Novel Monte Carlo Methods and

Uncertainty Quantification

(Lecture II)

Robert Scheichl

Department of Mathematical Sciences
University of Bath
Workshop on PDEs with Random Coefficients
Weierstrass Institute, Berlin, 13-15 November, 2013

Recall from Lecture 1

Numerical Analysis of Elliptic PDEs with Random Coefficients

- Motivation: uncertainty/lack of data \& stochastic modelling Examples of PDEs with random data
- Model problem: groundwater flow and radwaste disposal Elliptic PDEs with rough stochastic coefficients
- What are the computational/analytical challenges?
- Numerical Analysis
- Assumptions, existence, uniqueness, regularity
- FE analysis: Cea Lemma, interpolation error, functionals
- Variational crimes (truncation error, quadrature)
- Mixed finite element methods

Outline - Lecture 2

Novel Monte Carlo Methods and Uncertainty Quantification

- Stochastic Uncertainty Quantification (in PDEs)
- The Curse of Dimensionality \& the Monte Carlo Method
- Multilevel Monte Carlo methods \& Complexity Analysis
- Analysis of multilevel MC for the elliptic model problem
- Quasi-Monte Carlo methods
- Analysis of QMC for the elliptic model problem
- Bayesian Inference (stochastic inverse problems):

Multilevel Markov Chain Monte Carlo

Model Problem: Uncertainty in Groundwater Flow

 (applications in risk analysis of radwaste disposal, etc...)
Darcy's Law: $\vec{q}+k(x, \omega) \nabla p=\vec{f}(x, \omega)$ Incompressibility:

+ Boundary Conditions

Uncertainty in $k \Longrightarrow$ Uncertainty in $p \& \vec{q}$ Stochastic Modelling!

Geology at Sellafield (former potential UK radwaste site) ©NIREX UK Ltd.

PDEs with Lognormal Random Coefficients

 Key Computational Challenges$$
-\nabla \cdot(k(x, \omega) \nabla p(x, \omega))=f(x, \omega), \quad x \in D \subset \mathbb{R}^{d}, \omega \in \Omega \text { (prob. space) }
$$

- Sampling from random field ($\log k(x, \omega)$ Gaussian) :
- truncated Karhunen-Loève expansion of $\log k$
- matrix factorisation, e.g. circulant embedding (FFT)
- via pseudodifferential "precision" operator (PDE solves)
- High-Dimensional Integration (especially w.r.t. posterior):
- stochastic Galerkin/collocation (+sparse)
- Monte Carlo, QMC \& Markov Chain MC
- Solve large number of multiscale deterministic PDEs:
- Efficient discretisation \& FE error analysis
- Multigrid Methods, AMG, DD Methods

PDEs with Lognormal Random Coefficients

 Key Computational Challenges$$
-\nabla \cdot(k(x, \omega) \nabla p(x, \omega))=f(x, \omega), \quad x \in D \subset \mathbb{R}^{d}, \omega \in \Omega \text { (prob. space) }
$$

- Sampling from random field ($\log k(x, \omega)$ Gaussian) :
- truncated Karhunen-Loève expansion of $\log k$
- matrix factorisation, e.g. circulant embedding (FFT)
- via pseudodifferential "precision" operator (PDE solves)
- High-Dimensional Integration (especially w.r.t. posterior):
- stochastic Galerkin/collocation (+sparse)
- Monte Carlo, QMC \& Markov Chain MC
- Solve large number of multiscale deterministic PDEs:
- Efficient discretisation \& FE error analysis
- Multigrid Methods, AMG, DD Methods

Why is it computationally so challenging?

- Low regularity (global): $k \in C^{0, \eta}, \eta<1 \Longrightarrow$ fine mesh $h \ll 1$
- Large σ^{2} \& exponential \Longrightarrow high contrast $k_{\max } / k_{\min }>10^{6}$
- Small $\lambda \Longrightarrow$ multiscale + high stochast. dimension $s>100$
e.g. for truncated KL expansion $\log k(x, \omega) \approx \sum_{j=1}^{s} \sqrt{\mu_{j}} \phi_{j}(x) Y_{j}(\omega)$

Remainder $\sum_{j>J} \mu_{j}$ in 1D

Truncation error of $\mathbb{E}\left[\|p\|_{L_{2}(0,1)}\right]$ w.r.t. s

Curse of Dimensionality (s > 100)

- Stochastic Galerkin/collocation methods
- in their basic form cost grows very fast with dimension s (faster than exponential) \rightarrow \#stochastic DOFs $\mathcal{O}\left(\frac{(s+p)!}{s!p!}\right)$
- lower \# with sparse grids (Smolyak) but still exponential!

Curse of Dimensionality (s > 100)

- Stochastic Galerkin/collocation methods
- in their basic form cost grows very fast with dimension s (faster than exponential) \rightarrow \#stochastic DOFs $\mathcal{O}\left(\frac{(s+p)!}{s!p!}\right)$
- lower \# with sparse grids (Smolyak) but still exponential!
- (A priori) anisotropic sparse grids (Nobile) or (a posteriori) adaptive best N-term approximation (Eigel) can be dimension independent, but needs smoothness!

Curse of Dimensionality ($s>100$)

- Stochastic Galerkin/collocation methods
- in their basic form cost grows very fast with dimension s (faster than exponential) \rightarrow \#stochastic DOFs $\mathcal{O}\left(\frac{(s+p)!}{s!p!}\right)$
- lower \# with sparse grids (Smolyak) but still exponential!
- (A priori) anisotropic sparse grids (Nobile) or (a posteriori) adaptive best N-term approximation (Eigel) can be dimension independent, but needs smoothness!
- Monte Carlo type methods
- convergence of plain vanilla Monte Carlo is always dimension independent (even for rough problems)!
- BUT order of convergence is slow: $\mathcal{O}\left(N^{-1 / 2}\right)$!

Curse of Dimensionality ($s>100$)

- Stochastic Galerkin/collocation methods
- in their basic form cost grows very fast with dimension s (faster than exponential) \rightarrow \#stochastic DOFs $\mathcal{O}\left(\frac{(s+p)!}{s!p!}\right)$
- lower \# with sparse grids (Smolyak) but still exponential!
- (A priori) anisotropic sparse grids (Nobile) or (a posteriori) adaptive best N-term approximation (Eigel) can be dimension independent, but needs smoothness!
- Monte Carlo type methods
- convergence of plain vanilla Monte Carlo is always dimension independent (even for rough problems)!
- BUT order of convergence is slow: $\mathcal{O}\left(N^{-1 / 2}\right)$!
- Quasi-MC also dimension independent and faster: $\sim \mathcal{O}\left(N^{-1}\right)$! But requires (also some) smoothness!

Nonlinear Parameter Dependence

- Monte Carlo methods do not rely on KL-type expansion (can use circulant embedding or sparse pseudodifferential operators)
- Stochastic Galerkin matrix \mathcal{A} is block dense due to nonlinear parameter dependence \rightarrow even applying \mathcal{A} is expensive! (can transform to convection-diffusion problem, but requires more smoothness and is not conservative [Elman, Ullmann, Ernst, 2010])
- best N-term theory by [Cohen, Schwab et al] does not apply!

Nonlinear Parameter Dependence

- Monte Carlo methods do not rely on KL-type expansion (can use circulant embedding or sparse pseudodifferential operators)
- Stochastic Galerkin matrix \mathcal{A} is block dense due to nonlinear parameter dependence \rightarrow even applying \mathcal{A} is expensive! (can transform to convection-diffusion problem, but requires more smoothness and is not conservative [Elman, Ullmann, Ernst, 2010])
- best N-term theory by [Cohen, Schwab et al] does not apply!

Monte Carlo methods do not suffer from curse of dimensionality, they are "non-intrusive" and nonlinear parameter dependence is no problem,
but the plain vanilla version is too slow!

Nonlinear Parameter Dependence

- Monte Carlo methods do not rely on KL-type expansion (can use circulant embedding or sparse pseudodifferential operators)
- Stochastic Galerkin matrix \mathcal{A} is block dense due to nonlinear parameter dependence \rightarrow even applying \mathcal{A} is expensive! (can transform to convection-diffusion problem, but requires more smoothness and is not conservative [Elman, Ullmann, Ernst, 2010])
- best N-term theory by [Cohen, Schwab et al] does not apply!

Monte Carlo methods do not suffer from curse of dimensionality, they are "non-intrusive" and nonlinear parameter dependence is no problem,
> but the plain vanilla version is too slow!

Alternatives?

Monte Carlo for large scale problems (plain vanilla)

$$
\begin{array}{ll}
\mathbf{Z}_{s}(\omega) \in \mathbb{R}^{s} \xrightarrow{\text { Model }(h)} & \mathbf{X}_{h}(\omega) \in \mathbb{R}^{M_{h}} \xrightarrow{\text { Output }}
\end{array} \begin{aligned}
& Q_{h, s}(\omega) \in \mathbb{R} \\
& \text { random input }
\end{aligned} \quad \text { state vector } \quad \text { quantity of interest }
$$

- e.g. \mathbf{Z}_{s} multivariate Gaussian; \mathbf{X}_{h} numerical solution of PDE; $Q_{h, s}$ a (non)linear functional of \mathbf{X}_{h}

Monte Carlo for large scale problems (plain vanilla)

$\mathbf{Z}_{s}(\omega) \in \mathbb{R}^{s} \xrightarrow{\text { Model(h) }} \mathbf{X}_{h}(\omega) \in \mathbb{R}^{M_{h}} \xrightarrow{\text { Output }} Q_{h, s}(\omega) \in \mathbb{R}$ random input state vector quantity of interest

- e.g. \mathbf{Z}_{s} multivariate Gaussian; \mathbf{X}_{h} numerical solution of PDE; $Q_{h, s}$ a (non)linear functional of \mathbf{X}_{h}
- $Q(\omega)$ inaccessible random variable s.t. $\mathbb{E}\left[Q_{h, s}\right] \xrightarrow{h \rightarrow 0, s \rightarrow \infty} \mathbb{E}[Q]$ and $\left|\mathbb{E}\left[Q_{h, s}-Q\right]\right|=\mathcal{O}\left(h^{\alpha}\right)+\mathcal{O}\left(s^{-\alpha^{\prime}}\right)$
- Standard Monte Carlo estimator for $\mathbb{E}[Q]$:

$$
\hat{Q}^{\mathrm{MC}}:=\frac{1}{N} \sum_{i=1}^{N} Q_{h, s}^{(i)}
$$

where $\left\{Q_{h, s}^{(i)}\right\}_{i=1}^{N}$ are i.i.d. samples computed with $\operatorname{Model}(h)$

Monte Carlo for large scale problems (plain vanilla)

- Convergence of plain vanilla MC (mean square error):

- Typical (2D): $\alpha=1 \Rightarrow \mathrm{MSE}=\mathcal{O}\left(N^{-1}\right)+\mathcal{O}\left(h^{-2}\right) \leq$ TOL

Monte Carlo for large scale problems (plain vanilla)

- Convergence of plain vanilla MC (mean square error):

$$
\begin{aligned}
\underbrace{\mathbb{E}\left[\left(\hat{Q}^{\mathrm{MC}}-\mathbb{E}[Q]\right)^{2}\right]}_{=: \mathrm{MSE}} & =\mathbb{V}\left[\hat{Q}^{\mathrm{MC}}\right]+\left(\mathbb{E}\left[\hat{Q}^{\mathrm{MC}}\right]-\mathbb{E}[Q]\right)^{2} \\
& =\underbrace{\frac{\mathbb{V}\left[Q_{h, s}\right]}{N}}_{\text {sampling error }}+\underbrace{\left(\mathbb{E}\left[Q_{h, s}-Q\right]\right)^{2}}_{\text {model error ("bias") }}
\end{aligned}
$$

- Typical (2D): $\alpha=1 \Rightarrow \mathrm{MSE}=\mathcal{O}\left(N^{-1}\right)+\mathcal{O}\left(h^{-2}\right) \leq \mathrm{TOL}$
- Thus $h^{-2} \sim N \sim \mathrm{TOL}^{-2}$ and Cost $=\mathcal{O}\left(\mathrm{Nh}^{-2}\right)=\mathcal{O}\left(\mathrm{TOL}^{-4}\right)$ (e.g. for TOL $=10^{-3}$ we get $h^{-2} \sim N \sim 10^{6}$ and Cost $=\mathcal{O}\left(10^{12}\right)$!!)

Quickly becomes prohibitively expensive !

Return to model problem

- (Recall:) Standard FEs (cts pw. linear) on \mathcal{T}^{h} :

$$
\longrightarrow \quad A(\omega) \mathbf{p}(\omega)=\mathbf{b}(\omega) \quad M_{h} \times M_{h} \text { linear system }
$$

(similarly for mixed FEs)

- Quantity of interest: Expected value $\mathbb{E}[Q]$ of $Q:=\mathcal{G}(p)$ some (nonlinear) functional of the PDE solution p

Return to model problem

- (Recall:) Standard FEs (cts pw. linear) on \mathcal{T}^{h} :

$$
\longrightarrow \quad A(\omega) \mathbf{p}(\omega)=\mathbf{b}(\omega) \quad M_{h} \times M_{h} \text { linear system }
$$

(similarly for mixed FEs)

- Quantity of interest: Expected value $\mathbb{E}[Q]$ of $Q:=\mathcal{G}(p)$ some (nonlinear) functional of the PDE solution p
- Standard Monte Carlo (MC) estimate for inaccessible $\mathbb{E}[Q]$:

$$
\hat{Q}_{h}^{\mathrm{MC}}:=\frac{1}{N} \sum_{i=1}^{N} Q_{h}^{(i)}, \quad Q_{h}^{(i)} \text { i.i.d. samples on } \mathcal{T}_{h} .
$$

Return to model problem

- (Recall:) Standard FEs (cts pw. linear) on \mathcal{T}^{h} :

$$
\longrightarrow \quad A(\omega) \mathbf{p}(\omega)=\mathbf{b}(\omega) \quad M_{h} \times M_{h} \text { linear system }
$$

(similarly for mixed FEs)

- Quantity of interest: Expected value $\mathbb{E}[Q]$ of $Q:=\mathcal{G}(p)$ some (nonlinear) functional of the PDE solution p
- Standard Monte Carlo (MC) estimate for inaccessible $\mathbb{E}[Q]$:

$$
\hat{Q}_{h}^{\mathrm{MC}}:=\frac{1}{N} \sum_{i=1}^{N} Q_{h}^{(i)}, \quad Q_{h}^{(i)} \text { i.i.d. samples on } \mathcal{T}_{h} .
$$

- (Quasi-)optimal sampling \& PDE solver (eg. FFT \& AMG):

$$
\left.\Rightarrow \operatorname{Cost}\left(Q_{h}^{(i)}\right)=\mathcal{O}\left(M_{h} \log \left(M_{h}\right)\right)=\mathcal{O}\left(h^{-d}|\log h|\right)\right)
$$

