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Recall from Lecture 1
Numerical Analysis of Elliptic PDEs with Random Coefficients

Motivation: uncertainty/lack of data & stochastic modelling
Examples of PDEs with random data

Model problem: groundwater flow and radwaste disposal
Elliptic PDEs with rough stochastic coefficients

What are the computational/analytical challenges?

Numerical Analysis

I Assumptions, existence, uniqueness, regularity

I FE analysis: Cea Lemma, interpolation error, functionals

I Variational crimes (truncation error, quadrature)

I Mixed finite element methods
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Outline – Lecture 2
Novel Monte Carlo Methods and Uncertainty Quantification

Stochastic Uncertainty Quantification (in PDEs)

The Curse of Dimensionality & the Monte Carlo Method

Multilevel Monte Carlo methods & Complexity Analysis

Analysis of multilevel MC for the elliptic model problem

Quasi–Monte Carlo methods

Analysis of QMC for the elliptic model problem

Bayesian Inference (stochastic inverse problems):

Multilevel Markov Chain Monte Carlo
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Model Problem: Uncertainty in Groundwater Flow
(applications in risk analysis of radwaste disposal, etc. . . )
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Geology at Sellafield (former potential UK radwaste site) c©NIREX UK Ltd.

Darcy’s Law: ~q + k(x , ω)∇p = ~f (x , ω)

Incompressibility: ∇ · ~q = g(x , ω)

+ Boundary Conditions

Uncertainty in k =⇒ Uncertainty in p & ~q

Stochastic Modelling!

R. Scheichl (Bath) Novel Monte Carlo Methods and UQ WIAS Berlin, Nov 2013 4 / 57



PDEs with Lognormal Random Coefficients
Key Computational Challenges

−∇·(k(x , ω)∇p(x , ω)) = f (x , ω), x ∈ D ⊂ Rd , ω ∈ Ω (prob. space)

Sampling from random field (log k(x , ω) Gaussian) :

I truncated Karhunen-Loève expansion of log k
I matrix factorisation, e.g. circulant embedding (FFT)
I via pseudodifferential “precision” operator (PDE solves)

High-Dimensional Integration (especially w.r.t. posterior):

I stochastic Galerkin/collocation (+sparse)
I Monte Carlo, QMC & Markov Chain MC

Solve large number of multiscale deterministic PDEs:

I Efficient discretisation & FE error analysis
I Multigrid Methods, AMG, DD Methods
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Why is it computationally so challenging?

Low regularity (global): k ∈ C 0,η, η < 1 =⇒ fine mesh h� 1

Large σ2 & exponential =⇒ high contrast kmax/kmin > 106

Small λ =⇒ multiscale + high stochast. dimension s > 100

e.g. for truncated KL expansion log k(x , ω) ≈
s∑

j=1

√
µjφj(x)Yj(ω)

Remainder
∑

j>J µj in 1D Truncation error of E[‖p‖L2(0,1)] w.r.t. s
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Curse of Dimensionality (s > 100)

Stochastic Galerkin/collocation methods

I in their basic form cost grows very fast with dimension s

(faster than exponential) → #stochastic DOFs O
(

(s+p)!
s!p!

)
I lower # with sparse grids (Smolyak) but still exponential!

I (A priori) anisotropic sparse grids (Nobile) or
(a posteriori) adaptive best N-term approximation (Eigel)
can be dimension independent, but needs smoothness!

Monte Carlo type methods

I convergence of plain vanilla Monte Carlo is always
dimension independent (even for rough problems) !

I BUT order of convergence is slow: O(N−1/2) !

I Quasi-MC also dimension independent and faster:
∼ O(N−1) ! But requires (also some) smoothness !
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Nonlinear Parameter Dependence

Monte Carlo methods do not rely on KL-type expansion
(can use circulant embedding or sparse pseudodifferential operators)

Stochastic Galerkin matrix A is block dense due to nonlinear
parameter dependence → even applying A is expensive!
(can transform to convection-diffusion problem, but requires more

smoothness and is not conservative [Elman, Ullmann, Ernst, 2010])

best N-term theory by [Cohen, Schwab et al] does not apply!

Monte Carlo methods do not suffer from curse of dimensionality,
they are “non-intrusive” and nonlinear parameter dependence is no
problem, but the plain vanilla version is too slow!
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Monte Carlo for large scale problems (plain vanilla)

Zs(ω) ∈ Rs Model(h)−→ Xh(ω) ∈ RMh
Output−→ Qh,s(ω) ∈ R

random input state vector quantity of interest

e.g. Zs multivariate Gaussian; Xh numerical solution of PDE;
Qh,s a (non)linear functional of Xh

Q(ω) inaccessible random variable s.t. E[Qh,s ]
h→0, s→∞−→ E[Q]

and |E[Qh,s − Q]| = O(hα) +O(s−α
′
)

Standard Monte Carlo estimator for E[Q]:

Q̂MC :=
1

N

N∑
i=1

Q
(i)
h,s

where {Q(i)
h,s}Ni=1 are i.i.d. samples computed with Model(h)
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Monte Carlo for large scale problems (plain vanilla)

Convergence of plain vanilla MC (mean square error):

E
[(

Q̂MC − E[Q]
)2]︸ ︷︷ ︸

=: MSE

= V[Q̂MC] +
(
E[Q̂MC]− E[Q]

)2

=
V[Qh,s ]

N︸ ︷︷ ︸
sampling error

+
(
E[Qh,s − Q]

)2

︸ ︷︷ ︸
model error (“bias”)

Typical (2D): α = 1 ⇒ MSE = O(N−1) +O(h−2) ≤ TOL

Thus h−2 ∼ N ∼ TOL−2 and Cost = O(Nh−2) = O(TOL−4)

(e.g. for TOL = 10−3 we get h−2 ∼ N ∼ 106 and Cost = O(1012) !!)

