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Model problem: elliptic PDEs with random coefficients

Model problem: elliptic PDE with random coeffs

Let (Ω,F ,P) be a complete probability space and D ⊂ Rd and open
bounded domain.{

− div(a(ω, x)∇u(ω, x)) = f (x) x ∈ D, ω ∈ Ω,

u(ω, x) = 0 x ∈ ∂D, ω ∈ Ω

with f ∈ L2(D) and a(ω, x) : Ω× D → R an almost surely bounded
random field.

Coercivity assumption: amin(ω) = essinfx∈D a(ω, x) > 0 almost
surely and E[a−p̄

min] <∞ for some p̄ ≥ 2.

Then u ∈ V = H1
0 (D) almost surely and

‖u(ω, ·)‖V ≤
CP

amin(ω)
‖f ‖L2(D), a.s. in Ω

Therefore, u ∈ Lp
P(Ω,V ) for all p ≤ p̄. In particular, u ∈ L2

P(Ω,V ).
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Model problem: elliptic PDEs with random coefficients

Random field parametrization

In view of polynomial approximation we parametrize the random field
a(ω, x) by a finite or countable sequence of random variables
y(ω) = (y1(ω), . . . , yN(ω)) with range Γ = y(Ω) ⊂ RN and
probability density function ρ : Γ→ R+:

a(ω, x) = a(y(ω), x)

Then the stochastic solution u depends on ω only through the vector
y(ω): u(ω, x) = u(y(ω), x)

parameter-to-solution map: u(y) : Γ→ V , u ∈ L2
ρ(Γ,V ).
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Model problem: elliptic PDEs with random coefficients

Examples of random diffusion coefficients

Inclusions problem

y describes the
conductivity in each
inclusion

a(y, x) = a0+
N∑

n=N

yn1Dn (x)

with yn ∼ U([ymin, ymax ]) and ymin > −a0.

Therefore amin(y) ∈ Lp
ρ(Γ) for any 1 ≤ p ≤ ∞.

=⇒ u ∈ Lp
ρ(Γ,H1

0 (D)), ∀1 ≤ p ≤ ∞

Random fields problem

a(y, x) is a random field,
e.g. lognormal:
a(y, x) = eγ(y,x) with γ
expanded e.g. in
Karhunen-Loève series

random field with Lc=1/4
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γ(y, x) =
∞∑

n=1

√
λnynbn(x), yn ∼ N(0, 1) i .i .d .

If Cov [γ] is Holder continuous, then amin ∈
Lp
ρ(Γ) for any 1 ≤ p < ∞ (see e.g. [Charrier,

2011])

=⇒ u ∈ Lp
ρ(Γ,H1

0 (D)), ∀1 ≤ p <∞
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Polynomial approximation by sparse grid collocation

Stochastic multivariate polynomial approximation

The parameter-to-solution map u(y) : Γ→ V is often smooth
(even analytic for the elliptic diffusion model). It is therefore
sound to approximate it by global multivariate polynomials.

Let Λ ⊂ NN be an index set of cardinality |Λ| = M , and consider
the multivariate polynomial space

PΛ(Γ) = span
{∏N

n=1 y
pn
n , with p = (p1, . . . , pN) ∈ Λ

}
We seek an approximation PΛu ∈ PΛ(Γ)⊗ V .

Collocation approaches
Construct a polynomial approximation of u(y) : Γ→ V using only

point evaluations ui = u(yi ) where {yi}M̃
i=1 is a set of suitable

collocation points, with M̃ ≥ M .
F. Nobile (EPFL) Collocation & MLMC methods for SPDEs WIAS, Berlin, November 13-15, 2013 8
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Polynomial approximation by sparse grid collocation

Collocation on a (generalized) Sparse Grid

Let i = [i1, . . . , iN ] ∈ NN
+ and m(i) : N+ → N+ an increasing function

1 1D polynomial interpolant operators: U m(in)
n on m(in) abscissas.

We use either
Clenshaw-Curtis (extrema on Chebyshev polynomials)
Gauss points w.r.t. the weight ρn, assuming that the probability
density factorizes as ρ(y) =

∏N
n=1 ρn(yn)

2 Detail operator: ∆
m(in)
n = U m(in)

n −U m(in−1)
n , U m(0)

n = 0.
3 Hierarchical surplus: ∆m(i) =

⊗N
n=1 ∆

m(in)
n .