Complexity of Standard Monte Carlo (avoiding log-factors) Assuming

$$
\begin{aligned}
& \text { (A1) } \mid \mathbb{E}\left[Q_{h}-Q\right]=\mathcal{O}\left(h^{\alpha}\right) \quad \text { (menen E errar) } \\
& \text { (A2') } \mathbb{V}\left[Q_{1}\right]<\infty \\
& \text { (A3) } \operatorname{Cost}\left(Q_{h}^{(i)}\right)=\mathcal{O}\left(h^{-\gamma}\right) \quad \text { (deterministic solver) }
\end{aligned}
$$

to obtain mean square error

$$
\mathbb{E}\left[\left(\hat{Q}_{h}^{\mathrm{MC}}-\mathbb{E}[Q]\right)^{2}\right]=\mathcal{O}\left(\varepsilon^{2}\right)
$$

the total cost is

$$
\operatorname{Cost}\left(\hat{Q}_{h}^{\mathrm{MC}}\right)=\mathcal{O}\left(\varepsilon^{-2-\frac{\gamma}{\alpha}}\right)
$$

Proof

Since

$$
\underbrace{\mathbb{E}\left[\left(\hat{Q}^{\mathrm{MC}}-\mathbb{E}[Q]\right)^{2}\right]}_{=: e_{\text {MSE }}\left(\hat{Q}^{\mathrm{MC}}\right)}=\frac{\mathbb{V}\left[Q_{h}\right]}{N}+\left(\mathbb{E}\left[Q_{h}-Q\right]\right)^{2}
$$

a sufficient condition for $e_{M S E}\left(\hat{Q}^{\mathrm{MC}}\right)=\mathcal{O}\left(\varepsilon^{2}\right)$ is

$$
N=\left\lceil 2 \mathbb{V}\left[Q_{h}\right] \varepsilon^{-2}\right\rceil \quad \text { and } \quad h=c \varepsilon^{1 / \alpha}
$$

Therefore

$$
\operatorname{Cost}\left(\hat{Q}_{h}^{\mathrm{MC}}\right)=N \operatorname{Cost}\left(Q_{h}^{(i)}\right)=\mathcal{O}\left(\varepsilon^{-2-\frac{\gamma}{\alpha}}\right)
$$

Numerical Example (Standard Monte Carlo)

$D=(0,1)^{2}$, covariance $R(x, y):=\sigma^{2} \exp \left(-\frac{\|x-y\|_{2}}{\lambda}\right)$ and $Q=\left\|-k \frac{\partial p}{\partial x_{1}}\right\|_{L^{1}(D)}$ using mixed FEs and the AMG solver amg1r5 [Ruge, Stüben, 1992]

Numerical Example (Standard Monte Carlo)

$D=(0,1)^{2}$, covariance $R(x, y):=\sigma^{2} \exp \left(-\frac{\|x-y\|_{2}}{\lambda}\right)$ and $Q=\left\|-k \frac{\partial p}{\partial x_{1}}\right\|_{L^{1}(D)}$ using mixed FEs and the AMG solver amg1r5 [Ruge, Stüben, 1992]

- Numerically observed FE-error: $\approx \mathcal{O}\left(h^{3 / 4}\right) \Longrightarrow \alpha \approx 3 / 4$.
- Numerically observed cost/sample: $\approx \mathcal{O}\left(h^{-2}\right) \Longrightarrow \gamma \approx 2$.

Numerical Example (Standard Monte Carlo)

$D=(0,1)^{2}$, covariance $R(x, y):=\sigma^{2} \exp \left(-\frac{\|x-y\|_{2}}{\lambda}\right)$ and $Q=\left\|-k \frac{\partial p}{\partial x_{1}}\right\|_{L^{1}(D)}$ using mixed FEs and the AMG solver amg1r5 [Ruge, Stüben, 1992]

- Numerically observed FE-error: $\approx \mathcal{O}\left(h^{3 / 4}\right) \Longrightarrow \alpha \approx 3 / 4$.
- Numerically observed cost/sample: $\approx \mathcal{O}\left(h^{-2}\right) \Longrightarrow \gamma \approx 2$.
- Total cost to get RMSE $\mathcal{O}(\varepsilon): \quad \approx \mathcal{O}\left(\varepsilon^{-14 / 3}\right)$ to get error reduction by a factor $2 \rightarrow$ cost grows by a factor 25 !
Case 1: $\lambda=0.3, \sigma^{2}=1$
Case 2: $\lambda=0.1, \sigma^{2}=3$

ε	h^{-1}	N_{h}	Cost
0.01	129	1.4×10^{4}	21 min
0.002	1025	3.5×10^{5}	30 days

ε	h^{-1}	N_{h}	Cost
0.01	513	8.5×10^{3}	4 h
0.002	Prohibitively large!!		

(actual numbers \& CPU times on a 2 GHz Intel T7300 processor)

Multilevel Monte Carlo Methods

Multilevel Monte Carlo [Heinrich 2000], [Giles 2007]

Main Idea:

$$
\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right]
$$

where $h_{\ell-1}=2 h_{\ell}$ and $Q_{\ell}:=\mathcal{G}\left(p_{h_{\ell}}\right)$

Multilevel Monte Carlo [Heinrich 2000], [Giles 2007]

Main Idea:

$$
\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right]
$$

where $h_{\ell-1}=2 h_{\ell}$ and $Q_{\ell}:=\mathcal{G}\left(p_{h_{\ell}}\right)$
Key Observation (as in multigrid: easier to find corrections)

$$
\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right] \rightarrow 0 \quad \text { as } \quad h_{\ell} \rightarrow 0 \quad!
$$

Define following multilevel MC estimator for $\mathbb{E}[Q]$:

$$
\hat{Q}_{L}^{\mathrm{ML}}:=\sum_{\ell=0}^{L} \widehat{Y}_{\ell}^{\mathrm{MC}} \text { where } Y_{\ell}:=Q_{\ell}-Q_{\ell-1} \& Q_{-1}=0
$$

Complexity of Multilevel Monte Carlo (avoiding log's)

Assuming

$$
\begin{array}{ll}
\text { (A1) }\left|\mathbb{E}\left[Q_{\ell}-Q\right]\right|=\mathcal{O}\left(h_{\ell}^{\alpha}\right) & \text { (mean FE error) } \\
\text { (A2) } \mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right]=\mathcal{O}\left(h_{\ell}^{\beta}\right) & \text { (variance reduction) } \\
\text { (A3) } \operatorname{Cost}\left(Q_{\ell}^{(i)}\right)=\mathcal{O}\left(h_{\ell}^{-\gamma}\right) & \text { (deterministic solver) }
\end{array}
$$

$\exists L$ and $\left\{N_{\ell}\right\}_{\ell=0}^{L}$ such that to obtain mean square error

$$
\mathbb{E}\left[\left(\hat{Q}_{L}^{M L}-\mathbb{E}[Q]\right)^{2}\right]=\mathcal{O}\left(\varepsilon^{2}\right)
$$

the total cost is

$$
\operatorname{Cost}\left(\hat{Q}_{L}^{M L}\right)=\mathcal{O}\left(\varepsilon^{-2-\max \left(0, \frac{\gamma-\beta}{\alpha}\right)}\right)
$$

- Adaptive error estimators (to estimate L and $\left\{N_{\ell}\right\}$ on the fly):

$$
\left|\widehat{Y}_{\ell}^{\mathrm{MC}}\right| \sim\left|\mathbb{E}\left[Q_{\ell-1}-Q\right]\right| \text { and } s\left(\widehat{Y}_{\ell}^{\mathrm{MC}}\right) \sim \mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right]
$$

\uparrow sample variance estimator

- Adaptive error estimators (to estimate L and $\left\{N_{\ell}\right\}$ on the fly):

$$
\left|\widehat{Y}_{\ell}^{\mathrm{MC}}\right| \sim\left|\mathbb{E}\left[Q_{\ell-1}-Q\right]\right| \text { and } s\left(\widehat{Y}_{\ell}^{\mathrm{MC}}\right) \sim \mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right]
$$

\uparrow sample variance estimator

- Assuming optimal AMG solver $(\gamma \approx d)$ and $\beta \approx 2 \alpha$. Then for $\alpha \approx 0.75$ (as in the example above) the cost in \mathbb{R}^{d} is

d	MC	MLMC	per sample
1	$\mathcal{O}\left(\varepsilon^{-10 / 3}\right)$	$\mathcal{O}\left(\varepsilon^{-2}\right)$	$\mathcal{O}\left(\varepsilon^{-4 / 3}\right)$
2	$\mathcal{O}\left(\varepsilon^{-14 / 3}\right)$	$\mathcal{O}\left(\varepsilon^{-8 / 3}\right)$	$\mathcal{O}\left(\varepsilon^{-8 / 3}\right)$
3	$\mathcal{O}\left(\varepsilon^{-6}\right)$	$\mathcal{O}\left(\varepsilon^{-4}\right)$	$\mathcal{O}\left(\varepsilon^{-4}\right)$

- Adaptive error estimators (to estimate L and $\left\{N_{\ell}\right\}$ on the fly):

$$
\left|\widehat{Y}_{\ell}^{\mathrm{MC}}\right| \sim\left|\mathbb{E}\left[Q_{\ell-1}-Q\right]\right| \text { and } s\left(\widehat{Y}_{\ell}^{\mathrm{MC}}\right) \sim \mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right]
$$

\uparrow sample variance estimator

- Assuming optimal AMG solver ($\gamma \approx d$) and $\beta \approx 2 \alpha$. Then for $\alpha \approx 0.75$ (as in the example above) the cost in \mathbb{R}^{d} is

d	MC	MLMC	per sample
1	$\mathcal{O}\left(\varepsilon^{-10 / 3}\right)$	$\mathcal{O}\left(\varepsilon^{-2}\right)$	$\mathcal{O}\left(\varepsilon^{-4 / 3}\right)$
2	$\mathcal{O}\left(\varepsilon^{-14 / 3}\right)$	$\mathcal{O}\left(\varepsilon^{-8 / 3}\right)$	$\mathcal{O}\left(\varepsilon^{-8 / 3}\right)$
3	$\mathcal{O}\left(\varepsilon^{-6}\right)$	$\mathcal{O}\left(\varepsilon^{-4}\right)$	$\mathcal{O}\left(\varepsilon^{-4}\right)$

Optimality (for $\gamma>\beta=2 \alpha$)

MLMC cost is asymptotically the same as one deterministic solve to accuracy ε in 2D \& 3D, i.e. $\mathcal{O}\left(\varepsilon^{-\gamma / \alpha}\right)$!!

- Adaptive error estimators (to estimate L and $\left\{N_{\ell}\right\}$ on the fly):

$$
\left|\widehat{Y}_{\ell}^{\mathrm{MC}}\right| \sim\left|\mathbb{E}\left[Q_{\ell-1}-Q\right]\right| \text { and } s\left(\widehat{Y}_{\ell}^{\mathrm{MC}}\right) \sim \mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right]
$$

\uparrow sample variance estimator

- Assuming optimal AMG solver $(\gamma \approx d)$ and $\beta \approx 2 \alpha$. Then for $\alpha \approx 0.75$ (as in the example above) the cost in \mathbb{R}^{d} is

d	MC	MLMC	per sample
1	$\mathcal{O}\left(\varepsilon^{-10 / 3}\right)$	$\mathcal{O}\left(\varepsilon^{-2}\right)$	$\mathcal{O}\left(\varepsilon^{-4 / 3}\right)$
2	$\mathcal{O}\left(\varepsilon^{-14 / 3}\right)$	$\mathcal{O}\left(\varepsilon^{-8 / 3}\right)$	$\mathcal{O}\left(\varepsilon^{-8 / 3}\right)$
3	$\mathcal{O}\left(\varepsilon^{-6}\right)$	$\mathcal{O}\left(\varepsilon^{-4}\right)$	$\mathcal{O}\left(\varepsilon^{-4}\right)$

Optimality (for $\gamma>\beta=2 \alpha$)

MLMC cost is asymptotically the same as one deterministic solve to accuracy ε in 2D \& 3D, i.e. $\mathcal{O}\left(\varepsilon^{-\gamma / \alpha}\right)$!!

Can we achieve such huge gains in practice?

Numerical Examples (Multilevel MC)

$D=(0,1)^{2}$; covariance $R(x, y):=\sigma^{2} \exp \left(-\frac{\|x-y\|_{2}}{\lambda}\right) ; \quad Q=\|p\|_{L_{2}(D)}$
Std. FE discretisation, circulant embedding

Numerical Examples (Multilevel MC)

$D=(0,1)^{2}$; covariance $R(x, y):=\sigma^{2} \exp \left(-\frac{\|x-y\|_{2}}{\lambda}\right) ; \quad Q=\|p\|_{L_{2}(D)}$
Std. FE discretisation, circulant embedding

Numerical Examples (Multilevel MC)

 $D=(0,1)^{2}$; covariance $R(x, y):=\sigma^{2} \exp \left(-\frac{\|x-y\|_{2}}{\lambda}\right) ; \quad Q=\|p\|_{L_{2}(D)}$Std. FE discretisation, circulant embedding

Matlab implementation on 3 GHz Intel Core 2 Duo E8400 processor, 3.2GByte RAM, with sparse direct solver, i.e. $\gamma \approx 2.4$

Proof of Multilevel Complexity Theorem

Because $\widehat{Y}_{\ell}^{\mathrm{MC}}$ are independent, we get similar to single-level case

$$
\mathbb{E}\left[\left(\hat{Q}_{L}^{\mathrm{ML}}-\mathbb{E}[Q]\right)^{2}\right]=\sum_{\ell=0}^{L} \frac{\mathbb{V}\left[Y_{\ell}\right]}{N_{\ell}}+\left(\mathbb{E}\left[Q_{L}-Q\right]\right)^{2}
$$

A sufficient condition for the bias to be $\mathcal{O}\left(\varepsilon^{2}\right)$ is again $h_{L} \approx \varepsilon^{1 / \alpha}$.