Quickly becomes prohibitively expensive !
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Return to model problem

(Recall:) Standard FEs (cts pw. linear) on T h:

−→ A(ω) p(ω) = b(ω) Mh ×Mh linear system

(similarly for mixed FEs)

Quantity of interest: Expected value E[Q] of Q := G(p)
some (nonlinear) functional of the PDE solution p

Standard Monte Carlo (MC) estimate for inaccessible E[Q]:

Q̂MC
h :=

1

N

N∑
i=1

Q
(i)
h , Q

(i)
h i.i.d. samples on Th .

(Quasi-)optimal sampling & PDE solver (eg. FFT & AMG):

⇒ Cost(Q
(i)
h ) = O(Mh log(Mh)) = O(h−d | log h|))
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Complexity of Standard Monte Carlo (avoiding log-factors)

Assuming

(A1)
∣∣E[Qh − Q]

∣∣ = O(hα) (mean FE error)

(A2’) V[Qh] <∞

(A3) Cost(Q
(i)
h ) = O(h−γ) (deterministic solver)

to obtain mean square error

E
[

(Q̂MC
h − E[Q])2

]
= O(ε2)

the total cost is

Cost(Q̂MC
h ) = O

(
ε−2− γ

α

)
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Proof

Since

E
[(

Q̂MC − E[Q]
)2]︸ ︷︷ ︸

=: eMSE (Q̂MC)

=
V[Qh]

N
+
(
E[Qh − Q]

)2

a sufficient condition for eMSE (Q̂MC) = O(ε2) is

N = d2V[Qh] ε−2e and h = cε1/α

Therefore

Cost(Q̂MC
h ) = N Cost(Q

(i)
h ) = O

(
ε−2− γ

α

)
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Numerical Example (Standard Monte Carlo)

D = (0, 1)2, covariance R(x , y) := σ2 exp
(
−‖x−y‖2

λ

)
and Q = ‖ − k ∂p

∂x1
‖L1(D)

using mixed FEs and the AMG solver amg1r5 [Ruge, Stüben, 1992]

Numerically observed FE-error: ≈ O(h3/4) =⇒ α ≈ 3/4.

Numerically observed cost/sample: ≈ O(h−2) =⇒ γ ≈ 2.

Total cost to get RMSE O(ε): ≈ O(ε−14/3)
to get error reduction by a factor 2 → cost grows by a factor 25!

Case 1: λ = 0.3, σ2 = 1

ε h−1 Nh Cost
0.01 129 1.4× 104 21min

0.002 1025 3.5× 105 30days

Case 2: λ = 0.1, σ2 = 3

ε h−1 Nh Cost
0.01 513 8.5× 103 4 h

0.002 Prohibitively large!!

(actual numbers & CPU times on a 2GHz Intel T7300 processor)

R. Scheichl (Bath) Novel Monte Carlo Methods and UQ WIAS Berlin, Nov 2013 14 / 57



Numerical Example (Standard Monte Carlo)

D = (0, 1)2, covariance R(x , y) := σ2 exp
(
−‖x−y‖2

λ

)
and Q = ‖ − k ∂p

∂x1
‖L1(D)

using mixed FEs and the AMG solver amg1r5 [Ruge, Stüben, 1992]
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Multilevel Monte Carlo Methods

R. Scheichl (Bath) Novel Monte Carlo Methods and UQ WIAS Berlin, Nov 2013 15 / 57



Multilevel Monte Carlo [Heinrich 2000], [Giles 2007]

Main Idea:

E[QL] = E[Q0] +
∑L

`=1
E[Q` − Q`−1]

where h`−1 = 2h` and Q` := G(ph`)

Key Observation (as in multigrid: easier to find corrections)

V[Q` − Q`−1]→ 0 as h` → 0 !

Define following multilevel MC estimator for E[Q]:

Q̂ML
L :=

∑L

`=0
Ŷ MC
` where Y` := Q` − Q`−1 & Q−1 = 0
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Complexity of Multilevel Monte Carlo (avoiding log’s)

Assuming

(A1)
∣∣E[Q` − Q]

∣∣ = O(hα` ) (mean FE error)

(A2) V[Q` − Q`−1] = O(hβ` ) (variance reduction)

(A3) Cost(Q
(i)
` ) = O(h−γ` ) (deterministic solver)

∃L and {N`}L`=0 such that to obtain mean square error

E
[

(Q̂ML
L − E[Q])2

]
= O(ε2)

the total cost is

Cost(Q̂ML
L ) = O

(
ε−2−max(0,γ−βα )

)
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Adaptive error estimators (to estimate L and {N`} on the fly):

|Ŷ MC
` | ∼

∣∣E[Q`−1 − Q]
∣∣ and s(Ŷ MC

` ) ∼ V[Q` − Q`−1]
↑ sample variance estimator

Assuming optimal AMG solver (γ ≈ d) and β ≈ 2α. Then for
α ≈ 0.75 (as in the example above) the cost in Rd is

d MC MLMC per sample

1 O(ε−10/3) O(ε−2) O(ε−4/3)
2 O(ε−14/3) O(ε−8/3) O(ε−8/3)
3 O(ε−6) O(ε−4) O(ε−4)

Optimality (for γ > β = 2α)

MLMC cost is asymptotically the same as one deterministic solve
to accuracy ε in 2D & 3D, i.e. O(ε−γ/α) !!