4 Sparse grid approximation: on an index set I ⊂ NN

SIu =
∑
i∈I

∆m(i)[u]

Assumption: The set I is downward closed:
i ∈ I ⇒ i− en ∈ I, n = 1, . . . ,N .
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Polynomial approximation by sparse grid collocation

Equivalent formulation

SIu =
∑
i∈I

c(i)U
m(i1)

1 ⊗ · · · ⊗U
m(iN )

N u.

with c(i) =
∑

j∈{0,1}N

(i+j)∈I

(−1)j1+...+jN , and c(i) = 0 if i + 1 ∈ I

linear combination of tensor grids (each with relatively few points!)

Theorem ([Back-Nobile-Tamellini-Tempone, 2010])

Let Λ(I,m) = {p ∈ NN : p ≤ m(i)− 1, i ∈ I}.
Then

SI : C 0(Γ)→ PΛ(I,m)(Γ)

SIv = v , ∀v ∈ PΛ(I,m)(Γ)
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Polynomial approximation by sparse grid collocation Quasi optimal sparse grid construction

Quasi-optimal sparse grid construction

SIu =
∑
i∈I

∆m(i)[u] =⇒ ‖u−SIu‖ = ‖
∑
i/∈I

∆m(i)[u]‖ ≤
∑
i/∈I

‖∆m(i)[u]‖

One can use a knapsack problem-approach [Griebel-Knapek ’09,

Gerstner-Griebel ’03, Bungartz-Griebel ’04] to select the best I: for each
multiindex i:

Estimated error contribution (how much error decreases if i is
added to I)

∆E (i) ≥ ‖∆m(i)[u]‖V

Estimated work contribution (how much the work, i.e. number
of evaluations, increases if i is added to I)

∆W (i) such that
∑
i∈I

∆W (i) ≥ W (I)

where W (I) is the total number of points in the sparse grid
F. Nobile (EPFL) Collocation & MLMC methods for SPDEs WIAS, Berlin, November 13-15, 2013 11
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Polynomial approximation by sparse grid collocation Quasi optimal sparse grid construction

Quasi-optimal sparse grid construction

Then estimate the profit of each i as

P(i) =
∆E (i)

∆W (i)

and build the sparse grid using the set IM of the M indices with the
largest estimated profit.

IM := {i ∈ NN P(i) ≥ Pord
M }

where {Pord
j }j is the ordered sequence of profits.

If the set IM is not downward closed (lower), take the smallest lower
set ĨM ⊃ IM . This is equivalent to consider the modified profits
P̃(i) = max

j>i
P(j). (see [Chkifa-Cohen-DeVore-Schwab M2AN ’13])
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Polynomial approximation by sparse grid collocation Quasi optimal sparse grid construction

A posteriori approach [Gerstner-Griebel ’03, Klimke, PhD ’06].
Given a set Λ, explore all the neighbor multi-indices (margin)
and pick up those corresponding to the largest profits.

→ →

A priori approach [Back-Nobile-Tamellini-Tempone ’11].
Whenever possible, use a-priori/a-posteriori information to build
the optimal set. Avoids the “exploration” cost that can be
expensive in high dimension.

The estimate of ∆E (i) can be related to the decay of the
coefficients of the gPC expansion u =

∑
p upψp of the solution

onto an orthonormal polynomial basis (Legendre, Chebyshev,
Hermite, ...) and to the Lebesgue constant of the interpolation
scheme.
F. Nobile (EPFL) Collocation & MLMC methods for SPDEs WIAS, Berlin, November 13-15, 2013 13



Polynomial approximation by sparse grid collocation Quasi optimal sparse grid construction

A posteriori approach [Gerstner-Griebel ’03, Klimke, PhD ’06].
Given a set Λ, explore all the neighbor multi-indices (margin)
and pick up those corresponding to the largest profits.

→ →

A priori approach [Back-Nobile-Tamellini-Tempone ’11].
Whenever possible, use a-priori/a-posteriori information to build
the optimal set. Avoids the “exploration” cost that can be
expensive in high dimension.