Proof of Multilevel Complexity Theorem

Because $\widehat{Y}_{\ell}^{\mathrm{MC}}$ are independent, we get similar to single-level case

$$
\mathbb{E}\left[\left(\hat{Q}_{L}^{\mathrm{ML}}-\mathbb{E}[Q]\right)^{2}\right]=\sum_{\ell=0}^{L} \frac{\mathbb{V}\left[Y_{\ell}\right]}{N_{\ell}}+\left(\mathbb{E}\left[Q_{L}-Q\right]\right)^{2}
$$

A sufficient condition for the bias to be $\mathcal{O}\left(\varepsilon^{2}\right)$ is again $h_{L} \approx \varepsilon^{1 / \alpha}$. Then we can minimise (with $V_{l}=\mathbb{V}\left[Y_{\ell}\right]$ and $C_{\ell}=\operatorname{Cost}\left(Q_{\ell}^{(i)}\right)$)

$$
\sum_{\ell} N_{\ell} C_{\ell} \text { subject to } \quad \sum_{\ell} V_{\ell} / N_{\ell}=\varepsilon^{2} / 2
$$

w.r.t. $\left\{N_{\ell}\right\}$, to get (for the case $\gamma>\beta$ - the other cases are similar):

$$
N_{\ell}=2 \varepsilon^{-2}\left(\sum_{\ell^{\prime}} \sqrt{V_{\ell^{\prime}} C_{\ell^{\prime}}}\right) \sqrt{V_{\ell} / C_{\ell}} \bar{\sim} \varepsilon^{-2}\left(\sum_{\ell^{\prime}} h_{\ell^{\prime}}^{\frac{\beta-\gamma}{2}}\right) h_{\ell}^{\frac{\beta+\gamma}{2}} .
$$

Proof of Multilevel Complexity Theorem

Because $\widehat{Y}_{\ell}^{\mathrm{MC}}$ are independent, we get similar to single-level case

$$
\mathbb{E}\left[\left(\hat{Q}_{L}^{\mathrm{ML}}-\mathbb{E}[Q]\right)^{2}\right]=\sum_{\ell=0}^{L} \frac{\mathbb{V}\left[Y_{\ell}\right]}{N_{\ell}}+\left(\mathbb{E}\left[Q_{L}-Q\right]\right)^{2}
$$

A sufficient condition for the bias to be $\mathcal{O}\left(\varepsilon^{2}\right)$ is again $h_{L} \approx \varepsilon^{1 / \alpha}$. Then we can minimise (with $V_{l}=\mathbb{V}\left[Y_{\ell}\right]$ and $C_{\ell}=\operatorname{Cost}\left(Q_{\ell}^{(i)}\right)$)

$$
\sum_{\ell} N_{\ell} C_{\ell} \text { subject to } \quad \sum_{\ell} V_{\ell} / N_{\ell}=\varepsilon^{2} / 2
$$

w.r.t. $\left\{N_{\ell}\right\}$, to get (for the case $\gamma>\beta$ - the other cases are similar):

$$
N_{\ell}=2 \varepsilon^{-2}\left(\sum_{\ell^{\prime}} \sqrt{V_{\ell^{\prime}} C_{\ell^{\prime}}}\right) \sqrt{V_{\ell} / C_{\ell}} \bar{\approx} \varepsilon^{-2}\left(\sum_{\ell^{\prime}} h_{\ell^{\prime}}^{\frac{\beta-\gamma}{2}}\right) h_{\ell}^{\frac{\beta+\gamma}{2}} .
$$

Since $h_{\ell}=2^{L-\ell} h_{L} \approx 2^{L-\ell} \varepsilon^{1 / \alpha}$ the bound on $\sum_{\ell} C_{\ell} N_{\ell}$ follows.

Theory: Verifying Assumptions (A1) \& (A2)

 Recall from Wednesday's Lecture- Assumptions. $\exists t \in(0,1], q_{*} \geq 1$ s.t.

$$
\begin{aligned}
& 1 / k^{\min }(\omega) \in L^{q}(\Omega), \quad k \in L^{q}\left(\Omega, C^{0, t}(\bar{D})\right), \quad \forall q<\infty \\
& f \in L^{q_{*}}\left(\Omega, H^{t-1}(D)\right), \quad \phi \in L^{q_{*}}\left(\Omega, H^{t+\frac{1}{2}}(\partial D)\right)
\end{aligned}
$$

and D (convex) Lipschitz polygonal.

Theory: Verifying Assumptions (A1) \& (A2)

 Recall from Wednesday's Lecture- Assumptions. $\exists t \in(0,1], q_{*} \geq 1$ s.t.

$$
\begin{aligned}
& 1 / k^{\min }(\omega) \in L^{q}(\Omega), \quad k \in L^{q}\left(\Omega, C^{0, t}(\bar{D})\right), \quad \forall q<\infty \\
& f \in L^{q_{*}}\left(\Omega, H^{t-1}(D)\right), \quad \phi \in L^{q_{*}}\left(\Omega, H^{t+\frac{1}{2}}(\partial D)\right)
\end{aligned}
$$

and D (convex) Lipschitz polygonal.

- Theorem 2. $\forall q<q_{*}, s<t$ we have $p \in L^{q}\left(\Omega, H^{1+s}(D)\right)$.
- Theorem 3. $\forall q<q_{*}, s<t$ we have

$$
\left\|p-p_{h}\right\|_{L^{q}\left(\Omega, H^{1}(D)\right)}=\mathcal{O}\left(h^{s}\right) \&\left\|p-p_{h}\right\|_{L^{q}\left(\Omega, L^{2}(D)\right)}=\mathcal{O}\left(h^{2 s}\right) .
$$

- Theorem 3b. If $\mathcal{G}(v) \in L^{q_{*}}\left(\Omega, H^{t-1}(D)^{*}\right)$ Fréchet diff'ble, then $\forall q<q_{*}, s<t$ we have

$$
\left\|\mathcal{G}(p)-\mathcal{G}\left(p_{h}\right)\right\|_{L q(\Omega)}=\mathcal{O}\left(h^{2 s}\right)
$$

- Thus, with $q=1$ we get

$$
\left|\mathbb{E}\left[\mathcal{G}(p)-\mathcal{G}\left(p_{h}\right)\right]\right| \leq\left\|\mathcal{G}(p)-\mathcal{G}\left(p_{h}\right)\right\|_{L^{1}(\Omega)}=\mathcal{O}\left(h^{2 s}\right)
$$

$\Longrightarrow(\mathbf{A 1})$ holds for any $\alpha<2 t$ (i.e. $\alpha<1$ for exponential cov.)

- Thus, with $q=1$ we get

$$
\left|\mathbb{E}\left[\mathcal{G}(p)-\mathcal{G}\left(p_{h}\right)\right]\right| \leq\left\|\mathcal{G}(p)-\mathcal{G}\left(p_{h}\right)\right\|_{L^{1}(\Omega)}=\mathcal{O}\left(h^{2 s}\right)
$$

$\Longrightarrow(\mathbf{A 1})$ holds for any $\alpha<2 t$ (i.e. $\alpha<1$ for exponential cov.)

- And with $q=2$ we get

$$
\mathbb{V}\left[\mathcal{G}\left(p_{h}\right)-\mathcal{G}\left(p_{2 h}\right)\right] \leq\left\|\mathcal{G}\left(p_{h}\right)-\mathcal{G}\left(p_{2 h}\right)\right\|_{L^{2}(\Omega)}^{2} \leq \mathcal{O}\left(h^{4 s}\right)
$$

$\Longrightarrow(\mathbf{A} 2)$ holds for any $\beta<4 t$ (i.e. $\beta<2$ for exponential cov.)

- Thus, with $q=1$ we get

$$
\left|\mathbb{E}\left[\mathcal{G}(p)-\mathcal{G}\left(p_{h}\right)\right]\right| \leq\left\|\mathcal{G}(p)-\mathcal{G}\left(p_{h}\right)\right\|_{L^{1}(\Omega)}=\mathcal{O}\left(h^{2 s}\right)
$$

$\Longrightarrow \quad \mathbf{(A 1)}$ holds for any $\alpha<2 t$
(i.e. $\alpha<1$ for exponential cov.)

- And with $q=2$ we get

$$
\mathbb{V}\left[\mathcal{G}\left(p_{h}\right)-\mathcal{G}\left(p_{2 h}\right)\right] \leq\left\|\mathcal{G}\left(p_{h}\right)-\mathcal{G}\left(p_{2 h}\right)\right\|_{L^{2}(\Omega)}^{2} \leq \mathcal{O}\left(h^{4 s}\right)
$$

$\Longrightarrow(\mathbf{A} 2)$ holds for any $\beta<4 t$ (i.e. $\beta<2$ for exponential cov.)

- Hence (for rough fields, e.g. $t<1 / 2) \quad$ Cost $=\mathcal{O}\left(\varepsilon^{-\gamma / \alpha}\right)$ (Same as for deterministic solve!)
- Thus, with $q=1$ we get

$$
\left|\mathbb{E}\left[\mathcal{G}(p)-\mathcal{G}\left(p_{h}\right)\right]\right| \leq\left\|\mathcal{G}(p)-\mathcal{G}\left(p_{h}\right)\right\|_{L^{1}(\Omega)}=\mathcal{O}\left(h^{2 s}\right)
$$

\Longrightarrow
(A1) holds for any $\alpha<2 t$ (i.e. $\alpha<1$ for exponential cov.)

- And with $q=2$ we get

$$
\mathbb{V}\left[\mathcal{G}\left(p_{h}\right)-\mathcal{G}\left(p_{2 h}\right)\right] \leq\left\|\mathcal{G}\left(p_{h}\right)-\mathcal{G}\left(p_{2 h}\right)\right\|_{L^{2}(\Omega)}^{2} \leq \mathcal{O}\left(h^{4 s}\right)
$$

$\Longrightarrow(\mathbf{A} 2)$ holds for any $\beta<4 t$ (i.e. $\beta<2$ for exponential cov.)

- Hence (for rough fields, e.g. $t<1 / 2) \quad$ Cost $=\mathcal{O}\left(\varepsilon^{-\gamma / \alpha}\right)$ (Same as for deterministic solve!)

Hence optimal and robust deterministic solver with $\gamma=d$ crucial!
This is a whole talk in itself!

Numerical Confirmation

$D=(0,1)^{2}$; covariance $R(x, y):=\sigma^{2} \exp \left(-\frac{\|x-y\|_{2}}{\lambda}\right)$ with $\lambda=0.3$ and $\sigma^{2}=1$;
Std. FE discretisation, circulant embedding

Numerical Confirmation

 $D=(0,1)^{2}$; covariance $R(x, y):=\sigma^{2} \exp \left(-\frac{\|x-y\|_{2}}{\lambda}\right)$ with $\lambda=0.3$ and $\sigma^{2}=1$; Std. FE discretisation, circulant embedding

$$
\left|\mathbb{E}\left[\mathcal{G}^{(1)}(p)-\mathcal{G}^{(1)}\left(p_{h}\right)\right]\right|
$$

where $\mathcal{G}^{(1)}(p):=L_{\omega}(\Psi)-b_{\omega}(\Psi, v)$ given $\Psi(x)=x$ (outflow on right).

$$
\mathbb{V}\left[\mathcal{G}^{(2)}\left(p_{h}\right)-\mathcal{G}^{(2)}\left(p_{2 h}\right)\right]
$$

where $\mathcal{G}^{(2)}(p):=\left(\frac{1}{\left|D^{*}\right|} \int_{D^{*}} p(x) \mathrm{d} x\right)^{2}$
(i.e. 2nd moment of p over small patch)

$$
\Longrightarrow \quad \alpha=1 \text { and } \beta=2
$$

Discontinuous Permeability (piecewise lognormal)

Three layers; functional $\mathcal{G}(p)=\|p\|_{L_{2}(D)}$.

Exponential covariance

Gaussian covariance

Discontinuous Permeability (piecewise lognormal)

Three layers; functional $\mathcal{G}(p)=\|p\|_{L_{2}(D)}$.

Exponential covariance

Gaussian covariance

As mentioned on Wednesday we can also analyse this case.
Similarly for the case of random interfaces
(and piecewise correlated random fields).

Point Evaluations and Particle Paths [Teckentrup, 2013]

- If in addition we assume $f \in L^{q_{*}}\left(\Omega, L^{r}(D)\right)$ with $r>d /(1-t)$ then for all $q<q_{*}$

$$
\begin{aligned}
\left\|p-p_{h}\right\|_{L^{q}\left(\Omega, L^{\infty}(D)\right)} & =\mathcal{O}\left(h^{1+t}\right) \quad \text { and } \\
\left\|p-p_{h}\right\|_{L^{q}\left(\Omega, W^{1, \infty}(D)\right)} & =\mathcal{O}\left(h^{t}\right)
\end{aligned}
$$

Point Evaluations and Particle Paths [Teckentrup, 2013]

- If in addition we assume $f \in L^{q_{*}}\left(\Omega, L^{r}(D)\right)$ with $r>d /(1-t)$ then for all $q<q_{*}$

$$
\begin{aligned}
\left\|p-p_{h}\right\|_{L^{q}\left(\Omega, L^{\infty}(D)\right)} & =\mathcal{O}\left(h^{1+t}\right) \quad \text { and } \\
\left\|p-p_{h}\right\|_{L^{q}\left(\Omega, W^{1, \infty}(D)\right)} & =\mathcal{O}\left(h^{t}\right)
\end{aligned}
$$

- Therefore point evaluations $p\left(x_{*}\right)$ and $\vec{q}\left(x_{*}\right)$ converge with $\mathcal{O}\left(h^{1+t}\right)$ and $\mathcal{O}\left(h^{t}\right)$, respectively.

Point Evaluations and Particle Paths [Teckentrup, 2013]

- If in addition we assume $f \in L^{q_{*}}\left(\Omega, L^{r}(D)\right)$ with $r>d /(1-t)$ then for all $q<q_{*}$

$$
\begin{aligned}
\left\|p-p_{h}\right\|_{L^{q}\left(\Omega, L^{\infty}(D)\right)} & =\mathcal{O}\left(h^{1+t}\right) \quad \text { and } \\
\left\|p-p_{h}\right\|_{L^{q}\left(\Omega, W^{1, \infty}(D)\right)} & =\mathcal{O}\left(h^{t}\right)
\end{aligned}
$$

- Therefore point evaluations $p\left(x_{*}\right)$ and $\vec{q}\left(x_{*}\right)$ converge with $\mathcal{O}\left(h^{1+t}\right)$ and $\mathcal{O}\left(h^{t}\right)$, respectively.
- This is of particular interest for particle paths (e.g. a plume spreading) computed via the integral

$$
\vec{x}(T)=\vec{x}_{0}+\int_{0}^{T} \vec{q}(\vec{x}(\tau)) \mathrm{d} \tau
$$

If $t=1$ (current proof needs Lipschitz continuity of \vec{q}), then

$$
\left\|\vec{x}(T)-\vec{x}_{h}(T)\right\|_{L^{q}(\Omega)} \lesssim\left\|p-p_{h}\right\|_{L^{q}\left(\Omega, W^{1, \infty}(D)\right)}=\mathcal{O}(h) .
$$

Level-dependent Estimators (important in practice!)

 Use $Q_{\ell}:=\mathcal{G}\left(\widetilde{p}_{h_{\ell}}^{\ell}\right)$ with level-dependent $\widetilde{p}_{h_{\ell}}^{\ell}$ in multilevel splitting$$
\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right],
$$

e.g. vary \#terms s_{ℓ} in KL-expansion (smoother on coarse grids)

Level-dependent Estimators (important in practice!)

