics and Mechanics, Springer-Verlag,
Heidelberg.

17. , Editorial Board, Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), WILEY-VCH Verlag,
Weinheim.

18. , Editorial Board, European Series in Applied and Industrial Mathematics: Control, Optimisation and
Calculus of Variations, EDP Sciences, Les Ulis, France.

19. , Editor, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), Birkhäuser Verlag, Basel,
Switzerland.

20. H. NEIDHARDT, Editorial Board, Nanosystems: Physics, Chemistry, Mathematics, St. Petersburg State Uni-
versity of Information Technologies, Mechanics and Optics, Russian Federation.

21. , Editorial Board, Advances in Mathematical Physics, Hindawi Publishing Corporation, New York,
USA.

22. , Editorial Board, Journal of Operators, Hindawi Publishing Corporation, New York, USA.

23. J. POLZEHL, Editorial Board, Computational Statistics, Physica Verlag, Heidelberg.

24. , Editorial Board, Journal of Multivariate Analysis, Elsevier, Amsterdam, Netherlands.

25. J.G.M. SCHOENMAKERS, Editorial Board, International Journal of Portfolio Analysis and Management, Inter-
science Enterprises Limited, Geneva, Switzerland.
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26. , Editorial Board, Journal of Computational Finance, Incisive Media Investments Limited, London,
UK.

27. , Editorial Board, Applied Mathematical Finance, Taylor & Francis, Oxford, UK.

28. , Editorial Board, Monte Carlo Methods and Applications, Walter de Gruyter, Berlin, New York, USA.

29. V. SPOKOINY, Editor, Theory of Probability and its Applications, SIAM, Philadelphia, Pennsylvania, USA.

30. J. SPREKELS, Editorial Board, Mathematics and its Applications, Annals of the Academy of Romanian Scien-
tists, Academy of Romanian Scientists, Bucharest.

31. , Editorial Board, Applications of Mathematics, Institute of Mathematics, Academy of Sciences of
the Czech Republic, Prague.

32. , Editorial Board, Applied Mathematics and Optimization, Springer-Verlag, New York, USA.

33. , Editor, Advances in Mathematical Sciences and Applications, Gakkōtosho, Tokyo, Japan.

34. B. WAGNER, Editorial Board, Journal of Engineering Mathematics, Springer-Verlag, Dordrecht, Netherlands.

35. W. WAGNER, Editorial Board, Monte Carlo Methods and Applications, Walter de Gruyter, Berlin, New York,
USA.

36. S. YANCHUK, Editorial Board, Scientific Reports, Nature Publishing Group, London, UK.
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A.4 Conferences, Colloquia, and Workshops

A.4.1 WIAS Conferences, Colloquia, and Workshops

3RD ANNUAL ERC BERLIN-OXFORD YOUNG RESEARCHERS MEETING ON APPLIED STOCHASTIC ANALYSIS

Berlin, January 27–29
Organized by: WIAS (RG 6), TU Berlin, Oxford University
Supported by: European Research Council, WIAS

The workshop focused on rough path analysis and its rapidly growing applications in applied stochastic anal-
ysis, ranging from the resolution of ill-posed stochastic partial differential equations to new ways of handling
high-dimensional data. More precisely, rough paths and related topics nowadays contribute to significant
progress in the following broad variety of fields: nonlinear stochastic partial differential equations driven by
space-time white noise; partial differential equations driven by rough paths; regularity structures and para-
controlled distributions; scaling limits and discrete approximation for stochastic partial differential equations;
expected signatures; stochastic Loewner evolution; statistics and machine learning; Gaussian rough path anal-
ysis; numerical analysis for stochastic and rough differential equations; financial mathematics.

The three-day workshop attracted around 35 participants and featured 25 invited speakers, mostly early ca-
reer researchers from Berlin, Oxford, and Warwick, on topics related to the afore-mentioned fields. A fourth
Berlin-Oxford meeting was originally scheduled to take place in July in Oxford, close to the 38th Conference on
Stochastic Processes and their Applications (SPA2015). Stochastic Processes and their Applications is gener-
ally considered the leading conference in probability. However, in view of the large number of invited and (ac-
cepted) contributed talks of our community at SPA2015, it was decided to have the next official Berlin-Oxford
meeting again in Berlin, in December (see below).

The workshop was jointly organized by the WIAS research group Stochastic Algorithms and Nonparametric
Statistics (Peter Friz, ERC funded; Mario Maurelli), TU Berlin (Khalil Chouk), and Oxford University (Terry Lyons,
ERC funded; Horatio Boedihardjo, Harald Oberhauser).

DYNAMICS AND STABILITY OF INTERACTING NONLINEAR OSCILLATORS AND THEIR APPLICATIONS

Berlin, February 13
Organized by: WIAS (RG 1 and RG 2), Humboldt-Universität (HU) zu Berlin
Supported by: IRTG 1740, WIAS

The one-day workshop was organized by Serhiy Yanchuk (RG 1), Matthias Wolfrum (RG 2), and Jürgen Kurths
(Potsdam Institute for Climate Impact Research (PIK), HU Berlin) and was supported by the International Re-
search Training Group (IRTG) 1740 “Dynamical Phenomena in Complex Networks: Fundamentals and Applica-
tions”. The main goal of this event was to give the Ph.D. students from the IRTG the opportunity to present their
results and to get into discussions with the international experts invited to the workshop. In particular, recent
theoretical results concerning propagation delays, collective dynamics, and applications to neuroscience were
discussed intensively.

APPLIED MATHEMATICS AND SIMULATION FOR SEMICONDUCTORS — AMASIS 2015
Berlin, March 11–13
Organized by: WIAS (RG 1 and RG 3), Università della Svizzera Italiana Lugano
Supported by: DFG, WIAS

The workshop was devoted to modeling, mathematical analysis, and numerical schemata for the simulation of
latest semiconductor device designs and materials as well as advances in the actual simulation of such devices.
In particular, we were interested in the mathematics involved in novel applications like organic electronics and
a new generation of strained germanium-based laser designs.
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Fifty-nine scientists from Austria, France, Germany, Great Britain, the Netherlands, Switzerland, Taiwan, and
the United States participated in the workshop. Sixteen invited lectures and thirteen contributed talks were
presented.

INTERNATIONAL WORKSHOP “STRUCTURED NONPARAMETRIC MODELING”
Berlin, June 4–6
Organized by: WIAS (RG 6)
Supported by: Collaborative Research Center (SFB) 649 “Economic Risk”, DFG Research Unit (FOR) 1735 “Struc-
tural Inference in Statistics: Adaptation and Efficiency”, International Research Training Group (IRTG) 1792

“High Dimensional Non Stationary Time Series”, WIAS

The aim of this meeting was bringing together leading scientists working in the areas of mathematical statistics
and econometrics for discussing the challenging problems and major directions of modern statistical science.
The workshop focused particularly on high-dimensional models under certain structural assumptions like spar-
sity or approximate sparsity. The program featured 24 invited lectures of high-calibre scientists from reputed
universities.

The workshop was also open to young scientists working in different fields of statistics and econometrics all
over the world and particularly to the students and young researchers working in Berlin in SFB 649, FOR 1735,
and IRTG 1792. The young scientists were invited to offer a poster presentation. This meeting gave them an
opportunity of discussion with leading specialists in the fields of statistics and econometrics.

The conference was attended by about 90 participants mainly from Germany and the United States as well as
from Korea, France, Russia, UK, and the Netherlands.

MATERIALS WITH DISCONTINUITIES — SAMM 2015
Stuttgart, September 7–11
Organized by: WIAS (RG 1), Universität Stuttgart
Supported by: Dr. Klaus Körper Stiftung, Universität Stuttgart, WIAS

The series of SAMM—Summer Schools in Applied Mathematics and Mechanics annually organized by GAMM
(International Association of Applied Mathematics and Mechanics) Juniors—aims at fostering the exchange
between young scientists in mechanical engineering and applied mathematics by providing insight into recent
developments and novel methods in a current research topic of interdisciplinary interest.

SAMM 2015 was devoted to the modeling, analysis, and simulation of materials with discontinuities caused
by dissipative processes such as phase transition or separation processes, plastification, damage, and frac-
ture. In minicourses held by Helmut Abels (Regensburg), Sören Bartels (Freiburg), Dorothee Knees (Kassel),
and Christian Miehe (Stuttgart), the school gave an overview on thermodynamical modeling, mathematical
solution concepts, and numerical schemes for dissipative processes, minimization problems for functions of
bounded variation, and phase field models. More than 30 junior scientists, mainly Ph.D. students, both from
mathematics and engineering participated in the summer school.
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RECENT DEVELOPMENTS IN INVERSE PROBLEMS

Berlin, September 17–18
Organized by: WIAS (RG 4 and RG 6)
Supported by: WIAS

The workshop brought together experts from the German and international inverse problems community and
young scientists. This event was a part of the “Chemnitz Symposium on Inverse Problems”, previously held in
Chemnitz (2014), Shanghai (2013), and Canberra (2012).

The focus was on ill-posedness phenomena, regularization theory, and on the analytical, numerical, and sto-
chastic treatment of applied inverse problems from natural sciences, engineering, and finance.

The two-day workshop attracted 60 participants from 12 countries. There were four plenary talks. Simon R. Ar-
ridge (University College London), Christian Clason (Universität Duisburg-Essen), Otmar Scherzer (University
of Vienna), and Samuli Siltanen (University of Helsinki) presented important recent trends in the field. Con-
tributed talks were presented in two parallel sessions, among them 12 by Ph.D. students, who talked about
their work.

The workshop was jointly organized by the WIAS research groups Stochastic Algorithms and Nonparametric
Statistics (Peter Mathé) and Nonlinear Optimization and Inverse Problems (Guanghui Hu).

WAVES, SOLITONS AND TURBULENCE IN OPTICAL SYSTEMS (WASTOS 2015)
Berlin, October 12–14
Organized by: WIAS (RG 2)
Supported by: Einstein Center for Mathematics Berlin, Research Center MATHEON, WIAS

Nonlinear optical systems display a great variety of complex dynamical behaviors in space and time. Along
with the regular dynamical regimes associated with continuous waves, periodic and quasiperiodic patterns or
solitons, high-dimensional irregular dynamics with a very large number of exited modes can be observed. The
understanding of mechanisms underlying such kind of behavior, known as optical turbulence, is, perhaps, one
of the most difficult and challenging problems in nonlinear optics. The three-day workshop was aimed at bring-
ing applied mathematicians and theoretical and experimental physicists together to discuss recent advances
concerning experimental findings and theoretical investigation of such dynamical phenomena, as optical wave
turbulence, optical solitons and rogue waves, supercontinua generation, spatio-temporal dynamics in active
and passive optical cavities, and effects related to the control of optical systems by delayed feedback. The
program featured 31 invited and contributed talks presented by speakers from 11 countries and was attended
by 39 registered participants.

FESTIVE EVENT ON THE OCCASION OF THE 200TH BIRTHDAY OF KARL WEIERSTRASS

Berlin, October 31
Organized by: WIAS
Supported by: BBAW, HU Berlin, Deutsche Mathematiker-Vereinigung, Einstein Center for Mathematics Berlin,
Berlin Mathematical School, Springer

The 200th birthday of the eminent Berlin mathematician Karl Weierstrass, whose name WIAS bears, was hon-
ored by a festive event in the worthy premises of the Berlin-Brandenburg Academy of Sciences (BBAW). A
number of addresses were made by outstanding personalities, among them Germany’s Minister of Education
and Research, Prof. Johanna Wanka. The scientific part of the program consisted of nine talks on historical and
mathematical aspects of Weierstrass, delivered by eminent international historians. These nine speakers de-
livered short versions of their contributions to a Festschrift that was published shortly before by Springer and
was edited by the former director of WIAS, Jürgen Sprekels, jointly with the current Authorised Representative
of the Director, Wolfgang König. About 600 personalities, mainly mathematicians and historians, from all over
Northeast Germany had been invited to attend the event, and more than 120 of them came to enjoy it.
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DIRECT AND INVERSE PROBLEMS FOR PDES WITH RANDOM COEFFICIENTS

Berlin, November 9–13
Organized by: WIAS (RG 3 and RG 4)
Supported by: Research Center MATHEON, WIAS

Validated predictive computations in a wide range of scientific and engineering applications require some
form of uncertainty quantification. The goal of this workshop was to bring together researchers from scientific
computing with those working in optimal control and inverse problems to discuss different applications, the
analysis and numerical treatment of PDEs with stochastic data. Sixty-eight participants from ten countries
discussed various topics related to efficient numerical methods for the direct problem, control problems with
uncertainties, sparse and low-rank tensor representations, and inverse problems with random data.

THEORY AND APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS — PDE 2015
Berlin, November 30 – December 4
Organized by: WIAS (RG 1, ERC 1, and ERC 2), Universität Kassel
Supported by: DFG, WIAS

The workshop was organized by Hans-Christoph Kaiser, Alexander Mielke, Joachim Rehberg, Elisabetta Rocca,
Marita Thomas, and Enrico Valdinoci from WIAS and Dorothee Knees from Universität Kassel.

Its aim was to bring together analysts furthering the theory of PDEs and scientists working on applications
involving nonsmooth PDEs. Within PDE theory, the workshop focused on harmonic and geometric analysis and
inequalities, (nonsmooth) evolution equations, and elliptic systems. Applications to problems with free and
moving boundaries as well as dissipative solids were discussed.

The generous funding through the German Research Foundation (DFG) made it possible to invite 20 researchers
from eight different countries. In total, 100 researchers from 16 countries participated in the workshop, con-
tributing alltogether 48 talks and poster presentations.

4TH ANNUAL ERC BERLIN-OXFORD YOUNG RESEARCHERS MEETING ON APPLIED STOCHASTIC ANALYSIS

Berlin, December 7–9
Organized by: WIAS (RG 6), TU Berlin, Oxford University
Supported by: European Research Council, WIAS

After the third meeting in January 2015, and also after a significant presence of this community through in-
vited and contributed talks in July at SPA 2015 in Oxford, this was the fourth Berlin-Oxford meeting on applied
stochastic analysis. As in previous years, there was an emphasis on the powerful insights of pathwise anal-
ysis (Lyons’ rough paths, Hairer’s regularity structures, paracontrolled distributions à la Gubinelli–Imkeller–
Perkowski), especially in the context of nonlinear (stochastic) partial differential equations. However, these
ideas are applicable in many other areas of applied mathematics. As presented in talk by Terry Lyons (Oxford)
himself, there have been striking applications in deep learning: The best presently available algorithm for
handwritten Chinese character recognition is indeed a rough path inspired and based on iterated integrals.

The three-day workshop attracted around 56 participants and featured 27 invited speakers, mainly early career
researchers from Berlin, Oxford, and additionally some people from Warwick, Imperial College London, Paris,
and Rennes.
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The workshop was jointly organized by the WIAS research group Stochastic Algorithms and Nonparametric
Statistics (Peter Friz, ERC funded), Technische Universität (TU) Berlin (Martina Hofmanova), Humboldt-Universi-
tät zu Berlin (Nicolas Perkowski), and Oxford University (Terry Lyons, ERC funded; Ilya Chevyrev, Xi Geng).

STOCHASTIC LIMIT ANALYSIS FOR REACTING PARTICLE SYSTEMS

Berlin, December 16–18
Organized by: WIAS (RG 5)
Supported by: Einstein Center for Mathematics Berlin, Collaborative Research Center (SFB) 1114 “Scaling Cas-
cades in Complex Systems”

This workshop was organized by the WIAS Research Group RG 5 Interacting Random Systems (Wolfgang König,
Michiel Renger, Robert Patterson).It presented and facilitated discussion on approaches to systems of many
particles, which at some level of modeling undergo spatial motion and stochastically interact when they collide
or at least get very close. Classic applications of such systems include gas dynamics, particle coagulation, and
chemical reactions, but zoological and other application areas were also considered. Hence, this workshop
lay in the intersection of the interests of (at least) WIAS research groups RG 1 Partial Differential Equations
and RG 5. The three mornings of the workshop were devoted to two minicourses delivered by the eminent
international experts James Norris (Cambridge) and Vassili Kolokoltsov (Warwick); in the afternoons, several
guests and WIAS members gave accounts on their research results. About 50 people from Berlin and from other
cities attended the workshop.

A.4.2 Non-WIAS Conferences, Colloquia, and Workshops co-organized and co-funded by
WIAS and/or having taken place at WIAS

JUNIOR FEMALE RESEARCHERS IN PROBABILITY

Berlin, October 22–23
Organized by: DFG Research Training Group 1845 “Stochastic Analysis with Applications in Biology, Finance
and Physics”
Supported by: Technische Universität Berlin, Universität Potsdam, Berlin Mathematical School, WIAS

The goal of the workshop was to offer junior female researchers in stochastics a platform to talk about their
own research work and to get acquainted with important research topics presented by well-established female
researchers. To cover various topics in probability and its applications, several invited talks were given, as
well as a number of contributed talks. The workshop was one of the activities of the DFG Graduate School in
Stochastic Processes for the support of young females in this field. About 50 participants enjoyed the talks
and the relaxed atmosphere provided by the WIAS premises and organization.

A.4.3 Oberwolfach Workshops co-organized by WIAS

WORKSHOP “INTERPLAY OF ANALYSIS AND PROBABILITY IN APPLIED MATHEMATICS”
Mathematisches Forschungsinstitut Oberwolfach, July 26 – August 1
Organized by: Volker Betz (Darmstadt), Wolfgang König (RG 5), Florian Theil (Coventry), Johannes Zimmer (Bath)

This workshop brought together about 50 analysts and probabilists working on problems at some of the many
interfaces of these two fields. Most of the problems discussed during the meeting have their origin in physics
or chemistry. The workshop was grouped around the four themes (1) condensation in random structures, (2)
disordered systems, (3) discrete-to-continuum transitions, and (4) atomistic and molecular systems. The orga-
nizers feel that the communication between the two communities has become a lot more intense and natural
since the last of the three Oberwolfach workshops that had this purpose. Early-career researchers received
broad space to present their results.
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A.5 Membership in Organizing Committees of non-WIAS

Meetings
1. U. BANDELOW, member of the Program Committee, CLEO®/Europe – EQEC 2015, Munich, June 21–25.

2. A. CAIAZZO, organizer of the minisymposium “Boundary Challenges in Clinically Relevant Physiological
Flow Simulations”, 4th International Conference on Computational & Mathematical Biomedical Engineer-
ing, Ecole Normale Supérieure de Cachan, Cachan, France, June 29 – July 1.

3. D. HÖMBERG, organizer of the minisymposium “Recent Results on Analysis and Optimal Control of Phase
Field Models”, 27th IFIP TC7 Conference 2015 on System Modelling and Optimization, Sophia Antipolis,
France, June 29 – July 3.

4. V. JOHN, organizer of the minisymposium “Finite Element Methods for Convection-dominated Problems”,
European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2015), Ankara,
Turkey, September 14–18.

5. L. KAMENSKI, organizer of the minisymposium “Anisotropic Mesh Adaptation”, International Conference
on Scientific Computation and Differential Equations (SciCADE 2015), Universität Potsdam, Campus Grieb-
nitzsee, September 14–18.

6. O. KLEIN, member of the Steering Committee, 10th International Symposium on Hysteresis Modeling and
Micromagnetics (HMM), Iasi, Romania, May 18–20.

7. W. KÖNIG, co-organizer, Workshop “Interplay of Analysis and Probability in Applied Mathematics”, Mathe-
matisches Forschungsinstitut Oberwolfach, July 26 – August 1.

8. M. LANDSTORFER, organizer and chair of the minisymposium “Recent Developments on Electrochemical
Interface Modeling”, 8th International Congress on Industrial and Applied Mathematics (ICIAM 2015), In-
ternational Council for Industrial and Applied Mathematics, Beijing, China, August 10–14.

9. A. MIELKE, member of the International Scientific Committee, 2nd International Conference on Continuous
Media with Microstructure (CMwM2015), Łagów, Poland, March 2–5.

10. O. OMEL’CHENKO, organizer of the minisymposium “Emergent Dynamics and Control”, The 8th International
Conference on Chaotic Modeling, Simulation and Applications (CHAOS2015), Institut Henri Poincaré, Paris,
France, May 26–29.

11. R.I.A. PATTERSON, co-organizer of the minisymposium “Real World Phenomena Explained by Microscopic
Particle Models”, 8th International Congress on Industrial and Applied Mathematics (ICIAM 2015), Inter-
national Council for Industrial and Applied Mathematics, Beijing, China, August 10.

12. D. PESCHKA, co-organizer of the minisymposium “Free Boundary Problems in Applications: Recent Ad-
vances in Modelling, Simulation and Optimization”, 8th Vienna International Conference on Mathematical
Modelling (MATHMOD 2015), Technische Universität Wien, Institut für Analysis und Scientific Computing,
Vienna, Austria, February 17–20.

13. , co-organizer of the minisymposium “Recent Progress in Modeling and Simulation of Multiphase
Thin-film Type Problems”, 8th International Congress on Industrial and Applied Mathematics (ICIAM 2015),
International Council for Industrial and Applied Mathematics, Beijing, China, August 10–14.

14. D.R.M. RENGER, co-organizer of the minisymposium “Real World Phenomena Explained by Microscopic Par-
ticle Models”, 8th International Congress on Industrial and Applied Mathematics (ICIAM 2015), Interna-
tional Council for Industrial and Applied Mathematics, Beijing, China, August 10.

15. E. ROCCA, co-organizer of the special session “Applied Analysis”, 86th Annual Meeting of the International
Association of Applied Mathematics and Mechanics (GAMM 2015), Lecce, Italy, March 23–27.
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16. , member of the Scientific and Organizing Committee, INdAM Workshop “Special Materials in Com-
plex Systems – SMaCS 2015”, Rome, Italy, May 18–22.

17. , course director, Mathematical Thermodynamics of Complex Fluids, Fondazione CIME “Roberto
Conti” (International Mathematical Summer Center), Cetraro, Italy, June 29 – July 3.