The estimate of ∆E (i) can be related to the decay of the
coefficients of the gPC expansion u =

∑
p upψp of the solution

onto an orthonormal polynomial basis (Legendre, Chebyshev,
Hermite, ...) and to the Lebesgue constant of the interpolation
scheme.
F. Nobile (EPFL) Collocation & MLMC methods for SPDEs WIAS, Berlin, November 13-15, 2013 13



Polynomial approximation by sparse grid collocation Quasi optimal sparse grid construction

General convergence result

Theorem [Tamellini PhD thesis ’12], [Nobile-Tamellini-Tempone, in preparation]

Let SĨM
u be the quasi-optimal sparse grid approximation and WĨM

the
total number of points in the sparse grid.

If C (τ) :=
(∑

i∈NN P̃(i)τ∆W (i)
) 1
τ
<∞ for some τ < 1

Then ‖u − SĨM
u‖L2

ρ(Γ,V ) ≤ C (τ)W
1− 1

τ

ĨM

F. Nobile (EPFL) Collocation & MLMC methods for SPDEs WIAS, Berlin, November 13-15, 2013 14



Polynomial approximation by sparse grid collocation Quasi optimal sparse grid construction

Proof

The proof uses

Stechkin lemma: given a non-negative descreasing sequence {ak}k , then

∞∑
k=N+1

ak ≤ N1− 1
τ

( ∞∑
k=1

aτk

) 1
τ

, 0 < τ < 1.

ordered repeated sequence of profits {P̂k}k = {P̃1, . . . , P̃1︸ ︷︷ ︸
∆W1 times

, P̃2, . . . , P̃2︸ ︷︷ ︸
∆W2 times

, . . .}.

Let WM =
∑M

j=1 ∆Wj and observe that WM ≥WĨM
. Then

‖u − SĨM
u‖L2

ρ(Γ,V ) ≤
∞∑

k=M+1

∆Ek ≤
∞∑

k=WM +1

P̂k [apply Stechkin]

≤ ‖{P̂k}k‖lτW
1− 1

τ

M ≤ C (τ)W
1− 1

τ

ĨM
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Polynomial approximation by sparse grid collocation Quasi optimal sparse grid construction

How to estimate ∆W and ∆E

1 ∆W (i): number of new points in
⊗N

n=1 ∆
m(in)
n

Count all points in U m(i1)
1 ⊗ · · · ⊗U m(iN )

N (non-nested case) or
just the extra points added (nested case)

2 ∆E (i): use expansion on a suitable basis u =
∑

p upψp

(Legendre, Chebyshev, ...) and relate ∆E (i) with the decay of
the Fourier coefficients up.
E.g. for Chebyshev expansion (‖ψp‖∞ = 1)

∆E (i) ≤ 2Lm(i)

∑
p≥m(i−1)

‖up‖V ,

where Lm(i) =
∏N

n=1 Lm(in) and Lm(in) := ‖U m(in)
n ‖L(C 0,L2

ρ) is the

Lebesgue constant form C 0 to L2
ρ.

F. Nobile (EPFL) Collocation & MLMC methods for SPDEs WIAS, Berlin, November 13-15, 2013 16
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Polynomial approximation by sparse grid collocation Convergence result for elliptic PDEs with random inclusions

Elliptic equation with random inclusions

Yi ∼ U [ai , bi ], independent

Γ =
∏N

i=1[ai , bi ]

u(y) : Γ→ H1
0 (D)

The solution u(y) : Γ→ H1
0 (D) is analytic in a polydisk in the

complex plane CN

The solution can be expanded in Chebyshev series
u(y) =

∑
p upψp(y) with ‖ψp‖∞ ≤ 1. Estimates on Chebyshev

coefficients are available [Babuska-Nobile-Tempone ’07]

[Nobile-Tamellini-Tempone ’13]

‖up‖H1
0 (D) ≤ Ce−

∑N
n=1 gi pi

F. Nobile (EPFL) Collocation & MLMC methods for SPDEs WIAS, Berlin, November 13-15, 2013 17
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Polynomial approximation by sparse grid collocation Convergence result for elliptic PDEs with random inclusions