Use $Q_{\ell}:=\mathcal{G}\left(\widetilde{p}_{h_{\ell}}^{\ell}\right)$ with level-dependent $\widetilde{p}_{h_{\ell}}^{\ell}$ in multilevel splitting

$$
\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right],
$$

e.g. vary \#terms s_{ℓ} in KL-expansion (smoother on coarse grids)

- Strang Lemma: Same bounds on α and β if $s_{\ell}^{-1}=\mathcal{O}\left(h_{\ell}\right)$. (using the truncation error analysis I showed on Wednesday)
- No gain asymptotically (but also no loss!).
- Helps with the absolute gain of the multilevel estimator and makes it feasible also on coarser grids with $h_{\ell}>\lambda$. (in basic multilevel MC need $h_{0}<\lambda$)

Level-dependent Estimators (important in practice!)

1D Example: $\mathcal{G}(p)=p\left(x^{*}\right), \sigma^{2}=1, \lambda=0.01$ and $s_{\ell}:=h_{\ell}^{-1}$

Other developments in MLMC

- many other PDEs and applications
- similar results for mixed FEs, FVM, ...
- can optimise all parameters (not just $\left\{N_{\ell}\right\}$) [Hajiali, Tempone]
- adaptivity [Von Schwerin, Tempone et al]
- variance estimation [Bierig, Chernov]
- optimal estimation of CDFs, PDFs [Giles, Nagapetyan, Ritter]
- antithetic sampling \& coarse grid variates [Park, Giles et al]
- hybrid with stochastic collocation [Tesei, Nobile et al]
- generalisation to general multilevel quadrature [Harbrecht et al]
- multilevel QMC [Kuo, Schwab, Sloan]

Quasi-Monte Carlo Methods

Reducing \# Samples (Quasi-Monte Carlo)

[Graham, Kuo, Nuyens, RS, Sloan '11], [Gra., Kuo, Nichols, RS, Schwab, Slo. '13]

$$
\mathbb{E}[\mathcal{G}(p)] \approx \int_{[0,1]^{s}} \mathcal{G}\left(p_{h}^{s}\left(\cdot, \boldsymbol{\Phi}^{-1}(\mathbf{z})\right)\right) \mathrm{d} \mathbf{z} \approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{G}\left(p_{h}^{s}\left(\cdot, \boldsymbol{\Phi}^{-1}\left(\mathbf{z}^{(i)}\right)\right)\right)
$$

with $\boldsymbol{\Phi}: \mathbb{R}^{s} \rightarrow[0,1]^{s}$ the cumulative normal distribution function.

Reducing \# Samples (Quasi-Monte Carlo)

[Graham, Kuo, Nuyens, RS, Sloan '11], [Gra., Kuo, Nichols, RS, Schwab, Slo. '13] $\mathbb{E}[\mathcal{G}(p)] \approx \int_{[0,1]^{s}} \mathcal{G}\left(p_{h}^{s}\left(\cdot, \boldsymbol{\Phi}^{-1}(\mathbf{z})\right)\right) \mathrm{d} \mathbf{z} \approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{G}\left(p_{h}^{s}\left(\cdot, \boldsymbol{\Phi}^{-1}\left(\mathbf{z}^{(i)}\right)\right)\right)$
with $\boldsymbol{\Phi}: \mathbb{R}^{s} \rightarrow[0,1]^{s}$ the cumulative normal distribution function.

Monte Carlo: $\mathbf{z}^{(n)}$ unif. random $\mathcal{O}\left(N^{-1 / 2}\right)$ convergence order of variables irrelevant

QMC: $\mathbf{z}^{(n)}$ deterministic close to $\mathcal{O}\left(N^{-1}\right)$ convergence order of variables v . important

64 random points

64 Sobol $^{\prime}$ points

64 lattice points

Numerical Results

[Graham, Kuo, Nuyens, RS, Sloan, JCP 2011]
Covariance

$$
r(\mathbf{x}, \mathbf{y})=\sigma^{2} \exp \left(-\|\mathbf{x}-\mathbf{y}\|_{1} / \lambda\right) \quad\left(\|\cdot\|_{2} \text { similar }\right)
$$

	Case 1	Case 2	Case 3	Case 4	Case 5
σ^{2}	1	1	1	3	3
λ	1	0.3	0.1	1	0.1

Mixed FEM (RT0 + p.w. const): Uniform grid $h=1 / m$ on $(0,1)^{2}$
Sampling: circulant embedding, dimension $s=\mathcal{O}\left(m^{2}\right)$ (v. large)
("discrete KL-expansion" via FFT)
QMC Method: randomised QMC with N Sobol' points

Algorithm profile

Time (in sec) on modest laptop for $N=1000$, CASE 1 :
(similar for other cases)

m	s	Setup	Φ^{-1}	FFTW	PDE Solve	TOT
33	$4.1(+3)$	0.00	1.0	0.22	4.5	5.9
65	$1.7(+4)$	0.01	3.9	1.2	16.5	22
129	$6.6(+4)$	0.06	15	5.1	67	92
257	$2.6(+5)$	0.15	62	31	290	400
513	$1.0(+6)$	0.6	258	145	1280	1750
Order	m^{2}	m^{2}	m^{2}	$m^{2} \log m$	$\sim m^{2}$	$\sim m^{2}$

Algorithm profile

Time (in sec) on modest laptop for $N=1000$, CASE 1 :
(similar for other cases)

m	s	Setup	Φ^{-1}	FFTW	PDE Solve	TOT
33	$4.1(+3)$	0.00	1.0	0.22	4.5	5.9
65	$1.7(+4)$	0.01	3.9	1.2	16.5	22
129	$6.6(+4)$	0.06	15	5.1	67	92
257	$2.6(+5)$	0.15	62	31	290	400
513	$1.0(+6)$	0.6	258	145	1280	1750
Order	m^{2}	m^{2}	m^{2}	$m^{2} \log m$	$\sim m^{2}$	$\sim m^{2}$

Using divergence free reduction to SPD problem and amg1r5
[Cliffe, Graham, RS, Stals, 2000]
One mixed FE (saddle point system) solve with $\approx 1.3(+6)$ DOF takes $\approx 1.3 \mathrm{~s}$!!

Dimension independence (increasing m and hence s)

Quadrature error for mean pressure at centre (CASE 4) (no FE error, MC in green, QMC in blue)

Robustness (varying σ^{2} and λ)

Expected value of effective permeability (here FE error present) h needed to obtain a discretization error $<10^{-3}$
N needed to obtain (Q)MC error $<0.5 \times 10^{-3}$ (95% confidence)

σ^{2}	λ	$1 / h$	$N($ QMC $)$	$N(\mathrm{MC})$	CPU (QMC)	CPU (MC)
1	1	17	$1.2(+5)$	$1.9(+7)$	0.05 h	8 h
1	0.3	129	$3.3(+4)$	$3.9(+6)$	0.9 h	110 h
1	0.1	513	$1.2(+4)$	$5.9(+5)$	6.5 h	330 h
3	1	33	$4.3(+6)$	$3.6(+8)$	9 h	750 h
3	0.1	513	$3.0(+4)$	$5.8(+5)$	20 h	390 h

(last line calculated with twice the tolerance!)

Robustness (varying σ^{2} and λ)

Expected value of effective permeability (here FE error present) h needed to obtain a discretization error $<10^{-3}$
N needed to obtain (Q)MC error $<0.5 \times 10^{-3}$ (95% confidence)

σ^{2}	λ	$1 / h$	$N($ QMC $)$	$N(\mathrm{MC})$	CPU (QMC)	CPU (MC)
1	1	17	$1.2(+5)$	$1.9(+7)$	0.05 h	8 h
1	0.3	129	$3.3(+4)$	$3.9(+6)$	0.9 h	110 h
1	0.1	513	$1.2(+4)$	$5.9(+5)$	6.5 h	330 h
3	1	33	$4.3(+6)$	$3.6(+8)$	9 h	750 h
3	0.1	513	$3.0(+4)$	$5.8(+5)$	20 h	390 h

(last line calculated with twice the tolerance!)
Smaller λ needs smaller h but also smaller N (ergodicity).
Strong superiority of QMC in all cases.

Theory [Graham, Kuo, Nicholls, RS, Schwab, Sloan, 2013]

- Truncated Karhunen-Loeve expansion:

$$
\begin{aligned}
& k(\mathbf{x}, \omega) \approx k^{s}(\mathbf{x}, \omega):=k_{*}(\mathbf{x})+k_{0}(\mathbf{x}) \exp \left(\sum_{j=1}^{s} \sqrt{\mu_{j}} \phi_{j}(\mathbf{x}) Y_{j}(\omega)\right) \\
& \mathbf{y}=\left(Y_{j}\right)_{j=1}^{s} \text { i.i.d. } N\left(0, \sigma^{2}\right) ;\left(\mu_{j}, \phi_{j}\right) \text { orth. eigenpairs of } \int_{\Omega} R\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \phi\left(\mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x}^{\prime}
\end{aligned}
$$

Theory [Graham, Kuo, Nicholls, RS, Schwab, Sloan, 2013]

- Truncated Karhunen-Loeve expansion:

$$
k(\mathbf{x}, \omega) \approx k^{s}(\mathbf{x}, \omega):=k_{*}(\mathbf{x})+k_{0}(\mathbf{x}) \exp \left(\sum_{j=1}^{s} \sqrt{\mu_{j}} \phi_{j}(\mathbf{x}) Y_{j}(\omega)\right)
$$

$$
\mathbf{y}=\left(Y_{j}\right)_{j=1}^{s} \text { i.i.d. } N\left(0, \sigma^{2}\right) ;\left(\mu_{j}, \phi_{j}\right) \text { orth. eigenpairs of } \int_{\Omega} R\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \phi\left(\mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x}^{\prime}
$$

- Standard cts. p.w. linear FEs on grid \mathcal{T}^{h} : Find $p_{h}^{s} \in V_{h}$ s.t.

$$
\int_{D} k^{s}(\mathbf{x}, \omega) \nabla p_{h}^{s}(\mathbf{x}, \omega) \cdot \nabla v_{h} \mathrm{~d} \mathbf{x}=\left\langle f, v_{h}\right\rangle \quad \forall v_{h} \in V_{h} \text {, a.s. } \omega \in \Omega
$$

Three Sources of Error:

- Truncation error $(s):\left|\mathbb{E}\left[\mathcal{G}(p)-\mathcal{G}\left(p^{s}\right)\right]\right|$
- Discretisation error $(h):\left|\mathbb{E}\left[\mathcal{G}\left(p^{s}\right)-\mathcal{G}\left(p_{h}^{s}\right)\right]\right|$
- Quadrature error $(N): \mid \int_{[0,1]^{s}} \mathcal{G}\left(p_{h}^{s}\left(\cdot, \Phi^{-1}(\mathbf{z})\right) \mathrm{dz}-Q_{N}^{s}\left(\mathcal{G}\left(p_{h}^{s}\right)\right) \mid\right.$

Truncation Error (recall from Wednesday)

- Uses Fernique's Thm. \& depends on decay of KL-eigvals μ_{j}
- $O\left(j^{-(d+1) / d}\right)$ for exponential covariance with 2-norm
- $O\left(\exp \left(-c_{1} j\right)\right)$ for Gaussian covariance
- $O\left(j^{-(d+2 \nu) / d}\right)$ for Matérn class (with parameter $\nu>1 / 2$) and on growth of $\left\|\nabla \phi_{j}\right\|_{L^{\infty}(D)}$ (hard to estimate!)

Truncation Error (recall from Wednesday)

- Uses Fernique’s Thm. \& depends on decay of KL-eigvals μ_{j}
- $O\left(j^{-(d+1) / d}\right)$ for exponential covariance with 2-norm
- $O\left(\exp \left(-c_{1} j\right)\right)$ for Gaussian covariance
- $O\left(j^{-(d+2 \nu) / d}\right)$ for Matérn class (with parameter $\nu>1 / 2$) and on growth of $\left\|\nabla \phi_{j}\right\|_{L^{\infty}(D)}$ (hard to estimate!)

$$
\text { If } \exists r^{*} \in(0,1) \text { s.t. } \sum_{j \geq 1} j^{\sigma} \mu_{j}^{2}\left\|\phi_{j}\right\|_{L^{\infty}(D)}^{2(1-r)}\left\|\nabla \phi_{j}\right\|_{L^{\infty}(D)}^{2 r}<\infty \text { then }, ~=O\left(s^{-\sigma / 2}\right)
$$

Truncation Error (recall from Wednesday)

- Uses Fernique's Thm. \& depends on decay of KL-eigvals μ_{j}
- $O\left(j^{-(d+1) / d}\right)$ for exponential covariance with 2-norm
- $O\left(\exp \left(-c_{1} j\right)\right)$ for Gaussian covariance
- $O\left(j^{-(d+2 \nu) / d}\right)$ for Matérn class (with parameter $\nu>1 / 2$) and on growth of $\left\|\nabla \phi_{j}\right\|_{L^{\infty}(D)}$ (hard to estimate!)

$$
\text { If } \exists r^{*} \in(0,1) \text { s.t. } \sum_{j \geq 1} j^{\sigma} \mu_{j}^{2}\left\|\phi_{j}\right\|_{L^{\infty}(D)}^{2(1-r)}\left\|\nabla \phi_{j}\right\|_{L^{\infty}(D)}^{2 r}<\infty \text { then }, ~=O\left(s^{-\sigma / 2}\right)
$$

- Assumption satisfied for 1-norm exponential with $\sigma<1$
- and for Matérn with $\nu>d / 2$ (proof in [Graham et al, 2013])
- For Gaussian covariance one can prove exponential decay

Truncation Error (recall from Wednesday)

Remainder $\sum_{j>s} \mu_{j}$ in 1D (exponential) Converg. of $\left|\mathbb{E}\left[\|p\|_{L_{2}(0,1)}-\left\|p^{s}\right\|_{L_{2}(0,1)}\right]\right|$

Importance of correlation length λ !