18. N. ROTUNDO, co-organizer of the minisymposium “Numerical and Analytical Aspects in Semiconductor The-
ory”, 8th International Congress on Industrial and Applied Mathematics (ICIAM 2015), International Coun-
cil for Industrial and Applied Mathematics, Beijing, China, August 10–14.

19. H. SI, co-organizer, 24th International Meshing Roundtable, University of Texas at Austin, AT&T Conference
Center, Austin, USA, October 12–14.

20. V. SPOKOINY, co-organizer, Frontiers of High Dimensional Statistics, Optimization, and Econometrics,
Higher School of Economics, Laboratory of Stochastic Analysis and its Applications, Moscow, Russian Fed-
eration, February 25–27.

21. , organizer, Spring School “Structural Inference in Statistics” 2015, Humboldt-Universität zu Berlin,
DFG Research Unit 1735, Sylt, March 16–20.

22. , head of the Organizing Committee, Optimization and Applications in Control and Data Science,
Moscow Institute of Physics and Technology, PreMoLab, Russian Federation, May 13–15.

23. J. SPREKELS, member of the Scientific Committee, 2nd International Conference on Continuous Media with
Microstructure (CMwM2015), Łagów, Poland, March 2–5.

24. M. THOMAS, co-organizer of the minisymposium “Analysis of Nonsmooth PDE Systems with Application to
Material Failure”, 8th International Congress on Industrial and Applied Mathematics (ICIAM 2015), Inter-
national Council for Industrial and Applied Mathematics, Beijing, China, August 10–14.

25. E. VALDINOCI, co-organizer, 2° Corso Intensivo di Calcolo delle Variazioni, Dipartimento di Matematica e
Informatica di Catania, Italy, June 15–20.

26. A.G. VLADIMIROV, member of the Program Committee, CLEO®/Europe – EQEC 2015, Munich, June 21–25.

27. , member of the Program Committee, International Workshop “Nonlinear Photonics: Theory, Materi-
als, Applications”, St. Petersburg State University, St. Petersburg, Russian Federation, June 29 – July 2.

28. , member of the Program Committee, International Symposium on Physics and Applications of Laser
Dynamics, Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS), Metz, France, November 4–
6.

29. W. WAGNER, member of the Program Committee, 10th IMACS Seminar on Monte Carlo Methods, Johannes
Kepler Universität Linz, Linz, Austria, July 6–10.

30. M. WOLFRUM, co-organizer of the minisymposium “Coupled Oscillator Systems and their Mean-field Dynam-
ics”, EQUADIFF 2015, Lyon, France, July 6–10.

31. , co-organizer of the minisymposium “Delay-equations for Optoelectronic Systems”, XXXV Dynam-
ics Days Europe 2015, University of Exeter, Centre for Systems, Dynamics and Control, Exeter, UK, Septem-
ber 7–10.

32. S. YANCHUK, co-organizer of the minisymposium “Delay-equations for Optoelectronic Systems”, XXXV Dy-
namics Days Europe 2015, University of Exeter, Centre for Systems, Dynamics and Control, Exeter, UK,
September 7–10.

33. , co-organizer, Workshop on Control of Self-organizing Nonlinear Systems, SFB 910 “Control of Self-
organizing Nonlinear Systems: Theoretical Methods and Concepts of Application”, Lutherstadt Wittenberg,
September 14–16.
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A.6 Publications

A.6.1 Monographs

[1] A. MIELKE, T. ROUBÍČEK, Rate-independent Systems. Theory and Application, vol. 193 of Applied Mathemat-
ical Sciences, Springer International Publishing, New York, 2015, vii+660 pages.

[2] V. SPOKOINY, TH. DICKHAUS, Basics of Modern Mathematical Statistics, vol. 18 of Springer Texts in Statistics,
Springer, Berlin et al., 2015, 296 pages.

Monographs (to appear)

[1] W. KÖNIG, The Parabolic Anderson Model: Random Walks in Random Potential, Pathways in Mathematics,
Springer.

A.6.2 Editorship of Proceedings and Collected Editions

[1] P. FRIZ, J. GATHERAL, A. GULISASHVILI, A. JAQUIER, J. TEICHMANN, eds., Large Deviations and Asymptotic
Methods in Finance, vol. 110 of Springer Proceedings in Mathematics & Statistics, Springer, Berlin et al.,
2015, ix+590 pages.

[2] D. HÖMBERG, G. HU, eds., Issue on the workshop “Electromagnetics – Modelling, Simulation, Control and In-
dustrial Applications”, vol. 8, no. 3 of Discrete Contin. Dyn. Syst. Ser. S, American Institute of Mathematical
Sciences, Springfield, 2015, 259 pages.

[3] P. COLLI, G. GILARDI, D. HÖMBERG, E. ROCCA, eds., Special Issue dedicated to Jürgen Sprekels on the Occa-
sion of his 65th Birthday, vol. 35, no. 6 of Discrete Contin. Dyn. Syst. Ser. A, American Institute of Mathe-
matical Sciences, Springfield, 2015, 472 pages.

[4] P. EXNER, W. KÖNIG, H. NEIDHARDT, eds., Mathematical Results in Quantum Mechanics. Proceedings of the
QMath12 Conference, World Scientific Publishing, Singapore, 2015, xii+383 pages.

[5] B. FIEDLER, M. HARAGUS, A. MIELKE, G. RAUGEL, Y. YI, eds., Special Issue in Memoriam of Klaus Kirchgässner,
vol. 27 of J. Dynam. Differential Equations, no. 3–4 (pp. 333–1006), Springer International Publishing,
Cham et al., 2015, 674 pages.

[6] ST. BOSIA, M. ELEUTERI, E. ROCCA, E. VALDINOCI, eds., Preface: Special issue on rate-independent evolutions
and hysteresis modelling, vol. 8 of Discrete and Continuous Dynamical Systems Series S, no. 4, American
Institute of Mathematical Sciences, Springfield, 2015, 167 pages.

[7] E. VALDINOCI, ed., Contemporary PDEs between theory and applications, vol. 35 of Discrete and Continu-
ous Dynamical Systems Series A, no. 12, American Institute of Mathematical Sciences, Springfield, 2015,
625 pages.

Proceedings and Collected Editions (to appear)

[1] M. DIMIAN, P. GUREVICH, O. KLEIN, D. KNEES, D. RACHINSKII, S. TIKHOMIROV, eds., Proceedings of MURPHYS-
HSFS-2014 (the 7th Multi-Rate Processes and Hysteresis (MURPHYS) workshop, in conjunction with the
second International Workshop on Hysteresis and Slow-Fast Systems (HSFS)), Special Edition of Journal of
Physics: Conference Series, IOP Publishing.

Annual Research Report 2015



122 A Facts and Figures

[2] W. KÖNIG, J. SPREKELS, eds., Karl Weierstraß (1815–1897): Aspekte seines Lebens und Werkes—Aspects of
his Life and Work, Mathematik – Analysis, Springer Spektrum, Wiesbaden.

A.6.3 Outstanding Contributions to Monographs

[1] S. AMIRANASHVILI, Chapter 3: Hamiltonian Framework For Short Optical Pulses, in: New Approaches to Non-
linear Waves, E. Tobisch, ed., vol. 908 of Lecture Notes in Physics, Springer International Publishing, Cham,
2015, pp. 153–196.

[2] B. HILLER, CH. HAYN, H. HEITSCH, R. HENRION, H. LEÖVEY, A. MÖLLER, W. RÖMISCH, Chapter 14: Methods
for Verifying Booked Capacities, in: Evaluating Gas Network Capacities, Th. Koch, B. Hiller, M.E. Pfetsch,
L. Schewe, eds., MOS-SIAM Series on Optimization, SIAM, Philadelphia, 2015, pp. 291–315.

[3] H. HEITSCH, R. HENRION, H. LEÖVEY, R. MIRKOV, A. MÖLLER, W. RÖMISCH, I. WEGNER-SPECHT, Chapter 13:
Empirical Observations and Statistical Analysis of Gas Demand Data, in: Evaluating Gas Network Capacities,
Th. Koch, B. Hiller, M.E. Pfetsch, L. Schewe, eds., MOS-SIAM Series on Optimization, SIAM, Philadelphia,
2015, pp. 273–290.

[4] A. MIELKE, Chapter 5: Variational Approaches and Methods for Dissipative Material Models with Multiple
Scales, in: Analysis and Computation of Microstructure in Finite Plasticity, S. Conti, K. Hackl, eds., vol. 78
of Lecture Notes in Applied and Computational Mechanics, Springer International Publishing, Heidelberg
et al., 2015, pp. 125–155.

[5] H.-J. MUCHA, H.-G. BARTEL, J. DOLATA, C. MORALES-MERINO, An Introduction to Clustering with Applications to
Archaeometry, in: Mathematics and Archaeology, J.A. Barcelo, I. Bogdanovic, eds., CRC Press, Boca Raton,
FL, 2015, pp. 190–213.

Contributions to Monographs (to appear)

[1] A. MIELKE, On Evolutionary 0 -Convergence for Gradient Systems, A. Muntean, J.D. Rademacher, A. Zagaris,
eds., Lecture Notes in Applied Mathematics and Mechanics, Springer International Publishing, Heidelberg
et al.

A.6.4 Articles in Refereed Journals2

[1] P. COLLI, G. GILARDI, J. SPREKELS, A boundary control problem for the pure Cahn–Hilliard equation with
dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015), pp. 311–325.

[2] J. ELSCHNER, G. HU, Corners and edges always scatter, Inverse Problems, 31 (2015), pp. 015003/1–
015003/17.

[3] , Elastic scattering by unbounded rough surfaces: Solvability in weighted Sobolev spaces, Appl.
Anal., 94 (2015), pp. 251–278.

[4] J. ELSCHNER, G. HU, M. YAMAMOTO, Uniqueness in inverse elastic scattering from unbounded rigid sur-
faces of rectangular type, Inverse Probl. Imaging, 9 (2015), pp. 127–141.

[5] G. HU, J. LI, H. LIU, Uniqueness in determining refractive indices by formally determined far-field data,
Appl. Anal., 94 (2015), pp. 1259–1269.

[6] G. HU, X. LIU, F. QU, B. ZHANG, Variational approach to rough surface scattering problems with Neumann
and generalized impedance boundary conditions, Comm. Math. Sci., 13 (2015), pp. 511–537.

2Articles that have been written by long-term guests and scholarship holders during their stay at WIAS have been listed in
front of those written by the WIAS staff members.
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[7] S. SIMONELLA, M. PULVIRENTI, On the evolution of the empirical measure for hard-sphere dynamics, Bull.
Inst. Math. Acad. Sin., 10 (2015), pp. 171–204.

[8] S. SIMONELLA, H. SPOHN, From Newton to Boltzmann: Hard spheres and short-range potentials, Bull.
Amer. Math. Soc. (N.S.), 52 (2015), pp. 533–538.

[9] N. AHMED, G. MATTHIES, Higher order continuous Galerkin–Petrov time stepping schemes for transient
convection-diffusion-reaction equations, ESAIM Math. Model. Numer. Anal., 49 (2015), pp. 1429–1450.

[10] N. AHMED, V. JOHN, Adaptive time step control for higher order variational time discretizations applied to
convection-diffusion equations, Comput. Methods Appl. Mech. Engrg., 285 (2015), pp. 83–101.

[11] S. AMIRANASHVILI, R. ČIEGIS, M. RADZIUNAS, Numerical methods for generalized nonlinear Schrödinger
equations, Kinet. Relat. Models, 8 (2015), pp. 215–234.

[12] F. ANKER, S. GANESAN, V. JOHN, E. SCHMEYER, A comparative study of a direct discretization and an
operator-splitting solver for population balance systems, Comput. Chem. Engng., 75 (2015), pp. 95–
104.

[13] CH. BAYER, H.A. HOEL, A. KADIR, P. PLECHAC, M. SANDBERG, A. SZEPESSY, Computational error estimates
for Born–Oppenheimer molecular dynamics with nearly crossing potential surfaces, Appl. Math. Res.
Express, 2015 (2015), pp. 329–417.

[14] S. BIRKHOLZ, C. BRÉE, A. DEMIRCAN, G. STEINMEYER, Predictability of rogue events, Phys. Rev. Lett., 114
(2015), pp. 213901/1–213901/5.

[15] C. BRÉE, M. KRETSCHMAR, T. NAGY, H.G. KURZ, U. MORGNER, M. KOVAČEV, Impact of spatial inhomo-
geneities on on-axis pulse reconstruction in femtosecond filaments, J. Phys. B, 48 (2015), pp. 094002/1–
094002/6.

[16] I. BREMER, R. HENRION, A. MÖLLER, Probabilistic constraints via SQP solver: Application to a renewable
energy management problem, Comput. Manag. Sci., 12 (2015), pp. 435–459.

[17] A. CAIAZZO, R. GUIBERT, Y. BOUDJEMLINE, I.E. VIGNON-CLEMENTEL, Efficient blood flow simulations for
the design of stented valve reducer in enlarged ventricular outflow tracts, Cardiovasc. Eng. Technol., 6
(2015), pp. 485–500.

[18] A. CAIAZZO, G. MONTECINOS, L.O. MÜLLER, E.M. HAACKE, E.F. TORO, Computational haemodynamics in
stenotic internal jugular veins, J. Math. Biol., 70 (2015), pp. 745–772.

[19] A. CAIAZZO, I. RAMIS-CONDE, Multiscale modeling of palisade formation in glioblastoma multiforme, J.
Theor. Biol., 383 (2015), pp. 145–156.

[20] K. DISSER, Well-posedness for coupled bulk-interface diffusion with mixed boundary conditions, Analysis
(Berlin), 35 (2015), pp. 309–317.

[21] K. DISSER, H.-CHR. KAISER, J. REHBERG, Optimal Sobolev regularity for linear second-order divergence
elliptic operators occurring in real-world problems, SIAM J. Math. Anal., 47 (2015), pp. 1719–1746.

[22] K. DISSER, M. LIERO, On gradient structures for Markov chains and the passage to Wasserstein gradient
flows, Netw. Heterog. Media, 10 (2015), pp. 233–253.

[23] K. DISSER, M. MEYRIES, J. REHBERG, A unified framework for parabolic equations with mixed boundary
conditions and diffusion on interfaces, J. Math. Anal. Appl., 430 (2015), pp. 1102–1123.

[24] D. BOTHE, W. DREYER, Continuum thermodynamics of chemically reacting fluid mixtures, Acta Mech., 226
(2015), pp. 1757–1805.

[25] W. DREYER, C. GUHLKE, R. MÜLLER, Modeling of electrochemical double layers in thermodynamic non-
equilibrium, Phys. Chem. Chem. Phys., 17 (2015), pp. 27176–27194.

[26] W. DREYER, R. HUTH, A. MIELKE, J. REHBERG, M. WINKLER, Global existence for a nonlocal and nonlinear
Fokker–Planck equation, ZAMP Z. Angew. Math. Phys., 66 (2015), pp. 293–315.
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[27] P.-É. DRUET, Higher L p regularity for vector fields that satisfy divergence and rotation constraints in dual
Sobolev spaces, and application to some low-frequency Maxwell equations, Discrete Contin. Dyn. Syst.,
8 (2015), pp. 479–496.

[28] , Some mathematical problems related to the second order optimal shape of a crystallization in-
terface, Discrete Contin. Dyn. Syst., 35 (2015), pp. 2443–2463.

[29] A. GASNIKOV, E. GASNIKOVA, P. DVURECHENSKY, E. ERSHOV, A. LAGUNOVSKAIA, Searching for the stochastic
equilibria in the transport models of equilibrium flow distribution (in Russian), Proc. Moscow Instit. Phys.
Technol., 7 (2015), pp. 114–128.

[30] A. GASNIKOV, P. DVURECHENSKY, D. KAMZOLOV, Y. NESTEROV, V. SPOKOINY, P. STETSYUK, A. SUVORIKOVA,
A. CHERNOV, Searching for equilibriums in multistage transport models (in Russian), Proc. Moscow Instit.
Phys. Technol., 7 (2015), pp. 143–155.

[31] P. DVURECHENSKY, Y. NESTEROV, V. SPOKOINY, Primal-dual methods for solving infinite-dimensional
games, J. Optim. Theory Appl., 166 (2015), pp. 23–51.

[32] W. GIESE, M. EIGEL, S. WESTERHEIDE, CH. ENGWER, E. KLIPP, Influence of cell shape,
inhomogeneities and diffusion barriers in cell polarization models, Phys. Biol., 12 (2015),
pp. 066014/1–066014/18. Open Access: http://iopscience.iop.org/article/10.
1088/1478-3975/12/6/066014/pdf.

[33] M. EIGEL, C.J. GITTELSON, CH. SCHWAB, E. ZANDER, A convergent adaptive stochastic Galerkin finite
element method with quasi-optimal spatial meshes, ESAIM Math. Model. Numer. Anal., 49 (2015),
pp. 1367–1398.

[34] M. EIGEL, D. PETERSEIM, Simulation of composite materials by a Network FEM with error control, Comput.
Methods Appl. Math., 15 (2015), pp. 21–37.

[35] P. FARRELL, J. PESTANA, Block preconditioners for linear systems arising from multiscale collocation with
compactly supported RBFs, Numer. Linear Algebra Appl., 22 (2015), pp. 731–747.

[36] M.H. FARSHBAF SHAKER, A relaxation approach to vector-valued Allen–Cahn MPEC problems, Appl. Math.
Optim., 72 (2015), pp. 325–351.

[37] P. COLLI, M.H. FARSHBAF SHAKER, G. GILARDI, J. SPREKELS, Optimal boundary control of a viscous Cahn–
Hilliard system with dynamic boundary condition and double obstacle potentials, SIAM J. Control Optim.,
53 (2015), pp. 2696–2721.

[38] , Second-order analysis of a boundary control problem for the viscous Cahn–Hilliard equation with
dynamic boundary conditions, Ann. Acad. Rom. Sci. Math. Appl., 7 (2015), pp. 41–66.

[39] M.H. FARSHBAF SHAKER, CH. HEINEMANN, A phase field approach for optimal boundary control of dam-
age processes in two-dimensional viscoelastic media, Math. Models Methods Appl. Sci., 25 (2015),
pp. 2749–2793.

[40] P. COLLI, M.H. FARSHBAF SHAKER, J. SPREKELS, A deep quench approach to the optimal control of an Allen–
Cahn equation with dynamic boundary conditions and double obstacles, Appl. Math. Optim., 71 (2015),
pp. 1–24.

[41] S.P. FRIGERI, M. GRASSELLI, E. ROCCA, A diffuse interface model for two-phase incompressible flows with
nonlocal interactions and nonconstant mobility, Nonlinearity, 28 (2015), pp. 1257–1293.

[42] , On a diffuse interface model of tumor growth, European J. Appl. Math., 26 (2015), pp. 215–243.

[43] P. FRIZ, P. GASSIAT, T. LYONS, Physical Brownian motion in a magnetic field as a rough path, Trans. Amer.
Math. Soc., 367 (2015), pp. 7939–7955.

[44] J. FUHRMANN, Comparison and numerical treatment of generalized Nernst–Planck models, Comput. Phys.
Comm., 196 (2015), pp. 166–178.
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[45] S. GIERE, T. ILIESCU, V. JOHN, D. WELLS, SUPG reduced order models for convection-dominated convection-
diffusion-reaction equations, Comput. Methods Appl. Mech. Engrg., 289 (2015), pp. 454–474.

[46] J. BLATH, A. GONZÁLEZ CASANOVA SOBERÓN, B. ELDON, N. KURT, M. WILKE-BERENGUER, Genetic variability
under the seedbank coalescent, Genetics, 200 (2015), pp. 921–934.

[47] O. GÜN, W. KÖNIG, O. SEKULOVIĆ, Moment asymptotics for multitype branching random walks in random
environment, J. Theoret. Probab., 28 (2015), pp. 1726–1742.

[48] H. HANKE, D. KNEES, Homogenization of elliptic systems with non-periodic, state dependent coefficients,
Asymptot. Anal., 92 (2015), pp. 203–234.

[49] M. HEIDA, Existence of solutions for two types of generalized versions of the Cahn–Hilliard equation, Appl.
Math., 60 (2015), pp. 51–90.

[50] , On systems of Cahn–Hilliard and Allen–Cahn equations considered as gradient flows in Hilbert
spaces, J. Math. Anal. Appl., 423 (2015), pp. 410–455.

[51] CH. HEINEMANN, CH. KRAUS, Complete damage in linear elastic materials – Modeling, weak formulation
and existence results, Calc. Var. Partial Differ. Equ., 54 (2015), pp. 217–250.

[52] , A degenerating Cahn–Hilliard system coupled with complete damage processes, Nonlinear Anal.
Real World Appl., 22 (2015), pp. 388–403.

[53] , Existence of weak solutions for a hyperbolic-parabolic phase field system with mixed boundary
conditions on non-smooth domains, SIAM J. Math. Anal., 47 (2015), pp. 2044–2073.

[54] , Existence of weak solutions for a PDE system describing phase separation and damage processes
including inertial effects, Discrete Contin. Dyn. Syst., 35 (2015), pp. 2565–2590.

[55] E. BONETTI, CH. HEINEMANN, CH. KRAUS, A. SEGATTI, Modeling and analysis of a phase field system for
damage and phase separation processes in solids, J. Partial Differ. Equ., 258 (2015), pp. 3928–3959.

[56] CH. HEINEMANN, E. ROCCA, Damage processes in thermoviscoelastic materials with damage-dependent
thermal expansion coefficients, Math. Methods Appl. Sci., 38 (2015), pp. 4587–4612.

[57] G. COLOMBO, R. HENRION, N.D. HOANG, B.S. MORDUKHOVICH, Discrete approximations of a controlled
sweeping process, Set-Valued Var. Anal., 23 (2015), pp. 69–86.

[58] R. HILDEBRAND, Centro-affine hypersurface immersions with parallel cubic form, Beitr. Algebra Geom., 56
(2015), pp. 593–640.

[59] R. HILDEBRAND, M. GEVERS, G. SOLARI, Closed-loop optimal experiment design: Solution via moment
extension, IEEE Trans. Autom. Control, 60 (2015), pp. 1731–1744.