Can we achieve such huge gains in practice?
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Numerical Examples (Multilevel MC)

D = (0, 1)2; covariance R(x , y) := σ2 exp
(
−‖x−y‖2

λ

)
; Q = ‖p‖L2(D)

Std. FE discretisation, circulant embedding

σ2 = 1, λ = 0.3, h0 = 1
8
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Numerical Examples (Multilevel MC)

D = (0, 1)2; covariance R(x , y) := σ2 exp
(
−‖x−y‖2

λ

)
; Q = ‖p‖L2(D)

Std. FE discretisation, circulant embedding

hL = 1/256 (solid line is FE-error)

Matlab implementation on 3GHz Intel Core 2 Duo E8400 processor,

3.2GByte RAM, with sparse direct solver, i.e. γ ≈ 2.4
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Proof of Multilevel Complexity Theorem

Because Ŷ MC
` are independent, we get similar to single-level case

E
[(

Q̂ML
L − E[Q]

)2]
=

L∑
`=0

V[Y`]

N`

+
(
E[QL − Q]

)2

A sufficient condition for the bias to be O(ε2) is again hL h ε1/α.

Then we can minimise (with Vl = V[Y`] and C` = Cost(Q
(i)
` ))∑

`
N`C` subject to

∑
`

V`/N` = ε2/2

w.r.t. {N`}, to get (for the case γ > β – the other cases are similar):

N` = 2ε−2
(∑

`′

√
V`′C`′

)√
V`/C` h ε−2

(∑
`′

h
β−γ

2
`′

)
h
β+γ

2
` .

Since h` = 2L−`hL h 2L−`ε1/α the bound on
∑

` C`N` follows.
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Theory: Verifying Assumptions (A1) & (A2)
Recall from Wednesday’s Lecture

Assumptions. ∃t ∈ (0, 1], q∗ ≥ 1 s.t.

1/kmin(ω) ∈ Lq(Ω), k ∈ Lq(Ω,C 0,t(D)), ∀q <∞

f ∈ Lq∗(Ω,H t−1(D)), Φ ∈ Lq∗(Ω,H t+ 1
2 (∂D))

and D (convex) Lipschitz polygonal.

Theorem 2. ∀q < q∗, s < t we have p ∈ Lq(Ω,H1+s(D)).

Theorem 3. ∀q < q∗, s < t we have

‖p − ph‖Lq(Ω,H1(D)) = O(hs) & ‖p − ph‖Lq(Ω,L2(D)) = O(h2s).

Theorem 3b. If G(v) ∈ Lq∗(Ω,H t−1(D)∗) Fréchet diff’ble,
then ∀q < q∗, s < t we have

‖G(p)− G(ph)‖Lq(Ω) = O(h2s)
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Thus, with q = 1 we get

|E[G(p)− G(ph)]| ≤ ‖G(p)− G(ph)‖L1(Ω) = O(h2s)

=⇒ (A1) holds for any α < 2t (i.e. α < 1 for exponential cov.)

And with q = 2 we get

V[G(ph)− G(p2h)] ≤ ‖G(ph)− G(p2h)‖2
L2(Ω) ≤ O(h4s)

=⇒ (A2) holds for any β < 4t (i.e. β < 2 for exponential cov.)

Hence (for rough fields, e.g. t < 1/2) Cost = O(ε−γ/α)
(Same as for deterministic solve!)

Hence optimal and robust deterministic solver with γ = d crucial!

This is a whole talk in itself!
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Numerical Confirmation
D = (0, 1)2; covariance R(x , y) := σ2 exp

(
−‖x−y‖2

λ

)
with λ = 0.3 and σ2 = 1;

Std. FE discretisation, circulant embedding

∣∣E[G(1)(p)− G(1)(ph)
]∣∣

where G(1)(p) := Lω(Ψ)− bω(Ψ, v)

given Ψ(x) = x (outflow on right).

V
[
G(2)(ph)− G(2)(p2h)

]
where G(2)(p) :=

(
1
|D∗|

∫
D∗

p(x)dx
)2

(i.e. 2nd moment of p over small patch)

=⇒ α = 1 and β = 2
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Discontinuous Permeability (piecewise lognormal)
Three layers; functional G(p) = ‖p‖L2(D).

Exponential covariance Gaussian covariance

As mentioned on Wednesday we can also analyse this case.

Similarly for the case of random interfaces
(and piecewise correlated random fields).
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Point Evaluations and Particle Paths [Teckentrup, 2013]

If in addition we assume f ∈ Lq∗(Ω, Lr (D)) with r > d/(1− t)
then for all q < q∗

‖p − ph‖Lq(Ω,L∞(D)) = O(h1+t) and

‖p − ph‖Lq(Ω,W 1,∞(D)) = O(ht)

Therefore point evaluations p(x∗) and ~q(x∗) converge with
O(h1+t) and O(ht), respectively.

This is of particular interest for particle paths (e.g. a plume
spreading) computed via the integral

~x(T ) = ~x0 +

∫ T

0

~q(~x(τ)) dτ

If t = 1 (current proof needs Lipschitz continuity of ~q), then

‖~x(T )− ~xh(T )‖Lq(Ω) . ‖p − ph‖Lq(Ω,W 1,∞(D)) = O(h).
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Level-dependent Estimators (important in practice!)

Use Q` := G(p̃ `
h`

) with level-dependent p̃ `
h`

in multilevel splitting

E[QL] = E[Q0] +
∑L

`=1
E[Q` − Q`−1],

e.g. vary #terms s` in KL-expansion (smoother on coarse grids)

Strang Lemma: Same bounds on α and β if s−1
` = O(h`).

(using the truncation error analysis I showed on Wednesday)

No gain asymptotically (but also no loss!).