Quadrature Error (Standard Monte Carlo)

- By Law of Large Numbers for random points $\mathbf{z}^{(i)} \in[0,1]^{s}$:

$$
\operatorname{RMSE}\left[\mathbb{E}\left[\mathcal{G}\left(p_{h}^{s}\right)\right]-\left({\left.\widehat{\mathcal{G}\left(p_{h}^{s}\right)}\right)}_{N}^{\mathrm{MC}}\right]=O\left(N^{-1 / 2}\right)\right.
$$

Quadrature Error (Standard Monte Carlo)

- By Law of Large Numbers for random points $\mathbf{z}^{(i)} \in[0,1]^{s}$:

$$
\operatorname{RMSE}\left[\mathbb{E}\left[\mathcal{G}\left(p_{h}^{s}\right)\right]-\left({\widehat{\mathcal{G}}\left(p_{h}^{s}\right)}^{\mathrm{MC}}{ }_{N}\right]=O\left(N^{-1 / 2}\right)\right.
$$

Quadrature Error (Standard Monte Carlo)

- By Law of Large Numbers for random points $\mathbf{z}^{(i)} \in[0,1]^{s}$:

$$
\operatorname{RMSE}\left[\mathbb{E}\left[\mathcal{G}\left(p_{h}^{s}\right)\right]-\left({\left.\left.\widehat{\mathcal{G}\left(p_{h}^{s}\right)}\right)_{N}^{\mathrm{MC}}\right]=O\left(N^{-1 / 2}\right), ~}_{\text {and }}\right.\right.
$$

Can we do better with deterministically chosen points \& can we prove it?

Sample Points \& Equal Weight Quadrature Rules

Quasi-Monte Carlo: $Q_{N}^{s}\left(\mathcal{G}\left(p_{h}^{s}\right)\right):=\frac{1}{N} \sum_{i=1}^{N} \mathcal{G}\left(p_{h}^{s}\left(\cdot, \boldsymbol{\Phi}^{-1}\left(\mathbf{z}^{(i)}\right)\right)\right)$
How to choose $\mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(N)}$?

Sample Points \& Equal Weight Quadrature Rules

 Quasi-Monte Carlo: $Q_{N}^{s}\left(\mathcal{G}\left(p_{h}^{s}\right)\right):=\frac{1}{N} \sum_{i=1}^{N} \mathcal{G}\left(p_{h}^{s}\left(\cdot, \boldsymbol{\Phi}^{-1}\left(\mathbf{z}^{(i)}\right)\right)\right)$How to choose $\mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(N)}$?

- Low discrepancy points: Sobol (1950s), Faure, Niederreiter (1980s), Dick ...
- Lattice rules: Korobov, Hlawka, Hua, Wang (50s), Sloan...

64 random points

64 Sobol' points

64 lattice points

Quasi-Monte Carlo Lattice Rule (of rank 1)

[Sloan \& Joe, Lattice Methods for Multiple Integration, OUP, 1994]
Given a generating vector $\mathbf{z}_{\text {gen }} \in\{1, \ldots, N-1\}^{s}$ and a random shift $\boldsymbol{\Delta} \sim U\left[(0,1)^{s}\right]:$

$$
\mathbf{z}^{(i)}:=\operatorname{frac}\left(\frac{i \mathbf{z}_{\mathrm{gen}}}{N}+\boldsymbol{\Delta}\right), \quad i=1, \ldots, N
$$

Now theory available for functions in weighted tensor product Sobolev spaces.

Quasi-Monte Carlo Lattice Rule (of rank 1)

[Sloan \& Joe, Lattice Methods for Multiple Integration, OUP, 1994]
Given a generating vector $\mathbf{z}_{\text {gen }} \in\{1, \ldots, N-1\}^{s}$ and a $\underline{\text { random shift }} \boldsymbol{\Delta} \sim U\left[(0,1)^{s}\right]:$

$$
\mathbf{z}^{(i)}:=\operatorname{frac}\left(\frac{i \mathbf{z}_{\text {gen }}}{N}+\boldsymbol{\Delta}\right), \quad i=1, \ldots, N
$$

Now theory available for functions in weighted tensor product Sobolev spaces.

- Weighted spaces/existence: Sloan, Woźniakoski, '98 \& '01
- Construction: Sloan, Reztsov, Kuo, Joe, 2002 (see also www.maths.unsw.edu.au/~fkuo: CBC construction)
- Infinite dimensions and improper integrals: Kuo, Sloan, Wasilkowski, Waterhouse, 2010; Kuo, Nicholls, 2013

Quadrature Error Analysis (non-affine lognormal case)

 [Graham, Kuo, Nichols, RS, Schwab, Sloan, 2013]Dimension-independent bounds if integrand F is in special weighted tensor-product Sobolev space $\mathcal{W}_{s, \gamma, \psi}:=\left(H_{\gamma, \psi}^{1}(\mathbb{R})\right)^{s}$ with norm

$$
\|F\|_{\mathcal{W}_{s, \gamma, \psi}}^{2}:=\sum_{u \subseteq\{1, \ldots, s\}} \frac{1}{\gamma_{u}} \int_{\mathbb{R}|u|}\left|\frac{\partial^{|u|} \mid}{\partial \mathbf{y}_{\mathbf{u}}}\left(\mathbf{y}_{\mathbf{u}} ; \boldsymbol{0}\right)\right|^{2} \prod_{j \in u} \psi^{2}\left(y_{j}\right) \mathrm{d} \mathbf{y}_{\mathbf{u}} .
$$

Quadrature Error Analysis (non-affine lognormal case)

 [Graham, Kuo, Nichols, RS, Schwab, Sloan, 2013]Dimension-independent bounds if integrand F is in special weighted tensor-product Sobolev space $\mathcal{W}_{s, \gamma, \psi}:=\left(H_{\gamma, \psi}^{1}(\mathbb{R})\right)^{s}$ with norm

$$
\|F\|_{\mathcal{W}_{s, \gamma, \psi}}^{2}:=\sum_{u \subseteq\{1, \ldots, s\}} \frac{1}{\gamma_{u}} \int_{\mathbb{R}|u|}\left|\frac{\partial^{|u|} \mid}{\partial \mathbf{y}_{\mathbf{u}}}\left(\mathbf{y}_{\mathbf{u}} ; \boldsymbol{0}\right)\right|^{2} \prod_{j \in u} \psi^{2}\left(y_{j}\right) \mathrm{d} \mathbf{y}_{\mathbf{u}} .
$$

- Ordering of coordinates crucial! Cannot construct rules that are equally good in all dimensions.

Quadrature Error Analysis (non-affine lognormal case)

 [Graham, Kuo, Nichols, RS, Schwab, Sloan, 2013]Dimension-independent bounds if integrand F is in special weighted tensor-product Sobolev space $\mathcal{W}_{s, \gamma, \psi}:=\left(H_{\gamma, \psi}^{1}(\mathbb{R})\right)^{s}$ with norm

$$
\|F\|_{\mathcal{W}_{s, \gamma, \psi}}:=\sum_{u \subseteq\{1, \ldots, s\}} \frac{1}{\gamma_{u}} \int_{\mathbb{R}^{|u|}}\left|\frac{\partial^{|u|} F}{\partial \mathbf{y}_{u}}\left(\mathbf{y}_{u} ; \mathbf{0}\right)\right|^{2} \prod_{j \in u} \psi^{2}\left(y_{j}\right) \mathrm{d} \mathbf{y}_{u} .
$$

- Ordering of coordinates crucial! Cannot construct rules that are equally good in all dimensions.
- Weight function ψ^{2} controls decay at infinity for improper integrals (either exponential or Gaussian).
- Weights $\gamma_{\mathfrak{u}}$ (for subsets \mathfrak{u} of coordinates) have to decrease sufficiently fast.

Quadrature Error Analysis (non-affine lognormal case)

 [Graham, Kuo, Nichols, RS, Schwab, Sloan, 2013]Dimension-independent bounds if integrand F is in special weighted tensor-product Sobolev space $\mathcal{W}_{s, \gamma, \psi}:=\left(H_{\gamma, \psi}^{1}(\mathbb{R})\right)^{s}$ with norm

$$
\|F\|_{\mathcal{W}_{s, \gamma, \psi}}:=\sum_{u \subseteq\{1, \ldots, s\}} \frac{1}{\gamma_{u}} \int_{\mathbb{R}^{|u|}}\left|\frac{\partial^{|u|} F}{\partial \mathbf{y}_{u}}\left(\mathbf{y}_{u} ; \mathbf{0}\right)\right|^{2} \prod_{j \in u} \psi^{2}\left(y_{j}\right) \mathrm{d} \mathbf{y}_{u} .
$$

- Ordering of coordinates crucial! Cannot construct rules that are equally good in all dimensions.
- Weight function ψ^{2} controls decay at infinity for improper integrals (either exponential or Gaussian).
- Weights $\gamma_{\mathfrak{u}}$ (for subsets \mathfrak{u} of coordinates) have to decrease sufficiently fast.
- Efficient CBC construction available - controlled by weights γ_{u}.

Quadrature Error Analysis (contd.)

- To show $\mathcal{G}\left(p_{h}^{s}\right) \in \mathcal{W}_{s, \gamma, \psi}$ bound mixed 1 st derivatives of p_{h}^{s} w.r.t. parameters in a finite subset $\mathfrak{u} \subset \mathbb{N}$:

$$
\left|\frac{\partial^{|\mathfrak{u}|} p_{h}^{s}}{\partial \mathbf{y}_{\mathfrak{u}}}(\cdot, \mathbf{y})\right|_{H^{1}(D)} \leq \frac{\|f\|_{H^{-1}(D)}}{k_{\min }(\mathbf{y})} \frac{|\mathfrak{u}|!}{\ln 2^{|\mathfrak{u}|}}\left(\prod_{j \in \mathfrak{u}} \sqrt{\mu_{j}}\left\|\phi_{j}\right\|_{L^{\infty}(D)}\right)
$$

Quadrature Error Analysis (contd.)

- To show $\mathcal{G}\left(p_{h}^{s}\right) \in \mathcal{W}_{s, \gamma, \psi}$ bound mixed 1 st derivatives of p_{h}^{s} w.r.t. parameters in a finite subset $\mathfrak{u} \subset \mathbb{N}$:

$$
\left|\frac{\partial^{|u|} p_{h}^{s}}{\partial \mathbf{y}_{\mathfrak{u}}}(\cdot, \mathbf{y})\right|_{H^{1}(D)} \leq \frac{\|f\|_{H^{-1}(D)}}{k_{\min }(\mathbf{y})} \frac{|\mathfrak{u}|!}{\ln 2^{|u|}}\left(\prod_{j \in \mathfrak{u}} \sqrt{\mu_{j}}\left\|\phi_{j}\right\|_{L^{\infty}(D)}\right)
$$

- Assume $\mathcal{G}\left(p_{h}^{s}\right)$ linear. If KL -eigenvalues μ_{j} decay suff'ly fast we can find weights γ_{u} s.t. $\mathcal{G}\left(p_{h}^{s}\right) \in \mathcal{W}_{s, \gamma, \psi}$. In particular, can choose $\gamma_{u}=\left(\frac{|u| l}{\left.(\ln 2)^{|u|}\right)^{2 /(1+\lambda)}} \Pi_{j \in u} \gamma_{j}\left(\mu_{j}, \lambda\right)\right.$ and λ depends on decay rate of μ_{j}.

Theorem (hidden constants independent of s !)

$$
\begin{array}{ll}
\mathbb{E}\left[\mathcal{G}\left(p_{h}^{s}\right)\right]-Q_{N}^{s}\left(\mathcal{G}\left(p_{h}^{s}\right)\right)=\mathcal{O}\left(N^{-1 / 2}\right) & \text { if } \mu_{j}\left\|\phi_{j}\right\|_{L^{\infty}(D)}^{2}=O\left(j^{-2-\delta}\right) \\
\mathbb{E}\left[\mathcal{G}\left(p_{h}^{s}\right)\right]-Q_{N}^{s}\left(\mathcal{G}\left(p_{h}^{s}\right)\right)=\mathcal{O}\left(N^{-1+\delta}\right) & \text { if } \mu_{j}\left\|\phi_{j}\right\|_{L^{\infty}(D)}^{2}=O\left(j^{-3}\right)
\end{array}
$$

Optimal rates (provable) for Matérn with $\nu>\frac{3}{2} d$.

Regularity Proof Idea

(also important for the analysis of the stochastic Galerkin/collocation methods)

- For regularity, start with Lax-Milgram \Rightarrow

$$
\left\|p_{h}^{s}(\cdot, \mathbf{y})\right\|_{a} \leq \frac{1}{\sqrt{k_{\min }(\mathbf{y})}}\|f\|_{H^{-1}(D)} \quad \text { for a.a. } \mathbf{y} \in \mathbb{R}^{\mathbb{N}}
$$

Regularity Proof Idea

(also important for the analysis of the stochastic Galerkin/collocation methods)

- For regularity, start with Lax-Milgram \Rightarrow

$$
\left\|p_{h}^{s}(\cdot, \mathbf{y})\right\|_{a} \leq \frac{1}{\sqrt{k_{\min }(\mathbf{y})}}\|f\|_{H^{-1}(D)} \quad \text { for a.a. } \mathbf{y} \in \mathbb{R}^{\mathbb{N}}
$$

- Then show inductively that (with $\left.b_{j}=\sqrt{\mu_{j}}\left\|\phi_{j}\right\|_{L^{\infty}(D)}\right)$

$$
\left\|\partial^{u} p_{h}^{s}(\cdot, \mathbf{y})\right\|_{a} \leq \Lambda_{|\mathfrak{u}|} \prod_{j \geq 1} b_{j}^{\nu_{j}} \frac{\|f\|_{H^{-1}(D)}}{\sqrt{k_{\min }(\mathbf{y})}}
$$

where $\Lambda_{0}=1$ and $\Lambda_{n}=\sum_{i=0}^{n-1}\binom{n}{i} \Lambda_{i}$ using the Leibniz rule and the simple bound $\left\|\frac{\partial^{u} k(., \mathbf{y})}{k(., \mathbf{y})}\right\| \leq \prod_{j \geq 1} b_{j}^{\nu_{j}}$ (where $\left.\nu_{j}=\delta_{j \in u}\right)$.

Regularity Proof Idea

(also important for the analysis of the stochastic Galerkin/collocation methods)

- For regularity, start with Lax-Milgram \Rightarrow

$$
\left\|p_{h}^{s}(\cdot, \mathbf{y})\right\|_{a} \leq \frac{1}{\sqrt{k_{\min }(\mathbf{y})}}\|f\|_{H^{-1}(D)} \quad \text { for a.a. } \mathbf{y} \in \mathbb{R}^{\mathbb{N}}
$$

- Then show inductively that (with $\left.b_{j}=\sqrt{\mu_{j}}\left\|\phi_{j}\right\|_{L^{\infty}(D)}\right)$

$$
\left\|\partial^{\mathfrak{u}} p_{h}^{s}(\cdot, \mathbf{y})\right\|_{a} \leq \Lambda_{|\mathfrak{u}|} \prod_{j \geq 1} b_{j}^{\nu_{j}} \frac{\|f\|_{H^{-1}(D)}}{\sqrt{k_{\min }(\mathbf{y})}}
$$

where $\Lambda_{0}=1$ and $\Lambda_{n}=\sum_{i=0}^{n-1}\binom{n}{i} \Lambda_{i}$ using the Leibniz rule and the simple bound $\left\|\frac{\partial^{\mathfrak{u} k(., \mathbf{y})}}{k(\cdot, \mathbf{y})}\right\| \leq \prod_{j \geq 1} b_{j}^{\nu_{j}}$ (where $\nu_{j}=\delta_{j \in \mathfrak{u}}$).

