Direct and Inverse Problems for PDEs with Random Coefficients - Abstract

Ernst, Oliver

Metropolis-Hastings algorithms in function space for Bayesian inverse problems

We consider Markov Chain Monte Carlo methods adapted to a Hilbert space setting. Such algorithms occur in Bayesian inverse problems where the solution is a probability measure on a function space according to which one would like to integrate or sample. We focus on Metropolis-Hastings algorithms and, in particular, we introduce and analyze a generalization of the existing pCN-proposal. This new proposal allows to exploit the geometry or anisotropy of the target measure which in turn might improve the statistical efficiency of the corresponding MCMC method. Numerical experiments for a real-world problem confirm the improvement.