Helps with the absolute gain of the multilevel estimator and
makes it feasible also on coarser grids with h` > λ.
(in basic multilevel MC need h0 < λ)
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Level-dependent Estimators (important in practice!)

1D Example: G(p) = p(x∗), σ2 = 1, λ = 0.01 and s` := h−1
`
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Other developments in MLMC

many other PDEs and applications

similar results for mixed FEs, FVM, . . .

can optimise all parameters (not just {N`}) [Hajiali, Tempone]

adaptivity [Von Schwerin, Tempone et al]

variance estimation [Bierig, Chernov]

optimal estimation of CDFs, PDFs [Giles, Nagapetyan, Ritter]

antithetic sampling & coarse grid variates [Park, Giles et al]

hybrid with stochastic collocation [Tesei, Nobile et al]

generalisation to general multilevel quadrature [Harbrecht et al]

multilevel QMC [Kuo, Schwab, Sloan] see below
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Quasi–Monte Carlo Methods
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Reducing # Samples (Quasi–Monte Carlo)
[Graham, Kuo, Nuyens, RS, Sloan ’11], [Gra., Kuo, Nichols, RS, Schwab, Slo. ’13]

E[G(p)] ≈
∫

[0,1]s
G
(

ps
h

(
·,Φ−1(z)

))
dz ≈ 1

N

N∑
i=1

G
(

ps
h

(
·,Φ−1(z(i))

))
with Φ : Rs → [0, 1]s the cumulative normal distribution function.

Monte Carlo: z(n) unif. random
O(N−1/2) convergence
order of variables irrelevant

QMC: z(n) deterministic
close to O(N−1) convergence
order of variables v. important
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Numerical Results
[Graham, Kuo, Nuyens, RS, Sloan, JCP 2011]

Covariance

r(x, y) = σ2 exp
(
− ‖x− y‖1/λ

)
( ‖ · ‖2 similar)

Case 1 Case 2 Case 3 Case 4 Case 5
σ2 1 1 1 3 3
λ 1 0.3 0.1 1 0.1

Mixed FEM (RT0 + p.w. const): Uniform grid h = 1/m on (0, 1)2

Sampling: circulant embedding, dimension s = O(m2) (v. large)
(“discrete KL-expansion” via FFT)

QMC Method: randomised QMC with N Sobol’ points
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Algorithm profile

Time (in sec) on modest laptop for N = 1000, CASE 1:
(similar for other cases)

m s Setup Φ−1 FFTW PDE Solve TOT
33 4.1 (+3) 0.00 1.0 0.22 4.5 5.9
65 1.7 (+4) 0.01 3.9 1.2 16.5 22

129 6.6 (+4) 0.06 15 5.1 67 92
257 2.6 (+5) 0.15 62 31 290 400
513 1.0 (+6) 0.6 258 145 1280 1750

Order m2 m2 m2 m2 log m ∼ m2 ∼ m2
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(similar for other cases)

m s Setup Φ−1 FFTW PDE Solve TOT
33 4.1 (+3) 0.00 1.0 0.22 4.5 5.9
65 1.7 (+4) 0.01 3.9 1.2 16.5 22

129 6.6 (+4) 0.06 15 5.1 67 92
257 2.6 (+5) 0.15 62 31 290 400
513 1.0 (+6) 0.6 258 145 1280 1750

Order m2 m2 m2 m2 log m ∼ m2 ∼ m2

Using divergence free reduction to SPD problem and amg1r5

[Cliffe, Graham, RS, Stals, 2000]
One mixed FE (saddle point system) solve with ≈ 1.3(+6) DOF takes ≈ 1.3s !!
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Dimension independence (increasing m and hence s)

Quadrature error for mean pressure at centre (CASE 4)
(no FE error, MC in green, QMC in blue)
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Case4 (1−norm): m=33 ; Rates:−0.78 (QMC)−0.5 (MC)
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Robustness (varying σ2 and λ)

Expected value of effective permeability (here FE error present)

h needed to obtain a discretization error < 10−3

N needed to obtain (Q)MC error < 0.5× 10−3 (95% confidence)

σ2 λ 1/h N (QMC) N (MC) CPU (QMC) CPU (MC)
1 1 17 1.2(+5) 1.9(+7) 0.05 h 8 h
1 0.3 129 3.3(+4) 3.9(+6) 0.9 h 110 h
1 0.1 513 1.2(+4) 5.9(+5) 6.5 h 330 h
3 1 33 4.3(+6) 3.6(+8) 9 h 750 h
3 0.1 513 3.0(+4) 5.8(+5) 20 h 390 h

(last line calculated with twice the tolerance!)

Smaller λ needs smaller h but also smaller N (ergodicity).

Strong superiority of QMC in all cases.
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Theory [Graham, Kuo, Nicholls, RS, Schwab, Sloan, 2013]

Truncated Karhunen-Loeve expansion:

k(x, ω) ≈ k s(x, ω) := k∗(x) + k0(x) exp

( s∑
j=1

√
µjφj(x)Yj(ω)

)
y = (Yj)

s
j=1 i.i.d. N(0, σ2); (µj , φj) orth. eigenpairs of

∫
Ω
R(x, x′)φ(x′)dx′

Standard cts. p.w. linear FEs on grid T h: Find ps
h ∈ Vh s.t.∫

D

k s(x, ω)∇ps
h(x, ω) ·∇vh dx = 〈f , vh〉 ∀vh ∈ Vh, a.s. ω ∈ Ω

Three Sources of Error:

Truncation error (s): |E[G(p)− G(ps)]|

Discretisation error (h): |E[G(ps)− G(ps
h)]| as above

Quadrature error (N):
∣∣∣ ∫

[0,1]s
G(ps

h(·, Φ
−1(z))dz− Qs

N

(
G(ps

h)
)∣∣∣
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Truncation Error (recall from Wednesday)

Uses Fernique’s Thm. & depends on decay of KL-eigvals µj

I O(j−(d+1)/d) for exponential covariance with 2-norm

I O(exp(−c1j)) for Gaussian covariance

I O(j−(d+2ν)/d) for Matérn class (with parameter ν > 1/2)

and on growth of ‖∇φj‖L∞(D) (hard to estimate!)