- Finally prove by induction that $\Lambda_{n} \leq \frac{n!}{(\log 2)^{n}}$

Quadrature Error (1D, Matérn covariance, rank-1 lattice rule)

\circ	\circ	QMC, $\sigma_{C}^{2}=4.0$	--	MC, $\sigma_{C}^{2}=4.0$
\triangle	\triangle	QMC, $\sigma_{C}^{2}=1.0$	--	MC, $\sigma_{C}^{2}=1.0$
\times	\times	QMC, $\sigma_{C}^{2}=0.25$	--	MC, $\sigma_{C}^{2}=0.25$

Quadrature Error (1D, Matérn covariance, rank-1 lattice rule)

Rates

ν	σ^{2}	$\lambda_{C}=0.1$	$\lambda_{C}=1.0$
	0.25	0.82	0.89
0.75	1.00	0.64	0.83
	4.00	0.60	0.63
	0.25	0.80	0.86
1.5	1.00	0.66	0.73
	4.00	0.58	0.55

Partial Conclusions \& Summary

- MC-type methods currently the only ones that do not suffer from curse of dimensionality (for non-smooth non-affine problems)
- Multilevel MC is optimal, i.e. same cost as deterministic solver
- Theory based on careful FE error analysis [recall Wed] (level-dependent approximations for better variance reduction)
- Quasi MC acceleration (with new s-independent theory!)
- MLMC and QMC are complementary \Rightarrow MLQMC [Giles, Waterhouse, 2009], [Kuo, Schwab, Sloan, 2012], [Harbrecht, Peters, Siebenmorgen, 2013], ongoing for lognormal

Partial Conclusions \& Summary

- MC-type methods currently the only ones that do not suffer from curse of dimensionality (for non-smooth non-affine problems)
- Multilevel MC is optimal, i.e. same cost as deterministic solver
- Theory based on careful FE error analysis [recall Wed] (level-dependent approximations for better variance reduction)
- Quasi MC acceleration (with new s-independent theory!)
- MLMC and QMC are complementary \Rightarrow MLQMC [Giles, Waterhouse, 2009], [Kuo, Schwab, Sloan, 2012],
[Harbrecht, Peters, Siebenmorgen, 2013], ongoing for lognormal

$\nu=\frac{1}{2}$	$d=1$	2	3
$\mathbf{M C}$	ε^{-3}	ε^{-4}	ε^{-5}
QMC	ε^{-3}	ε^{-4}	ε^{-5}
MLMC	ε^{-2}	ε^{-2}	ε^{-3}
MLQMC	ε^{-2}	ε^{-2}	ε^{-3}

ν suff. large	$d=1$	2	3
MC	$\varepsilon^{-5 / 2}$	ε^{-3}	$\varepsilon^{-7 / 2}$
QMC	$\varepsilon^{-3 / 2}$	ε^{-2}	$\varepsilon^{-5 / 2}$
MLMC	ε^{-2}	ε^{-2}	ε^{-2}
MLQMC	ε^{-1}	ε^{-1}	$\varepsilon^{-7 / 4}$

Multilevel Markov Chain Monte Carlo

Inverse Problems - Bayesian Inference

- Model was parametrised by $Z_{s}:=\left[Z_{1}, \ldots, Z_{s}\right]$ (the "prior").

In the subsurface flow application with lognormal coefficients:

$$
\log k \approx \sum_{j=1}^{s} \sqrt{\mu_{j}} \phi_{j}(x) Z_{j}(\omega) \text { and } \mathcal{P}\left(\mathbf{Z}_{s}\right) \approx(2 \pi)^{-s / 2} \prod_{j=1}^{s} \exp \left(-\frac{Z_{j}^{2}}{2}\right)
$$

- Usually also some output data $F_{\text {obs }}$ available (e.g. pressure). To reduce uncertainty, incorporate $F_{\text {obs }}$ (the "posterior")

Inverse Problems - Bayesian Inference

- Model was parametrised by $Z_{s}:=\left[Z_{1}, \ldots, Z_{s}\right]$ (the "prior"). In the subsurface flow application with lognormal coefficients:

$$
\log k \approx \sum_{j=1}^{s} \sqrt{\mu_{j}} \phi_{j}(x) Z_{j}(\omega) \text { and } \mathcal{P}\left(\mathbf{Z}_{s}\right) \approx(2 \pi)^{-s / 2} \prod_{j=1}^{s} \exp \left(-\frac{Z_{j}^{2}}{2}\right)
$$

- Usually also some output data $F_{\text {obs }}$ available (e.g. pressure). To reduce uncertainty, incorporate $F_{\text {obs }}$ (the "posterior")

Bayes' Theorem: (RHS computable! Proportionality factor $1 / \mathcal{P}\left(F_{\text {obs }}\right)$ not!)

$$
\underbrace{\pi^{h, s}\left(\mathbf{Z}_{s}\right)}_{\text {posterior }}:=\mathcal{P}\left(\mathbf{Z}_{s} \mid F_{\text {obs }}\right) \approx \underbrace{\mathcal{L}_{h}\left(F_{\text {obs }} \mid \mathbf{Z}_{s}\right)}_{\text {likelihood }} \underbrace{\mathcal{P}\left(\mathbf{Z}_{s}\right)}_{\text {prior }}
$$

Inverse Problems - Bayesian Inference

- Model was parametrised by $Z_{s}:=\left[Z_{1}, \ldots, Z_{s}\right]$ (the "prior"). In the subsurface flow application with lognormal coefficients:

$$
\log k \approx \sum_{j=1}^{s} \sqrt{\mu_{j}} \phi_{j}(x) Z_{j}(\omega) \text { and } \mathcal{P}\left(\mathbf{Z}_{s}\right) \approx(2 \pi)^{-s / 2} \prod_{j=1}^{s} \exp \left(-\frac{Z_{j}^{2}}{2}\right)
$$

- Usually also some output data $F_{\text {obs }}$ available (e.g. pressure). To reduce uncertainty, incorporate $F_{\text {obs }}$ (the "posterior")

Bayes' Theorem: (RHS computable! Proportionality factor $1 / \mathcal{P}\left(F_{\text {obs }}\right)$ not!)

$$
\underbrace{\pi^{h, s}\left(\mathbf{Z}_{s}\right)}_{\text {posterior }}:=\mathcal{P}\left(\mathbf{Z}_{s} \mid F_{\text {obs }}\right) \approx \underbrace{\mathcal{L}_{h}\left(F_{\text {obs }} \mid \mathbf{Z}_{s}\right)}_{\text {likelihood }} \underbrace{\mathcal{P}\left(\mathbf{Z}_{s}\right)}_{\text {prior }}
$$

- Likelihood model (e.g. Gaussian):

$$
\mathcal{L}_{h}\left(F_{\text {obs }} \mid \mathbf{Z}_{s}\right) \approx \exp \left(-\left\|F_{\text {obs }}-F_{h}\left(\mathbf{Z}_{s}\right)\right\|^{2} / \sigma_{\text {obs }}^{2}\right)
$$

$F_{h}\left(\mathbf{Z}_{s}\right)$... model response; $\sigma_{\text {obs }} \ldots$ fidelity parameter (data error)

ALGORITHM 1 (Standard Metropolis Hastings MCMC)

- Choose \mathbf{Z}_{s}^{0}.
- At state n generate proposal \mathbf{Z}_{s}^{\prime} from distribution $q^{\mathrm{RW}}\left(\mathbf{Z}_{s}^{\prime} \mid \mathbf{Z}_{s}^{n}\right)$ (e.g. random walk or preconditioned random walk [Stuart et al]).
- Accept \mathbf{Z}_{s}^{\prime} as a sample with probability
for reversible prop. dist.
$\boldsymbol{\alpha}^{h, s}=\min \left(1, \frac{\pi^{h, s}\left(\mathbf{Z}_{s}^{\prime}\right) q^{\mathrm{RW}}\left(\mathbf{Z}_{s}^{n} \mid \mathbf{Z}_{s}^{\prime}\right)}{\pi^{h, s}\left(\mathbf{Z}_{s}^{n}\right) q^{\mathrm{RW}}\left(\mathbf{Z}_{s}^{\prime} \mid \mathbf{Z}_{s}^{n}\right)}\right)=\overbrace{\min \left(1, \frac{\pi^{h, s}\left(\mathbf{Z}_{s}^{\prime}\right)}{\pi^{h, s}\left(\mathbf{Z}_{s}^{n}\right)}\right)}$
i.e. $\mathbf{Z}_{s}^{n+1}=\mathbf{Z}_{s}^{\prime}$ with probability $\alpha^{h, s}$; otherwise $\mathbf{Z}_{s}^{n+1}=\mathbf{Z}_{s}^{n}$.

ALGORITHM 1 (Standard Metropolis Hastings MCMC)

- Choose \mathbf{Z}_{s}^{0}.
- At state n generate proposal \mathbf{Z}_{s}^{\prime} from distribution $q^{\mathrm{RW}}\left(\mathbf{Z}_{s}^{\prime} \mid \mathbf{Z}_{s}^{n}\right)$ (e.g. random walk or preconditioned random walk [Stuart et all]).
- Accept \mathbf{Z}_{s}^{\prime} as a sample with probability
for reversible prop. dist.

$$
\alpha^{h, s}=\min \left(1, \frac{\pi^{h, s}\left(\mathbf{Z}_{s}^{\prime}\right) q^{\mathrm{RN}}\left(\mathbf{Z}_{s}^{n} \mid \mathbf{Z}_{s}^{\prime}\right)}{\pi^{h, s}\left(\mathbf{Z}_{s}^{n}\right) q^{\mathrm{RW}}\left(\mathbf{Z}_{s}^{\prime} \mid \mathbf{Z}_{s}^{n}\right)}\right)=\overbrace{\min \left(1, \frac{\pi^{h, s}\left(\mathbf{Z}_{s}^{\prime}\right)}{\pi^{h, s}\left(\mathbf{Z}_{s}^{n}\right)}\right)}^{\text {臬 }}
$$

i.e. $\mathbf{Z}_{s}^{n+1}=\mathbf{Z}_{s}^{\prime}$ with probability $\alpha^{h, s}$; otherwise $\mathbf{Z}_{s}^{n+1}=\mathbf{Z}_{s}^{n}$.

Samples \mathbf{Z}_{s}^{n} used as usual for inference (even though not i.i.d.):

$$
\mathbb{E}_{\pi^{h, s}}[Q] \approx \mathbb{E}_{\pi^{h, s}}\left[Q_{h, s}\right] \approx \frac{1}{N} \sum_{i=1}^{N} Q_{h, s}^{(n)}:=\widehat{Q}^{\text {Meth }}
$$

where $Q_{h, s}^{(n)}=\mathcal{G}\left(\mathbf{X}_{h}\left(\mathbf{Z}_{s}^{(n)}\right)\right)$ is the nth sample of Q using $\operatorname{Model}(h, s)$.

ALGORITHM 1 (Standard Metropolis Hastings MCMC)

- Choose \mathbf{Z}_{s}^{0}.
- At state n generate proposal \mathbf{Z}_{s}^{\prime} from distribution $q^{\mathrm{RW}}\left(\mathbf{Z}_{s}^{\prime} \mid \mathbf{Z}_{s}^{n}\right)$ (e.g. random walk or preconditioned random walk [Stuart et all]).
- Accept \mathbf{Z}_{s}^{\prime} as a sample with probability
for reversible prop. dist.
$\boldsymbol{\alpha}^{h, s}=\min \left(1, \frac{\pi^{h, s}\left(\mathbf{Z}_{s}^{\prime}\right) q^{\mathrm{RW}}\left(\mathbf{Z}_{s}^{n} \mid \mathbf{Z}_{s}^{\prime}\right)}{\pi^{h, s}\left(\mathbf{Z}_{s}^{n}\right) q^{\mathrm{RW}}\left(\mathbf{Z}_{s}^{\prime} \mid \mathbf{Z}_{s}^{n}\right)}\right)=\min \left(1, \frac{\pi^{h, s}\left(\mathbf{Z}_{s}^{\prime}\right)}{\pi^{h, s}\left(\mathbf{Z}_{s}^{n}\right)}\right)$
i.e. $\mathbf{Z}_{s}^{n+1}=\mathbf{Z}_{s}^{\prime}$ with probability $\alpha^{h, s}$; otherwise $\mathbf{Z}_{s}^{n+1}=\mathbf{Z}_{s}^{n}$.

Pros:

- Produces a Markov chain $\left\{\mathbf{Z}_{s}^{n}\right\}_{n \in \mathbb{N}}$, with $\mathbf{Z}_{s}^{n} \sim \pi^{h, s}$ as $n \rightarrow \infty$.