Quasi-optimal sparse grid construction using

(nested) Clenshaw-Curtis points
m(i) = 2i−1 + 1 (doubling the points). ∆W (i) ≈

∏N
n=1 2in−2

Decay of Chebyshev coefficients: ‖up‖V ≤ Ce−g
∑N

n=1 pn

Lebesgue constant: L(i) ≤ 2
π

log(i + 1) + 1

Error estimate: ∆E (i) = C
∏N

n=1 e
−ĝm(in−1)

Profit estimate: P(i) = C̃ e−ĝ
∑N

n=1 m(in−1)

Theorem [Nobile-Tamellini-Tempone ’13](∑
i∈NN P(i)τ∆W (i)

) 1
τ <∞ for all 0 < τ < 1

=⇒ ‖u − SĨM
u‖L2

ρ(Γ,V ) ≤ C (τ)W
1− 1

τ

ĨM
, ∀ 0 < τ < 1

By optimizing with respect to τ one can get the estimate

‖u − SĨM
u‖L2

ρ(Γ,V ) ≤ C1(N) exp{−NC2W
1
N

ĨM
}

F. Nobile (EPFL) Collocation & MLMC methods for SPDEs WIAS, Berlin, November 13-15, 2013 18
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−ĝm(in−1)

Profit estimate: P(i) = C̃ e−ĝ
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u‖L2

ρ(Γ,V ) ≤ C1(N) exp{−NC2W
1
N

ĨM
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Polynomial approximation by sparse grid collocation Convergence result for elliptic PDEs with random inclusions

Quasi-optimal sparse grid construction using

(non-nested) Legendre points
m(i) = i (adding 1 point at the time). ∆W (i) =

∏N
n=1 in

Decay of Chebyshev coefficients: ‖up‖V ≤ Ce−g
∑N

n=1 pn

Lebesgue constant: L(i) = 1.
Error estimate: ∆E (i) = C

∏N
n=1 e

−ĝm(in−1)

Profit estimate: P(i) = C̃ e−ĝ
∑N

n=1 m(in−1)

Theorem [Nobile-Tamellini-Tempone ’13](∑
i∈NN P(i)τ∆W (i)

) 1
τ <∞ for all 0 < τ < 1

=⇒ ‖u − SĨM
u‖L2

ρ(Γ,V ) ≤ C (τ)W
1− 1

τ

ĨM
, ∀ 0 < τ < 1

By optimizing with respect to τ one can get the estimate

‖u − SĨM
u‖L2

ρ(Γ,V ) ≤ C̃1(N) exp{−NC̃2W
1

2N

ĨM
}
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Polynomial approximation by sparse grid collocation Convergence result for elliptic PDEs with random inclusions

Quasi optimal sparse grid in practice

We have the theoretical bound ‖up‖V ≈ Ce−
∑N

n=1 gnpn ,
hence, in particular, for p = ej = (0, . . . , 0, 1, 0, . . . , 0),
‖uej
‖V ≈ Ce−gj pj which implies that a 1D polynomial interpolation in

the variable yj only converges exponentially with rate gj .

The rates gj can be estimated numerically by “1D analyses”.
(increase the polynomial degree in one variable at the time and
fit the convergence rate).

Once the rates gj are available, we build the quasi optimal index
set based on the profit estimate

P(i) =
∆E (i)

∆W (i)
∝

N∏
n=1

Lm(in)e
−gin m(in−1)

∆W (in)

F. Nobile (EPFL) Collocation & MLMC methods for SPDEs WIAS, Berlin, November 13-15, 2013 20
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Polynomial approximation by sparse grid collocation Convergence result for elliptic PDEs with random inclusions

Quasi optimal sparse grid in practice

When working with random fields instread of inclusion problmes a
good estimate for the Legendre/Chebyshev coefficients is (see
[Bech-N.-Tamellini-Tempone M3AS ’12, Cohen-DeVore-Schwab FoCM ’10])

‖up‖V ≈ C
|p|!
p!

exp{−
N∑

n=1

gnpn}.

The rates gn can be estimated again by 1D inexpensive analyses.