[60] CH. HIRSCH, A Harris–Kesten theorem for confetti percolation, Random Structures Algorithms, 47 (2015),
pp. 361–385.

[61] CH. HIRSCH, G.W. DELANEY, V. SCHMIDT, Stationary Apollonian packings, J. Statist. Phys., 161 (2015),
pp. 35–72.

[62] CH. HIRSCH, G. GAISELMANN, V. SCHMIDT, Asymptotic properties of collective-rearrangement algorithms,
ESAIM Probab. Stat., 19 (2015), pp. 236–250.

[63] CH. HIRSCH, D. NEUHÄUSER, C. GLOAGUEN, V. SCHMIDT, Asymptotic properties of Euclidean shortest-path
trees in random geometric graphs, Statist. Probab. Lett., 107 (2015), pp. 122–130.

[64] , First passage percolation on random geometric graphs and an application to shortest-path trees,
Adv. Appl. Probab., 47 (2015), pp. 328–354.

[65] D. NEUHÄUSER, CH. HIRSCH, C. GLOAGUEN, V. SCHMIDT, Joint distributions for total lengths of shortest-path
trees in telecommunication networks, Ann. Telecommun., 70 (2015), pp. 221–232.
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[66] , Parametric modeling of sparse random trees using 3D copulas, Stoch. Models, 31 (2015),
pp. 226–260.

[67] M. HOFMANN, C. BRÉE, Femtosecond filamentation by intensity clamping at a Freeman resonance, Phys.
Rev. A, 92 (2015), pp. 013813/1–013813/7.

[68] M. HOFMANN, J. HYYTI, S. BIRKHOLZ, M. BOCK, S.K. DAS, R. GRUNWALD, M. HOFFMANN, T. NAGY, A. DEMIR-
CAN, M. JUPÉ, D. RISTAU, U. MORGNER, C. BRÉE, M. WÖRNER, TH. ELSAESSER, G. STEINMEYER, Non-
instantaneous polarization dynamics in dielectric media, Optica, 2 (2015), pp. 151–157.

[69] D. HÖMBERG, TH. PETZOLD, E. ROCCA, Analysis and simulations of multifrequency induction hardening,
Nonlinear Anal. Real World Appl., 22 (2015), pp. 84–97.

[70] G. HU, H. LIU, Nearly cloaking the elastic wave fields, J. Math. Pures Appl., 104 (2015), pp. 1045–1074.

[71] G. HU, M. YAMAMOTO, Hölder stability estimate of the Robin coefficient in corrosion detection problems
with a single boundary measurement, Inverse Problems, 31 (2015), pp. 115009/1–115009/20.

[72] R. HUTH, S. JACHALSKI, G. KITAVTSEV, D. PESCHKA, Gradient flow perspective on thin-film bilayer flows, J.
Engrg. Math., 94 (2015), pp. 43–61.

[73] B. JAHNEL, CH. KÜLSKE, A class of non-ergodic probabilistic cellular automata with unique invariant mea-
sure and quasi-periodic orbit, Stochastic Process. Appl., 125 (2015), pp. 2427–2450.

[74] G.R. BARRENECHEA, V. JOHN, P. KNOBLOCH, Some analytical results for an algebraic flux correction scheme
for a steady convection-diffusion equation in one dimension, IMA J. Numer. Anal., 34 (2015), pp. 1729–
1756.

[75] V. JOHN, J. NOVO, Analysis of the pressure stabilized Petrov–Galerkin (PSPG) method stabilization for
the evolutionary Stokes equations avoiding time-step restrictions, SIAM J. Numer. Anal., 53 (2015),
pp. 1005–1031.

[76] W. HUANG, L. KAMENSKI, R.D. RUSSELL, A comparative numerical study of meshing functionals for varia-
tional mesh adaptation, J. Math. Study, 48 (2015), pp. 168–186.

[77] W. HUANG, L. KAMENSKI, A geometric discretization and a simple implementation for variational mesh
generation and adaptation, J. Comput. Phys., 301 (2015), pp. 322–337.

[78] M. KANTNER, E. SCHÖLL, S. YANCHUK, Delay-induced patterns in a two-dimensional lattice of coupled os-
cillators, Sci. Rep., 5 (2015), pp. 8522/1–8522/9.

[79] P. KEELER, P.G. TAYLOR, Discussion on “On the Laplace transform of the aggregate discounted claims with
Markovian arrivals” by Jiandong Ren, Volume 12 (2), North Amer. Act. J., 19 (2015), pp. 73–77.

[80] B. BLASZCZYSZYN, P. KEELER, Studying the SINR process of the typical user in Poisson networks by using
its factorial moment measures, IEEE Trans. Inform. Theory, 61 (2015), pp. 6774–6794.

[81] B. BLASZCZYSZYN, M. KARRAY, P. KEELER, Wireless networks appear Poissonian due to strong shadowing,
IEEE Trans. Wireless Commun., 14 (2015), pp. 4379–4390.

[82] O. KLEIN, On the representation of hysteresis operators acting on vector-valued, left-continuous and
piecewise monotaffine and continuous functions, Discrete Contin. Dyn. Syst., 35 (2015), pp. 2591–2614.

[83] S. JANSEN, W. KÖNIG, B. METZGER, Large deviations for cluster size distributions in a continuous classical
many-body system, Ann. Appl. Probab., 25 (2015), pp. 930–973.

[84] W. KÖNIG, T. WOLFF, Large deviations for the local times of a random walk among random conductances
in a growing box, Special issue for Pastur’s 75th birthday, Markov Process. Related Fields, 21 (2015),
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A.8 Talks, Posters, and Contributions to Exhibitions

A.8.1 Main and Plenary Talks

1. D. HÖMBERG, Modelling, analysis and simulation of multifrequency induction hardening, XXIV Congress on
Differential Equations and Applications (CEDYA)/XIV Congress on Applied Mathematics (CMA), June 8–12,
Universidad de Cádiz, Spain, June 11.
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verse Problems for PDEs”, June 2–3, Université de Reims Champagne-Ardenne, France, June 2.

2. , Shape identification in inverse medium scattering with a single far-field pattern, Tsing Hua Uni-
versity, Yau Mathematical Sciences Center, Beijing, China, June 9.

3. , Direct and inverse acoustic, elastic and electromagnetic scattering problems, Beijing Computa-
tional Science Research Center, China, June 11.

4. , Direct and inverse acoustic scattering by a collection of extended and point-like scatterers, Chi-
nese Academy of Sciences, Institute of Applied Mathematics, Beijing, China, June 13.

5. J. SPREKELS, Optimal boundary control problems for Cahn–Hilliard systems with dynamic boundary condi-
tions, INdAM Workshop “Special Materials in Complex Systems – SMaCS 2015”, May 18–22, Rome, Italy,
May 21.

6. R. ALLEZ, A continuous approach to random matrix theory, Stochastic Analysis Seminar, Imperial College
London, Department of Mathematics, UK, February 10.

7. U. BANDELOW, Applied mathematical research in photonics at WIAS Berlin, Innovation Days 2015, Decem-
ber 8–9, Leibniz-Gemeinschaft, Berlin, December 9.

8. CH. BAYER, The forward-reverse method for conditional diffusion processes, Advances in Uncertainty
Quantification Methods, Algorithms and Applications (UQAW 2015), January 6–9, King Abdullah Univer-
sity of Science and Technology (KAUST), Jeddah, Saudi Arabia, January 6.

9. , The forward-reverse method for conditional diffusion processes, Oberseminar Finanz- und Ver-
sicherungsmathematik, Technische Universität München, Fakultät für Mathematik, January 19.

10. , Asymptotics beats Monte Carlo: The case of correlated local vol baskets, Groupe de Travail: Fi-
nance Mathématique, Probabilités Numériques et Statistique des Processus, Université Paris Diderot,
Laboratoire de Probabilités et Modèles Aléatoires, France, February 19.

11. , Pricing under rough volatility, Berlin-Princeton-Singapore Workshop on Quantitative Finance,
June 29 – July 1, National University of Singapore, Centre for Quantitative Finance, Singapore, June 29.
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12. , The forward-reverse method for conditional Markov processes, MInisymposium “Multilevel Monte
Carlo Methods and Applications” of the 8th International Congress on Industrial and Applied Mathemat-
ics (ICIAM2015), August 10–14, International Council for Industrial and Applied Mathematics, Beijing,
China, August 10.

13. , The forward-reverse method for conditional Markov processes, International Conference on Sci-
entific Computation and Differential Equations, Universität Potsdam, Institut für Mathematik, Septem-
ber 16.

14. , Pricing under rough volatility, Imperial College London, Department of Mathematics, UK, Novem-
ber 3.

15. , SDE based regression for random PDEs, Direct and Inverse Problems for PDEs with Random Coef-
ficients, WIAS Berlin, November 13.

16. , Rough paths and rough partial differential equations, 2 talks, University of Oslo, Department of
Mathematics, Norway, November 16–18.

17. , Pricing under rough volatility, Finanzmathematik, University of Vienna, Faculty of Mathematics,
Austria, November 26.

18. L. BLANK, CGS — Taking advantage of the irregular convergence behavior, Università della Svizzera Ital-
iana, Institute of Computational Science, Lugano, Switzerland, December 16.

19. C. BRÉE, Impact of resonance-enhanced ionization on femtosecond filamentation, International Workshop
“Nonlinear Photonics: Theory, Materials, Applications”, Session: Extreme and Relativistic Nonlinear Op-
tics, June 28 – July 4, St. Petersburg State University, St . Petersburg, Russian Federation, July 2.

20. , A model of intense laser-matter interaction based on complex-rotated Floquet resonances, 24th
Annual International Laser Physics Workshop (LPHYS’15), Seminar 5: Nonlinear Optics & Spectroscopy,
August 21–25, Shanghai, China, August 23.

21. , Numerical modelling of femtosecond filamentation, Leibniz-Universität Hannover, Institut für
Quantenoptik, Hannover, September 7.

22. A. CAIAZZO, Multiscale modeling of weakly compressible elastic materials in harmonic regime, Rheinische
Friedrich-Wilhelms-Universität Bonn, Institut für Numerische Simulation, Bonn, May 21.

23. , A Stokes-residual based backflow stabilization for incompressible flows, XXIV Congreso de Ecua-
ciones Diferenciales y Aplicaciones, June 8–12, Universidad de Cádiz, Cádiz, Spain, June 10.

24. , Modeling and simulation of fluid flows through a porous interface, Besançon Week on Numerical
Analysis: XFEM, Nitsche FEM, Adaptive FEM, Artificial Boundary Conditions, June 15–21, Université de
Franche Comté, Besançon, France, June 19.

25. , Assessment of Kalman filtering for parameter identification in one-dimensional blood flow model,
4th International Conference on Computational & Mathematical Biomedical Engineering, June 29 – July 1,
Ecole Normale Supérieure de Cachan, Cachan, France, June 29.

26. , Multiscale modeling of weakly compressible elastic materials, Workshop on Aktive Drag Reduc-
tion, November 9–10, Rheinisch-Westfälische Technische Hochschule Aachen, Institut für Geometrie und
Praktische Mathematik, Aachen, November 10.

27. E. CINTI, A quantitative weighted isoperimetric inequality via the ABP method, Oberseminar Analysis, Uni-
versität Bonn, Institut für Angewandte Mathematik, February 5.

28. , Quantitative isoperimetric inequality via the ABP method, Università di Bologna, Dipartimento di
Matematica, Bologna, Italy, July 17.

29. A. CIPRIANI, Rates of convergence for extremes of geometric random variables and marked point pro-
cesses, Università degli Studi di Milano-Bicocca, Dipartimento di Matematica Applicazioni, Milano, Italy,
March 30.

Annual Research Report 2015



A.8 Talks, Posters, and Contributions to Exhibitions 149

30. , Thick points for generalized Gaussian fields with different cut-offs, Indian Statistical Institute,
Theoretical Statistics and Mathematics Unit, Kolkata, India, April 8.

31. , Extremes of the supercritical Gaussian free field, Seminar Series in Probability and Statistics,
Technical University of Delft, Applied Mathematics, Netherlands, June 11.

32. , Extremes of the supercritical Gaussian free field, Probability Seminar, Leiden University, Nether-
lands, June 18.

33. , Extremes of the super critical Gaussian free field, Workshop “Women in Probability 2015”, July 3–
4, Technische Universität München, July 3.

34. , Rates of convergence for extremes of geometric random variables and marked point processes,
Workshop “Interplay of Analysis and Probability in Applied Mathematics”, July 26 – August 1, Mathema-
tisches Forschungsinstitut Oberwolfach, Oberwolfach, July 28.

35. F. DASSI, Achievements and challenges in anisotropic mesh generation, Politecnico di Milano, Diparti-
mento di Matematica “F. Brioschi”, Milano, Italy, November 17.

36. TH. DICKHAUS, Simultaneous test procedures in high dimensions: The extreme value approach, 4th Annual
International Conference on CMCGS 2015, January 26–27, Global Science and Technology Forum (GSTF),
Singapore, January 26.

37. , Self-concordant profile empirical likelihood ratio tests for the population correlation coefficient:
A simulation study, 12th Workshop on Stochastic Models, Statistics and Their Applications, February 16–
20, Wrocław University of Technology, Poland, February 17.

38. K. DISSER, Asymptotic behavior of a rigid body with a cavity filled by a viscous liquid, Oberseminar “Anal-
ysis”, Universität Kassel, Institut für Mathematik, Kassel, January 12.

39. , Asymptotic behavior of a rigid body with a cavity filled by a viscous liquid, Seminar “Dynamische
Systeme”, Technische Universität München, Zentrum Mathematik, München, February 2.

40. , Asymptotic behavior of a rigid body with a cavity filled by a viscous liquid, Workshop “Young
Researchers in Fluid Dynamics”, June 18–19, Technische Universität Darmstadt, Fachbereich Mathematik,
Darmstadt, June 18.

41. , Asymptotic behavior of a rigid body with a cavity filled by a viscous liquid, Mathematical Thermo-
dynamics of Complex Fluids, June 29 – July 3, Centro Internazionale Matematico Estivo (CIME), Cetraro,
Italy, June 30.

42. W. DREYER, Stochastic modelling of many-particle electrodes, Solid State Electrochemistry – Workshop
2015, September 6–9, Kloster Roggenburg, September 7.

43. , Stochastic theory of many-particle systems, 12th Hirschegg Workshop on Conservation Laws,
September 13–19, Hirschegg, Kleinwalsertal, Austria, September 15.

44. P. DVURECHENSKY, Semi-supervised pagerank model learning with gradient-free optimization methods,
Traditional Youth School “Control, Information and Optimization”, June 14–20, Moscow, Russian Fed-
eration, June 17.

45. , Stochastic intermediate gradient method: Convex and strongly convex cases, Information Tech-
nologies and Systems 2015, September 6–11, Russian Academy of Sciences, Institute for Information
Transmission Problems, Sochi, Russian Federation, September 9.

46. M. EIGEL, Stochastic adaptive FEM, Forschungsseminar Numerische Mathematik, Humboldt-Universität
zu Berlin, Institut für Mathematik, January 28.

47. , Guaranteed error bounds for adaptive stochastic Galerkin FEM, Technische Universität Braun-
schweig, Institut für Wissenschaftliches Rechnen, April 1.
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48. , Adaptive stochastic Galerkin FEM with hierarchical tensor representations, 2nd GAMM AGUQ
Workshop on Uncertainty Quantification, September 10–11, Chemnitz, September 10.

49. M.H. FARSHBAF SHAKER, Relating phase field and sharp interface approaches to structural topology opti-
mization, National Institute for Mathematical Sciences, Division of Computational Mathematics, Daejeon,
Korea (Republic of), May 13.

50. , Introduction into optimal control of partial differential equations, 2 talks, National Institute for
Mathematical Sciences, Division of Computational Mathematics, Daejeon, Korea (Republic of), May 14–
18.

51. , A deep quench approach to the optimal control of an Allen–Cahn equation with dynamic bound-
ary conditions, National Institute for Mathematical Sciences, Division of Computational Mathematics,
Daejeon, Korea (Republic of), May 20.

52. , A relaxation approach to vector-valued Allen–Cahn MPEC problems, 27th IFIP TC7 Conference
2015 on System Modelling and Optimization, Minisymposium 20: Recent Results on Analysis and Opti-
mal Control of Phase Field Models, June 29 – July 3, Sophia Antipolis, France, July 2.

53. , Multi-material phase field approach to structural topology optimization and its relation to sharp
interface approach, University of Tokyo, Graduate School of Mathematical Sciences, Japan, October 6.

54. , Multi-material phase field approach to structural topology optimization and its relation to sharp
interface approach, Ehime University, Department of Mathematics, Matsuyama, Japan, October 16.

55. , Optimal boundary control of a viscous Cahn–Hilliard system with dynamic boundary condition
and double obstacle potentials, Conference “Developments of the Theory of Evolution Equations as Appli-
cations of the Analysis for Nonlinear Phenomena”, October 21–23, Kyoto University, Japan, October 22.

56. F. FLEGEL, Localization of the first Dirichlet-eigenvector in the heavy-tailed random conductance model,
Workshop “Interplay of Analysis and Probability in Applied Mathematics”, July 26 – August 1, Mathema-
tisches Forschungsinstitut Oberwolfach, July 30.

57. , Localization of the first Dirichlet-eigenvector in the heavy-tailed random conductance model, Sum-
mer School 2015 of the RTG 1845 Berlin-Potsdam “Stochastic Analysis with Applications in Biology, Fi-
nance and Physics”, September 28 – October 3, Levico Terme, Italy, October 1.

58. S.P. FRIGERI, Recent results on optimal control for Cahn–Hilliard/Navier–Stokes systems with nonlocal in-
teractions, Control Theory and Related Topics, April 13–14, Politecnico di Milano, Italy, April 13.

59. , On a diffuse interface model of tumor growth, INdAM Workshop “Special Materials in Complex
Systems – SMaCS 2015”, May 18–22, Rome, Italy, May 22.

60. , On a nonlocal diffuse interface model for binary incompressible fluids with different densities,
Mathematical Thermodynamics of Complex Fluids, June 28 – July 3, Fondazione CIME “Roberto Conti”
(International Mathematical Summer Center), Cetraro, Italy, July 2.

61. P. FRIZ, Rough paths, Kolloquium, Westfählische Wilhelms-Universität Münster, Fachbereich Mathematik
und Informatik, January 15.

62. , Lecture Series on Rough Path, 4 talks, Junior Hausdorff Trimester Program “Optimal Transporta-
tion”, January 5 – April 24, Hausdorff Research Institute for Mathematics, Bonn, March 23–25.

63. , Rough Paths and Regularity Structures, 4 talks, Courses for Graduates, April 21–23, Cambridge
University, Faculty of Mathematics, April 21–23.

64. , Rough Paths and Regularity Structures, 4 talks, Courses for Graduates, April 28–30, Cambridge
University, Faculty of Mathematics, April 28–30.

65. , Rough Paths and Regularity Structures, 4 talks, Courses for Graduates, May 4–7, Cambridge Uni-
versity, Faculty of Mathematics, May 4–7.
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66. , Eikonal equations and fully non-linear SPDEs, 38th Conference on Stochastic Processes and their
Applications, July 13–17, University of Oxford, Oxford-Man Institute of Quantitative Finance, UK, July 15.

67. , Rough paths and regularity structures, 38th Conference on Stochastic Processes and their Appli-
cations, July 13–17, University of Oxford, Oxford-Man Institute, UK, July 16.

68. J. FUHRMANN, Boundary heat and mass transfer: Analytical and numerical approaches, Summer School of
the International Max Planck Research School in Process and Systems Engineering, August 31 – Septem-
ber 2, Magdeburg, September 1.

69. A. GLITZKY, Finite volume discretized reaction-diffusion systems in heterostructures, Conference on Partial
Differential Equations, March 25–29, Technische Universität München, Zentrum Mathematik, München,
March 28.

70. A. GONZÁLEZ CASANOVA SOBERÓN, Modeling the Lenski experiment, Genealogies in Evolution: Looking
Backward and Forward, Workshop of the Priority Program (SPP) 1590 “Probabilistic Structures in Evo-
lution”, October 5–6, Goethe-Universität Frankfurt, October 6.

71. , An individual-based model for the Lenski experiment, and the deceleration of the relative fitness,
Workshop on Probabilistic Models in Biology, October 24–30, Playa del Carmen, Mexico, October 28.

72. C. GUHLKE, Revision of the Poisson–Nernst–Planck equations in the context of thermodynamic consis-
tency, 7th International Workshop and Summer School on Nonequilibrium Thermodynamics (IWNET
2015), July 5–10, Hilvarenbeek, Netherlands, July 10.

73. , Stochastic modeling of many-particle electrodes, Group Seminar Multiphysikalische Model-
lierung, Helmholtz-Institut Ulm für elektrochemische Energiespeicherung, November 18.

74. O. GÜN, Branching random walks in random environments on hypercubes, Workshop on Random Walk in
Random Environment, March 22–27, European Institute for Statistics, Probability, Stochastic Operations
Research and their Applications (EURANDOM), Eindhoven, Netherlands, March 27.

75. , Fluid and diffusion limits for the Poisson encounter-mating model, Mini-Workshop on Population
Dynamics, April 6–17, Bŏgaziçi University Istanbul, Department of Mathematics, Istanbul, Turkey, April 6.

76. , Stochastic encounter-mating model, Mathematical Model in Ecology and Evolution (MMEE 2015),
July 7–13, Collège de France, Paris, France, July 8.

77. M. HEIDA, Modeling of fluid interfaces, Jahrestagung der Deutschen Mathematiker-Vereinigung, Minisym-
posium “Mathematics of Fluid Interfaces”, September 21–25, Universität Hamburg, Fakultät für Mathe-
matik, Informatik und Naturwissenschaften, Hamburg, September 23.

78. CH. HEINEMANN, Well-posedness of strong solutions for a damage model in 2D, Universitá di Brescia, De-
partment DICATAM – Section of Mathematics, Italy, March 13.