Cons:

- Evaluation of $\boldsymbol{\alpha}^{h, s}=\boldsymbol{\alpha}^{h, s}\left(\mathbf{Z}_{s}^{\prime} \mid \mathbf{Z}_{s}^{n}\right)$ very expensive for small h.
- Acceptance rate $\boldsymbol{\alpha}^{h, s}$ very low for large $s(<10 \%)$.
- ε-Cost $=\mathcal{O}\left(\varepsilon^{-2-\frac{d}{\gamma}}\right)$ as above, but constant depends on $\boldsymbol{\alpha}^{h, s} \&$ 'burn-in'

Multilevel Markov Chain Monte Carlo

choose $h_{\ell}=h_{\ell-1} / 2$ and $s_{\ell}>s_{\ell-1}$, and set $Q_{\ell}:=Q_{h_{\ell}, s_{\ell}}$ and $\mathbf{Z}_{\ell}:=\mathbf{Z}_{s_{\ell}}$

Multilevel Markov Chain Monte Carlo

choose $h_{\ell}=h_{\ell-1} / 2$ and $s_{\ell}>s_{\ell-1}$, and set $Q_{\ell}:=Q_{h_{\ell}, s_{\ell}}$ and $\mathbf{Z}_{\ell}:=\mathbf{Z}_{s_{\ell}}$
What are the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}\right]-\mathbb{E}\left[Q_{\ell-1}\right]$
- Models with less DOFs on coarser levels much cheaper to solve.
- $\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right] \rightarrow 0$ as $\ell \rightarrow \infty \quad \Rightarrow \quad$ far less samples on finer levels

Multilevel Markov Chain Monte Carlo

 choose $h_{\ell}=h_{\ell-1} / 2$ and $s_{\ell}>s_{\ell-1}$, and set $Q_{\ell}:=Q_{h_{\ell}, s_{\ell}}$ and $\mathbf{Z}_{\ell}:=\mathbf{Z}_{s_{\ell}}$What are the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}\right]-\mathbb{E}\left[Q_{\ell-1}\right]$
- Models with less DOFs on coarser levels much cheaper to solve.
- $\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right] \rightarrow 0$ as $\ell \rightarrow \infty \quad \Rightarrow \quad$ far less samples on finer levels

But Important! In MCMC target distribution depends on ℓ :

$$
\mathbb{E}_{\pi^{\llcorner }}\left[Q_{L}\right]=\mathbb{E}_{\pi^{0}}\left[Q_{0}\right]+\sum_{\ell} \mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}\right]-\mathbb{E}_{\pi^{\ell-1}}\left[Q_{\ell-1}\right]
$$

Multilevel Markov Chain Monte Carlo

 choose $h_{\ell}=h_{\ell-1} / 2$ and $s_{\ell}>s_{\ell-1}$, and set $Q_{\ell}:=Q_{h_{\ell}, s_{\ell}}$ and $\mathbf{Z}_{\ell}:=\mathbf{Z}_{s_{\ell}}$ What are the key ingredients of "standard" multilevel Monte Carlo?- Telescoping sum: $\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}\right]-\mathbb{E}\left[Q_{\ell-1}\right]$
- Models with less DOFs on coarser levels much cheaper to solve.
- $\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right] \rightarrow 0$ as $\ell \rightarrow \infty \quad \Rightarrow \quad$ far less samples on finer levels

But Important! In MCMC target distribution depends on ℓ :

$$
\begin{gathered}
\mathbb{E}_{\pi^{L}}\left[Q_{L}\right]=\underbrace{\mathbb{E}_{\pi^{0}}\left[Q_{0}\right]}_{\text {standard MCMC }}+\sum_{\ell} \underbrace{\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}\right]-\mathbb{E}_{\pi^{\ell-1}}\left[Q_{\ell-1}\right]}_{2 \text { level MCMC (NEW) }} \\
\widehat{Q}_{L}^{\mathrm{ML}}:=\frac{1}{N_{0}} \sum_{n=1}^{N_{0}} Q_{0}\left(\mathbf{Z}_{0}^{n}\right)+\sum_{\ell=1}^{L} \frac{1}{N_{\ell}} \sum_{n=1}^{N_{\ell}}\left(Q_{\ell}\left(\mathbf{Z}_{\ell}^{n}\right)-Q_{\ell-1}\left(\mathbf{z}_{\ell-1}^{n}\right)\right)
\end{gathered}
$$

Multilevel Markov Chain Monte Carlo

 choose $h_{\ell}=h_{\ell-1} / 2$ and $s_{\ell}>s_{\ell-1}$, and set $Q_{\ell}:=Q_{h_{\ell}, s_{\ell}}$ and $\mathbf{Z}_{\ell}:=\mathbf{Z}_{s_{\ell}}$ What are the key ingredients of "standard" multilevel Monte Carlo?- Telescoping sum: $\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}\right]-\mathbb{E}\left[Q_{\ell-1}\right]$
- Models with less DOFs on coarser levels much cheaper to solve.
- $\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right] \rightarrow 0$ as $\ell \rightarrow \infty \quad \Rightarrow \quad$ far less samples on finer levels

But Important! In MCMC target distribution depends on ℓ :

$$
\begin{gathered}
\mathbb{E}_{\pi^{L}}\left[Q_{L}\right]=\underbrace{\mathbb{E}_{\pi^{0}}\left[Q_{0}\right]}_{\text {standard MCMC }}+\sum_{\ell} \underbrace{\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}\right]-\mathbb{E}_{\pi^{\ell-1}}\left[Q_{\ell-1}\right]}_{2 \text { level MCMC (NEW) }} \\
\widehat{Q}_{L}^{\mathrm{ML}}:=\frac{1}{N_{0}} \sum_{n=1}^{N_{0}} Q_{0}\left(Z_{0}^{n}\right)+\sum_{\ell=1}^{L} \frac{1}{N_{\ell}} \sum_{n=1}^{N_{\ell}}\left(Q_{\ell}\left(Z_{\ell}^{n}\right)-Q_{\ell-1}\left(\mathbf{z}_{\ell-1}^{n}\right)\right)
\end{gathered}
$$

Split $\mathbf{Z}_{\ell}^{n}=\left[\mathbf{Z}_{\ell, \mathrm{C}}^{n}, \mathbf{Z}_{\ell, \mathrm{F}}^{n}\right]=Z_{\ell, 1}^{n}, \ldots$ coarse $\ldots, Z_{\ell, s_{\ell-1}}^{n}, Z_{\ell, s_{\ell-1}+1}^{n}, .$. fine.., $Z_{\ell, s_{\ell}}^{n}$

ALGORITHM 2 (Two-level Metropolis Hastings MCMC for $Q_{\ell}-Q_{\ell-1}$)

At states $\mathbf{z}_{\ell-1}^{n}, \mathbf{Z}_{\ell}^{n}$ (of two Markov chains on levels $\ell-1$ and ℓ)
(1) On level $\ell-1$: Generate new state $\mathbf{z}_{\ell-1}^{n+1}$ using Algorithm 1 .

ALGORITHM 2 (Two-level Metropolis Hastings MCMC for $Q_{\ell}-Q_{\ell-1}$)

At states $\mathbf{z}_{\ell-1}^{n}, \mathbf{Z}_{\ell}^{n}$ (of two Markov chains on levels $\ell-1$ and ℓ)
(1) On level $\ell-1$: Generate new state $\mathbf{z}_{\ell-1}^{n+1}$ using Algorithm 1 .
(2) On level ℓ : Propose $\mathbf{Z}_{\ell}^{\prime}=\left[\mathbf{z}_{\ell-1}^{n+1}, \mathbf{Z}_{\ell, \mathrm{F}}^{\prime}\right]$ with $\mathbf{Z}_{\ell, \mathrm{F}}^{\prime}$ as before (e.g. generated via a Crank-Nicholson preconditioned random walk)

Novel transition prob. q^{ML} depends acceptance prob. $\boldsymbol{\alpha}^{\ell-1}$ on level $\ell-1$!

ALGORITHM 2 (Two-level Metropolis Hastings MCMC for $Q_{\ell}-Q_{\ell-1}$)

At states $\mathbf{z}_{\ell-1}^{n}, \mathbf{Z}_{\ell}^{n}$ (of two Markov chains on levels $\ell-1$ and ℓ)
(1) On level $\ell-1$: Generate new state $z_{\ell-1}^{n+1}$ using Algorithm 1 .
(2) On level ℓ : Propose $\mathbf{Z}_{\ell}^{\prime}=\left[\mathbf{z}_{\ell-1}^{n+1}, \mathbf{Z}_{\ell, \mathrm{F}}^{\prime}\right]$ with $\mathbf{Z}_{\ell, \mathrm{F}}^{\prime}$ as before (e.g. generated via a Crank-Nicholson preconditioned random walk)

Novel transition prob. q^{ML} depends acceptance prob. $\boldsymbol{\alpha}^{\ell-1}$ on level $\ell-1$!
(3) Accept Z_{ℓ}^{\prime} with probability

$$
\alpha_{\mathrm{F}}^{\ell}\left(\mathbf{Z}_{\ell}^{\prime} \mid \mathbf{Z}_{\ell}^{n}\right)=\min \left(1, \frac{\pi^{\ell}\left(\mathbf{Z}_{\ell}^{\prime}\right) \mathrm{q}^{\mathrm{ML}}\left(\mathbf{Z}_{\ell}^{n} \mid \mathbf{Z}_{\ell}^{\prime}\right)}{\pi^{\ell}\left(\mathbf{Z}_{\ell}^{n}\right) \mathrm{q}^{\mathrm{ML}}\left(\mathbf{Z}_{\ell}^{\prime} \mid \mathbf{Z}_{\ell}^{n}\right)}\right)
$$

ALGORITHM 2 (Two-level Metropolis Hastings MCMC for $Q_{\ell}-Q_{\ell-1}$)

At states $\mathbf{z}_{\ell-1}^{n}, \mathbf{Z}_{\ell}^{n}$ (of two Markov chains on levels $\ell-1$ and ℓ)
(1) On level $\ell-1$: Generate new state $\mathbf{z}_{\ell-1}^{n+1}$ using Algorithm 1 .
(2) On level ℓ : Propose $\mathbf{Z}_{\ell}^{\prime}=\left[\mathbf{z}_{\ell-1}^{n+1}, \mathbf{Z}_{\ell, \mathrm{F}}^{\prime}\right]$ with $\mathbf{Z}_{\ell, \mathrm{F}}^{\prime}$ as before (e.g. generated via a Crank-Nicholson preconditioned random walk)

Novel transition prob. $\mathrm{q}^{\text {ML }}$ depends acceptance prob. $\boldsymbol{\alpha}^{\ell-1}$ on level $\ell-1$!
(3) Accept Z_{ℓ}^{\prime} with probability

$$
\alpha_{\mathrm{F}}^{\ell}\left(\mathbf{Z}_{\ell}^{\prime} \mid \mathbf{Z}_{\ell}^{n}\right)=\min \left(1, \frac{\pi^{\ell}\left(\mathbf{Z}_{\ell}^{\prime}\right) \pi^{\ell-1}\left(\mathbf{Z}_{\ell, \mathrm{C}}^{n}\right)}{\pi^{\ell}\left(\mathbf{Z}_{\ell}^{n}\right) \pi^{\ell-1}\left(\mathbf{z}_{\ell-1}^{n+1}\right)}\right)
$$

where $\mathbf{Z}_{\ell, \mathrm{C}}^{n}$ are the coarse modes of \mathbf{Z}_{ℓ}^{n} (from the chain on level ℓ).
This follows quite easily \& both level $\ell-1$ terms have been computed before.

Multilevel MCMC Theory (What can we prove?)

[Ketelsen, RS, Teckentrup, arXiv:1303.7343, March 2013]

- We have genuine Markov chains on all levels.
- Multilevel algorithm is consistent (= no bias between levels) since the two chains $\left\{\mathbf{Z}_{\ell}^{n}\right\}_{n \geq 1}$ and $\left\{\mathbf{z}_{\ell}^{n}\right\}_{n \geq 1}$ are independent on each level.
- Multilevel algorithm converges for any initial state.

Multilevel MCMC Theory (What can we prove?)

[Ketelsen, RS, Teckentrup, arXiv:1303.7343, March 2013]

- We have genuine Markov chains on all levels.
- Multilevel algorithm is consistent (= no bias between levels) since the two chains $\left\{\mathbf{Z}_{\ell}^{n}\right\}_{n \geq 1}$ and $\left\{\mathbf{z}_{\ell}^{n}\right\}_{n \geq 1}$ are independent on each level.
- Multilevel algorithm converges for any initial state.
- But coarse modes may differ between level ℓ and $\ell-1$ states:

State $n+1$	Level $\ell-1$	Level ℓ
accept/accept	$\mathbf{z}_{\ell-1}^{\prime}$	$\left[\mathbf{z}_{\ell-1}^{\prime}, \mathbf{Z}_{\ell, \mathrm{F}}^{\prime}\right]$
reject/accept	$\mathbf{z}_{\ell-1}^{n}$	$\left[\mathbf{z}_{\ell-1}^{n}, \mathbf{Z}_{\ell, \mathrm{F}}^{\prime}\right]$
accept/reject	$\mathbf{z}_{\ell-1}^{\prime}$	$\left[\mathbf{Z}_{\ell, \mathrm{C}}^{n}, \mathbf{Z}_{\ell, \mathrm{F}}^{n}\right]$
reject/reject	$\mathbf{z}_{\ell-1}^{n}$	$\left[\mathbf{Z}_{\ell, \mathrm{C}}^{n}, \mathbf{Z}_{\ell, \mathrm{F}}^{n}\right]$

Multilevel MCMC Theory (What can we prove?)

[Ketelsen, RS, Teckentrup, arXiv:1303.7343, March 2013]

- We have genuine Markov chains on all levels.
- Multilevel algorithm is consistent (= no bias between levels) since the two chains $\left\{\mathbf{Z}_{\ell}^{n}\right\}_{n \geq 1}$ and $\left\{\mathbf{z}_{\ell}^{n}\right\}_{n \geq 1}$ are independent on each level.
- Multilevel algorithm converges for any initial state.
- But coarse modes may differ between level ℓ and $\ell-1$ states:

State $n+1$	Level $\ell-1$	Level ℓ
accept/accept	$\mathbf{z}_{\ell-1}^{\prime}$	$\left[\mathbf{z}_{\ell-1}^{\prime}, \mathbf{Z}_{\ell, \mathrm{F}}^{\prime}\right]$
reject/accept	$\mathbf{z}_{\ell-1}^{n}$	$\left[\mathbf{z}_{\ell-1}^{n}, \mathbf{Z}_{\ell, \mathrm{F}}^{\prime}\right]$
accept/reject	$\mathbf{z}_{\ell-1}^{\prime}$	$\left[\mathbf{Z}_{\ell, \mathrm{C}}^{n}, \mathbf{Z}_{\ell, \mathrm{F}}^{n}\right]$
reject/reject	$\mathbf{z}_{\ell-1}^{n}$	$\left[\mathbf{Z}_{\ell, \mathrm{C}}^{n}, \mathbf{Z}_{\ell, \mathrm{F}}^{n}\right]$

In last two cases the variance will in general not be small, but this does not happen often since acceptance probability $\alpha_{F}^{\ell} \xrightarrow{\ell \rightarrow \infty} 1$ (see below).

Complexity Theorem for Multilevel MCMC

Let $Y_{\ell}:=Q_{\ell}-Q_{\ell-1}$ and assume
M1. $\left|\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}\right]-\mathbb{E}_{\pi^{\infty}}[Q]\right| \lesssim h_{\ell}^{\alpha} \quad$ (discretisation and truncation error)
M2. $\mathbb{V}_{\mathrm{alg}}\left[\widehat{Y}_{\ell}\right]+\left(\mathbb{E}_{\mathrm{alg}}\left[\widehat{Y}_{\ell}\right]-\mathbb{E}_{\pi^{\ell}, \pi^{\ell-1}}\left[\widehat{Y}_{\ell}\right]\right)^{2} \lesssim \frac{\mathbb{V}_{\pi^{\ell}, \pi^{\ell-1}}\left[Y_{\ell}\right]}{N_{\ell}}($ MCMC-err $)$
M3. $\mathbb{V}_{\pi^{\ell}, \pi^{\ell-1}}\left[Y_{\ell}\right] \lesssim h_{\ell-1}^{\beta}$
(multilevel variance decay)
M4. $\operatorname{Cost}\left(Y_{\ell}^{(n)}\right) \lesssim h_{\ell}^{-\gamma}$.
(cost per sample)
Then there exist $L,\left\{N_{\ell}\right\}_{\ell=0}^{L}$ s.t. MSE $<\varepsilon^{2}$ and

$$
\varepsilon-\operatorname{Cost}\left(\widehat{Q}_{L}^{M L}\right) \lesssim \varepsilon^{-2-\max \left(0, \frac{\gamma-\beta}{\alpha}\right)}
$$

(This is totally abstract \& applies not only to our subsurface model problem!)
Recall: for standard MCMC (under same assumptions) Cost $\lesssim \varepsilon^{-2-\gamma / \alpha}$.