If ∃r ∗ ∈ (0, 1) s.t.
∑
j≥1

jσµ2
j ‖φj‖2(1−r)

L∞(D) ‖∇φj‖2r
L∞(D) <∞ then

E[G(p)− G(ps)] = O(s−σ/2)

I Assumption satisfied for 1-norm exponential with σ < 1
I and for Matérn with ν > d/2 (proof in [Graham et al, 2013])
I For Gaussian covariance one can prove exponential decay
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Truncation Error (recall from Wednesday)

Remainder
∑

j>s µj in 1D (exponential) Converg. of
∣∣E[‖p‖L2(0,1) − ‖ps‖L2(0,1)]

∣∣
Importance of correlation length λ !
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Quadrature Error (Standard Monte Carlo)

By Law of Large Numbers for random points z(i) ∈ [0, 1]s :

RMSE
[
E[G(ps

h)]− ̂(G(ps
h)
)MC

N

]
= O(N−1/2)

Can we do better with
deterministically chosen
points & can we prove it?
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Sample Points & Equal Weight Quadrature Rules

Quasi-Monte Carlo: Qs
N

(
G(ps

h)
)

:=
1

N

N∑
i=1

G
(

ps
h

(
·,Φ−1(z(i))

))
How to choose z(1), . . . , z(N) ?

Low discrepancy points: Sobol (1950s), Faure, Niederreiter
(1980s), Dick . . .

Lattice rules: Korobov, Hlawka, Hua, Wang (50s), Sloan. . .
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Quasi-Monte Carlo Lattice Rule (of rank 1)
[Sloan & Joe, Lattice Methods for Multiple Integration, OUP, 1994]

Given a generating vector zgen ∈ {1, . . . ,N − 1}s and a

random shift ∆ ∼ U
[
(0, 1)s

]
:

z(i) := frac

(
i zgen

N
+ ∆

)
, i = 1, . . . ,N

Now theory available for functions in weighted tensor product Sobolev spaces.

Weighted spaces/existence: Sloan, Woźniakoski, ’98 & ’01

Construction: Sloan, Reztsov, Kuo, Joe, 2002
(see also www.maths.unsw.edu.au/∼fkuo: CBC construction)

Infinite dimensions and improper integrals:
Kuo, Sloan, Wasilkowski, Waterhouse, 2010;
Kuo, Nicholls, 2013
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Quadrature Error Analysis (non-affine lognormal case)

[Graham, Kuo, Nichols, RS, Schwab, Sloan, 2013]

Dimension-independent bounds if integrand F is in special weighted
tensor-product Sobolev space Ws,γ,ψ := (H1

γ,ψ(R))s with norm

‖F‖2
Ws,γ,ψ

:=
∑

u⊆{1,...,s}

1

γu

∫
R|u|

∣∣∣∣∂|u|F∂yu

(yu; 0)

∣∣∣∣2 ∏
j∈u

ψ2(yj) dyu .

Ordering of coordinates crucial! Cannot construct rules that
are equally good in all dimensions.

Weight function ψ2 controls decay at infinity for improper
integrals (either exponential or Gaussian).

Weights γu (for subsets u of coordinates) have to decrease
sufficiently fast.

Efficient CBC construction available – controlled by weights γu.
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Quadrature Error Analysis (contd.)

To show G(ps
h) ∈ Ws,γ,ψ bound mixed 1st derivatives of ps

h

w.r.t. parameters in a finite subset u ⊂ N:∣∣∣∣∂|u|ps
h

∂yu

(·, y)

∣∣∣∣
H1(D)

≤
‖f ‖H−1(D)

kmin(y)

|u|!
ln 2|u|

(∏
j∈u

√
µj ‖φj‖L∞(D)

)

Assume G(ps
h) linear. If KL-eigenvalues µj decay suff’ly fast we

can find weights γu s.t. G(ps
h) ∈ Ws,γ,ψ. In particular, can choose

γu =
( |u|!

(ln 2)|u|

)2/(1+λ)∏
j∈u γj(µj , λ) and λ depends on decay rate of µj .

Theorem (hidden constants independent of s!)

E[G(ps
h)]− Qs

N

(
G(ps

h)
)

= O(N−1/2) if µj‖φj‖2
L∞(D) = O(j−2−δ)

E[G(ps
h)]− Qs

N

(
G(ps

h)
)

= O(N−1+δ) if µj‖φj‖2
L∞(D) = O(j−3)

Optimal rates (provable) for Matérn with ν > 3
2d .
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Regularity Proof Idea
(also important for the analysis of the stochastic Galerkin/collocation methods)

For regularity, start with Lax-Milgram ⇒

‖ps
h(·, y)‖a ≤

1√
kmin(y)

‖f ‖H−1(D) for a.a. y ∈ RN

Then show inductively that (with bj =
√
µj‖φj‖L∞(D))

‖∂ups
h(·, y)‖a ≤ Λ|u|

∏
j≥1

b
νj
j

‖f ‖H−1(D)√
kmin(y)

where Λ0 = 1 and Λn =
∑n−1

i=0

(
n
i

)
Λi using the Leibniz rule

and the simple bound
∥∥∥∂uk(.,y)

k(.,y)

∥∥∥ ≤∏j≥1 b
νj
j (where νj = δj∈u).