79. CH. HEINEMANN, On elastic Cahn–Hilliard systems coupled with evolution inclusions for damage pro-
cesses, 86th Annual Meeting of the International Association of Applied Mathematics and Mechanics
(GAMM 2015), Young Researchers’ Minisymposium 2, March 23–27, Lecce, Italy, March 23.

80. , Solvability of differential inclusions describing damage processes and applications to optimal
control problems, Universität Essen-Duisburg, Fakultät für Mathematik, Essen, December 3.

81. H. HEITSCH, Optimization of booked capacity in gas transport networks using nonlinear probabilistic con-
straints, 2nd International Symposium on Mathematical Programming (ISMP 2015), Cluster “Optimiza-
tion in Energy Systems”, July 13–17, Pittsburgh, USA, July 17.

82. R. HENRION, Conditioning of linear-quadratic two-stage stochastic optimization problems, Charles Univer-
sity, Faculty of Mathematics and Physics, Prague, Czech Republic, March 26.

83. , Calmness as a constraint qualification for MPECs, International Conference on Variational Anal-
ysis, Optimization and Quantitative Finance in Honor of Terry Rockafellar’s 80th Birthday, May 18–22,
Université de Limoges, France, May 21.
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84. , On some relations between probability functions and variational analysis, International Work-
shop “Variational Analysis and Applications”, August 28 – September 5, Erice, Italy, August 31.

85. , (Sub-) Gradient formulae for probability functions with Gaussian distribution, PGMO Days 2015
– Gaspard Monge Program for Optimization and Operations Research, October 27–28, ENSTA ParisTech,
Palaiseau, France, October 28.

86. , (Sub-)Gradient formulae for probability functions with applications to power management, Uni-
versidad de Chile, Centro de Modelamiento Matemático, Santiago de Chile, Chile, November 25.

87. R. HILDEBRAND, Geometry of barriers for 3-dimensional cones, Optimization and Applications in Control
and Data Science, May 13–15, Moscow Institute of Physics and Technology, PreMoLab, Moscow, Russian
Federation, May 15.

88. CH. HIRSCH, Asymptotic properties of collective-rearrangement algorithms, International Conference on
Geometry and Physics of Spatial Random Systems, September 6–11, Karlsruher Institut für Technology
(KIT), Bad Herrenalb, September 7.

89. M. HOFMANN, Numerical solution of the time dependent Schrödinger equation, Seminar Week, Leibniz-
Universität Hannover, Institut für Quantenoptik, Ultrafast Laser Laboratory, Dahnsdorf, October 7.

90. D. HÖMBERG, Optimal coefficient control for semilinear parabolic equations, Fudan University, School of
Mathematical Sciences, Shanghai, China, March 10.

91. , A crash course on optimal control, Fudan University, School of Mathematical Sciences, Shanghai,
China, March 18.

92. , Nucleation, growth, and grain size evolution in multiphase materials, INdAM Workshop “Special
Materials in Complex Systems – SMaCS 2015”, May 18–22, Rome, Italy, May 21.

93. , The digital factory – A perspective for a closer cooperation between math and industry, Workshop
“Mathematics and Computer Science in Practice: Potential and Reality”, December 9–11, Prague, Czech
Republic, December 9.

94. B. JAHNEL, Classes of non-ergodic interacting particle systems with unique invariant measure, Kac-
Seminar, April 30 – May 3, Utrecht University, Department of Mathematics, Netherlands, May 1.

95. , Classes of nonergodic interacting particle systems with unique invariant measure, Workshop “Re-
cent Trends in Stochastic Analysis and Related Topics”, September 20–21, Universität Hamburg, Septem-
ber 21.

96. , Classes of nonergodic interacting particle systems with unique invariant measure, Kyoto Univer-
sity, Research Institute for Mathematical Sciences, Kyoto, Japan, November 16.

97. V. JOHN, A survey on the analysis and numerical analysis of some turbulence models, Universität der Bun-
deswehr München, Institut für Mathematik und Bauinformatik, München, June 23.

98. L. KAMENSKI, A simple implementation for variational mesh generation by means of a geometric discretiza-
tion, International Workshop on Moving Mesh and High Order Numerical Methods, August 5–8, Xiamen
University, Fujian, China, August 7.

99. , On the conditioning of the linear finite element equations with arbitrary anisotropic grids, Interna-
tional Conference on Scientific Computation and Differential Equations (SciCADE 2015), September 14–
18, Universität Potsdam, Campus Griebnitzsee, September 15.

100. P. KEELER, When do wireless network signals appear Poisson?, 18th Workshop on Stochastic Geometry,
Stereology and Image Analysis, March 22–27, Universität Osnabrück, Lingen, March 24.

101. , When do wireless network signals appear Poisson?, Simons Conference on Networks and Stochas-
tic Geometry, May 18–21, University of Texas, Austin, USA, May 20.
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102. , The Poisson–Dirichlet process and coverage in mobile phone networks, Stochastic Processes
and Special Functions Workshop, August 13–14, The University of Melbourne, Melbourne, Australia, Au-
gust 14.

103. , Large-deviation theory and coverage in mobile phone networks, Seminar “Applied Probability”,
The University of Melbourne, Department of Mathematics and Statistics, Australia, August 17.

104. O. KLEIN, A representation result for rate-independent systems, 10th International Symposium on Hystere-
sis Modeling and Micromagnetics (HMM), May 18–20, Iasi, Romania, May 19.

105. W. KÖNIG, Cluster size distribution in classical many-body systems with Lennard–Jones-type potential,
Basque Center for Applied Mathematics, Bilbao, Spain, January 20.

106. , Eigenvalue order statistics and mass concentration in the parabolic Anderson model, Heriot-Watt
University, Department of Mathematics, Analysis Seminar, Edinburgh, UK, January 23.

107. , Eigenvalue order statistics and mass concentration in the parabolic Anderson model, University
of Warwick, Mathematics Institute, Coventry, UK, February 11.

108. , Cluster size distribution in classical many-body systems with Lennard–Jones potential, 18th Work-
shop on Stochastic Geometry, Stereology and Image Analysis, March 22–26, Universität Osnabrück, Lin-
gen, March 24.

109. , Moment asymptotics for a branching random walk in random environment, Applied Mathematics
Seminars, University of Warwick, Mathematics Institute, Coventry, UK, November 6.

110. M. LANDSTORFER, Theory, structure and experimental justification of the metal/electrolyte interface, Work-
shop on Mathematical Modelling of Synthetic Nanopores, March 4–5, Technische Universität Darmstadt,
March 5.

111. , Theory, structure and experimental justification of the metal/electrolyte interface, Minisympo-
sium “ Recent Developments on Electrochemical Interface Modeling” of the 8th International Congress
on Industrial and Applied Mathematics (ICIAM 2015), August 10–14, International Council for Industrial
and Applied Mathematics, Beijing, China, August 11.

112. , Thermodynamics of the metal/electrolyte interface, Solid State Electrochemistry – Workshop
2015, September 6–9, Kloster Roggenburg, September 7.

113. M. LIERO, OLEDs – eine heiße Sache?, Organische Leuchtdioden, Workshop im Handlungsfeld Lichttech-
nik, OpTec Berlin Brandenburg e.V., Berlin, May 18.

114. , On dissipation distances for reaction-diffusion equations — The Hellinger–Kantorovich distance,
Workshop “Collective Dynamics in Gradient Flows and Entropy Driven Structures”, June 1–5, Gran Sasso
Science Institute, L’Aquila, Italy, June 3.

115. , On p(x)-Laplace thermistor models describing electrothermal feedback in organic semiconductor
devices, Università di Pavia, Dipartimento di Matematica, Pavia, Italy, November 17.

116. A. LINKE, Robust discretization of the Coriolis force in Navier–Stokes flows on unstructured grids, Work-
shop “Galerkin Methods with Applications in Weather and Climate Forecasting”, March 23–27, Interna-
tional Centre for Mathematical Sciences, Edinburgh, UK, March 24.

117. , Towards pressure-robust mixed methods for the incompressible Navier–Stokes equations, Tech-
nische Universität Wien, Analysis und Scientific Computing, Wien, August 26.

118. , Toward pressure-robust mixed methods for the incompressible Navier–Stokes equations, Univer-
sité de Montpellier, Institut Montpelliérain Alexander Grothendieck, Montpellier, France, November 24.

119. , Über neue Entwicklungen bei der Diskretisierung der inkompressiblen Navier-Stokes-
Gleichungen: Druckrobustheit und Konstruktion von Benchmarks, Universität Paderborn, Theoretische
Physik, Paderborn, December 2.
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120. P. MATHÉ, IBC for unbounded operators, Workshop on Information-Based Complexity and Model Selection,
April 9–10, Université Pierre et Marie Curie, Institut Henri Poincaré, Paris, France, April 9.

121. , IBC for Bayesian approximation, Information-Based Complexity, April 27 – May 2, Polish Academy
of Sciences, Banach Center, Bedlewo, Poland, April 29.

122. , Minicourse on Computational Statistics, 5 talks, Fudan University, The School of Mathematical
Sciences, Shanghai, China, May 12–22.

123. , Some IBC for ill-posed equations, Regularization Theory of Unstructured Data, May 15–16, Fudan
University, Shanghai, China, May 16.

124. , Minimax signal detection in statistical inverse problems, Algorithms and Complexity for Continu-
ous Problems, September 21–25, Schloss Dagstuhl, September 25.

125. M. MAURELLI, Stochastic 2D Euler equations: A poorly correlated multiplicative noise regularizes the two-
point motion, Universität Augsburg, Institut für Mathematik, March 24.

126. , Enhanced Sanov theorem for Brownian rough paths and an application to interacting particles,
Seminar Stochastic Analysis, Imperial College London, UK, October 20.

127. A. MIELKE, The Chemical Master Equation as a discretization of the Fokker–Planck and Liouville equation
for chemical reactions, Colloquium of Collaborative Research Center/Transregio “Discretization in Geom-
etry and Dynamics”, Technische Universität Berlin, Institut für Mathematik, Berlin, February 10.

128. , The Chemical Master Equation as entropic gradient flow, Conference “New Trends in Optimal
Transport”, March 2–6, Universität Bonn, Institut für Angewandte Mathematik, March 2.

129. , Mathematical modeling for finite-strain elastoplasticity, Intensive Period on Variational Methods
for Plasticity and Dislocations, March 16–20, International School of Advanced Studies (SISSA), Trieste,
Italy, March 16.

130. , The multiplicative strain decomposition in finite-strain elastoplasticity, Intensive Period on Varia-
tional Methods for Plasticity and Dislocations, March 16–20, International School of Advanced Studies
(SISSA), Trieste, Italy, March 17.

131. , Abstract approach to energetic solutions for rate-independent solutions, Intensive Period on Vari-
ational Methods for Plasticity and Dislocations, March 16–20, International School of Advanced Studies
(SISSA), Trieste, Italy, March 18.

132. , Existence results in finite-strain elastoplasticity, Intensive Period on Variational Methods for Plas-
ticity and Dislocations, March 16–20, International School of Advanced Studies (SISSA), Trieste, Italy,
March 19.

133. , A mathematical approach to finite-strain viscoplasticity, Intensive Period on Variational Methods
for Plasticity and Dislocations, March 16–20, International School of Advanced Studies (SISSA), Trieste,
Italy, March 20.

134. , Evolutionary 0 -convergence for gradient systems explained via applications, Symposium “Varia-
tional Methods for Stationary and Evolutionary Problems”, University of Warwick, Mathematics Institute,
Warwick, UK, May 12.

135. , Homogenizing the Penrose–Fife system via evolutionary 0 -convergence, INdAM Workshop “Spe-
cial Materials in Complex Systems – SMaCS 2015”, May 18–20, Rome, Italy, May 19.

136. , Evolutionary 0 -convergence for generalized gradient systems, Workshop “Gradient Flows”,
June 22–23, Université Pierre et Marie Curie, Laboratoire Jacques-Louis Lions, Paris, France, June 22.

137. , Geometric approaches at and for theoretical and applied mechanics, Phil Holmes Retirement Cel-
ebration, October 8–9, Princeton University, Mechanical and Aerospace Engineering, New York, USA, Oc-
tober 8.
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138. , Evolutionary relaxation of a two-phase model, Mini-Workshop “Scales in Plasticity”, November 8–
14, Mathematisches Forschungsinstitut Oberwolfach, November 11.

139. H.-J. MUCHA, Inequality measures and clustering, International Workshop on Partial Orders in Applied
Sciences, April 9–10, Università degli Studi di Firenze, Centro Studi Cisl, Italy, April 9.

140. , Validation of K-means clustering: Why is bootstrapping better than subsampling?, European Con-
ference on Data Analysis 2015, September 2–4, University of Essex, Department of Mathematical Sci-
ences, Colchester, UK, September 2.

141. , A fast pre-clustering method by iterative binary binning, Herbsttagung der AG Datenanalyse und
numerische Klassifikation, November 20–21, Karlsruher Institut für Technologie, November 21.

142. CH. MUKHERJEE, Compactness, large deviations and the mean-field polaron problem, Workshop “Interplay
of Analysis and Probability in Applied Mathematics”, July 27–31, Mathematisches Forschungsinstitut
Oberwolfach, July 28.

143. R. MÜLLER, Modeling of ion transport in nanopores, Workshop “Multiscale Transport of Particles”, Septem-
ber 14–16, Wolfgang Pauli Institute, Vienna, Austria, September 15.

144. H. NEIDHARDT, Boundary triplets and trace formulas, Workshop “Spectral Theory and Weyl Function”, Jan-
uary 5–9, Mathematisches Forschungsinstitut Oberwolfach, January 5.

145. , Boundary triplet approach and tensor products, Seminar “Angewandte Analysis und Numerische
Mathematik”, Technische Universität Graz, Institut für Numerische Mathematik, Graz, Austria, January 29.

146. O. OMEL’CHENKO, Controlling unstable chaos in systems of coupled oscillators, The 8th International Con-
ference on Chaotic Modeling, Simulation and Applications (CHAOS2015), Minisymposium “Emergent Dy-
namics and Control”, May 25–30, Institut Henri Poincaré, Paris, France, May 28.

147. , Chimera states in systems with control, EQUADIFF 2015, Minisymposium 3 “Coupled Oscillator
Systems and their Mean-Field Dynamics”, July 6–10, Lyon, France, July 9.

148. , Chimera states for any taste, Dynamics of Coupled Oscillators: 40 Years of the Kuramoto Mode,
July 27–31, Max Planck Institute for the Physics of Complex Systems, Dresden, July 27.

149. , Creative control of chimera states, XXXV Dynamics Days Europe 2015, Minisymposium “Control-
ling Complex Networks: Interplay of Structure, Noise, and Delay”, September 6–11, University of Exeter,
Centre for Systems, Dynamics and Control, UK, September 9.

150. , Paradoxes of the Kuramoto model, Seminar of the Department of Mathematics, Lomonosov
Moscow State University, Russian Federation, November 25.

151. ST. PATRIZI, Dislocations dynamics: From microscopic models to macroscopic crystal plasticity, Analysis
Seminar, The University of Texas at Austin, Department of Mathematics, USA, January 21.

152. , Dislocations dynamics: From microscopic models to macroscopic crystal plasticity, Seminar, King
Abdullah University of Science and Technologie, SRI – Center for Uncertainty Quantification in Computa-
tional Science & Engineering, Jeddah, Saudi Arabia, March 25.

153. , On a long range segregation model, Seminario di Analisi Matematica, Sapienza Università di
Roma, Dipartimento di Matematica “Guido Castelnuovo”, Italy, April 20.

154. , On a long range segregation model, Seminar, Università degli Studi di Salerno, Dipartimento di
Matematica, Italy, May 19.

155. R.I.A. PATTERSON, Uniqueness and regularity for coagulation-advection problems, Workshop on Theory
and Numerics of Kinetic Equations, June 1–4, Universität Saarbrücken, June 2.

156. J. PELLERIN, Tackling the geometrical complexity of structural models in mesh generation, Meshing Work-
shop, March 19–20, Technische Universität Bergakademie Freiberg, Institut für Geophysik & Geoinfor-
matik, Freiberg, March 20.
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157. , Voronoi-based remeshing of surface structural models: Latest advancements, Société TOTAL E&P
RECHERCHE DEVELOPPEMENT SAS, Pau, France, June 25.

158. D. PESCHKA, Modeling and applications of bilayer flows, Seminar of the Research Training Group GRK
1276 “Structure Formation and Transport in Complex Systems”, Universität des Saarlandes, Institut für
Theoretische Physik, Saarbrücken, January 27.

159. , Thin-film equations with free boundaries, Jahrestagung der Deutschen Mathematiker-
Vereinigung, Minisymposium “Mathematics of Fluid Interfaces”, September 21–25, Universität Hamburg,
Fakultät für Mathematik, Informatik und Naturwissenschaften, Hamburg, September 23.

160. A. PIMENOV, Theoretical analysis of pulse timing jitter in mode-locked semiconductor lasers, International
Symposium “Semiconductor Nanophotonics”, November 2–3, Technische Universität Berlin, Novem-
ber 2.

161. J. POLZEHL, Statistical problems in diffusion weighted MR, University of Minnesota, Biostatistics-Statistics
Working Group in Imaging, Minneapolis, USA, January 30.

162. , Noise quantification in MR experiments, Joint Statistical Meetings 2015, August 10–13, Seattle,
USA, August 12.

163. , Analysing dMRI data: Consequences of low SNR, SAMSI Working group “Structural Connectivity”,
Statistical and Applied Mathematical Sciences Institute (SAMSI), Research Triangle Park, USA, Decem-
ber 8.

164. M. RADSZUWEIT, A non-isothermal phase-field model for damage in biphasic brittle materials, 13th US
National Congress on Computational Mechanics, July 26–30, San Diego, California, USA, July 27.

165. M. RADZIUNAS, Modeling, simulation and analysis of nonlinear dynamics in multisection semiconductor
lasers, Research Seminar, Gediminas Technical University, Department of Mathematical Modelling, Vil-
nius, Lithuania, April 16.

166. , Nonlinear dynamics in mode locked lasers: Modeling, simulations and analysis, 5th Interna-
tional Conference “Telecommunications, Electronics and Informatics” (ICTEI 2015), May 20–24, Chisinau,
Moldova, May 21.

167. J. REHBERG, On maximal parabolic regularity and its applications, Oberseminar “Mathematische Opti-
mierung”, Technische Universität München, Lehrstuhl für Optimalsteuerung, München, May 6.

168. , On maximal parabolic regularity, The Fourth Najman Conference on Spectral Problems for Opera-
tors and Matrices, September 20–25, University of Zagreb, Department of Mathematics, Opatija, Croatia,
September 23.

169. S. REICHELT, Two-scale homogenization of reaction-diffusion systems involving different diffusion length
scales, CASA Colloquium, Eindhoven University of Technology, Centre for Analysis, Scientific Computing
and Applications (CASA), Eindhoven, Netherlands, March 11.

170. D.R.M. RENGER, The inverse problem: From gradient flows to large deviations, Workshop “Analytic Ap-
proaches to Scaling Limits for Random System”, January 26–30, Universität Bonn, Hausdorff Research
Institute for Mathematics, January 26.

171. , Large deviations for reacting particle systems: The empirical and ensemble processes, Workshop
“Interplay of Analysis and Probability in Applied Mathematics”, July 26 – August 1, Mathematisches
Forschungsinstitut Oberwolfach, Oberwolfach, July 30.

172. , The empirical process of reacting particles: Large deviations and thermodynamic principles, Min-
isymposium “Real World Phenomena Explained by Microscopic Particle Models” of the 8th International
Congress on Industrial and Applied Mathematics (ICIAM 2015), August 8–22, International Council for
Industrial and Applied Mathematics, Beijing, China, August 10.
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173. , From large deviations to Wasserstein gradient flows in multiple dimensions, Workshop on Gradi-
ent Flows, Large Deviations and Applications, November 22–29, EURANDOM, Mathematics and Computer
Science Department, Eindhoven, Netherlands, November 23.

174. E. ROCCA, Optimal control of a nonlocal convective Cahn–Hilliard equation by the velocity, Numerical Anal-
ysis Seminars, Durham University, UK, March 13.

175. J.G.M. SCHOENMAKERS, Uniform approximation of the CIR process via exact simulation at random times,
Berlin-Princeton-Singapore Workshop on Quantitative Finance, June 29 – July 1, National University of
Singapore, Centre for Quantitative Finance, Singapore, July 1.

176. H. SI, TetGen, a Delaunay-based tetrahedral mesh generator, Commissariat à l’Énergie Atomique et aux
Énergies Alternatives, Bruyères-le-Châtel, France, July 10.

177. R. SOARES DOS SANTOS, Random walk on a dynamic random environment consisting of a system of inde-
pendent simple symmetric random walks, Oberseminar Stochastik, Technische Universität Darmstadt,
Fachbereich Mathematik, Darmstadt, January 22.

178. , Random walk on random walks, YEP XII: Workshop on Random Walk in Random Environment,
March 23–27, Technical University of Eindhoven, EURANDOM, Netherlands, March 24.

179. , Random walk on random walks, Mathematical Physics Seminar, Université de Genève, Section de
Mathématiques, Genève, Switzerland, April 27.

180. , Mass concentration in the parabolic Anderson model, Oberseminar Stochastik, Johannes-
Gutenberg-Universität, Institut für Mathematik, Mainz, November 17.

181. V. SPOKOINY, Bootstrap confidence sets under model misspecification, Optimization and Statistical Learn-
ing, January 11–16, Institut National de Recherche en Informatique et en Automatique (INRIA), Les
Houches, France, January 15.

182. , Mini Course “Methods of Model Selection”, 6 talks, Methods of Model Selection, February 16 –
March 3, Independent University of Moscow, Moscow Center for Continuous Mathematical Education,
Russian Federation, February 16 – March 3.

183. , Bootstrap based methods in model selection, WISE-CASE Workshop on Econometrics and Statis-
tics, July 4–5, Xiamen University, China, July 4.

184. , Bootstrap calibrated model selection, CRC 649 “Economic Risk” Conference in Motzen, July 16–
18, Humboldt-Universität zu Berlin, Motzen, July 17.