Verifying (M1-M4) for the subsurface flow problem

 with standard FEs \& Fréchet-diff'ble functionalsVerifying (M1-M4) for the subsurface flow problem with standard FEs \& Fréchet-diff'ble functionals

- First split bias into truncation and discretization error:

$$
\begin{align*}
\left|\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}\right]-\mathbb{E}_{\pi^{\infty}}[Q]\right| & \leq\left|\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}-Q\left(\mathbf{Z}_{\ell}\right)\right]\right| \tag{M1a}\\
& +\left|\mathbb{E}_{\pi^{\ell}}\left[Q\left(\mathbf{Z}_{\ell}\right)\right]-\mathbb{E}_{\pi^{\infty}}[Q]\right| \tag{M1b}
\end{align*}
$$

Verifying (M1-M4) for the subsurface flow problem with standard FEs \& Fréchet-diff'ble functionals

- First split bias into truncation and discretization error:

$$
\begin{align*}
\left|\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}\right]-\mathbb{E}_{\pi^{\infty}}[Q]\right| & \leq\left|\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}-Q\left(\mathbf{Z}_{\ell}\right)\right]\right| \tag{M1a}\\
& +\left|\mathbb{E}_{\pi^{\ell}}\left[Q\left(\mathbf{Z}_{\ell}\right)\right]-\mathbb{E}_{\pi^{\infty}}[Q]\right| \tag{M1b}
\end{align*}
$$

- For M1a use $\mathbb{E}_{\pi^{\ell}}\left[|X|^{q}\right] \lesssim \mathbb{E}_{\mathcal{P}_{\ell}}\left[|X|^{q}\right] \quad$ (prior bounds posterior) \& $\mathbb{E}_{\mathcal{P}_{\ell}}\left[\left|Q_{\ell}-Q\left(\mathbf{Z}_{\ell}\right)\right|^{q}\right] \lesssim h_{\ell}^{2 t q-\delta}$ (as before) $\Rightarrow \alpha<2 t$

Verifying (M1-M4) for the subsurface flow problem with standard FEs \& Fréchet-diff'ble functionals

- First split bias into truncation and discretization error:

$$
\begin{align*}
\left|\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}\right]-\mathbb{E}_{\pi^{\infty}}[Q]\right| & \leq\left|\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}-Q\left(\mathbf{Z}_{\ell}\right)\right]\right| \tag{M1a}\\
& +\left|\mathbb{E}_{\pi^{\ell}}\left[Q\left(\mathbf{Z}_{\ell}\right)\right]-\mathbb{E}_{\pi^{\infty}}[Q]\right| \tag{M1b}
\end{align*}
$$

- For M1a use $\mathbb{E}_{\pi^{\ell}}\left[|X|^{q}\right] \lesssim \mathbb{E}_{\mathcal{P}_{\ell}}\left[|X|^{q}\right] \quad$ (prior bounds posterior) \&

$$
\mathbb{E}_{\mathcal{P}_{\ell}}\left[\left|Q_{\ell}-Q\left(\mathbf{Z}_{\ell}\right)\right|^{q}\right] \lesssim h_{\ell}^{2 t q-\delta} \text { (as before) } \Rightarrow \alpha<2 t
$$

- M1b \& M2 not specific to multilevel MCMC
- M1a requires bound on truncation error in posterior (cf. [Hoang, Schwab, Stuart, '13] for uniformly elliptic/bdd. case)

Verifying (M1-M4) for the subsurface flow problem with standard FEs \& Fréchet-diff'ble functionals

- First split bias into truncation and discretization error:

$$
\begin{align*}
\left|\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}\right]-\mathbb{E}_{\pi^{\infty}}[Q]\right| & \leq\left|\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}-Q\left(\mathbf{Z}_{\ell}\right)\right]\right| \tag{M1a}\\
& +\left|\mathbb{E}_{\pi^{\ell}}\left[Q\left(\mathbf{Z}_{\ell}\right)\right]-\mathbb{E}_{\pi^{\infty}}[Q]\right| \tag{M1b}
\end{align*}
$$

- For M1a use $\mathbb{E}_{\pi^{\ell}}\left[|X|^{q}\right] \lesssim \mathbb{E}_{\mathcal{P}_{\ell}}\left[|X|^{q}\right]$ (prior bounds posterior) \&

$$
\mathbb{E}_{\mathcal{P}_{\ell}}\left[\left|Q_{\ell}-Q\left(\mathbf{Z}_{\ell}\right)\right|^{q}\right] \lesssim h_{\ell}^{2 t q-\delta} \text { (as before) } \Rightarrow \alpha<2 t
$$

- M1b \& M2 not specific to multilevel MCMC
- M1a requires bound on truncation error in posterior (cf. [Hoang, Schwab, Stuart, '13] for uniformly elliptic/bdd. case)
- first steps to prove M2 are in [Hairer, Stuart, Vollmer, '11] (but both are still unproved so far!)

Verifying (M1-M4) for the subsurface flow problem with standard FEs \& Fréchet-diff'ble functionals

- First split bias into truncation and discretization error:

$$
\begin{align*}
\left|\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}\right]-\mathbb{E}_{\pi^{\infty}}[Q]\right| & \leq\left|\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}-Q\left(\mathbf{Z}_{\ell}\right)\right]\right| \tag{M1a}\\
& +\left|\mathbb{E}_{\pi^{\ell}}\left[Q\left(\mathbf{Z}_{\ell}\right)\right]-\mathbb{E}_{\pi^{\infty}}[Q]\right| \tag{M1b}
\end{align*}
$$

- For M1a use $\mathbb{E}_{\pi^{\ell}}\left[|X|^{q}\right] \lesssim \mathbb{E}_{\mathcal{P}_{\ell}}\left[|X|^{q}\right]$ (prior bounds posterior) \&

$$
\mathbb{E}_{\mathcal{P}_{\ell}}\left[\left|Q_{\ell}-Q\left(\mathbf{Z}_{\ell}\right)\right|^{q}\right] \lesssim h_{\ell}^{2 t q-\delta} \text { (as before) } \Rightarrow \alpha<2 t
$$

- M1b \& M2 not specific to multilevel MCMC
- M1a requires bound on truncation error in posterior (cf. [Hoang, Schwab, Stuart, '13] for uniformly elliptic/bdd. case)
- first steps to prove M2 are in [Hairer, Stuart, Vollmer, '11] (but both are still unproved so far!)
- M4 holds (with suitable multigrid solver - proved only for low contrast)

Key assumption for multilevel MCMC is (M3)

Key Lemma (given only for the 1-norm exponential here)
Assume F^{h} Fréchet differentiable \& sufficiently smooth. Then

$$
\lim _{\ell \rightarrow \infty} \alpha_{F}^{\ell}\left(\mathbf{Z}_{\ell}^{\prime} \mid \mathbf{Z}_{\ell}^{n}\right)=1, \quad \text { for } \mathcal{P}_{\ell} \text {-almost all } \mathbf{Z}_{\ell}^{\prime}, \mathbf{Z}_{\ell}^{n},
$$

and

$$
\mathbb{E}_{\mathcal{P}_{\ell}}\left[\left(1-\boldsymbol{\alpha}_{\mathrm{F}}^{\ell}\right)^{q}\right]^{1 / q} \lesssim h_{\ell-1}^{1-\delta}+s_{\ell-1}^{-1 / 2+\delta} \quad \forall q<\infty, \delta>0 .
$$

Key assumption for multilevel MCMC is (M3)

Key Lemma (given only for the 1-norm exponential here)
Assume F^{h} Fréchet differentiable \& sufficiently smooth. Then

$$
\lim _{\ell \rightarrow \infty} \alpha_{F}^{\ell}\left(\mathbf{Z}_{\ell}^{\prime} \mid \mathbf{Z}_{\ell}^{n}\right)=1, \quad \text { for } \mathcal{P}_{\ell} \text {-almost all } \mathbf{Z}_{\ell}^{\prime}, \mathbf{Z}_{\ell}^{n},
$$

and

$$
\mathbb{E}_{\mathcal{P}_{\ell}}\left[\left(1-\boldsymbol{\alpha}_{\mathrm{F}}^{\ell}\right)^{q}\right]^{1 / q} \lesssim h_{\ell-1}^{1-\delta}+s_{\ell-1}^{-1 / 2+\delta} \quad \forall q<\infty, \delta>0 .
$$

Key assumption for multilevel MCMC is (M3)

Key Lemma (given only for the 1-norm exponential here)
Assume F^{h} Fréchet differentiable \& sufficiently smooth. Then

$$
\lim _{\ell \rightarrow \infty} \alpha_{F}^{\ell}\left(\mathbf{Z}_{\ell}^{\prime} \mid \mathbf{Z}_{\ell}^{n}\right)=1, \quad \text { for } \mathcal{P}_{\ell} \text {-almost all } \mathbf{Z}_{\ell}^{\prime}, \mathbf{Z}_{\ell}^{n},
$$

and

$$
\mathbb{E}_{\mathcal{P}_{\ell}}\left[\left(1-\boldsymbol{\alpha}_{\mathrm{F}}^{\ell}\right)^{q}\right]^{1 / q} \lesssim h_{\ell-1}^{1-\delta}+s_{\ell-1}^{-1 / 2+\delta} \quad \forall q<\infty, \delta>0 .
$$

Lemma (again only for 1 -norm exponential)
Let \mathbf{Z}_{ℓ}^{n} and $\mathbf{z}_{\ell-1}^{n}$ be from Algorithm 2 and choose $s_{\ell} \gtrsim h_{\ell}^{-2}$. Then

$$
\mathbb{V}_{\pi^{\ell}, \pi^{\ell-1}}\left[Q_{\ell}\left(\mathbf{Z}_{\ell}^{n}\right)-Q_{\ell-1}\left(\mathbf{z}_{\ell-1}^{n}\right)\right] \lesssim h_{\ell-1}^{1-\delta}, \quad \text { for any } \delta>0
$$

and M3 holds for any $\beta<1$.
($\beta \neq 2 \alpha$ as in "standard" MLMC!)

Numerical Example

$D=(0,1)^{2}$, exponential covar. with $\sigma^{2}=1 \& \lambda=0.5, Q=\int_{\Gamma_{\text {out }}} \vec{q} \cdot \vec{n}, h_{0}=\frac{1}{16}$

Numerical Example

$D=(0,1)^{2}$, exponential covar. with $\sigma^{2}=1 \& \lambda=0.5, Q=\int_{\Gamma_{\text {out }}} \vec{q} \cdot \vec{n}, h_{0}=\frac{1}{16}$

- "Data" $F_{\text {obs }}$: Pressure $p\left(x^{*}\right)$ at 9 random points $x^{*} \in D$.
- \# modes: $s_{0}=96, s_{1}=121, s_{2}=153$ and $s_{3}=169$

Numerical Example

$D=(0,1)^{2}$, exponential covar. with $\sigma^{2}=1 \& \lambda=0.5, Q=\int_{\Gamma_{\text {out }}} \vec{q} \cdot \vec{n}, h_{0}=\frac{1}{16}$

- "Data" $F_{\text {obs }}$: Pressure $p\left(x^{*}\right)$ at 9 random points $x^{*} \in D$.
- \# modes: $s_{0}=96, s_{1}=121, s_{2}=153$ and $s_{3}=169$

Comparison single- vs. multi-level

Acceptance rate α_{F}^{ℓ} in multilevel estim.

Additional Comments

- In all tests we got consistent gains of a factor $O(10-100)$!
- Using a special "preconditioned" random walk to be dimension independent (Assumption M2) from [Cotter, Dashti, Stuart, 2012]
- Using multiple chains to reduce dependence on initial state (and variance estimator suggested by [Gelman \& Rubin, 1992])

Additional Comments

- In all tests we got consistent gains of a factor $O(10-100)$!
- Using a special "preconditioned" random walk to be dimension independent (Assumption M2) from [Cotter, Dashti, Stuart, 2012]
- Using multiple chains to reduce dependence on initial state (and variance estimator suggested by [Gelman \& Rubin, 1992])
- Improved multilevel burn-in also possible ($\sim 10 \times$ cheaper!) (related to two-level work in [Efendiev, Hou, Luo, 2005])

Additional Comments

- In all tests we got consistent gains of a factor $O(10-100)$!
- Using a special "preconditioned" random walk to be dimension independent (Assumption M2) from [Cotter, Dashti, Stuart, 2012]
- Using multiple chains to reduce dependence on initial state (and variance estimator suggested by [Gelman \& Rubin, 1992])
- Improved multilevel burn-in also possible ($\sim 10 \times$ cheaper!) (related to two-level work in [Efendiev, Hou, Luo, 2005])
- Practically observe $\beta \approx 2 \alpha$ (small constant in leading order term)
- Similar results for Matérn covariance and mixed FEs

Additional Comments

- In all tests we got consistent gains of a factor $O(10-100)$!
- Using a special "preconditioned" random walk to be dimension independent (Assumption M2) from [Cotter, Dashti, Stuart, 2012]
- Using multiple chains to reduce dependence on initial state (and variance estimator suggested by [Gelman \& Rubin, 1992])
- Improved multilevel burn-in also possible ($\sim 10 \times$ cheaper!) (related to two-level work in [Efendiev, Hou, Luo, 2005])
- Practically observe $\beta \approx 2 \alpha$ (small constant in leading order term)
- Similar results for Matérn covariance and mixed FEs
- Related theoretical work by [Hoang, Schwab, Stuart, 2013] (different multilevel splitting and so far no numerics to compare)

Conclusions on MCMC Part

- "Real" UQ involves incorporating data - Bayesian inference
- Multilevel MC idea extends to Markov chain Monte Carlo (with theory for lognormal subsurface model problem)
- As spectacular gains in practice as for standard MLMC!

Conclusions on MCMC Part

- "Real" UQ involves incorporating data - Bayesian inference
- Multilevel MC idea extends to Markov chain Monte Carlo (with theory for lognormal subsurface model problem)
- As spectacular gains in practice as for standard MLMC!

Future Work \& Open Questions

- More numerical tests and real comparisons with other methods
- 3D, parallelisation, HPC, application to real problems
- Circulant embedding \& PDE based sampling instead (+theory)
- Multilevel QMC theory for lognormal case
- Application of multilevel MCMC in other areas (statisticians!) other (nonlinear) PDEs, big data applications, molecular dynamics, DA
- Multilevel methods for rare events - "subset simulation"

Thank You!

Most of the material I used is available from my website:
http://people.bath.ac.uk/~masrs/publications.html