F. Nobile (EPFL) Collocation & MLMC methods for SPDEs WIAS, Berlin, November 13-15, 2013 21
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Polynomial approximation by sparse grid collocation Numerical results

Isotropic test case – 4 random inclusions
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Conductivity coefficient: matrix k=1
circular inclusions: k |Ωi

∼ U(0.01, 1.99)
→ 4 iid uniform random variables

forcing term f = 1001F

zero boundary conditions

quantity of interest ψ(u) =
∫

F
u

mean std
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Polynomial approximation by sparse grid collocation Numerical results

Isotropic test case – 4 random inclusions

convergence plot for ‖ψ(u)− SIψ(u)‖L2
ρ(Γ) versus # pts sparse grid
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Polynomial approximation by sparse grid collocation Numerical results

Anisotropic test case – 4 random inclusions
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Polynomial approximation by sparse grid collocation Numerical results

Anisotropic test case – 4 random inclusions

convergence plot for ‖ψ(u)− SIψ(u)‖L2
ρ(Γ) versus # pts sparse grid
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Polynomial approximation by sparse grid collocation Numerical results

Numerical test - 1D stationary lognormal field

L = 1, D = [0, L]2.
−∇ · a(y, x)∇u(y, x) = 0

u = 1 on x = 0, h = 0 on x = 1

no flux otherwise

a(x, y) = eγ(x,y), µγ(x) = 0,

Covγ(x, x′) = σ2e−
|x1−x′1|

2

LC2

We approximate γ as

γ(y, x) ≈ µ(x) + σa0y0 + σ

K∑
k=1

ak

[
y2k−1 cos

(π
L
kx1

)
+ y2k sin

(π
L
kx1

)]
with yi ∼ N (0, 1), i.i.d.

Given the Fourier series σ2e−
|z|2

LC2 =
∑∞

k=0 ck cos
(
π
Lkz
)
, ak =

√
ck .
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Polynomial approximation by sparse grid collocation Numerical results

p=1 p=0

( a ∇ p ) ⋅  n = 0

( a ∇ p ) ⋅  n = 0

(0,0) (1,0)

(0,1) (1,1)

Quantity of interest: effective permeability E[Φ(u)], with

Φ =
[∫ L

0
k(·, x)∂u(·,x)

∂x
dx
]

Convergence: |E[Φ(SĨM
u)]− E[Φ(u)]|

We compare Monte Carlo estimate with quasi-optimal sparse
grids based on Gauss-Hermite-Patterson points (nested
Gauss-Hermite)
Estimate of Hermite coefficients decay:

for the simpler problem ∇ · a(y)∇u(y, x) = f ,

a(y) = eb0+
∑N

n=1 ynbn , we have ‖ui‖V = C bin
n√
in!

.

Heuristic: use the same ansatz ‖ui‖V ≈ C
∏N

n=1
e−gnin√

in!
but

estimate the rates gn numerically.
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Polynomial approximation by sparse grid collocation Numerical results
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Polynomial approximation by sparse grid collocation Numerical results

Correlation length: LC = 0.2, Std: σ = 0.3 (c.o.v. ∼ 30%)
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(a) Convergence of quasi-optimal
sparse grid approximations.
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OPT sparse grid, N=11

OPT sparse grid, N=21

OPT sparse grid, N=33

SM sparse grid, N=11

SM sparse grid, N=21

SM sparse grid, N=33

(b) Convergence with respect to
the reference solution with N = 33
r.vs.

The quasi optimal construction automatically adds new variables
when needed.
No need to truncate a-priori the random field

”A quasi-optimal sparse grids procedure for groundwater flows” by J. Beck, F. Nobile, L.

Tamellini and R. Tempone. To appear, LNCSE, Springer, 2013.
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Polynomial approximation by sparse grid collocation Numerical results

Partial conclusions

Sparse grid polynomial approximation works well for elliptic
problems with random coefficients for

inclusion type problems with few inclusions
smooth random fields with long correlation length

On the other hand, these techniques suffer in the cases of
rough fields even with long correlation lenght; e.g. exponential
covariance: Cova(x , y) = σ2e |x−y |/lc

a(ω, x) = ā(x) +
∞∑

n=1

√
λnyn(ω)bn(x), λn ∼ n−2

fields with short correlation length:

λn = O(1) for n ≤ diam(D)/lc

Idea. In the case of rough longly correlated fields, combine sparse
grid polynomial approximation with Multi Level Monte Carlo.