185. , Predictive modeling: Methods and applications, Skolkov Institute of Science and Technology,
Moscow, Russian Federation, August 27.

186. , Bootstrap tuning in model selection, Lomonosov State University, Faculty of Computer Sciences,
Moscow, Russian Federation, September 18.

187. , Nonparametric regression estimation in error-in-variable models, Inverse Problems in Economet-
rics, October 2–3, Northwestern University, Evanston, USA, October 2.

188. , Bootstrap confidence sets, Welcome Workshop 2015 of the International Research Training Group
“High Dimensional Non Stationary Time Series”, October 5, Grünheide, October 5.

189. , Bootstrap-based methods for model, Meeting in Mathematical Statistics 2015 (MMS 2015), De-
cember 14–18, Fréjus, France, December 17.

190. J. SPREKELS, Optimal boundary control problems for Cahn–Hilliard systems with singular potentials and
dynamic boundary conditions, Romanian Academy, Simeon Stoilow Institute of Mathematics, Bucharest,
March 18.
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191. K. TABELOW, msPOAS – An adaptive denoising procedure for dMRI data, Riemannian Geometry in Shape
Analysis and Computational Anatomy, February 23–27, Universität Wien, Erwin Schrödinger International
Institute for Mathematical Physics, Austria, February 25.

192. , To smooth or not to smooth in fMRI, Seminar “Bildgebende Verfahren in den Neurowis-
senschaften: Grundlagen und aktuelle Ergebnisse”, Universitätsklinikum Jena, IDIR, Medical Physics
Group, April 17.

193. M. THOMAS, Rate-independent damage models with spatial BV-regularization — Existence & fine proper-
ties of solutions, Oberseminar “Angewandte Analysis”, Universität Freiburg, Abteilung für Angewandte
Mathematik, Freiburg, February 10.

194. , Coupling rate-independent and rate-dependent processes: Existence results, Applied Mathemat-
ics Seminar, Università di Pavia, Dipartimento di Matematica, Pavia, Italy, March 5.

195. , Coupling rate-independent and rate-dependent processes: Existence and evolutionary Gamma
convergence, INdAM Workshop “Special Materials in Complex Systems – SMaCS 2015”, May 18–22,
Rome, Italy, May 19.

196. , Evolutionary Gamma convergence with application to damage and delamination, Seminar DI-
CATAM, Università di Brescia, Dipartimento di Matematica, Brescia, Italy, June 3.

197. , Analysis of nonsmooth PDE systems with application to material failure—towards dynamic frac-
ture, Minisymposium “Analysis of Nonsmooth PDE Systems with Application to Material Failure” of the
8th International Congress on Industrial and Applied Mathematics (ICIAM 2015), August 10–14, Interna-
tional Council for Industrial and Applied Mathematics, Beijing, China, August 12.

198. E. VALDINOCI, Nonlocal problems – Theory and applications, 5 talks, School/Workshop “Phase Transi-
tion Problems and Nonlinear PDEs”, March 9–11, Università di Bologna, Dipartimento di Matematica,
March 9–11.

199. , Nonlocal minimal surfaces, Seminario di Calcolo delle Variazioni & Equazioni alle Derivate
Parziali, Università degli Studi di Firenze, Dipartimento di Matematica e Informatica “Ulisse Dini”, Italy,
March 13.

200. , Minimal surfaces and phase transitions with nonlocal interactions, Analysis Seminar, University
of Edinburgh, School of Mathematics, UK, March 23.

201. , What is the (fractional) Laplacian?, Perlen-Kolloquium, Universität Basel, Fachbereich Mathema-
tik, Switzerland, May 22.

202. , Nonlocal problems and applications, 3 talks, Summer School on “Geometric Methods for PDEs
and Dynamical Systems”, June 8–11, École Normale Supérieure de Lyon, Unité de Mathématiques Pures
et Appliquées and Institut de Mathématiques, Equipe d’Analyse, Université Bordeaux 1, Porquerolles,
France, June 9–10.

203. , Nonlocal Problems in Analysis and Geometry, 5 talks, 2° Corso Intensivo di Calcolo delle Vari-
azioni, June 15–20, Dipartimento di Matematica e Informatica di Catania, Italy, June 15–19.

204. , Some models arising in crystal dislocations, Global Dynamics in Hamiltonian Systems, June 28 –
July 4, Universitat Politècnica de Catalunya (BarcelonaTech), Girona, Spain, June 29.

205. , Dislocation dynamics in crystals: Nonlocal effects, collisions and relaxation, Mostly Maximum
Principle, September 16–18, Castello Aragonese, Agropoli, Italy, September 16.

206. , Dislocation dynamics in crystals: Nonlocal effects, collisions and relaxation, Second Workshop
on Trends in Nonlinear Analysis, September 24–26, GNAMPA, Universitá degli Studi die Cagliari, Diparti-
mento di Matematica e Informatica, Cagliari, Italy, September 26.

207. A.G. VLADIMIROV, Modelling of mode-locked semiconductor lasers, 24th International SAOT Workshop on
Design, Modelling and Simulation of Lasers, June 17–20, Erlangen, June 19.
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208. , Control of cavity solitons by time-delayed optical feedback, International Conference “Dynamics,
Bifurcations and Strange Attractors”, July 20–24, Nizhny Novgorod, Russian Federation, July 22.

209. W. WAGNER, Probabilistic models for the Schrödinger equation, 6th Workshop “Theory and Numerics of
Kinetic Equations”, June 1–4, Universität Saarbrücken, June 2.

210. , Stochastic weighted algorithms for population balance equations with multi-dimensional type
space, 10th IMACS Seminar on Monte Carlo Methods, July 6–10, Johannes Kepler Universität Linz, Linz,
Austria, July 6.

211. U. WILBRANDT, Classical iterative subdomain methods for the Stokes–Darcy problem, Rheinisch-
Westfälische Technische Hochschule Aachen, Institut für Geometrie und Praktische Mathematik, Aachen,
June 11.

212. S. YANCHUK, Multiscale jittering in oscillators with pulsatile delayed feedback, Short Thematic Program
on Delay Differential Equations, May 11–15, The Fields Institute for Research in Mathematical Sciences,
Toronto, Canada, May 14.

213. , Pattern formation in systems with multiple delayed feedbacks, Minisymposium “Time-delayed
Feedback” of the SIAM Conference on Applications of Dynamical Systems, May 17–21, Society for Indus-
trial and Applied Mathematics, Snowbird/Utah, USA, May 20.

214. , Delay-induced patterns in a two-dimensional lattice of coupled oscillators, 10th Colloquium on
the Qualitative Theory of Differential Equations, July 1–4, University of Szeged, Bolyai Institute, Szeged,
Hungary, July 4.

215. , How time delays influence dynamics, School of the International Research Training Group 1740
“Dynamical Phenomena in Complex Networks”, July 20–21, Humboldt-Universität zu Berlin, Institut für
Physik, Berlin, July 20.

216. , Dynamic jittering and exponentially large number of periodic spiking solutions in oscillators with
pulsatile delayed feedback, XXXV Dynamics Days Europe 2015, Minisymposium “Delay-equations for Op-
toelectronic Systems”, September 7–10, University of Exeter, Centre for Systems, Dynamics and Control,
Exeter, UK, September 7.

217. , Stability of plane wave solutions in complex Ginzburg–Landau equation with delayed feedback,
Jahrestagung der Deutschen Mathematiker-Vereinigung, Minisymposium “Topics in Delay Differential
Equations”, September 21–25, Universität Hamburg, Fakultät für Mathematik, Informatik und Naturwis-
senschaften, Hamburg, September 22.

218. , Time delays and plasticity in neuronal networks, Seminar “Self-assembly and Self-organization
in Computer Science and Biology”, September 27 – October 2, Leibniz-Zentrum für Informatik, Schloss
Dagstuhl, September 28.

A.8.3 Talks for a More General Public

1. A. CIPRIANI, Perkolation, ein Spiel von zufälligen Pflasterungen, 20. Berliner Tag der Mathematik (20th
Berlin Day of Mathematics), Beuth Hochschule für Technik Berlin, May 9.

2. CH. D’ALONZO, Mit Mathematik das Rechnen vereinfachen (vermeiden?), 20. Berliner Tag der Mathematik
(20th Berlin Day of Mathematics), Beuth Hochschule für Technik Berlin, May 9.

3. F. FLEGEL, Kuriositäten aus der Wahrscheinlichkeitsrechnung, Girls’ Day, WIAS Berlin, April 23.

4. C. GUHLKE, Modellierung von Lithium-Ionen-Batterien: Warum wir von Luftballons viel lernen können!,
Lange Nacht der Wissenschaften (Long Night of the Sciences) 2015, WIAS at Leibniz Association Head-
quarters, Berlin, June 13.
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5. B. JAHNEL, Die Poesie der Logik, Lange Nacht der Wissenschaften (Long Night of the Sciences) 2015, WIAS
at Leibniz Association Headquarters, Berlin, June 13.

6. W. KÖNIG, Was ist Zufall und wie kam er in die Mathematik?, Lange Nacht der Wissenschaften (Long Night
of the Sciences) 2015, WIAS at Leibniz Association Headquarters, Berlin, June 13.

7. , Unendlichkeit in der Wahrscheinlichkeitsrechnung, MathInside – Mathematik ist überall, Urania,
Berlin, November 10.

8. , Unendlichkeit in der Wahrscheinlichkeitsrechnung, 2 talks, Tag der Wissenschaften 2015,
Weinberg-Gymnasium Kleinmachnow, Kleinmachnow, December 8.

9. S. REICHELT, Achilles und die Schildkröte, Lange Nacht der Wissenschaften (Long Night of the Sciences)
2015, WIAS at Leibniz Association Headquarters, Berlin, June 13.

10. D.R.M. RENGER, Minimierung in unendlich vielen Dimensionen, 20. Berliner Tag der Mathematik (20th
Berlin Day of Mathematics), Beuth Hochschule für Technik Berlin, May 9.

11. H. STEPHAN, Primzahlen und Pseudoprimzahlen, 20. Berliner Tag der Mathematik (20th Berlin Day of Math-
ematics), Beuth Hochschule für Technik Berlin, May 9.

12. M. WOLFRUM, Nichtlineare Dynamik: Ordnung und Chaos in optoelektronischen Bauelementen, MathInside
– Mathematik ist überall, Urania, Berlin, November 10.

A.8.4 Posters

1. A. KOZIUK, Bootstrap log-likelihood ratio test for linear hypothesis in problem with instrumental variables
under both strong and weak identification, WIAS Workshop “Structured Nonparametric Modeling”, Berlin,
June 4–6.

2. V. WIEDMEYER, F. ANKER, A. VOIGT, V. JOHN, K. SUNDMACHER, Crystal shape evolution in a continuous heli-
cally coiled flow tube crystallizer (HCFT), 10th European Congress of Chemical Engineering (ECCE10), Nice,
France, September 28–29.

3. P. FARRELL, Simulating semiconductor devices: Generalisations of the Scharfetter–Gummel scheme to non-
Boltzmann statistics, 36. Norddeutsches Kolloquium über Angewandte Analysis und Numerische Mathe-
matik (NoKo 2015), Jacobs University Bremen, April 24–25.

4. C. GUHLKE, Modeling of electron transfer reactions in the context of non-equilibrium thermodynamics, 13th
International Fischer Symposium (IFS), Lübeck, June 7–11.

5. M. HOFMANN, Ab-initio description of optical nonlinearities in femtosecond filaments, International Work-
shop “Waves, Solitons and Turbulence in Optical Systems” (WASTOS15), Berlin, October 12–14.

6. M. HOFMANN, C. BRÉE, On the role of Freeman resonances in pump-probe measurements of the nonlinear
refractive index, CLEO/Europe-EQEC 2015 Conference, München, June 19–25.

7. B. JAHNEL, Classes of non-ergodic interacting particle systems with unique invariant measure, Workshop
“Interacting Particles Systems and Non-Equilibrium Dynamics”, Institut Henri Poincaré, Paris, France,
March 9–13.

8. V. JOHN, S. LE BORNE, K. SUNDMACHER, Numerische Lösungsverfahren für gekoppelte Populationsbilanzsys-
teme zur dynamischen Simulation multivariater Feststoffprozesse am Beispiel der formselektiven Kristalli-
sation, Evaluation Colloquium of the Priority Program (SPP) 1679 “Dyn-Sim-FP – Dynamische Simulation
vernetzter Feststoffprozesse”, Frankfurt/Main, January 13.

9. V. JOHN, S. ROCKEL, ST. SOBOLEV, Viscoelastic mantle flow — Numerical modeling of geological phenomena,
4th Annual GEOSIM Workshop, Potsdam, November 17–18.
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10. M. KANTNER, Multi-scale modeling and simulation of electrically pumped single-photon sources, Interna-
tional Nano-Optoelectronics Workshop (iNOW 2015), Tokio, Japan, August 3–7.

11. H.-J. MUCHA, Vergleich römischer und neuzeitlicher Ziegel aus Mainz mittels Clusteranalyse mit Vari-
ablenselektion, Tagung “Archäometrie und Denkmalpflege 2015”, Mainz, March 27.

12. J. POLZEHL, K. TABELOW, Bias in low SNR diffusion MRI experiments: Problems and solution, 21th Annual
Meeting of the Organization for Human Brain Mapping, Honolulu, USA, June 14–18.

13. J. POLZEHL, K. TABELOW, H.U. VOSS, Towards higher spatial resolution in DTI using smoothing, 21th Annual
Meeting of the Organization for Human Brain Mapping, Honolulu, USA, June 14–18.

14. D. PUZYREV, Instabilities of laser cavity solitons induced by delayed feedback, CLEO/Europe-EQEC 2015
Conference, München, June 21–25.

15. , Delay induced multistability and wiggling movement of laser cavity solitons, International Work-
shop “Waves, Solitons and Turbulence in Optical Systems” (WASTOS15), Berlin, October 12–14.

16. M. RADZIUNAS, R. HERRERO, M. BOTEY, K. STALIUNAS, Beam shaping in spatially modulated broad area
edge-emitting semiconductor lasers, CLEO/Europe-EQEC 2015 Conference, München, June 21–25.

17. M. RADZIUNAS, V. TRONCIU, E. LUVSANDAMDIN, CH. KÜRBIS, A. WICHT, H. WENZEL, Coexistence of multiple
stable continuous-wave states in micro-integrated external-cavity diode lasers, CLEO/Europe-EQEC 2015
Conference, München, June 21–25.

18. K. SCHILDKNECHT, A multivariate multiple permutation test for epigenetic data, IXth International Confer-
ence for Multiple Comparison Procedures, Hyderabad, India, September 2–5.

19. J. KRÄMER, M. DEPPE, K. GÖBEL, K. TABELOW, H. WIENDL, S. MEUTH, Recovery of thalamic microstructural
damage after Shiga toxin 2-associated hemolytic-uremic syndrome, 21th Annual Meeting of the Organiza-
tion for Human Brain Mapping, Honolulu, USA, June 14–18.

20. K. TABELOW, M. DELIANO, M. JÖRN, R. KÖNIG, A. BRECHMANN, J. POLZEHL, Towards a population analysis of
behavioral and neural state transitions during associative learning, 21th Annual Meeting of the Organiza-
tion for Human Brain Mapping, Honolulu, USA, June 14–18.

21. H.U. VOSS, J. DYKE, D. BALLON, N. SCHIFF, K. TABELOW, Magnetic resonance advection imaging (MRAI)
depicts vascular anatomy, 21th Annual Meeting of the Organization for Human Brain Mapping, Honolulu,
USA, June 14–18.

22. M. THOMAS, Coupling rate-independent and rate-dependent processes: Existence results, 86th Annual
Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2015), GAMM
Juniors Poster Session, Lecce, Italy, March 23–27.

23. M. WOLFRUM, Chimera states with global feedback, Workshop on Control of Self-Organizing Nonlinear Sys-
tems, Wittenberg, September 14–16.

A.8.5 Contributions to Exhibitions

1. J. FUHRMANN, H. SI, Tetrahedralizations and finite volume models in numerical modeling, Hannover Messe
2015, April 16.

2. N. ROTUNDO, L. HELTAI, Analysis, convergence and experiments on the distributional immersed interface
method, The 13th European Finite Element Fair at Charles University of Prague, Faculty of Mathematics and
Physics, June 5–7, Prague, Czech Republic, June 6.
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A.9 Visits to other Institutions4

1. G. HU, Chinese Academy of Sciences, Institute of Applied Mathematics, Beijing, China, June 8–14.

2. N. AHMED, Technische Universität Dresden, Institut für Numerische Mathematik, March 3–6.

3. R. ALLEZ, University of Cambridge, Statistical Laboratory, UK, January 9–16.

4. , University of Cambridge, Statistical Laboratory, UK, January 22–26.

5. , University of Cambridge, Statistical Laboratory, UK, January 29 – February 16.

6. , University of Cambridge, Statistical Laboratory, UK, February 26 – March 2.

7. , University of Cambridge, Statistical Laboratory, UK, March 18–30.

8. , University of Cambridge, Statistical Laboratory, UK, July 1–13.

9. CH. BAYER, King Abdullah University of Science and Technology (KAUST), Division Computer, Electrical
and Mathematical Science and Engineering, Jeddah, Saudi Arabia, January 6–15.

10. , University of Oslo, Department of Mathematics, Norway, November 16–20.

11. , University of Vienna, Faculty of Mathematics, Austria, November 23–27.

12. L. BLANK, Università della Svizzera Italiana, Institute of Computational Science, Lugano, Switzerland, De-
cember 14–18.

13. A. CAIAZZO, National Laboratory for Scientific Computing, Hemodynamics Modeling Laboratory,
Quitandinha-Petrópolis, Brazil, November 30 – December 11.

14. , Universidad de Chile, Center for Mathematical Modeling, Santiago de Chile, Chile, December 14–
18.

15. E. CINTI, Universität Bonn, Institut für Angewandte Mathematik, February 3–6.

16. , Università di Bologna, Dipartimento di Matematica, Italy, March 7 – April 8.

17. , Universitat Politecnica de Catalunya, Departament de Matematica Aplicada I, Barcelona, Spain,
April 8 – May 15.

18. , Università di Bologna, Dipartimento di Matematica, Italy, May 15–24.

19. , Università di Bologna, Dipartimento di Scienze per la Qualità della Vita, Bologna, Italy, July 10–
20.

20. A. CIPRIANI, Indian Statistical Institute, Theoretical Statistics and Mathematics Unit, Kolkata, India,
April 4–14.

21. , Universität Zürich, Institut für Mathematik, Zürich, Switzerland, September 4–9.

22. , University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft, Netherlands, November 22–28.

23. F. DASSI, Politecnico di Milano, Dipartimento di Matematica “F. Brioschi”, Milano, Italy, November 14–18.

24. K. DISSER, Technische Universität München, Zentrum Mathematik, München, February 1–6.

25. , Heinrich-Heine Universität Düsseldorf, Lehrstuhl für Partielle Differentialgleichungen, Düsseldorf,
April 1 – September 30.

26. M.H. FARSHBAF SHAKER, National Institute for Mathematical Sciences, Division of Computational Mathe-
matics, Daejeon, Korea (Republic of), May 12–21.

4Only stays of more than three days are listed.
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27. , University of Tokyo, Graduate School of Mathematical Sciences, and Ehime University, Depart-
ment of Mathematics, Matsuyama, Japan, October 5–20.

28. S.P. FRIGERI, Politecnico di Milano, Dipartimento di Matematica, Milan, Italy, November 9–13.

29. , Università di Pavia, Dipartimento di Matematica, Pavia, Italy, December 14–18.

30. J. FUHRMANN, Norwegian University of Science and Technology, Department of Physics, Trondheim,
June 4–7.

31. A. GONZÁLEZ CASANOVA SOBERÓN, Centro de Investigación en Matemáticas, Department of Probability and
Statistics, Guanajuato, Mexico, October 31 – November 13.

32. , Universidad Nacional Autónoma de México, Institute of Mathematics, Mexico City, Mexico,
November 14–24.

33. CH. HEINEMANN, Università di Pavia, Dipartimento di Matematica, Italy, March 9–13.

34. , Universität Essen-Duisburg, Fakultät für Mathematik, Essen, November 30 – December 4.

35. R. HENRION, Universidad de Chile, Centro de Modelamiento Matemático, Santiago de Chile, Chile, Novem-
ber 18–27.

36. D. HÖMBERG, Norwegian University of Science and Technology, Department of Mathematical Sciences,
Trondheim, Norway, February 1–5.

37. , Fudan University, School of Mathematical Sciences, Shanghai, China, March 10–20.

38. , Norwegian University of Science and Technology, Department of Mathematical Sciences, Trond-
heim, Norway, August 21 – September 10.

39. , Norwegian University of Science and Technology, Department of Mathematical Sciences, Trond-
heim, Norway, November 23 – December 3.

40. G. HU, Chinese Academy of Sciences, Institute of Applied Mathematics, Beijing, China, November 19 –
December 1.

41. V. JOHN, Universidad Autónoma de Madrid, Departamento de Matemáticas, Spain, March 8–13.

42. , University of Strathclyde, Department of Mathematics and Statistics, Glasgow, UK, December 14–
18.

43. L. KAMENSKI, Xiamen University, School of Mathematical Sciences, China, July 28 – August 4.

44. , Xiamen University, School of Mathematical Sciences, China, August 10–21.

45. P. KEELER, Institut National de Recherche en Informatique et en Automatique (INRIA), Research Group
DYOGENE, Paris, France, March 9–17.

46. , The University of Melbourne, Department of Mathematics and Statistics, Melbourne, Australia,
July 31 – September 6.

47. W. KÖNIG, Heriot-Watt-University, Department of Mathematics, Edinburgh, UK, January 21–24.

48. , University of Warwick, Mathematics Institute, Coventry, UK, February 9–14.

49. , University of Warwick, Mathematics Institute, Coventry, UK, April 27 – May 1.

50. , University of Warwick, Mathematics Institute, Coventry, UK, November 2–8.