Finally prove by induction that Λn ≤
n!

(log 2)n

R. Scheichl (Bath) Novel Monte Carlo Methods and UQ WIAS Berlin, Nov 2013 41 / 57



Regularity Proof Idea
(also important for the analysis of the stochastic Galerkin/collocation methods)

For regularity, start with Lax-Milgram ⇒

‖ps
h(·, y)‖a ≤

1√
kmin(y)

‖f ‖H−1(D) for a.a. y ∈ RN

Then show inductively that (with bj =
√
µj‖φj‖L∞(D))

‖∂ups
h(·, y)‖a ≤ Λ|u|

∏
j≥1

b
νj
j

‖f ‖H−1(D)√
kmin(y)

where Λ0 = 1 and Λn =
∑n−1

i=0

(
n
i

)
Λi using the Leibniz rule

and the simple bound
∥∥∥∂uk(.,y)

k(.,y)

∥∥∥ ≤∏j≥1 b
νj
j (where νj = δj∈u).

Finally prove by induction that Λn ≤
n!

(log 2)n

R. Scheichl (Bath) Novel Monte Carlo Methods and UQ WIAS Berlin, Nov 2013 41 / 57



Regularity Proof Idea
(also important for the analysis of the stochastic Galerkin/collocation methods)

For regularity, start with Lax-Milgram ⇒

‖ps
h(·, y)‖a ≤

1√
kmin(y)

‖f ‖H−1(D) for a.a. y ∈ RN

Then show inductively that (with bj =
√
µj‖φj‖L∞(D))

‖∂ups
h(·, y)‖a ≤ Λ|u|

∏
j≥1

b
νj
j

‖f ‖H−1(D)√
kmin(y)

where Λ0 = 1 and Λn =
∑n−1

i=0

(
n
i

)
Λi using the Leibniz rule

and the simple bound
∥∥∥∂uk(.,y)

k(.,y)

∥∥∥ ≤∏j≥1 b
νj
j (where νj = δj∈u).

Finally prove by induction that Λn ≤
n!

(log 2)n
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Quadrature Error (1D, Matérn covariance, rank-1 lattice rule)
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Quadrature Error (1D, Matérn covariance, rank-1 lattice rule)

Rates

ν σ2 λC = 0.1 λC = 1.0
0.25 0.82 0.89

0.75 1.00 0.64 0.83
4.00 0.60 0.63
0.25 0.80 0.86

1.5 1.00 0.66 0.73
4.00 0.58 0.55

R. Scheichl (Bath) Novel Monte Carlo Methods and UQ WIAS Berlin, Nov 2013 42 / 57



Partial Conclusions & Summary

MC-type methods currently the only ones that do not suffer
from curse of dimensionality (for non-smooth non-affine problems)

Multilevel MC is optimal, i.e. same cost as deterministic solver

Theory based on careful FE error analysis [recall Wed]

(level-dependent approximations for better variance reduction)

Quasi MC acceleration (with new s-independent theory!)

MLMC and QMC are complementary ⇒ MLQMC
[Giles, Waterhouse, 2009], [Kuo, Schwab, Sloan, 2012],

[Harbrecht, Peters, Siebenmorgen, 2013], ongoing for lognormal

ν = 1
2

d = 1 2 3

MC ε−3 ε−4 ε−5

QMC ε−3 ε−4 ε−5

MLMC ε−2 ε−2 ε−3

MLQMC ε−2 ε−2 ε−3

ν suff. large d = 1 2 3

MC ε−5/2 ε−3 ε−7/2

QMC ε−3/2 ε−2 ε−5/2

MLMC ε−2 ε−2 ε−2

MLQMC ε−1 ε−1 ε−7/4
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Multilevel Markov Chain Monte Carlo
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Inverse Problems – Bayesian Inference

Model was parametrised by Zs := [Z1, . . . ,Zs ] (the “prior”).
In the subsurface flow application with lognormal coefficients:

log k ≈
∑s

j=1
√
µjφj(x)Zj(ω) and P(Zs) h (2π)−s/2

∏s
j=1 exp

(
−Z 2

j

2

)
Usually also some output data Fobs available (e.g. pressure).
To reduce uncertainty, incorporate Fobs (the “posterior”)

Bayes’ Theorem: (RHS computable! Proportionality factor 1/P(Fobs) not!)

πh,s(Zs)︸ ︷︷ ︸
posterior

:= P(Zs |Fobs) h Lh(Fobs |Zs)︸ ︷︷ ︸
likelihood

P(Zs)︸ ︷︷ ︸
prior

Likelihood model (e.g. Gaussian):

Lh(Fobs |Zs) h exp(−‖Fobs − Fh(Zs)‖2/σ2
obs)

Fh(Zs) ... model response; σobs ... fidelity parameter (data error)
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ALGORITHM 1 (Standard Metropolis Hastings MCMC)

Choose Z0
s .

At state n generate proposal Z′s from distribution qRW(Z′s |Zn
s )

(e.g. random walk or preconditioned random walk [Stuart et al]).

Accept Z′s as a sample with probability

αh,s = min

(
1,
πh,s(Z′s) qRW(Zn

s |Z′s)
πh,s(Zn

s ) qRW(Z′s |Zn
s )

)
=

for reversible prop. dist.︷ ︸︸ ︷
min

(
1,
πh,s(Z′s)

πh,s(Zn
s )

)
i.e. Zn+1

s = Z′s with probability αh,s ; otherwise Zn+1
s = Zn

s .