F. Nobile (EPFL) Collocation & MLMC methods for SPDEs WIAS, Berlin, November 13-15, 2013 31



Polynomial approximation by sparse grid collocation Numerical results

Partial conclusions

Sparse grid polynomial approximation works well for elliptic
problems with random coefficients for

inclusion type problems with few inclusions
smooth random fields with long correlation length

On the other hand, these techniques suffer in the cases of
rough fields even with long correlation lenght; e.g. exponential
covariance: Cova(x , y) = σ2e |x−y |/lc

a(ω, x) = ā(x) +
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Combined MLMC / Sparse grid method

Outline

1 Model problem: elliptic PDEs with random coefficients

2 Polynomial approximation by sparse grid collocation
Quasi optimal sparse grid construction
Convergence result for elliptic PDEs with random inclusions
Numerical results

3 Combined MLMC / Sparse grid method
MLMC with Sparse Grid Control Variate
Variance analysis and algorithm tuning
Numerical results

4 Conclusions
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Combined MLMC / Sparse grid method

Darcy Problem with log-normal permeability

find u(x , ω) : D × Ω→ Rd and p(x , ω) : D × Ω→ R such that
almost everywhere in ω ∈ Ω it holds :

u(x , ω) = −a(x , ω)∇p(x , ω) in D,

div(u(x , ω)) = f (x) in D,

+ boundary conditions on ∂D.

D is the bounded physical domain and (Ω,F ,P) is the
probability space

u and p are the Darcy velocity and pressure, respectively

a(x , ω) is the permeability field modeled as a lognormally
distributed random field a(x , ω) = eγ(x ,ω)

γ(x , ω) is a Gaussian stationary random field
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Combined MLMC / Sparse grid method

Matérn Covariance Function

Matérn Family

covγ(x1 − x2) =
σ2

Γ(ν)2ν−1

(√
2ν
‖x1 − x2‖

Lc

)ν
Kν

(√
2ν
‖x1 − x2‖

Lc

)

Lc is a correlation length

Γ is the gamma function

Kν is the modified Bessel function of the second kind

ν = 0.5 : covγ(x1 − x2) = σ2e−
‖x1−x2‖

Lc (exponential covariance)

ν →∞: covγ(x1 − x2) = σ2e
− ‖x1−x2‖

2

L2
c (Gaussian covariance)
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Combined MLMC / Sparse grid method

Matérn Covariance Function: Regularity issues

Let ν = s + α with s = dν − 1e ∈ N and α = ν − dν − 1e ∈ (0, 1].
Then the realizations of the random field are almost surely Hölder
continuous, γ(x , ω) ∈ Cs,β(D̄) with β < α.

For ν = 0.5 the covariance function is only Lipschitz continuous
and the field is almost surely Hölder continuous
γ(x , ω) ∈ C0,α(D̄) with α < 0.5.

For ν →∞ the covariance function as well as the field are
continuous with all their derivates, namely
covγ(x), γ(x , ωi ) ∈ C∞(D̄) ∀ω ∈ Ω

(see [Graham, Kuo, Nichols, Scheichl, Schwab, Sloan ’13 ])
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Combined MLMC / Sparse grid method

MLMC

Q = Q(p) : QoI related to the solution of the PDE
Th0 , ..., ThL

: sequence of increasingly fine triangulations
Yhl

= Qhl
− Qhl−1

: difference of the QoI between two consecutive
grids.

Telescopic sum + Linearity of expectation:

E[QhL
] =

L∑
l=0

E[Yhl
], Qh−1 = 0

MLMC Estimator:

Q̂MLMC
L,{Ml} =

L∑
l=0

1

Ml

Ml∑
i=1

(
Qhl

(ωi )− Qhl−1
(ωi )

)
see [ Teckentrup, Scheichl, Giles, Ullmann ’12 ], [ Charrier, Scheichl, Teckentrup ’11 ]
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Combined MLMC / Sparse grid method

MLMC – Mean Square Error (MSE)

e(Q̂MLMC
L,{Ml} )2 =

L∑
l=0

Var(Yhl
)