51. , Courant Institute, Department of Mathematics, New York, USA, November 24 – December 3.

52. M. LIERO, Technische Universität München, Zentrum Mathematik, München, February 1–6.

53. , Università di Pavia, Dipartimento di Matematica, Pavia, Italy, November 15–21.

54. P. MATHÉ, Fudan University, The School of Mathematical Sciences, Shanghai, China, May 6–30.
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55. , Technische Universität Chemnitz, Fachbereich Mathematik, November 30 – December 4.

56. M. MAURELLI, Universität Augsburg, Institut für Mathematik, March 23–27.

57. , Università di Pisa, Dipartimento di Matematica, Italy, June 3–13.

58. H. NEIDHARDT, Technische Universität Graz, Institut für Numerische Mathematik, Graz, Austria, Jan-
uary 26–31.

59. , Kyoto University, Research Institute for Mathematical Sciences (RIMS), Kyoto, Japan, Septem-
ber 5–20.

60. , Hiroshima University, Institute of Engineering, Hiroshima, Japan, September 20–27.

61. , Université d’Aix-Marseille, Centre de Mathématiques et Informatique, Marseille, France, Novem-
ber 30 – December 10.

62. O. OMEL’CHENKO, Lomonosov Moscow State University, Faculty of Physics, Department of Mathematics,
Moscow, Russian Federation, November 20–26.

63. ST. PATRIZI, The University of Texas at Austin, Department of Mathematics, USA, January 19 – February 5.

64. , King Abdullah University of Science and Technologie, SRI – Center for Uncertainty Quantification
in Computational Science & Engineering, Jeddah, Saudi Arabia, March 15–25.

65. , Università degli Studi di Roma “La Sapienza”, Dipartimento di Matematica “Guido Castelnuovo”,
Italy, March 27 – May 22.

66. J. PELLERIN, TOTAL E&P RECHERCHE DEVELOPPEMENT SAS, Pau, France, June 22 – July 10.

67. J. POLZEHL, University of Minnesota, School of Statistics, USA, January 22 – February 19.

68. M. RADZIUNAS, Gediminas Technical University, Department of Mathematical Modeling and Analysis, Vil-
nius, Lithuania, April 15–19.

69. J. REHBERG, Technische Universität München, Lehrstuhl für Optimalsteuerung, München, May 5–8.

70. N. ROTUNDO, International School of Advanced Studies (SISSA), Mathematics, Trieste, Italy, January 19–
23.

71. , International School of Advanced Studies (SISSA), Mathematics, Trieste, Italy, February 16–20.

72. , International School of Advanced Studies (SISSA), Mathematics, Trieste, Italy, November 12–24.

73. R. SCALA, Universidade Nova de Lisboa, Faculdade de Ciencias e Tecnologia, Caparica, Portugal, Decem-
ber 16–20.

74. G. SCHMIDT, Università degli Studi di Roma “La Sapienza”, Dipartimento di Matematica, Italy, Septem-
ber 16–30.

75. R. SOARES DOS SANTOS, Université Claude Bernard, Institut Camille Jordan, Lyon, France, April 6–13.

76. , Université de Genève, Section de Mathématiques, Genève, Switzerland, April 26–29.

77. , Johannes-Gutenberg-Universität, Institut für Mathematik, Mainz, November 16–20.

78. , Université Claude Bernard, Institut Camille Jordan, Lyon, France, November 22–29.

79. V. SPOKOINY, Russian Academy of Sciences, Kharkevich Institute for Information Transmission Problems,
PreMoLab, Moscow, Russian Federation, February 28 – March 6.

80. , Russian Academy of Sciences, Kharkevich Institute for Information Transmission Problems, Pre-
MoLab, Moscow, Russian Federation, June 27–30.

81. , Skolkov Institute of Science and Technology, Moscow, Russian Federation, August 26 – Septem-
ber 6.
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82. , Moscow Institute of Physics and Technology, PreMoLab, Russian Federation, November 23–28.

83. J. SPREKELS, Romanian Academy, Simeon Stoilow Institute of Mathematics, Bucharest, March 16–20.

84. M. THOMAS, Universität Freiburg, Abteilung für Angewandte Mathematik, Freiburg, February 5–11.

85. , Polytechnic University of Turin, Department of Mathematics, Turin, Italy, February 26 – March 1.

86. , University of Pavia, Department of Mathematics, Pavia, Italy, March 2–6.

87. , University of Brescia, Department of Mathematics, Brescia, Italy, June 1–5.

88. , Universität Wien, Fakultät für Mathematik, Wien, Austria, June 22–26.

89. E. VALDINOCI, University of Edinburgh, School of Mathematics, UK, January 27 – February 2.

90. , Université de Picardie Jules Verne, Faculté des Sciences, Amiens, France, February 2–8.

91. , Università di Bologna, Dipartimento di Matematica, Italy, March 9–13.

92. , University of Edinburgh, School of Mathematics, UK, March 16–29.

93. , Columbia University, Department of Mathematics, New York, USA, March 29 – May 16.

94. , University of Edinburgh, School of Mathematics, UK, May 16–21.

95. , Universität Basel, Departement Mathematik und Informatik, Switzerland, May 21–24.

96. , University of Edinburgh, School of Mathematics, UK, June 2–8.

97. , Universidad Autónoma de Madrid, Department of Mathematics, Spain, June 22–28.

98. , Université de Picardie Jules Verne, Faculté de Mathématiques et d’Informatique, Amiens, France,
September 24 – October 2.

99. B. WAGNER, University of Oxford, Mathematical Institute, UK, March 16–20.

100. , University of Oxford, Mathematical Institute, UK, November 4–18.

101. U. WILBRANDT, Indian Institute of Science, Supercomputer Education & Research Centre, Bangalore,
March 3–15.

102. M. ZHILOVA, Russian Academy of Sciences, Kharkevich Institute for Information Transmission Problems,
PreMoLab, Moscow, Russian Federation, February 23 – March 6.
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A.10 Academic Teaching5

Winter Semester 2014/2015

1. L. RECKE, U. BANDELOW, Mathematische Modelle der Photonik (research seminar), Humboldt-Universität zu
Berlin/WIAS Berlin, 2 SWS.

2. A. CAIAZZO, Analysis II für Physiker (lecture), Freie Universität Berlin, 4 SWS.

3. TH. DICKHAUS, Nichtparametrische Testtheorie (lecture), Humboldt-Universität zu Berlin, 2 SWS.

4. W. DREYER, Grundlagen der Kontinuumstheorie I: Tensoranalysis (lecture), Technische Universität Berlin,
4 SWS.

5. M. EIGEL, Numerische Mathematik II für Ingenieure (lecture), Technische Universität Berlin, 4 SWS.

6. M.H. FARSHBAF SHAKER, Optimalsteuerung bei partiellen Differentialgleichungen (lecture), Technische Uni-
versität Berlin, 4 SWS.

7. P. FRIZ, Rough Paths and Related Topics (senior seminar), Technische Universität Berlin, 2 SWS.

8. , Stochastik und Finanzmathematik (seminar), Technische Universität Berlin, 2 SWS.

9. D. BECHERER, J. BLATH, P. FRIZ, W. KÖNIG, ET AL., Berliner Kolloquium Wahrscheinlichkeitstheorie (seminar),
Humboldt-Universität zu Berlin, 2 SWS.

10. A. GLITZKY, Einführung in die Kontrolltheorie (lecture), Humboldt-Universität zu Berlin, 2 SWS.

11. A. GLITZKY, A. MIELKE, J. SPREKELS, Nichtlineare partielle Differentialgleichungen (Langenbach-Seminar)
(senior seminar), WIAS Berlin/Humboldt-Universität zu Berlin, 2 SWS.

12. D. HÖMBERG, Nichtlineare Optimierung (seminar), Technische Universität Berlin, 2 SWS.

13. V. JOHN, Numerical Methods for Incompressible Flow Problems II (lecture), Freie Universität Berlin, 4 SWS.

14. , Numerical Methods for Incompressible Flow Problems II (practice), Freie Universität Berlin, 2 SWS.

15. J. BLATH, W. KÖNIG, Stochastic Processes in Physics and Biology (senior seminar), Technische Universität
Berlin, 2 SWS.

16. R.I.A. PATTERSON, Theorie der Großen Abweichungen (lecture), Freie Universität Berlin, 2 SWS.

17. V. SPOKOINY, Nichtparametrische Statistik (lecture), Humboldt-Universität zu Berlin, 4 SWS.

18. , Nichtparametrische Statistik (practice), Humboldt-Universität zu Berlin, 2 SWS.

19. V. SPOKOINY, W. HÄRDLE, M. REISS, G. BLANCHARD, Mathematical Statistics (seminar), Humboldt-Universität
zu Berlin, 2 SWS.

20. J. SPREKELS, Höhere Analysis I (lecture), Humboldt-Universität zu Berlin, 4 SWS.

21. H. STEPHAN, Funktionalanalytische Methoden in der klassischen Physik (lecture), Humboldt-Universität zu
Berlin, 2 SWS.

22. K. TABELOW, Mathematik (seminar), Steinbeis-Hochschule Berlin, 2 SWS.

23. B. WAGNER, Asymptotische Analysis I (lecture), Technische Universität Berlin, 2 SWS.

24. , Dünne Schichten – Freie Randwertprobleme (seminar), Technische Universität Berlin, 2 SWS.

25. M. WOLFRUM, B. FIEDLER, ST. LIEBSCHER, Nonlinear Dynamics (senior seminar), WIAS Berlin/Freie Univer-
sität Berlin, 2 SWS.

5SWS = semester periods per week
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26. S. YANCHUK, Angewandte Analysis (research seminar), Humboldt-Universität zu Berlin, 2 SWS.

Summer Semester 2015

1. S. AMIRANASHVILI, Theorie nichtlinearer Phänomene in der Photonik (lecture), Humboldt-Universität zu
Berlin, 3 SWS.

2. L. RECKE, U. BANDELOW, Mathematische Modelle der Photonik (research seminar), Humboldt-Universität zu
Berlin/WIAS Berlin, 2 SWS.

3. CH. BAYER, Stochastik I (lecture), Humboldt-Universität zu Berlin, 4 SWS.

4. , Berufsbezogenes Fachseminar – Stochastik (seminar), Humboldt-Universität zu Berlin, 2 SWS.

5. , Stochastik I (practice), Humboldt-Universität zu Berlin, 2 SWS.

6. K. DISSER, Lineare Algebra I (lecture), Heinrich-Heine-Universität Düsseldorf, 4 SWS.

7. , Analysis: Navier-Stokes-Gleichungen (seminar), Heinrich-Heine-Universität Düsseldorf, 2 SWS.

8. , Lineare Algebra I (practice), Heinrich-Heine-Universität Düsseldorf, 4 SWS.

9. W. DREYER, Grundlagen der Kontinuumstheorie II: Kontinuumsphysik (lecture), Technische Universität
Berlin, 4 SWS.

10. M.H. FARSHBAF SHAKER, Lineare Algebra für Ingenieure (lecture), Technische Universität Berlin, 2 SWS.

11. P. FRIZ, Rough Paths and Regularity Structures (lecture), Technische Universität Berlin, 2 SWS.

12. , Rough Paths and Related Topics (senior seminar), Technische Universität Berlin, 2 SWS.

13. D. BECHERER, J. BLATH, P. FRIZ, W. KÖNIG, ET AL., Berliner Kolloquium Wahrscheinlichkeitstheorie (seminar),
Technische Universität Berlin, 2 SWS.

14. A. GLITZKY, A. MIELKE, J. SPREKELS, Nichtlineare partielle Differentialgleichungen (Langenbach-Seminar)
(senior seminar), WIAS Berlin/Humboldt-Universität zu Berlin, 2 SWS.

15. D. HÖMBERG, Variational Calculus and Optimal Control of Ordinary Differential Equations (13 two-hour lec-
tures from Aug. 21 to Sept. 10, 2015) (lecture), Norwegian University of Science and Technology, Trond-
heim, – SWS.

16. , Variationsrechnung und optimale Steuerung partieller Differentialgleichungen (lecture), Techni-
sche Universität Berlin, 4 SWS.

17. V. JOHN, Numerical Methods for Convection-Dominated and Turbulent Flow Problems (lecture), Freie Univer-
sität Berlin, 2 SWS.

18. , Numerical Methods for Convection-Dominated and Turbulent Flow Problems (practice), Freie Uni-
versität Berlin, 2 SWS.

19. L. KAMENSKI, Analysis I (lecture), Freie Universität Berlin, 4 SWS.

20. , Analysis I (practice), Freie Universität Berlin, 2 SWS.

21. W. KÖNIG, Zufällige Netzwerke für Kommunikation (seminar), Technische Universität Berlin, 2 SWS.

22. A. LINKE, Numerik mit partiellen Differentialgleichungen (lecture), Technische Universität Dresden, 3 SWS.

23. , Optimierung und Numerik (lecture), Technische Universität Dresden, 3 SWS.

24. , Numerik mit partiellen Differentialgleichungen (practice), Technische Universität Dresden, 1 SWS.

25. , Optimierung und Numerik (practice), Technische Universität Dresden, 1 SWS.
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26. R. MÜLLER, Iterative Verfahren für lineare Gleichungssysteme (lecture), Humboldt-Universität zu Berlin,
2 SWS.

27. V. SPOKOINY, W. HÄRDLE, M. REISS, G. BLANCHARD, Mathematical Statistics (seminar), Humboldt-Universität
zu Berlin, 2 SWS.

28. H. STEPHAN, Funktionalanalytische Methoden in der klassischen Physik II (lecture), Humboldt-Universität
zu Berlin, 2 SWS.

29. K. TABELOW, Mathematik (seminar), Steinbeis-Hochschule Berlin, 2 SWS.

30. B. WAGNER, Asymptotische Analysis II (lecture), Technische Universität Berlin, 2 SWS.

31. , Mathematische Modellierung (lecture), Technische Universität Berlin, 4 SWS.

32. , Dünne Schichten – Freie Randwertprobleme (seminar), Technische Universität Berlin, 2 SWS.

33. M. WOLFRUM, B. FIEDLER, ST. LIEBSCHER, Nonlinear Dynamics (senior seminar), WIAS Berlin/Freie Univer-
sität Berlin, 2 SWS.

34. S. YANCHUK, Angewandte Analysis (research seminar), Humboldt-Universität zu Berlin, 2 SWS.

Winter Semester 2015/2016

1. S. AMIRANASHVILI, U. BANDELOW, Nichtlineare Dynamik in der Photonik (lecture), Humboldt-Universität zu
Berlin, 4 SWS.

2. L. RECKE, U. BANDELOW, Mathematische Modelle der Photonik (research seminar), Humboldt-Universität zu
Berlin/WIAS Berlin, 2 SWS.

3. M. EIGEL, Tensor Product Approximation in Uncertainty Quantification (lecture), Technische Universität
Berlin, 4 SWS.

4. P. FRIZ, Rough Paths and Related Topics (senior seminar), Technische Universität Berlin, 2 SWS.

5. , Stochastic Analysis and Quantitative Finance (seminar), Technische Universität Berlin, 2 SWS.

6. D. BECHERER, J. BLATH, P. FRIZ, W. KÖNIG, ET AL., Berliner Kolloquium Wahrscheinlichkeitstheorie (seminar),
WIAS Berlin, 2 SWS.

7. A. GLITZKY, A. MIELKE, J. SPREKELS, Nichtlineare partielle Differentialgleichungen (Langenbach-Seminar)
(senior seminar), WIAS Berlin/Humboldt-Universität zu Berlin, 2 SWS.

8. R. HENRION, Stochastische Optimierung (lecture), Humboldt-Universität zu Berlin, 2 SWS.

9. A. MIELKE, K. DISSER, Mehrdimensionale Variationsrechnung/BMS Advanced Course on Multidimensional
Calculus of Variations (lecture), Humboldt-Universität zu Berlin, 4 SWS.

10. , Mehrdimensionale Variationsrechnung/BMS Advanced Course on Multidimensional Calculus of
Variations (practice), Humboldt-Universität zu Berlin, 2 SWS.

11. R.I.A. PATTERSON, Stochastic Process Convergence (lecture), Technische Universität Berlin, 2 SWS.

12. J.G.M. SCHOENMAKERS, Berechnungs- und Simulationsmethoden in der Finanzmathematik (lecture),
Humboldt-Universität zu Berlin, 3 SWS.

13. V. SPOKOINY, W. HÄRDLE, M. REISS, G. BLANCHARD, Mathematical Statistics (seminar), Humboldt-Universität
zu Berlin, 2 SWS.

14. K. TABELOW, Mathematik (seminar), Steinbeis-Hochschule Berlin, 2 SWS.

15. M. WOLFRUM, B. FIEDLER, P. GUREVICH, Nonlinear Dynamics (senior seminar), Freie Universität Berlin/WIAS
Berlin, 2 SWS.
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A.11 Weierstrass Postdoctoral Fellowship Program
In 2005, the Weierstrass Institute launched the Weierstrass Postdoctoral Fellowship Program (see http:
//www.wias-berlin.de/jobs/fellowship.jsp?lang=1). The institute offers postgraduate fel-
lowships with a duration of six to twelve months. These fellowships are designed to enable highly-qualified
young scientists to participate in the research into the mathematical problems in the institute’s main applica-
tion areas and thus to further their education and training.

The fellowships can be started anytime in the year. The application deadlines are February 28 and August 31
of each year.

In 2015, Dr. Sergio Simonella (Technische Universität München) and Dr. Tigran Nagapetyan (Fraunhofer-Institut
für Techno- und Wirtschaftsmathematik, Kaiserslautern) worked as fellowship holders at WIAS.
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A.12 Visiting Scientists6

A.12.1 Guests

1. L. ADAMYAN, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, International Re-
search Training Group (IRTG) 1792 “High Dimensional Non Stationary Time Series”, Berlin, Decem-
ber 1, 2015 – December 31, 2016.

2. N. AKHMEDIEV, Australian National University, Institute of Advanced Studies, Optical Science Group, Can-
berra, October 4–16.

3. R. ARKHIPOV, Berlin, January 15–31.

4. L. AVENA, University of Leiden, Mathematical Institute, Leiden, Netherlands, November 2–6.

5. G.R. BARRENECHEA, University of Strathclyde, Department of Mathematics and Statistics, Glasgow, UK,
August 30 – September 7.

6. J. BEHRNDT, Technische Universität Graz, Institut für Numerische Mathematik, Graz, Austria, August 24 –
September 6.

7. T. BENACCHIO, Met Office, Dynamics Research, Exeter, UK, September 10–21.

8. C. BERTOGLIO, Universidad de Chile, Center for Mathematical Modeling, Santiago, March 2–6.

9. O. BLONDEL, Université Claude Bernard Lyon 1, Institut Camille Jordan, Villeurbanne, France, May 21–28.

10. N. BOCHKINA, University of Edinburgh, The School of Mathematics, UK, April 12–17.

11. A. BOITSEV, St. Petersburg National University of Information Technologies, Mechanics and Optics, De-
partment of Higher Mathematics, St. Petersburg, Russian Federation, November 9–14.

12. J. BRASSEUR, Université de Lyon, Ecole Normale Supérieure de Lyon, Département de Mathématiques,
Lyon, France, May 25 – August 21.

13. V.M. BUCHSTABER, Steklov Mathematical Institute, Department of Geometry and Topology, Moscow, Rus-
sian Federation, January 7–10.

14. C. BUCUR, Università degli Studi di Milano, Dipartimento di Matematica, Milano, Italy, February 23 –
March 8.

15. ST. BÜRGER, Technische Universität Chemnitz, Fakultät für Mathematik, March 16–20.

16. O. BURYLKO, National Academy of Sciences of Ukraine, Institute of Mathematics, Kiev, Ukraine, Novem-
ber 24 – December 23.

17. X. CABRÉ, Universitat Politècnica de Catalunya, Institució Catalana de Recerca i Estudis Avancats, Depar-
tament de Matemàtica Aplicada I, Barcelona, Spain, November 23–29.

18. Z. CAO, Beihang University, School of Instrument Science and Opto-Electronic Engineering, Beijing, China,
August 13–16.

19. A. CARPENTIER, Universität Potsdam, Institut für Mathematik, Potsdam, October 1 – December 31.

20. C. CAVATERRA, Università degli Studi di Milano, Dipartimento di Matematica, Italy, April 19–29.

21. , June 14–20.

22. , September 21–24.

23. X. CHEN, Yale University, Department of Economics, New Haven, USA, October 20–25.

6Only stays of more than three days are listed.
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24. A. CHIARINI, Université d’Aix-Marseille, Centre de Mathématiques et d’Informatique, Marseille, France,
October 23–28.

25. H. CHIBA, Kyushu University, Institute of Mathematics for Industry, Fukuoka, Japan, July 12–26.

26. R. ČIEGIS, Gediminas Technical University, Department of Mathematical Modeling, Vilnius, Lithuania, Jan-
uary 12–24.

27. , September 20–25.

28. P. COLLI, Università degli Studi di Pavia, Dipartimento di Matematica “F. Casorati”, Italy, June 7–12.

29. M. COZZI, Università degli Studi di Milano, Dipartimento di Matematica “Federigo Enriques”, Milano, Italy,
February 23 – March 6.

30. M. DAI, University of Illinois at Chicago, Department of Mathematics, Statistics and Computer Science,
Chicago, USA, March 29 – April 7.

31. S. DAMES, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, Center for Applied
Statistics and Economics, May 8, 2014 – January 31, 2015.

32. M. DEL PINO, Universidad de Chile, Departamento de Ingeniería Matemática y Centro de Modelamiento
Matemático, Santiago, Chile, January 27 – February 2.

33. A. DIEB, Ibn Khaldoun University, Department of Mathematics, Tiaret, Algeria, November 22, 2015 – Jan-
uary 31, 2016.