Samples Zn
s used as usual for inference (even though not i.i.d.):

Eπh,s [Q] ≈ Eπh,s [Qh,s ] ≈
1

N

N∑
i=1

Q
(n)
h,s := Q̂MetH

where Q
(n)
h,s = G

(
Xh(Z(n)

s )
)

is the nth sample of Q using Model(h, s).
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for reversible prop. dist.︷ ︸︸ ︷
min

(
1,
πh,s(Z′s)

πh,s(Zn
s )

)
i.e. Zn+1

s = Z′s with probability αh,s ; otherwise Zn+1
s = Zn

s .

Pros:

Produces a Markov chain {Zn
s }n∈N, with Zn

s ∼ πh,s as n→∞.

Cons:

Evaluation of αh,s = αh,s(Z′s |Zn
s ) very expensive for small h.

Acceptance rate αh,s very low for large s (< 10%).

ε–Cost = O(ε−2− d
γ ) as above, but constant depends on αh,s & ’burn-in’
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Multilevel Markov Chain Monte Carlo
choose h` = h`−1/2 and s` > s`−1, and set Q` := Qh`,s` and Z` := Zs`

What are the key ingredients of “standard” multilevel Monte Carlo?

Telescoping sum: E [QL] = E [Q0] +
∑L
`=1 E [Q`]− E [Q`−1]

Models with less DOFs on coarser levels much cheaper to solve.

V[Q` − Q`−1]→ 0 as `→∞ ⇒ far less samples on finer levels

But Important! In MCMC target distribution depends on `:

EπL [QL] = Eπ0 [Q0] +
∑

`
Eπ` [Q`]− Eπ`−1 [Q`−1]EπL [QL] = Eπ0 [Q0]︸ ︷︷ ︸

standard MCMC

+
∑

`
Eπ` [Q`]− Eπ`−1 [Q`−1]︸ ︷︷ ︸

2 level MCMC (NEW)

Q̂ML
L :=

1

N0

N0∑
n=1

Q0(Zn
0) +

L∑
`=1

1

N`

N∑̀
n=1

(
Q`(Zn

` )− Q`−1(zn`−1)
)

Split Zn
` = [Zn

`,C,Z
n
`,F] = Z n

`,1, ...coarse...,Z n
`,s`−1

, Z n
`,s`−1+1, ..fine..,Z n

`,s`
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ALGORITHM 2 (Two-level Metropolis Hastings MCMC for Q` − Q`−1)

At states zn`−1,Z
n
` (of two Markov chains on levels `− 1 and `)

1 On level `− 1: Generate new state zn+1
`−1 using Algorithm 1.

2 On level `: Propose Z′` = [zn+1
`−1 ,Z

′
`,F] with Z′`,F as before

(e.g. generated via a Crank-Nicholson preconditioned random walk)

Novel transition prob. qML depends acceptance prob. α`−1 on level `− 1!

3 Accept Z′` with probability

α`
F(Z′` |Zn

` ) = min

(
1,
π`(Z′`) q

ML(Zn
` |Z′`)

π`(Zn
` ) qML(Z′` |Zn

` )

)

where Zn
`,C are the coarse modes of Zn

` (from the chain on level `).

This follows quite easily & both level `− 1 terms have been computed before.
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Multilevel MCMC Theory (What can we prove?)
[Ketelsen, RS, Teckentrup, arXiv:1303.7343, March 2013]

We have genuine Markov chains on all levels.

Multilevel algorithm is consistent (= no bias between levels)
since the two chains {Zn

`}n≥1 and {zn`}n≥1 are independent on each level.

Multilevel algorithm converges for any initial state.

But coarse modes may differ between level ` and `− 1 states:

State n + 1 Level `− 1 Level `
accept/accept z′`−1 [z′`−1,Z

′
`,F]

reject/accept zn`−1 [zn`−1,Z
′
`,F]

accept/reject z′`−1 [Zn
`,C,Z

n
`,F]

reject/reject zn`−1 [Zn
`,C,Z

n
`,F]

In last two cases the variance will in general not be small, but this does

not happen often since acceptance probability α`F
`→∞−→ 1 (see below).
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since the two chains {Zn

`}n≥1 and {zn`}n≥1 are independent on each level.

Multilevel algorithm converges for any initial state.

But coarse modes may differ between level ` and `− 1 states:

State n + 1 Level `− 1 Level `
accept/accept z′`−1 [z′`−1,Z

′
`,F]

reject/accept zn`−1 [zn`−1,Z
′
`,F]

accept/reject z′`−1 [Zn
`,C,Z

n
`,F]

reject/reject zn`−1 [Zn
`,C,Z

n
`,F]

In last two cases the variance will in general not be small, but this does

not happen often since acceptance probability α`F
`→∞−→ 1 (see below).
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Complexity Theorem for Multilevel MCMC
Let Y` := Q` − Q`−1 and assume

M1. |Eπ`[Q`]− Eπ∞[Q]| . hα` (discretisation and truncation error)

M2. Valg[Ŷ`] +
(
Ealg[Ŷ`]−Eπ`,π`−1[Ŷ`]

)2

.
Vπ`,π`−1[Y`]

N`

(MCMC-err)

M3. Vπ`,π`−1[Y`] . hβ`−1 (multilevel variance decay)

M4. Cost(Y
(n)
` ) . h−γ` . (cost per sample)

Then there exist L, {N`}L`=0 s.t. MSE < ε2 and

ε–Cost(Q̂ML
L ) . ε−2−max(0, γ−β

α )

(This is totally abstract & applies not only to our subsurface model problem!)