Ml︸ ︷︷ ︸
(i)

+E[QhL
− Q]2︸ ︷︷ ︸

(ii)

Ml : number of samples on each level. A good choice of Ml , for
l = 0, ..., L, represents a crucial issue for the effectiveness of the
method ( see [Cliffe, Giles, Scheichl, Teckentrup, ’11 ], [Barth, Schwab, Zollinger, ’11 ] )

(i): represents the variance of the estimator, i.e. the statistical error:
it is expected to be significantly smaller than the variance of the
standard MC estimator

(ii): represents the bias of the error, due to the finite element (FE)
discretization
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Combined MLMC / Sparse grid method MLMC with Sparse Grid Control Variate

Control Variate

Idea: use the solution of an auxiliary problem with regularized
coefficient as control variate
Problem: we do not know exactly the expected value of the control
variate. However this can be computed efficiently by a Stochastic
Collocation (SC) technique

Original Problem Auxiliary Problem{
−div(a∇p) = f in D,

+ boundary conditions on ∂D.

{
−div(aε∇pε) = f in D,

+ boundary conditions on ∂D.

a = eγ : random field obtained starting from the Matérn covariance
function with parameter ν

aε = eγ
ε
: regularized version of a
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Combined MLMC / Sparse grid method MLMC with Sparse Grid Control Variate

Control Variate

Regularized Gaussian random field obtained via convolution with a
Gaussian kernel

γε = γ ∗ φε(x), where φε =
1

(2πε2)
d
2

e−
‖x‖2

2ε2

Quantity of interest defined via control variate

QCV = Q − (Qε − E[Qε])

where Q = Q(p) and Qε = Q(pε)
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Combined MLMC / Sparse grid method MLMC with Sparse Grid Control Variate

Control Variate
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Combined MLMC / Sparse grid method MLMC with Sparse Grid Control Variate

MLMC with Control Variate

Th0 , ..., ThL
: sequence of increasingly fine triangulations;

Y CV
hl

= QCV
hl
− QCV

hl−1
: difference of the QoI between two consecutive

grids.

Telescopic sum + Linearity of expectation:

E[QCV
hL

] =
L∑

l=0

E[Y CV
hl

], QCV
h−1

= 0

MLCV Estimator

Q̂MLCV
hL,{Ml} =

L∑
l=0

1

Ml

Ml∑
i=1

(
Q i

hl
− Q i

hl−1
− (Qε,i

hl
− Qε,i

hl−1
)
)

+ E[Qε,SC
hL

]
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Combined MLMC / Sparse grid method Variance analysis and algorithm tuning

MLMC with Control Variate

Mean Square Error (MSE)

e(Q̂MLCV
hL,{Ml})

2 ≤
L∑

l=0

Var(Y CV
hl

)

Ml︸ ︷︷ ︸
(i)

+ 2E[Qε
hL
− Qε,SC

hL
]2︸ ︷︷ ︸

(ii)

+ 2E[QhL
− Q]2︸ ︷︷ ︸

(iii)

E[Qε,SC
hL

]: mean of the QoI Qε
hL

computed with a SC scheme on
sparse grids.

(i): variance of the estimator

(ii): bias due to the SC approximation of the mean of the control
variate E[Qε]

(iii): bias due to the finite element approximation

Remark: if ε tends to 0 the statistical error (i) vanishes; on the other
hand keeping small the SC error (ii) becomes too costly.
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Combined MLMC / Sparse grid method Variance analysis and algorithm tuning

MLMC with Control Variate

Error estimate (preliminary result)

E
[
(Q − Qhl

− (Qε − Qε
hl

))2
] 1

2 ≤ ch
min{ν,p}
l min

s=1,...,p
h

min{ν,s}
l εmin{(ν−s)+,2}

Variance of the difference of the QoI between consecutive grids. The
dashed lines represent the slopes h2

l and h4
l .
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Combined MLMC / Sparse grid method Variance analysis and algorithm tuning