34. A.L. DINIZ, CEPEL – Brazilian Electric Energy Research Center, Rio de Janeiro, Brazil, September 13–16.

35. S. DIPIERRO, University of Edinburgh, School of Mathematics, Edinburgh, UK, February 12–20.

36. P. DVURECHENSKII, Moscow Institute of Physics and Technology, PreMoLab, Russian Federation, April 27–
30.

37. M. EGERT, Technische Universität Darmstadt, Fachbereich Mathematik, Darmstadt, February 9–13.

38. M. FATHI, University of California, Department of Mathematics, Berkeley, USA, November 1–4.

39. E. FEIREISL, Academy of Sciences of the Czech Republic, Institute of Mathematics, Prague, Czech Republic,
March 30 – April 3.

40. M. FRÉMOND, Università degli Studi di Roma “Tor Vergata”, Dipartimento di Ingegneria Civile e Ingegneria
Informatica, Italy, June 1–5.

41. S.K. GANESAN, Indian Institute of Science, Supercomputer Education and Research Centre, Bangalore,
June 15–18.

42. Y. GAO, Université Paris-Sud, Laboratoire d’Analyse Numérique, Orsay, France, September 21 – October 2.

43. A. GASNIKOV, Moscow Institute of Physics and Technology, PreMoLab, Russian Federation, June 6–11.

44. G. GIACOMELLI, Institute of Complex Systems, Florence, Italy, July 22 – September 9.

45. G. GILARDI, Università degli Studi di Pavia, Dipartimento di Matematica “F. Casorati”, Italy, June 7–12.

46. N. GOERIGK, Elektronische Fahrwerksysteme GmbH, Gaimersheim, October 11–16.

47. A. GOLDENSCHLUGER, University of Haifa, Department of Statistics, Israel, August 13 – September 13.

48. M. GROZA, Université de Nice Sophia Antipolis, Laboratoire de Mathématiques “J.A. Dieudonné”, Nice,
France, February 8–14.

49. S. GUREVICH, Wilhelms-Universität Münster, Institut für Theoretische Physik, March 9–14.

50. F. HAMEL, Université d’Aix-Marseille, Institut de Mathématiques de Marseille, Marseille, France, May 24–
29.
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51. R. HAZRA, Indian Statistical Institute, Department Theoretical Statistics and Mathematics, Kolkata, India,
September 10–18.

52. M. HEIDA, Technische Universität Dortmund, Fakultät für Mathematik, Dortmund, March 23–27.

53. L. HELTAI, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Mathematical Analysis, Modeling,
and Applications, Trieste, Italy, April 13–24.

54. , September 24 – October 9.

55. , December 7–15.

56. M. HERRMANN, Westfälische Wilhelms-Universität Münster, Angewandte Mathematik, Münster, Novem-
ber 16–19.

57. B. HOFMANN, Technische Universität Chemnitz, Fakultät für Mathematik, September 14–18.

58. J. HOROWITZ, Northwestern University, Department of Economics, Evanston, Illinois, USA, May 31 – June 7.

59. V. KLINSHOV, Russian Academy of Sciences, Institute of Applied Physics, Nizhny Novgorod, Russian Feder-
ation, February 9 – March 31.

60. Y. KLOCHKOV, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, International Re-
search Training Group (IRTG) 1792 “High Dimensional Non Stationary Time Series”, October 1 – Decem-
ber 31.

61. D. KNEES, Universität Kassel, Institut für Mathematik, Kassel, August 1–7.

62. , November 27 – December 4.

63. P. KNOBLOCH, Charles University, Institute of Numerical Mathematics, Prague, Czech Republic, August 31 –
September 4.

64. A. KOZIUK, Russian Academy of Sciences, Institute for Information Transmission Problems, Moscow, Rus-
sian Federation, June 3–8.

65. M. KRAFT, University of Cambridge, Department of Chemical Engineering and Biotechnology, UK, July 20 –
August 21.

66. C. KREISBECK, Universität Regensburg, Institut für Mathematik, Regensburg, September 20–30.

67. P. KREJČÍ, Academy of Sciences of the Czech Republic, Institute of Mathematics, Prague, Czech Republic,
May 23–29.

68. K.F. LAM, Universität Regensburg, Fakultät für Mathematik, Regensburg, December 13–18.

69. G. LI, University of Cambridge, Faculty of Mathematics, UK, June 9–19.

70. X. LIU, Chinese Academy of Sciences, Institute of Applied Mathematics, Beijing, China, April 13–19.

71. H. MAI, ENSAE ParisTech, Centre de Recherche en Economie et Statistique, Laboratoire de Statistique,
Malakoff, France, October 6–11.

72. D. MAIA, National Institute for Space Research, Laboratório Associado de Computação e Matemática Apli-
cada, São José dos Campos, Brazil, October 8 – December 31.

73. M.M. MALAMUD, Institute of Applied Mathematics and Mechanics, Partial Differential Equations,
Slavyansk, Ukraine, April 1–30.

74. M. MALIOUTOV, Northeastern University, Department of Mathematics, Boston, USA, January 7–11.

75. , June 15–24.

76. E. MAMMEN, Universität Mannheim, Institut für Informatik und Wirtschaftsinformatik, May 29 – June 2.
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77. M. MILIČEVIĆ, Albert-Ludwigs-Universität Freiburg, Abteilung für Angewandte Mathematik, Freiburg, De-
cember 6–11.

78. CH. MUKHERJEE, Technische Universität München, Lehrstuhl für Wahrscheinlichkeitstheorie, March 23–
31.

79. O. MUSCATO, Università degli Studi di Catania, Dipartimento di Matematica e Informatica (DMI), Italy,
March 9–13.

80. , July 26 – August 7.

81. M. MUSSO, Universidad de Chile, Departamento de Ingeniería Matemática y Centro de Modelamiento
Matemático, Santiago, Chile, January 27 – February 2.

82. TH.N. NGUYEN, Université Paris-Sud, Département de Mathématiques de la Faculté des Sciences d’Orsay,
Paris, France, July 13–16.

83. J. NOVO, Universidad Autónoma de Madrid, Instituto de Ciencias Matemáticas, Madrid, Spain, June 8–12.

84. T. ORENSHTEIN, Université Claude Bernard Lyon 1, Institut Camille Jordan, France, June 29 – July 3.

85. Ł. PŁOCINICZAK, Wrocław University of Technology, Institute of Mathematics and Computer Science,
Poland, April 20 – May 9.

86. R. RICHTER, Max-Planck-Institut Halbleiterlabor, München, August 28 – September 1.

87. , October 8–12.

88. CH. RITTER, Université Catholique de Louvain, Louvain School of Statistics, Biostatistics and Actuarial
Sciences, Louvain-la-Neuve, France, December 14–17.

89. T. ROUBÍČEK, Charles University, Mathematical Institute, Prague, Czech Republic, April 7 – May 7.

90. T. ROUBÍČEK, Czech Academy of Sciences, Institute of Thermomechanics, Prague, Czech Republic, Novem-
ber 4 – December 4.

91. S. RUBINO, Universidad de Sevilla, Facultad de Matemáticas, Sevilla, Spain, January 17–29.

92. M. SÁEZ, Pontificia Universidad Católica de Chile, Facultad de Matemáticas, Santiago de Chile, Septem-
ber 7–13.

93. G. SAVARÉ, Università di Pavia, Dipartimento di Matematica, Pavia, Italy, June 17–21.

94. K. SCHADE, Technische Universität Darmstadt, Fachbereich Mathematik, Darmstadt, February 9–13.

95. M. SCHONBEK, University of California, Department of Mathematics, Santa Cruz, USA, March 16–20.

96. , March 30 – April 4.

97. B. SEGUIN, University of Dundee, Department of Mathematics, Dundee, UK, June 7–11.

98. U. SHARMA, Eindhoven University of Technology, Department of Mathematics and Computer Science, Eind-
hoven, Netherlands, November 17–20.

99. N. SOAVE, Justus-Liebig-Universität Gießen, Mathematisches Institut, Gießen, July 19 – August 1.

100. K. STURM, Universität Duisburg-Essen, Fakultät für Mathematik, January 5–16.

101. , July 20–24.

102. , September 12–18.

103. A. SUVORIKOVA, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, International Re-
search Training Group (IRTG) 1792 “High Dimensional Non Stationary Time Series”, October 1, 2014 –
March 31, 2016.
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104. A.F.M. TER ELST, The University of Auckland, Department of Mathematics, Auckland, New Zealand, Decem-
ber 5–19.

105. E. TOBISCH, Johannes Kepler Universität, Institut für Analysis, Linz, Austria, October 11–17.

106. M. TRETYAKOV, University of Nottingham, School of Mathematical Sciences, UK, April 13–24.

107. D. TURAEV, Imperial College London, Department of Mathematics, UK, May 21–30.

108. V. ULYANOV, Lomonosov Moscow State University, Department of Mathematical Statistics, Probability The-
ory, Statistics, Russian Federation, July 20 – August 3.

109. A. WAHAB, COMSATS Institute of Information Technology, Mathematics Department, Wah Cantt, Pakistan,
August 7–14.

110. H. WEN, University of Oxford, Department of Physics, Oxford, UK, October 11–16.

111. H. WU, Fudan University, School of Mathematical Sciences, Shanghai, China, May 12–16.

112. , September 30 – October 14.

113. T. YIN, Chongqing University, College of Mathematics and Statistics, China, July 11 – August 10.

114. S. YOSHIKAWA, Ehime University, Department of Engineering for Production and Environment, Matsuyama,
Japan, January 19–23.

115. V. ZAGREBNOV, Université d’Aix-Marseille, Centre de Mathématiques et Informatique, Marseille, France,
June 10–24.

116. CH. ZANINI, Politecnico di Torino, Dipartimento di Matematica, Turin, Italy, July 29 – August 4.

117. A.D. ZARNESCU, University of Sussex, School of Mathematical and Physical Sciences, Brighton, UK,
March 16–21.

118. P.A. ZEGELING, Utrecht University, Mathematical Institute, Utrecht, Netherlands, May 24–29.

A.12.2 Scholarship Holders

1. F. CAFORIO, Università degli Studi di Trento, Italy, Erasmus+ Traineeship, February 16 – May 15.

2. F. CAFORIO, Università degli Studi di Trento, Italy, Erasmus+ Traineeship, September 1 – October 31.

3. F. DASSI, Politecnico di Milano, Italy, Leibniz-DAAD Research Fellowship, October 1, 2014 – Septem-
ber 30, 2015.

4. T. NAGAPETYAN, Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Kaiserslautern, Weierstrass Post-
doctoral Fellowship Program, June 1, 2014 – May 31, 2015.

5. S. SIMONELLA, Technische Universität München, Zentrum Mathematik, Weierstrass Postdoctoral Fellowship
Program, December 1, 2014 – May 31, 2015.

A.12.3 Doctoral Candidates and Post-docs supervised by WIAS Collaborators

1. N. ABATANGELO, Università di Milano, Dipartimento di Matematica, doctoral candidate, January 1 – Decem-
ber 1.

2. L. ADAMYAN, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, International Research
Training Group (IRTG) 1792 “High Dimensional Non Stationary Time Series”, doctoral candidate, Decem-
ber 1–31.
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3. T. AHNERT, Technische Universität Berlin, Fakultät II – Mathematik und Naturwissenschaften, doctoral can-
didate, January 1 – November 30.

4. S. BERGMANN, Technische Universität Berlin, Fakultät II – Mathematik und Naturwissenschaften, doctoral
candidate, January 1 – December 31.

5. C. BUCUR, Università di Milano, Dipartimento di Matematica, doctoral candidate, January 1 – June 30.

6. M. COZZI, Università di Milano, Dipartimento di Matematica, doctoral candidate, January 1 – December 31.

7. M. DZIWNIK, Technische Universität Berlin, Fakultät II – Mathematik und Naturwissenschaften, doctoral
candidate, January 1 – October 31.

8. K. EFIMOV, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, International Research
Training Group 1792 “High Dimensional Non Stationary Time Series Analysis”, doctoral candidate, Jan-
uary 1 – December 31.

9. T. GONZÁLEZ GRANDÓN, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät,
doctoral candidate, October 1 – December 31.

10. Y. KLOCHKOV, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, International Re-
search Training Group (IRTG) 1792 “High Dimensional Non Stationary Time Series”, doctoral candidate,
October 1 – December 31.

11. J.P. PADE, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, International Re-
search Training Group 1740 “Dynamical Phenomena in Complex Networks: Fundamentals and Applica-
tions”, doctoral candidate, January 1 – July 22.

12. M. PANOV, Russian Academy of Science, Institute for Information Transmission Problems, doctoral candi-
date, January 1 – December 31.

13. S. ROCKEL, Freie Universität Berlin, Institut für Mathematik, Helmholtz-Kolleg GEOSIM, doctoral candidate,
January 1 – December 31.

14. ST. RUSCHEL, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, Interna-
tional Research Training Group 1740 “Dynamical Phenomena in Complex Networks: Fundamentals and
Applications”, doctoral candidate, January 1 – December 31.

15. A. SUVORIKOVA, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, International Re-
search Training Group 1792 “High Dimensional Non Stationary Time Series Analysis”, doctoral candidate,
January 1 – December 31.
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A.13 Guest Talks
1. T.B. ARMSTRONG, Yale University, Department of Economics, New Haven, USA, Adaptive testing on a re-

gression function at a point, May 27.

2. A. ARNOLD, Technische Universität Wien, Institut für Analysis und Scientific Computing, Wien, Austria, En-
tropy method for hypocoercive & non-symmetric Fokker–Planck equations with linear drift, November 6.

3. A. AZOUANI, Mohamed Premier University, National School of Applied Sciences, Al Hoceima, Morocco,
Feedback control of nonlinear dissipative dynamical systems using general interpolant observables and
continuous data assimilation, January 27.

4. N. BALDIN, Humboldt-Universität zu Berlin, Institut für Mathematik, A new estimator for the volume of a
convex set, February 10.

5. V. BALLY, Université de Marne-la-Vallée, Laboratoire d’Analyse et de Mathématiques, Marne-la-Vallée,
France, Convergence and regularity of probability laws by using an interpolation method, November 25.

6. G.R. BARRENECHEA, University of Strathclyde, Department of Mathematics and Statistics, Glasgow, UK,
Stabilising some inf-sup stable pairs on anisotropic quadrilateral meshes, September 3.

7. J. BEHRNDT, Technische Universität Graz, Institut für Numerische Mathematik, Graz, Austria, Selfadjoint
realizations of the Laplacian on bounded Lipschitz domains, September 2.

8. T. BENACCHIO, Met Office, Dynamics Research, Exeter, UK, Towards scalable numerical weather and cli-
mate prediction with mixed finite element discretizations, September 11.

9. M. BIBINGER, Humboldt-Universität zu Berlin, Institut für Mathematik, Statistics of discretely observed
semi-martingales under noise, January 14.

10. N. BOCHKINA, University of Edinburgh, The School of Mathematics, UK, Statistical inference in possibly
misspecified nonregular models, April 15.

11. A. BOITSEV, St. Petersburg National University of Information Technologies, Mechanics and Optics, De-
partment of Higher Mathematics, St. Petersburg, Russian Federation, Boundary triplets for sum of tensor
products of operators, November 11.

12. C. BONADONNA, Université de Genève, Section des Sciences de la Terre et de l’Environnement, Genève,
Switzerland, Volcanic plumes and particle sedimentation, November 26.

13. CH. BREUNIG, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, Testing the specifi-
cation in random coefficient models, July 8.

14. O. BURYLKO, National Academy of Sciences, Institute of Mathematics, Kiev, Ukraine, Weak chimeras in
minimal networks of coupled phase oscillators, January 13.

15. A. CARPENTIER, University of Cambridge, Statistical Laboratory, Cambridge, UK, Inference problems in high
dimensional linear models, June 17.

16. S.-K. CHAO, Humboldt-Universität zu Berlin, School of Business and Economics, FASTEC: Factorisable
sparse tail event curves, May 13.

17. X. CHEN, Yale University, Department of Economics, New Haven, USA, Optimal sup-norm rates, adaptivity
and inference in nonparametric instrumental variables regression, October 21.

18. Y. CHEN, National University of Singapore, Department of Statistics & Applied Probability, Singapore, An
adaptive functional autoregressive forecasting model to predict electricity price curves, June 24.

19. H. CHIBA, Kyushu University, Institute of Mathematics for Industry, Fukuoka, Japan, Renormalization
group methods for ODEs/PDEs, July 23.
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20. R. ČIEGIS, Gediminas Technical University, Department of Mathematical Modeling, Vilnius, Lithuania, On
efficient numerical methods for unidirectional models of nonlinear optics, September 24.

21. H. DIETERT, University of Cambridge, Faculty of Mathematics, Cambridge, UK, Stability and bifurcation for
the Kuramoto model, December 1.

22. A.L. DINIZ, CEPEL – Brazilian Electric Energy Research Center, Rio de Janeiro, Brazil, Dynamic piecewise
linear models for nonlinear optimization with application to power generation problems, September 15.

23. A.L. DONTCHEV, University of Michigan, Mathematics Department, Ann Arbor, USA, Newton methods for
variational inequalities, October 22.

24. M. EGERT, Technische Universität Darmstadt, Fachbereich Mathematik, Darmstadt, On Kato’s square root
problem, February 11.

25. M. ELLER, Humboldt-Universität zu Berlin, Institut für Mathematik, Berlin, Unique continuation and Carle-
man estimates for linear PDE, October 14.

26. M. FATHI, University of California, Department of Mathematics, Berkeley, USA, A gradient flow approach
to large deviations for diffusion processes, November 2.

27. S.K. GANESAN, Indian Institute of Science, Supercomputer Education and Research Centre, Bangalore,
Finite element algorithms for massively parallel architectures, June 16.

28. Y. GAO, Université Paris-Sud, Laboratoire d’Analyse Numérique, Orsay, France, Finite volume methods for
first order stochastic conservation laws, September 24.

29. A. GASNIKOV, Moscow Institute of Physics and Technology (MIPT), PreMoLab, Russian Federation, On opti-
mization aspects of finding Wasserstain(–Kantorovich) barycenter, June 10.

30. N. GOERIGK, Elektronische Fahrwerksysteme GmbH, Gaimersheim, On indecomposable polyhedra and the
number of Steiner points, October 14.

31. H. GOTTSCHALK, Bergische Universität Wuppertal, Fachgruppe Mathematik und Informatik, Probabilistic
failure mechanisms in fatigue life and optimal reliability via shape control, June 23.

32. J.A. GRIEPENTROG, Humboldt-Universität zu Berlin, Institut für Mathematik, Berlin, On the positivity and
the long-time behavior of solutions to discrete-time evolution systems of nonlocally interacting particles,
January 21.

33. S. GUREVICH, Wilhelms-Universität Münster, Institut für Theoretische Physik, Control and selection of
spatio-temporal patterns in dynamic self-assembly systems, March 10.

34. F. HAMEL, Université d’Aix-Marseille, Institut de Mathématiques de Marseille, France, Transition fronts for
monostable reaction-diffusion equations, May 27.

35. R. HAZRA, Indian Statistical Institute, Department Theoretical Statistics and Mathematics, Kolkata, India,
Stability of point process, regular variation and branching random walk, September 16.

36. L. HELTAI, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Mathematical Analysis, Modelling,
and Applications, Trieste, Italy, Coupling isogeometric analysis and reduced basis methods for complex
geometrical parametrizations, April 16.

37. B. HILDER, Universität Stuttgart, Fachbereich Mathematik, Stuttgart, Analysis der Embedded Cell Methode
in 2D, November 18.

38. S. HIRSCH, Charité – Universitätsmedizin Berlin, Institut für Radiologie, Berlin, Compression-sensitive
Magnetic Resonance Elastography and poroelasticity, June 25.

39. M. HOFMANOVÁ, Technische Universität Berlin, Institut für Mathematik, Stochastic mean curvature flow,
October 14.
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40. TH. HOHAGE, Universität Göttingen, Institut für Numerische und Angewandte Mathematik, Variational reg-
ularization of statistical inverse problems, April 22.

41. H. HORNG-SHING LU, National Chiao Tung University, Institute of Statistics, China, Network analysis of big
data, May 20.

42. M. JIRAK, Humboldt-Universität zu Berlin, Institut für Mathematik, Rate of convergence in the (weighted)
CLT under weak dependence, January 20.

43. E. KLANN, Technische Universität Berlin, Institut für Mathematik, Geometric inverse problems with appli-
cations in tomography, June 16.

44. M. KLOFT, Humboldt-Universität zu Berlin, Institut für Informatik, On the statistical properties of `p -norm
multiple kernel learning, May 6.

45. D. KNEES, Universität Kassel, Institut für Mathematik, Kassel, Global spatial regularity for elasticity mod-
els with nonsmooth constraints, August 4.

46. K. KNIGHT, University of Toronto, Department of Statistics, Canada, 1 ∞ estimation in regression,
April 29.

47. P. KNOBLOCH, Charles University, Institute of Numerical Mathematics, Prague, Czech Republic, On linearity
preservation and discrete maximum principle for algebraic flux correction schemes, September 1.

48. M. KRAFT, University of Cambridge, Department of Chemical Engineering and Biotechnology, UK, Industry
4.0, the internet of things and the J-Park simulator, August 5.

49. C. KREISBECK, Universität Regensburg, Institut für Mathematik, Regensburg, Homogenization of layered
materials with rigid components in single-slip finite plasticity, September 23.

50. J. LADENBAUER, Technische Universität Berlin, Institut für Softwaretechnik und Theoretische Informatik,
Low-dimensional spike rate dynamics of coupled adaptive model neurons, May 12.

51. M. LADKAU, Humboldt-Universität zu Berlin, Institut für Mathematik, Stochastic volatility Libor modeling
and efficient algorithms for optimal stopping problems, July 14.

52. S. LANGE, Heinrich-Hertz-Institut Berlin, Abteilung Photonische Komponenten, Optical feedback effects in
monolithically integrated laser Mach–Zehnder modulator transmitter PICs, February 12.

53. G. LI, University of Cambridge, Faculty of Mathematics, UK, Microscopic effects on Brownian coagulation,
June 18.

54. X. LI, Eidgenössische Technische Hochschule Zürich, D-MATH, Zürich, Switzerland, A lower bound for dis-
connection by simple random walk, November 16.