Recall: for standard MCMC (under same assumptions) Cost . ε−2−γ/α.
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Verifying (M1-M4) for the subsurface flow problem
with standard FEs & Fréchet-diff’ble functionals

First split bias into truncation and discretization error:

|Eπ`[Q`]− Eπ∞[Q]| ≤ |Eπ`[Q` − Q(Z`)]| (M1a)

+ |Eπ`[Q(Z`)]− Eπ∞[Q]| (M1b)

For M1a use Eπ` [|X |q] . EP` [|X |q] (prior bounds posterior) &

EP`[|Q` − Q(Z`)|q] . h2tq−δ
` (as before) ⇒ α < 2t

M1b & M2 not specific to multilevel MCMC

I M1a requires bound on truncation error in posterior
(cf. [Hoang, Schwab, Stuart, ’13] for uniformly elliptic/bdd. case)

I first steps to prove M2 are in [Hairer, Stuart, Vollmer, ’11]

M4 holds (with suitable multigrid solver – proved only for low contrast)
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Key assumption for multilevel MCMC is (M3)

Key Lemma (given only for the 1-norm exponential here)

Assume F h Fréchet differentiable & sufficiently smooth. Then

lim
`→∞

α`
F(Z′` |Zn

` ) = 1, for P`-almost all Z′`,Z
n
` ,

and

EP`
[
(1−α`

F)q
]1/q

. h1−δ
`−1 + s

−1/2+δ
`−1 ∀q <∞ , δ > 0.

Lemma (again only for 1-norm exponential)

Let Zn
` and zn`−1 be from Algorithm 2 and choose s` & h−2

` . Then

Vπ`,π`−1

[
Q`(Zn

` )− Q`−1(zn`−1)
]

. h1−δ
`−1 , for any δ > 0

and M3 holds for any β < 1. (β 6= 2α as in “standard” MLMC!)
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Numerical Example
D = (0, 1)2, exponential covar. with σ2 = 1 & λ = 0.5, Q =

∫
Γout

~q · ~n, h0 = 1
16

“Data” Fobs: Pressure p(x∗) at 9 random points x∗ ∈ D.

# modes: s0 = 96, s1 = 121, s2 = 153 and s3 = 169

Comparison single- vs. multi-level Acceptance rate α`F in multilevel estim.

1 2 3

2.5

3.5

4.5

Max Level

q ou
t

 

 

Standard MCMC
Multilevel MCMC

0 1 2 3
0

20

40

60

80

100

Level

A
c
c
e
p
ta

n
c
e
 R

a
te

R. Scheichl (Bath) Novel Monte Carlo Methods and UQ WIAS Berlin, Nov 2013 53 / 57



Numerical Example
D = (0, 1)2, exponential covar. with σ2 = 1 & λ = 0.5, Q =

∫
Γout

~q · ~n, h0 = 1
16

“Data” Fobs: Pressure p(x∗) at 9 random points x∗ ∈ D.

# modes: s0 = 96, s1 = 121, s2 = 153 and s3 = 169

Comparison single- vs. multi-level Acceptance rate α`F in multilevel estim.

1 2 3

2.5

3.5

4.5

Max Level

q ou
t

 

 

Standard MCMC
Multilevel MCMC

0 1 2 3
0

20

40

60

80

100

Level

A
c
c
e
p
ta

n
c
e
 R

a
te

R. Scheichl (Bath) Novel Monte Carlo Methods and UQ WIAS Berlin, Nov 2013 53 / 57



Numerical Example
D = (0, 1)2, exponential covar. with σ2 = 1 & λ = 0.5, Q =

∫
Γout

~q · ~n, h0 = 1
16

“Data” Fobs: Pressure p(x∗) at 9 random points x∗ ∈ D.

# modes: s0 = 96, s1 = 121, s2 = 153 and s3 = 169

Comparison single- vs. multi-level Acceptance rate α`F in multilevel estim.

1 2 3

2.5

3.5

4.5

Max Level

q ou
t

 

 

Standard MCMC
Multilevel MCMC

0 1 2 3
0

20

40

60

80

100

Level

A
c
c
e

p
ta

n
c
e

 R
a

te

R. Scheichl (Bath) Novel Monte Carlo Methods and UQ WIAS Berlin, Nov 2013 53 / 57
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Additional Comments

In all tests we got consistent gains of a factor O(10− 100)!

Using a special “preconditioned” random walk to be dimension
independent (Assumption M2) from [Cotter, Dashti, Stuart, 2012]

Using multiple chains to reduce dependence on initial state
(and variance estimator suggested by [Gelman & Rubin, 1992])

Improved multilevel burn-in also possible (∼ 10× cheaper!)
(related to two-level work in [Efendiev, Hou, Luo, 2005])

Practically observe β ≈ 2α (small constant in leading order term)

Similar results for Matérn covariance and mixed FEs

Related theoretical work by [Hoang, Schwab, Stuart, 2013]
(different multilevel splitting and so far no numerics to compare)
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Conclusions on MCMC Part
“Real” UQ involves incorporating data – Bayesian inference

Multilevel MC idea extends to Markov chain Monte Carlo
(with theory for lognormal subsurface model problem)

As spectacular gains in practice as for standard MLMC!

Future Work & Open Questions
More numerical tests and real comparisons with other methods

3D, parallelisation, HPC, application to real problems

Circulant embedding & PDE based sampling instead (+theory)

Multilevel QMC theory for lognormal case

Application of multilevel MCMC in other areas (statisticians!)
other (nonlinear) PDEs, big data applications, molecular dynamics, DA

Multilevel methods for rare events – “subset simulation”
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Thank You!

Most of the material I used is available from my website:

http://people.bath.ac.uk/∼masrs/publications.html
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