MLCV Algorithm

1 Given a prescribed tol select hL in such a way to have (iii) 6 tol2;

2 set h0 = O(|D|) and evaluate (iv) = Var(Y CV
hl

) and

(v) = Var(QCV
hl

); we can select among two basic strategies:
Strategy 1: if (iv) < (v) ∀ l apply the MLCV scheme starting from
level 0;
Strategy 2: if (iv) ≈ (v) for l = 0, ..., l0 set h0 = hl0 ; and use the
control variate only on level l0 and a standard MLMC on subsequent
levels, namely

Q̂MLCV
hL,{Ml} =

1

Ml0

Ml0∑
i=1

(
Q i

hl0
− Qε,i

hl0

)
+

L∑
l=l0+1

1

Ml

Ml∑
i=1

(
Q i

hl
− Q i

hl−1

)
+E[Qε,SC

hl0
]

3 according to the strategy selected compute the number of samples
Ml for l = 0, ..., L and the number of knots of the sparse grid MSG

by solving an optimization problem in such a way to have
(i) + (ii) 6 tol2
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Combined MLMC / Sparse grid method Variance analysis and algorithm tuning

Optimization Problem

ε is considered fixed

Cl is the computational cost needed to solve one deterministic system on
the grid of mesh size hl ; cost model: Cl = 2Cl−1 = ... = 2lC0 = γ2lh−1

0 .
For instance see [Cliffe, Giles, Scheichl, Teckentrup, ’11 ]

Computational cost

strategy 1: C (Ml ,MSG ) = 2M0C0 + 2
∑L

l=1 Ml (Cl + Cl−1) + MSGCL

strategy 2: C (Ml ,MSG ) = 2Ml0Cl0 +
∑L

l=l0+1 Ml (Cl + Cl−1) + MSGCl0

Associated Error fitted model

strategy 1: e(Ml ,MSG ) =
∑L

l=0

min
{

c1h
2 min{ν,p}
l ,c2h

4 min{ν,p}
l

}
Ml

+ c3M
α
SG

strategy 2: e(Ml ,MSG ) =
∑L

l=l0

c1h
4 min{ν,p}
l

Ml
+ c2M

α
SG

Perform a Lagrange optimization by considering

L(Ml ,MSG , λ) = C (Ml ,MSG )− λ(e(Ml ,MSG )− tol2)
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Combined MLMC / Sparse grid method Variance analysis and algorithm tuning

Optimization Problem

Values obtained (strategy one):

M0 =
√
−λ
√

c1h
2 min{ν,p}
0

2C02l =
√
−λ
√

v0

2C0

Ml =
√
−λ

√
min

{
c1h

2 min{ν,p}
l ,c2h

4 min{ν,p}
l

}
3C02l =

√
−λ
√

vl

3C02l
for

l = 1, ..., L

MSG = (−λ)
1

1−α

(
−α2−L c3

C0

) 1
1−α

where λ has to be computed from:

1√
−λ

=
tol2

√
C0(
√

2v0 +
∑L

l=1

√
3vl 2l ) + c3( 1√

−λ)
−1−α
1−α (−α2−L c3

C0
)

α
1−α
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Combined MLMC / Sparse grid method Numerical results

Approximation error E[QhL − Q]2
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Combined MLMC / Sparse grid method Numerical results

SC error E[Qε,SC
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In both cases more than the 99% of the variability has been taken
into account. The fitted rate is better than MC in both cases.
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Combined MLMC / Sparse grid method Numerical results

Error vs Cost : MLCV vs MLMC

Error and computational cost associated to several values of
tol = 10−1, ..., 10−5. ε = 1/83 in both cases.
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Conclusions

Conclusions
We have analyzed the convergence of quasi-optimal sparse grid
approximations based on the selection of the M most profitable
hierarchical surpluses. Convergence rates are related to summability
properties of the profits, weighted by the corresponding works.

Sharp a-priori / a-posteriori analysis of the decay of the polynomial
chaos expansion of the solution allows to construct optimized sparse
grids that provide effective approximations also in infinite dimensions
for smooth fields.

The “profit based” a-posteriori adaptive algorithm is also performing
very efficiently, close to the best approximation.

for rough, longly correlated fields, a good idea is to use a sparse grid
polynomial approximation on a smoothed problem as a control
variate in a MLMC algorith. Preliminary results show a considerable
improvement of the overall complexity.
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Conclusions

Thank you for your attention!
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