55. X. LIU, Chinese Academy of Sciences, Academy of Mathematics and Systems Science, Institute of Applied
Mathematics, Beijing, China, Locating buried objects in a two-layered medium, April 14.

56. M.M. MALAMUD, Institute of Applied Mathematics and Mechanics, Institute of Applied Mathematics
and Mechanics, Slavyansk, Ukraine, Spectral shift functions for pairs of non-selfadjointness operators,
April 22.

57. M. MALIOUTOV, Northeastern University, Department of Mathematics, Boston, USA, SCOT modeling, train-
ing and homogeneity testing, June 16.

58. M. MARSCHALL, Technische Universität Berlin, Institut für Mathematik, Sparse-grid Bayesian inversion,
June 30.

59. R. MASSON, Université de Nice Sophia Antipolis, Laboratoire de Mathématiques J.A. Dieudonné, Nice,
France, Gradient scheme discretizations of two phase porous media flows in fractured porous media,
February 10.
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60. D. MAZZOLENI, Università degli Studi di Torino, Dipartimento di Matematica “G. Peano”, Italy, Existence,
regularity and surgery results for solutions of spectral problems, March 6.

61. H. MEINLSCHMIDT, Technische Universität Darmstadt, Fachbereich Mathematik, Optimalsteuerung des 3D
Thermistor-Problems, January 27.

62. A. MIJATOVIĆ, Imperial College London, Imperial Probability Centre, London, UK, On the Poisson equation
for the Metropolis–Hastings chains: Variance reduction for ergodic average, July 22.

63. M. MILIČEVIĆ, Albert-Ludwigs-Universität Freiburg, Abteilung für Angewandte Mathematik, Freiburg, Itera-
tive methods for TV regularization and application to a damage model, December 9.

64. P. MÖRTERS, University of Bath, Department of Mathematical Sciences, Bath, UK, Robustness of spatial
preferential attachment networks, November 18.

65. O. MUSCATO, Università degli Studi di Catania, Dipartimento di Matematica e Informatica (DMI), Italy,
Electro-thermal transport in silicon carbide semiconductors via hydrodynamic models, August 5.

66. A. NAUMOV, Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics,
Moscow, Russian Federation, Limit theorems for random matrices and their applications, August 25.

67. TH.N. NGUYEN, Université Paris-Sud, Département de Mathématiques de la Faculté des Sciences d’Orsay,
Paris, France, Large time behavior for a nonlocal ordinary differential equation — Generation of interface
for the mass conserved Allen–Cahn equation, July 15.

68. J. NOVO, Universidad Autónoma de Madrid, Instituto de Ciencias Matemáticas, Madrid, Spain, Local error
estimates for the SUPG method applied to evolutionary convection-reaction-diffusion equations, June 11.

69. T. ORENSHTEIN, Université Claude Bernard Lyon 1, Institut Camille Jordan, France, Excited mob, July 1.

70. N. PERKOWSKI, Humboldt-Universität zu Berlin, Institut für Mathematik, Paracontrolled KPZ equation, Oc-
tober 14.

71. S. PEROTTO, Politecnico di Milano, Dipartimento di Matematica “F. Brioschi”, Milano, Italy, Adaptive Hier-
archical Model (HiMod) reduction for initial boundary value problems, March 3.

72. J. PETERS, Eidgenössische Technische Hochschule Zürich, Seminar for Statistics, Switzerland, Invariant
prediction and causal inference, January 21.

73. CH. PFLAUM, Friedrich-Alexander-Universität Erlangen-Nürnberg, Technische Fakultät, Erlangen, Dis-
cretization of elliptic differential equations with variable coefficients on sparse grids, November 19.

74. Ł. PŁOCINICZAK, Wrocław University of Technology, Institute of Mathematics and Computer Science,
Poland, Anomalous nonlinear diffusion in porous media: Analytical approximations, April 28.

75. C. RAUTENBERG, Humboldt-Universität zu Berlin, Institut für Mathematik, Berlin, Analysis and approxima-
tion of evolutionary quasi-variational inequalities, June 24.

76. T. ROUBÍČEK, Charles University, Mathematical Institute, Prague, Czech Republic, Damage with plasticity
at small strains — An overview of various models, April 29.

77. T. ROUBÍČEK, Czech Academy of Sciences, Institute of Thermomechanics, Prague, Czech Republic, Model-
ing of lithospheric faults — Demands, options, concepts, November 12.

78. S. RUBINO, Universidad de Sevilla, Facultad de Matemáticas, Sevilla, Spain, Finite element approximation
of an unsteady projection-based VMS turbulence model with wall laws, January 22.

79. L. RUTHOTTO, Emory University, Department of Mathematics and Computer Science, Atlanta, USA, Numer-
ical methods for hyperelastic image registration, May 19.

80. G. SAVARÉ, Università di Pavia, Dipartimento di Matematica, Pavia, Italy, Visco-energetic solutions to rate-
independent problems, June 19.
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81. K. SCHADE, Technische Universität Darmstadt, Fachbereich Mathematik, Dynamics of nematic liquid crys-
tal flows: The quasilinear approach, February 11.

82. K. SCHMIDT, Technische Universität Berlin, Institut für Mathematik, Berlin, On optimal basis functions for
thin conducting sheets in electromagnetics and on efficient calculation of the photonic crystal bandstruc-
ture, June 4.

83. S. SCHMITZ, Siemens AG, Large Gas Turbines, PG GT LGT EN MT 3 2, Berlin, Probabilistic design in gas
turbine engineering, October 19.

84. B. SEGUIN, University of Dundee, Department of Mathematics, Dundee, UK, Plant cell wall biomechanics:
Model and multiscale analysis, June 10.

85. S. SERFATY, Université Pierre et Marie Curie – Paris 6 (UPMC), Laboratoire Jacques-Louis Lions (LJLL), Paris,
France, Crystallization questions for large systems with Coulomb and Riesz interactions, January 8.

86. U. SHARMA, Eindhoven University of Technology, Department of Mathematics and Computer Science, Eind-
hoven, Netherlands, Quantification of coarse-graining error in overdamped/non-overdamped Langevin
dynamics, November 18.

87. E. SPADARO, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Lower semicontinu-
ous functionals defined on spaces of multiple-valued maps, September 16.

88. M. SPECOVIUS-NEUGEBAUER, Universität Kassel, Institut für Mathematik, Kassel, How do cracks propagate?
Some ideas related to the energy criterion, March 4.

89. E. SPOHR, Universität Duisburg-Essen, Fakultät für Chemie, Essen, MD Simulations of structure and reac-
tion dynamics at the liquid/solid electrode interface, February 10.

90. A. STIVALA, The University of Melbourne, Melbourne School of Psychological Sciences, Social Networks
Laboratory (MELNET), Australia, Modeling large social networks via snowball samples, June 12.

91. A.F.M. TER ELST, The University of Auckland, Department of Mathematics, Auckland, New Zealand, The
Dirichlet-to-Neumann operator on rough domains, December 9.

92. S. TIKHOMIROV, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Shadowing and
random walks, January 20.

93. M. TRABS, Université Paris-Dauphine, Centre de Recherche en Mathématique de la Decision (CEREMADE),
Low-rank volatility estimation for high-dimensional Lévy processes and low frequency observations,
July 1.

94. M. TRETYAKOV, University of Nottingham, School of Mathematical Sciences, UK, Long-time numerical inte-
gration of stochastic gradient systems, April 21.

95. D. TURAEV, Imperial College London, Department of Mathematics, UK, Chaotic dynamics in nonholonomic
systems, May 28.

96. , On a periodically perturbed Lorenz attractor, August 11.

97. W. VAN ACKOOIJ, Electricité de France R&D, Clamart, France, Probabilistic optimization via approximate
p -efficient points and bundle methods, April 16.

98. A. WAHAB, COMSATS Institute of Information Technology, Mathematics Department, Wah Cantt, Pakistan,
Time reversal algorithms for inverse source problems, August 11.

99. M. WAHL, Universität Mannheim, Lehrstuhl für Statistik, Nonparametric estimation in the presence of com-
plex nuisance components, February 4.

100. M. YAMAMOTO, University of Tokyo, Graduate School of Mathematical Sciences, Japan, Inverse problems
for integro-hyperbolic equations: Kelvin–Voigt model and viscoelasticity, March 17.
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101. T. YIN, Chongqing University, College of Mathematics and Statistics, China, Numerical methods for time-
dependent scattering problems, July 21.

102. S. YOSHIKAWA, Ehime University, Department of Engineering for Production and Environment, Matsuyama,
Japan, Refined proofs of existence and error estimate for the structure-preserving finite difference scheme
for the Cahn–Hilliard equation, January 20.

103. V. ZAGREBNOV, Université d’Aix-Marseille, Centre de Mathématiques et Informatique, Marseille, France,
Dynamical semigroups for unbounded repeated harmonic perturbation, June 17.

104. CH. ZANINI, Politecnico di Torino, Dipartimento di Matematica, Turin, Italy, Viscous and rate-independent
damage models in non-smooth domains, August 4.

105. P.A. ZEGELING, Utrecht University, Mathematical Institute, Utrecht, Netherlands, Adaptive grids for detect-
ing non-monotone waves and instabilities in a non-equilibrium PDE model from porous media, May 28.
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A.14 Software
AWS (contact: J. Polzehl, phone: +49 30/20372-481, e-mail: joerg.polzehl@wias-berlin.de)

AWS is a contributed package within the R-Project for Statistical Computing containing a reference implemen-
tation of the adaptive weights smoothing algorithms for local constant likelihood and local polynomial regres-
sion models. Binaries for several operating systems are available from the Comprehensive R Archive Network
(http://cran.r-project.org).

BALaser (contact: M. Radziunas, phone: +49 30/20372-441, e-mail:
mindaugas.radziunas@wias-berlin.de)

BALaser is the software tool used for simulations of the nonlinear dynamics in high-power edge-emitting
Broad-Area semiconductor Lasers. It integrates numerically the laterally extended dynamic traveling wave
model (one- and two-dimensional partial differential equations), executes different data post-processing rou-
tines, and visualizes the obtained data.

More information: http://www.wias-berlin.de/software/balaser

BOP (contact: J. Borchardt, phone: +49 30/20372-485, e-mail: juergen.borchardt@wias-berlin.de)

©2009
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all rights reserved

Assembly of an Alstom GT26 gas
turbine at the Mannheim,
Germany, facility

The Block Oriented Process simulator BOP is a software package for large-scale process simulation, which
combines deterministic and stochastic numerical methods. It allows to solve dynamic as well as steady-state
problems and provides capabilities for, e.g., Monte Carlo simulation, correction curve computation, optimiza-
tion, Bayesian parameter calibration, regression analysis, and script-directed simulation scenarios. Due to an
equation-based approach, a wide range of processes as they occur in chemical process industries or other
process engineering environments can be simulated.

The modeling language of BOP is a high-level language that supports a hierarchically unit-oriented description
of the process model and enables a simulation concept that is based on a divide-and-conquer strategy. Exploit-
ing this hierarchical modeling structure, the generated system of coupled differential and algebraic equations
(DAEs) is partitioned into blocks, which can be treated almost concurrently. The numerical methods used are
especially adopted for solving large-scale problems on parallel computers. They include backward differentia-
tion formulae (BDF), block-structured Newton-type methods, and sparse matrix techniques.

BOP is implemented under Unix on parallel computers with shared memory, but can also be run efficiently on
different single processor machines, as well as under Linux or Windows. So far it has been successfully used
for the simulation of several real-life processes in heat-integrated distillation, sewage sludge combustion, or
catalytic CO oxidation in automotive oxygen sensors, for example. Currently, it is commercially used for the
simulation of heavy-duty gas turbines. Here, BOP covers a broad range of simulation tasks, from performance
validation and optimization to the development of new process models.

Detailed information: http://www.wias-berlin.de/software/BOP

ClusCorr98 (contact: H.-J. Mucha, phone: +49 30/20372-573, e-mail:
hans-joachim.mucha@wias-berlin.de)

The statistical softwareClusCorr98 performs exploratory data analysis with the focus on cluster analysis,
classification, and multivariate visualization. A highlight is the pairwise data clustering for finding groups in
data. Another highlight is the automatic validation technique of cluster analysis results performed by a general
built-in validation tool based on resampling techniques. It can be considered as a three-level assessment of
stability. The first and most general level is decision-making regarding the appropriate number of clusters.
The decision is based on well-known measures of correspondence between partitions. Second, the stability of
each individual cluster is assessed based on measures of similarity between sets. It makes sense to investigate
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the (often quite different) specific stability of clusters. In the third and most detailed level of validation, the
reliability of the cluster membership of each individual observation can be assessed.

ClusCorr98 runs in the host application Excel 2013.

Further information: http://www.wias-berlin.de/software/ClusCorr98

DiPoG (contact: A. Rathsfeld, phone: +49 30/20372-457, e-mail: andreas.rathsfeld@wias-berlin.de)

The program package DiPoG (Direct and inverse Problems for optical Gratings) provides simulation and opti-
mization tools for periodic diffractive structures with multilayer stacks.

The direct solver computes the field distributions and efficiencies of given gratings for TE and TM polariza-
tion as well as, under conical mounting, for arbitrary polygonal surface profiles. The inverse solver deals with
the optimal design of gratings, realizing given optical functions, for example, far-field patterns, efficiency, or
phase profiles. The algorithms are based on coupled generalized finite/boundary elements and gradient-type
optimization methods.

For detailed information please see http://www.wias-berlin.de/software/DIPOG.

LDSL-tool (contact: M. Radziunas, phone: +49 30/20372-441, e-mail:
mindaugas.radziunas@wias-berlin.de)

LDSL-tool (Longitudinal Dynamics in Semiconductor Lasers) is a tool for the simulation and analysis of
the nonlinear longitudinal dynamics in multisection semiconductor lasers and different coupled laser devices.
This software is used to investigate and design laser devices that exhibit various nonlinear effects such as
self-pulsations, chaos, hysteresis, mode switching, excitability, mutual synchronization, and frequency entrain-
ment by an external modulated optical or electrical signal.

LDSL-tool combines models of different complexity, ranging from partial differential equation (PDE) to or-
dinary differential equation (ODE) systems. A mode analysis of the PDE system, a comparison of the different
models, and a numerical bifurcation analysis of PDE systems are also possible.

Detailed information: http://www.wias-berlin.de/software/ldsl

WIAS-MeFreSim (contact: T. Petzold, phone: +49 30/20372-498, e-mail: thomas.petzold@wias-berlin.de)

WIAS-MeFreSim allows for the three-dimensional simulation of induction hardening for workpieces made
of steel using single- and multifrequency currents. It is the aim of the heat treatment to produce workpieces
with hard, wear resistant surface and soft, ductile core. The boundary layer of the workpiece is heated up by
induced eddy currents and rapidly cooled down by the subsequent quenching process. The resulting solid-
solid phase transitions lead to a hardening of the surface of the workpiece. With the help of simulations, an
efficient determination of optimal process parameters for contour hardening of gears is possible, since time-
and cost-intensive experiments can be reduced. In addition to the determination of the temperature and the
hardening profile, the determination of residual stresses after the quenching process is possible.

Fore more information see http://www.wias-berlin.de/software/mefresim.

Par Moon (contact: U. Wilbrandt, phone: +49 30/20372-571, e-mail: ulrich.wilbrandt@wias-berlin.de)

ParMooN is a flexible finite element package for the solution of steady-state and time-dependent convection-
diffusion-reaction equations, incompressible Navier–Stokes equations, and coupled systems consisting of
these types of equations, like population balance systems or systems coupling free flows and flows in porous
media.
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Important features of ParMooN are

– the availability of more than 100 finite elements in one, two, and three space dimensions (conforming,
non-conforming, discontinuous, higher-order, vector-valued, isoparametric, with bubbles)

– the use of implicit time-stepping schemes ( θ -schemes, DIRK schemes, Rosenbrock–Wanner schemes)
– the application of a multiple-discretization multi-level (MDML) preconditioner in Krylov subspace methods
– tools for using reduced-order models based on proper orthogonal decomposition (POD) are available
– hybrid parallelization with MPI and OpenMP

ParMooN is a joint development with the group of Prof. S. Ganesan (IISc Bangalore) and the group of Prof.
Matthies (TU Dresden).

pdelib (contact: J. Fuhrmann, phone: +49 30/20372-560, e-mail: juergen.fuhrmann@wias-berlin.de)

Concentration isosurfaces in a
thin-layer flow cell (pdelib)

pdelib is a collection of software components that are useful to create simulators and visualization tools
for partial differential equations. The main idea of the package is modularity, based on a bottom-up design
realized in the C++ programming language. Among others, it provides

– iterative solvers for linear and nonlinear systems of equations
– sparse matrix structures with preconditioners and direct solver interfaces
– dimension-independent simplex grid handling in one, two, and three space dimensions
– finite volume-based solution of coupled parabolic reaction-diffusion-convection systems and pressure ro-

bust discretizations for Navier–Stokes
– finite element based solution of variational equations (especially thermoelasticity) with goal-oriented error

estimators
– optimization tool box
– parallelization on SMP architectures
– graphical output during computation using OpenGL
– scripting interface based on the language Lua
– graphical user interface based on the FLTK toolkit
– modular build system and package manager for the installation of third-party software used in the code

Please see also http://www.wias-berlin.de/software/pdelib.

TetGen (contact: H. Si, phone: +49 30/20372-446, e-mail: hang.si@wias-berlin.de)

Adapted tetrahedral meshes
and anisotropic meshes for
numerical methods and
scientific computation

TetGen is a mesh generator for three-dimensional simplex meshes as they are used in finite volume and fi-
nite element computations. It generates the Delaunay tetrahedralization, Voronoi diagram, and convex hull for
three-dimensional point sets. For three-dimensional domains with piecewise linear boundary, it constructs
constrained Delaunay tetrahedralizations and quality tetrahedral meshes. Furthermore, it is able to create
boundary-conforming Delaunay meshes in a number of cases including all polygonal domains with input an-
gles larger than 70°.

More information is available at http://www.tetgen.org.

WIAS-TeSCA (contact: H. Stephan, phone: +49 30/20372-442, e-mail: holger.stephan@wias-berlin.de)

WIAS-TeSCA is a Two- and three-dimensional Semi-Conductor Analysis package. It serves to simulate nu-
merically the charge carrier transport in semiconductor devices based upon the drift-diffusion model. This van
Roosbroeck system is augmented by a vast variety of additional physical phenomena playing a role in the
operation of specialized semiconductor devices as, e. g., the influence of magnetic fields, optical radiation,
temperature, or the kinetics of deep (trapped) impurities.

The strategy ofWIAS-TeSCA for solving the resulting highly nonlinear system of partial differential equations
is oriented towards the Lyapunov structure of the system describing the currents of electrons and holes within
the device. Thus, efficient numerical procedures for both the stationary and the transient simulation have been
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implemented, the spatial structure of which is a finite volume method. The underlying finite element discretiza-
tion allows the simulation of arbitrarily shaped two-dimensional device structures.

WIAS-TeSCA has been successfully used in the research and development of semiconductor devices such
as transistors, diodes, sensors, detectors, lasers, and solar cells.

The semiconductor device simulation package WIAS-TeSCA operates in a Linux environment on desktop
computers.

WIAS is currently focusing on the development of a new generation semiconductor simulator prototype. There-
fore, WIAS-TeSCA is in maintenance mode and is used for benchmarking of the new code and the support of
running projects.

For more information please see http://www.wias-berlin.de/software/tesca.

WIAS-QW (contact: Th. Koprucki, phone: +49 30/20372-508, e-mail: thomas.koprucki@wias-berlin.de)

WIAS-QW is a numerical code for the simulation of strained multi-quantum-well structures. Based upon multi-
band kp models it allows to treat band mixing effects, confinement effects, crystal symmetry, and the influence
of mechanical strain.

In particular, WIAS-QW calculates the

– subband dispersion
– eigenfunctions
– transition matrix elements
– miniband effects in multi-quantum-well structures

In dependence on the sheet carrier densities and the temperature, WIAS-QW calculates the

– optical response function
– gain spectrum
– radiative recombination rate
– carrier density distributions

Furthermore, the calculations can be performed self-consistently, comprising pure kp calculations, but also
calculations that include the Hartree–Coulomb potential, obtained from Poisson’s equation, as well as density-
dependent exchange-correlation potentials accounting for the bandgap shift, which is one of the most promi-
nent many-particle effects.

Please find further information under http://www.wias-berlin.de/software/qw.

WIAS Software Collection for Imaging (contact: K. Tabelow, phone: +49 30/20372-564, e-mail:
karsten.tabelow@wias-berlin.de)

adimpro is a contributed package within the R-Project for Statistical Computing that contains tools for image
processing, including structural adaptive smoothing of digital color images. The package is available from the
Comprehensive R Archive Network (http://cran.r-project.org).

The AWS for AMIRA (TM) plugin implements a structural adaptive smoothing procedure for two- and three-
dimensional images in the visualization software AMIRA (TM). It is available in the Zuse Institute Berlin’s ver-
sion of the software for research purposes (http://amira.zib.de/).

WIAS Software Collection for Neuroscience (contact: K. Tabelow, phone: +49 30/20372-564, e-mail:
karsten.tabelow@wias-berlin.de)

dti is a contributed package within the R-Project for Statistical Computing. The package contains tools for
the analysis of diffusion-weighted magnetic resonance imaging data (dMRI). It can be used to read dMRI data,
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to estimate the diffusion tensor, for the adaptive smoothing of dMRI data, the estimation of the orientation
density function or its square root, the estimation of tensor mixture models, the estimation of the diffusion
kurtosis model, fiber tracking, and for the two- and three-dimensional visualization of the results. The package
is available from the Comprehensive R Archive Network (http://cran.r-project.org). The multi-shell position-
orientation adaptive smoothing (msPOAS) method for dMRI data is additionally available within the ACID tool-
box for SPM (http://www.diffusiontools.com).

fmri is a contributed package within the R-Project for Statistical Computing that contains tools to analyze
fMRI data with structure adaptive smoothing procedures. The package is available from the Comprehensive R
Archive Network (http://cran.r-project.org).
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